JP2005110566A - Mew lactic acid bacterium, antimicrobial substance produced by the lactic acid bacterium and method for producing the same - Google Patents

Mew lactic acid bacterium, antimicrobial substance produced by the lactic acid bacterium and method for producing the same Download PDF

Info

Publication number
JP2005110566A
JP2005110566A JP2003348478A JP2003348478A JP2005110566A JP 2005110566 A JP2005110566 A JP 2005110566A JP 2003348478 A JP2003348478 A JP 2003348478A JP 2003348478 A JP2003348478 A JP 2003348478A JP 2005110566 A JP2005110566 A JP 2005110566A
Authority
JP
Japan
Prior art keywords
lactic acid
substance
antibacterial
strain
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003348478A
Other languages
Japanese (ja)
Other versions
JP4302476B2 (en
Inventor
Tatsuto Shibata
田 達 人 柴
Tomohide Saka
智 秀 坂
Haruki Taya
屋 春 樹 田
Kyoko Yamazaki
崎 京 子 山
Yoji Takashige
重 洋 治 高
Koji Izumo
雲 耕 二 出
Akihiro Morita
田 昭 博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momoya Co Ltd
Original Assignee
Momoya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momoya Co Ltd filed Critical Momoya Co Ltd
Priority to JP2003348478A priority Critical patent/JP4302476B2/en
Publication of JP2005110566A publication Critical patent/JP2005110566A/en
Application granted granted Critical
Publication of JP4302476B2 publication Critical patent/JP4302476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Beans For Foods Or Fodder (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an antimicrobial peptide-containing substance that is stable in pH in the neutral range to the alkaline range, especially from the acid to alkalinity ranges, and a new lactic acid bacterium for producing the substance. <P>SOLUTION: The lactic acid bacterium (typically KMR-7 strain) belongs to Lactococcus lactis subsp. lactis capable of producing a peptide-containing substance that is stable at pH 2-9 and exhibits antimicrobial properties against gram-positive bacteria. The antimicrobial substance is obtained by culturing the lactic acid strain and has the following properties of (a) containing antimicrobial peptide or protein, (b) completely being digested by protease, (c) being stable at pH 2-9, especially exhibiting high stability at pH 5-9 and (d) exhibiting heat stability at pH 7.0 at 110°C for 10 minutes. The method for producing the antimicrobial substance comprises culturing the lactic acid strain and collecting the cultured cell. The lactic acid strain is used for producing a food. The food preservative contains the antimicrobial substance or a substance containing it. The fermentation raw material or fermented food is produced by using the lactic acid strain. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、新規乳酸菌株およびその乳酸菌が産生する新規抗菌性物質ならびにその製造法および用途に関し、更に具体的には、本発明は、乳酸菌をはじめ多くのグラム陽性菌に対して抗菌性を示す物質を産生するラクトコッカス・ラクティス・サブスピーシーズ・ラクティスに属する新規乳酸菌株、上記抗菌性物質の製造法ならびに食品へのその用途に関するものである。   The present invention relates to a novel lactic acid strain, a novel antibacterial substance produced by the lactic acid bacterium, and a production method and use thereof, and more specifically, the present invention exhibits antibacterial properties against many gram-positive bacteria including lactic acid bacteria. The present invention relates to a novel lactic acid strain belonging to Lactococcus lactis subspecies lactis producing a substance, a method for producing the antibacterial substance, and its use in foods.

乳酸菌は様々な機能を有していることが知られており、その中でも抗菌作用は近年注目されてきている。乳酸菌が生産する抗菌性物質として、乳酸や酢酸などの有機酸、過酸化水素、ジアセチル、ロイテリン、バクテリオシンなどがある。   Lactic acid bacteria are known to have various functions, and among them, antibacterial action has attracted attention in recent years. Antibacterial substances produced by lactic acid bacteria include organic acids such as lactic acid and acetic acid, hydrogen peroxide, diacetyl, reuterin, and bacteriocin.

その中でバクテリオシンは、一般に近縁のグラム陽性菌に対して抗菌作用を示すタンパク質性もしくはペプチド性の物質である。乳酸菌のバクテリオシンは、人間の消化酵素で分解消化されること、乳酸菌が古くから広く食品に利用されていて安全性が高いことなどから、精力的にその探索が実施されてきている。   Among them, bacteriocin is a proteinaceous or peptidic substance that generally exhibits an antibacterial action against closely related Gram-positive bacteria. The search for bacteriocin of lactic acid bacteria has been vigorously carried out because it is digested and digested by human digestive enzymes, and lactic acid bacteria have been widely used in foods for a long time and are highly safe.

バクテリオシンの中で特に有名なものにナイシンがある。ナイシンは現在多くの国々で食品保存料として実用化されており、乳製品や缶詰など特定の食品に添加されている。ナイシンを生産するものとして、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティスが知られている(Nature 154: 551-553 (1944)(文献1))。ナイシンは酸性域で安定であり、例えば、pH 2.0で115.6℃の条件下で安定であるが、pH5.0では40%、pH6.8では90%以上が不活性化される(Adv. Appl. Microbiol. 27: 85-123 (1981)(文献2))。
従って、ナイシンの性質上、使用の用途としては、主として酸性食品に制限されているのが現状である。
Nisin is a particularly famous bacteriocin. Nisin is currently in practical use as a food preservative in many countries and is added to certain foods such as dairy products and canned foods. Lactococcus lactis subspecies lactis is known to produce nisin (Nature 154 : 551-553 (1944) (reference 1)). Nisin is stable in the acidic range, for example, stable at pH 2.0 and 115.6 ° C., but inactivated at 40% at pH 5.0 and 90% or more at pH 6.8 ( Adv. Appl. Microbiol. 27 : 85-123 (1981) (reference 2)).
Therefore, due to the nature of nisin, the current usage is mainly limited to acidic foods.

一方で、バクテリオシン生産菌を用いて味噌の麹発酵中のバチルス属細菌の汚染による品質低下の防止を試みたり(Biosci. Biotechnol. Biochem., 63 (4), 642-647, 1999)(文献3))、バクテリオシンを含む培養上清あるいは粗精製物を種々の加工食品(明太子や豆腐など)に適用してみる(日本乳酸菌学会誌,10 (1), 2-18, 1999(文献4))など様々な試みがなされてきている。
Nature 154: 551-553 (1944) Adv. Appl. Microbiol. 27: 85-123 (1981) Biosci. Biotechnol. Biochem., 63 (4), 642-647, 1999 日本乳酸菌学会誌, 10 (1), 2-18, 1999
On the other hand, using bacteriocin-producing bacteria to try to prevent quality degradation due to contamination with Bacillus during miso fermentation of miso (Biosci. Biotechnol. Biochem., 63 (4), 642-647, 1999) (references) 3)), try applying the culture supernatant or crude product containing bacteriocin to various processed foods (Mentako, Tofu, etc.) (Journal of the Japanese Society for Lactic Acid Bacteria, 10 (1), 2-18, 1999 (Reference 4) Various attempts have been made.
Nature 154: 551-553 (1944) Adv. Appl. Microbiol. 27: 85-123 (1981) Biosci. Biotechnol. Biochem., 63 (4), 642-647, 1999 Japanese Journal of Lactic Acid Bacteria, 10 (1), 2-18, 1999

このような現状から、ナイシンに代わる有用で、かつ、特にpH5〜7の中性域で安定なバクテリオシン生産菌の探索は重要である。本発明は、特に中性域で安定である新規抗菌性物質およびその抗菌性物質を産生する新規乳酸菌を提供することを目的とするものである。   Under such circumstances, it is important to search for a bacteriocin-producing bacterium that is useful in place of nisin and that is stable in the neutral range of pH 5 to 7. An object of the present invention is to provide a novel antibacterial substance that is particularly stable in the neutral range and a novel lactic acid bacterium that produces the antibacterial substance.

本発明者等は、上記問題点に鑑み、酸性域のみならず中性域など広いpH範囲で安定なバクテリオシン生産菌の探索を行なった結果、市販の発酵漬物(台湾産のメンマ)から単離したラクトコッカス・ラクティス・サブスピーシーズ・ラクティスに属する新規乳酸菌KMR−7株が、中性域を含む酸性域〜アルカリ域で安定で、乳酸菌をはじめ多くのグラム陽性菌に対して抗菌性を示す物質を産生することを見出し、この知見を基に本発明を完成させるに至った。   In view of the above problems, the present inventors conducted a search for bacteriocin-producing bacteria that are stable not only in the acidic range but also in a wide pH range such as the neutral range. A new lactic acid bacterium KMR-7 belonging to the isolated Lactococcus lactis sub-species lactis is stable in acidic to alkaline regions including neutral, and exhibits antibacterial properties against many gram-positive bacteria including lactic acid bacteria The present inventors have found that a substance is produced, and have completed the present invention based on this knowledge.

すなわち、本発明は下記の発明を包含するものである。
pH2〜9において安定であってグラム陽性菌に対して抗菌性を示すペプチド(もしくはタンパク質)含有物質を産生する能力を有する、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティスに属する乳酸菌もしくは乳酸菌株、代表的にはKMR−7株。
上記の乳酸菌株を培養して得ることができ、下記の性質を有する抗菌性物質。
(イ)抗菌性のペプチドもしくはタンパク質を含有する。
(ロ)プロテアーゼで完全消化される。
(ハ)pH2〜9で安定で、特にpH5〜9で高い安定性を示す。
(二)pH7.0、110℃で10分間の処理条件下で熱安定性を示す。
上記のラクトコッカス・ラクティス・サブスピーシーズ・ラクティスに属する乳酸菌を培養し、その培養物を採取することを特徴とする、抗菌性物質の製造法。
上記乳酸菌もしくは乳酸菌株の食品製造のための使用。上記の乳酸菌を用いて製造された発酵原料または発酵食品。上記の抗菌性物質を含んでなる食品保存剤。
That is, the present invention includes the following inventions.
Lactic acid bacteria or lactic acid strains belonging to Lactococcus lactis subspecies lactis, having the ability to produce a peptide (or protein) -containing substance that is stable at pH 2 to 9 and exhibits antibacterial activity against gram-positive bacteria KMR-7 strain.
An antibacterial substance obtained by culturing the above lactic acid strain and having the following properties.
(A) Contains an antibacterial peptide or protein.
(B) Completely digested with protease.
(C) Stable at pH 2-9, particularly high stability at pH 5-9.
(2) Shows thermal stability under treatment conditions of pH 7.0 and 110 ° C. for 10 minutes.
A method for producing an antibacterial substance, comprising culturing a lactic acid bacterium belonging to the aforementioned Lactococcus lactis subspices lactis and collecting the culture.
Use of the above lactic acid bacteria or lactic acid strains for food production. Fermentation raw material or fermented food manufactured using said lactic acid bacteria. A food preservative comprising the above antibacterial substance.

本発明により、酸性〜アルカリ性、特に中性付近のpHで安定な抗菌性物質を産生する新規乳酸菌ならびにその抗菌性物質および当該抗菌性物質を製造する方法が提供される。
本発明乳酸菌は、酸性〜アルカリ性の種々の食品、特に発酵用食品に用いて、他の雑菌等の繁殖を抑制しながら発酵食品等の食品を製造することが可能である。また、本発明による抗菌性物質は、酸性〜アルカリ性の種々の一般食品に対して添加して、酸性の食品のみならず中性〜アルカリ性の種々の食品中の雑菌等の繁殖を抑制する保存料等の使用に有用である。
さらに、本発明抗菌性物質が熱および特に中性付近のpHで安定であるという特性により、特に通常の乳酸菌が腐敗や品質低下などの原因になるような食品に添加してその保存性を高めることが可能である。
INDUSTRIAL APPLICABILITY According to the present invention, there are provided a novel lactic acid bacterium that produces an antibacterial substance that is stable at acidic to alkaline, particularly near neutral pH, an antibacterial substance thereof, and a method for producing the antibacterial substance.
The lactic acid bacteria of the present invention can be used in various acidic to alkaline foods, particularly foods for fermentation, and can produce foods such as fermented foods while suppressing the propagation of other miscellaneous bacteria. Further, the antibacterial substance according to the present invention is a preservative that is added to various general foods of acidic to alkaline to suppress the propagation of germs in various foods of neutral to alkaline as well as acidic foods. Useful for such as.
Furthermore, due to the property that the antibacterial substance of the present invention is stable at heat and particularly near neutral pH, it is added to foods that cause normal lactic acid bacteria to cause spoilage and deterioration in quality, thereby enhancing its preservability. It is possible.

新規乳酸菌
本発明によるラクトコッカス・ラクティス・サブスピーシーズ・ラクティスに属する乳酸菌もしくは乳酸菌株は、pH2〜9において安定であってグラム陽性菌に対して抗菌性を示すペプチド(もしくはタンパク質)含有物質を産生する能力を有するものであることは前記したところであり、この乳酸菌の代表的な例はラクトコッカス・ラクティス・サブスピーシーズ・ラクティスKMR−7株である。
ラクトコッカス・ラクティス・サブスピーシーズ・ラクティスKMR−7株の菌学的性質は以下に示す通りである。これらの菌学的性質は、Bergey’s manual of systematic bacteriology Vol. 2 (1986)に記載の方法および乳酸菌実験マニュアル(朝倉書店、1992年2月25日発行)(1992)に記載の方法に準拠した。
Novel Lactic Acid Bacteria Lactic acid bacteria or lactic acid bacterial strains belonging to Lactococcus lactis subspecies lactis according to the present invention produce a peptide (or protein) -containing substance that is stable at pH 2-9 and exhibits antibacterial activity against gram-positive bacteria As described above, it has the ability, and a typical example of this lactic acid bacterium is Lactococcus lactis subspecies lactis KMR-7 strain.
The mycological properties of Lactococcus lactis subspecies lactis KMR-7 strain are as follows. These bacteriological properties were based on the method described in Bergey's manual of systematic bacteriology Vol. 2 (1986) and the method described in the lactic acid bacteria experiment manual (Asakura Shoten, published on February 25, 1992) (1992).

(1)形態
菌の大きさは0.8〜1.0μmで、連鎖球菌である。グラム陽性で非運動性、非胞子形成菌である。
(2)生理学的性質
(a) カタラーゼ −
(b) 生育温度 10℃ +
45℃ −
(c) 食塩耐性 4% +
6.5% −
(d) pH 9.2 +
9.6 −
(e) 0.3%メチレンブルー耐性 +
(f) 40%胆汁抵抗性 +
(g) アルギニン加水分解 +
(h) クエン酸発酵性の有無 −
(i) グルコースからのガス産生 −
(j) 糖の発酵性の有無
グルコース +
L−アラビノース +
D−リボース +
D−キシロース +
フルクトース +
マンノース +
ラクトース +
シュクロース +
トレハロース +
ラフィノース −
マン二トール +
ソルビトール −
グルコン酸ナトリウム +
デキストリン +
ラムノース −
(3)化学的性質
(a) GC含量 35.6%
(b) ペプチドグリカンタイプ Lys−Asp
(1) Morphology The size of the bacterium is 0.8 to 1.0 μm and is a streptococcus. Gram-positive, non-motile, non-spore-forming bacteria.
(2) Physiological properties
(a) Catalase −
(b) Growth temperature 10 ° C +
45 ° C-
(c) Salt tolerance 4% +
6.5%-
(d) pH 9.2 +
9.6 −
(e) 0.3% methylene blue resistance +
(f) 40% bile resistance +
(g) Arginine hydrolysis +
(h) Presence or absence of citric acid fermentability −
(i) Gas production from glucose −
(j) Presence or absence of sugar fermentability
Glucose +
L-arabinose +
D-ribose +
D-xylose +
Fructose +
Mannose +
Lactose +
Sucrose +
Trehalose +
Raffinose −
Mannitol +
Sorbitol −
Sodium gluconate +
Dextrin +
Rhamnose −
(3) Chemical properties
(a) GC content 35.6%
(b) Peptidoglycan type Lys-Asp

これらの結果を基にBergey’s manual of systematic bacteriology Vol. 2 (1986)で照会したところ、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティスであると同定された。しかし、特に生産するバクテリオシン含有物質の性質(pH域による活性、抗菌スペクトルなど)の違いからこの種に属する公知の菌とは明らかに異なる菌であると認められ、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティスKMR−7株と命名した。
このラクトコッカス・ラクティス・サブスピーシーズ・ラクティスKMR−7株は、平成12年11月14日に本願出願人によって通商産業省工業技術院生命工学工業技術研究所に受託番号:FERM P−18121として寄託されている。
Based on these results, an inquiry was made in Bergey's manual of systematic bacteriology Vol. 2 (1986), and it was identified as Lactococcus lactis subspecies lactis. However, due to differences in the properties of bacteriocin-containing substances to be produced (activity by pH range, antibacterial spectrum, etc.), it is recognized that the bacteria are clearly different from the known bacteria belonging to this species, and Lactococcus lactis subspecies -It was named Lactis KMR-7 strain.
This Lactococcus lactis sub-species lactis KMR-7 strain was deposited by the applicant of the present application on November 14, 2000 at the Institute of Industrial Science and Technology of the Ministry of International Trade and Industry under the accession number: FERM P-18121. Has been.

本発明による新規微生物としてのラクトコッカス・ラクティス・サブスピーシーズ・ラクティスに属する乳酸菌株は、その代表例であるKMR−7株自体はもちろん、上述した能力(すなわち、pH2〜9において安定であってグラム陽性菌に対して抗菌性を示すペプチド含有物質を産生する能力)を有するその変異体を包含するものである。
変異体は、自然的変異あるいは通常の人工的変異手段(例えば紫外線、放射線照射、トランスポゾン、薬品(例えば亜硝酸ナトリウム、ニトロソグアニジン)等により変異した株であっても、上述した能力を有するものであれば本発明に包含される。
Lactic acid strains belonging to Lactococcus lactis subspecies lactis as a novel microorganism according to the present invention are not only the KMR-7 strain, which is a representative example, but also the above-mentioned ability (that is, stable at a pH of 2 to 9 and gram). And its variants having the ability to produce peptide-containing substances that exhibit antibacterial activity against positive bacteria.
Mutants have the above-mentioned ability even if they are mutated by natural mutation or normal artificial mutation means (for example, ultraviolet rays, irradiation, transposon, chemicals (for example, sodium nitrite, nitrosoguanidine), etc.) Any present is included in the present invention.

本発明菌株は、例えば、市販の発酵食品材料である台湾産メンマ等の一部を乳酸菌用の培地で培養し、この培地中または培地上で、上述したような種々の性質を指標として目的の菌株をスクリーニング、分離することにより得ることができる。   The strain of the present invention, for example, is a part of a commercially available fermented food material such as Taiwanese menma, which is cultured in a medium for lactic acid bacteria. It can be obtained by screening and isolating strains.

新規抗菌性物質
本発明による抗菌性物質は、pH2〜9において安定であってグラム陽性菌に対して抗菌性を示すペプチド含有物質であることは前記したところであり、その代表的な態様は下記の性質を有するものである。
(イ)抗菌性のペプチドもしくはタンパク質を含有する。
(ロ)プロテアーゼで完全消化される。(上記ペプチドもしくはタンパク質はプロテアーゼで分解され、抗菌性物質の活性が消失する。)
(ハ)pH2〜9で安定で、特にpH5〜9で高い安定性(抗菌活性)を示す。従って、本抗菌性物質は、従来のバクテリオシンが不安定であった中性域(pH5〜9、特にpH6〜7あるいは6〜8程度)でも安定で高い抗菌活性を示す。
(二)pH7.0、110℃で10分間の処理条件下で熱安定性(抗菌活性)を示す。
Novel antibacterial substance The antibacterial substance according to the present invention is a peptide-containing substance that is stable at pH 2 to 9 and exhibits antibacterial activity against Gram-positive bacteria. It has properties.
(A) Contains an antibacterial peptide or protein.
(B) Completely digested with protease. (The above peptide or protein is degraded by protease and the activity of the antibacterial substance is lost.)
(C) Stable at pH 2-9, particularly high stability (antibacterial activity) at pH 5-9. Therefore, this antibacterial substance shows a stable and high antibacterial activity even in a neutral range (pH 5-9, especially pH 6-7 or about 6-8) where conventional bacteriocin is unstable.
(2) It exhibits thermal stability (antibacterial activity) under treatment conditions of pH 7.0 and 110 ° C. for 10 minutes.

本発明による抗菌性物質の代表例は、各種構造に関する機器分析(質量分析、NMR等)、遺伝子解析等から、34のアミノ酸からなる分子量3328の抗菌性ペプチドもしくはタンパク質を含み、このペプチドは、ナイシンZのアミノ酸配列(Eur.J.Biochem. 201, 581-584(1991)参照)と同じ配列を有するペプチドである。   Representative examples of the antibacterial substance according to the present invention include an antibacterial peptide or protein having a molecular weight of 3328 consisting of 34 amino acids from instrumental analysis (mass spectrometry, NMR, etc.), gene analysis, etc. relating to various structures. It is a peptide having the same sequence as the amino acid sequence of Z (see Eur. J. Biochem. 201, 581-584 (1991)).

本発明の抗菌性物質としては、具体的には、本発明乳酸菌もしくは乳酸菌株を液状または固形培地で培養した培養物、すなわち培養液(菌体含有)、コロニー、培養上清(菌体不含)、粗精製物(後述)、それらの希釈物(水等による)などを例示することができるが、培養上清が特に好ましい。抗菌性物質の形態は液状、ペースト状、乾燥状態等いずれの形態であってもよい。本発明による抗菌性物質は、本発明乳酸菌の培養によって得られ、特にpH2〜9において安定性を示すものであり、後述のように、中性pH域で不安定になる(抗菌活性が低下する)抗菌性ペプチドの精製物(HPLC、電気泳動等による)は本発明の抗菌性物質には包含されない。本発明の好ましい態様において、培養上清では特にpH5〜9で高い安定性を示し、粗精製物では特にpH4〜7あるいは5〜7で高い安定を示す。
ここで、精製物とは上記ペプチドの精製度が70%以上のもの、粗精製物とはその精製度が0%より大きく70%未満、例えば60%以下、好ましくは40%以下、より好ましくは20%以下、最も好ましくは15%以下のものであって、本発明における上記pH安定性を有するものをいう。ここで、精製度とは純度(抗菌性タンパク質重量/全成分重量(水以外))を意味し、精製度0%とは培養物自体を指すものとする。本明細書において、%表示は特に断りのない限り重量%を意味する。
本発明による抗菌性物質の諸性質および抗菌活性については、後記実施例において更に具体的に記載されている。
Specifically, the antibacterial substance of the present invention is a culture obtained by culturing the lactic acid bacterium or lactic acid strain of the present invention in a liquid or solid medium, that is, a culture solution (containing microbial cells), a colony, a culture supernatant (excluding microbial cells). ), Roughly purified products (described later), dilutions thereof (with water or the like), etc., but culture supernatants are particularly preferred. The form of the antibacterial substance may be any form such as liquid, paste, and dry. The antibacterial substance according to the present invention is obtained by culturing the lactic acid bacterium of the present invention, and exhibits stability particularly at pH 2 to 9, and becomes unstable in the neutral pH range as described later (antibacterial activity decreases). ) Purified antibacterial peptides (by HPLC, electrophoresis, etc.) are not included in the antibacterial substance of the present invention. In a preferred embodiment of the present invention, the culture supernatant exhibits high stability particularly at pH 5 to 9, and the crude product exhibits high stability particularly at pH 4 to 7 or 5 to 7.
Here, the purified product refers to a peptide having a purity of 70% or more, and the crude product refers to a purity of greater than 0% but less than 70%, such as 60% or less, preferably 40% or less, more preferably It means 20% or less, most preferably 15% or less, and has the above pH stability in the present invention. Here, the degree of purification means purity (antibacterial protein weight / total component weight (other than water)), and the degree of purification of 0% means the culture itself. In this specification, “%” means “% by weight” unless otherwise specified.
The various properties and antibacterial activity of the antibacterial substance according to the present invention are described more specifically in the examples below.

抗菌性物質の製造
本発明による抗菌性物質は、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティスに属する乳酸菌もしくは乳酸菌株(代表的にはKMR−7株)を培養し、その培養物(培養液、培養上清またはコロニー)を採取することにより得ることができる。本乳酸菌の培養に用いる培地としては、炭素源、窒素源、無機塩類、ビタミン、アミノ酸等を含む通常用いられる培地(液体培地、固体培地など)が使用できるが、好ましくは、通常、乳酸菌を培養する液体培地が用いられる。乳酸菌を培養する培地としては、例えば、GYP、M17、ROGOSA、MRS培地等が挙げられるが、望ましくはMRS培地が用いられる。
Production of Antibacterial Substance The antibacterial substance according to the present invention is obtained by culturing a lactic acid bacterium or a lactic acid strain (typically KMR-7 strain) belonging to Lactococcus lactis subspecies lactis and a culture (culture medium, culture). (Supernatant or colony) can be obtained. As a medium used for culturing the lactic acid bacteria, a commonly used medium (a liquid medium, a solid medium, etc.) containing a carbon source, a nitrogen source, inorganic salts, vitamins, amino acids, etc. can be used. A liquid medium is used. Examples of the medium for cultivating lactic acid bacteria include GYP, M17, ROGOSA, MRS medium, and the like. Preferably, MRS medium is used.

培養条件としては、好気的条件下および嫌気的条件下のいずれでもよい。培地の初発pHは通常6〜8であり、好ましくは6.8〜7.0がよい。培養温度は通常20〜35℃、好ましくは30℃程度がよい。培養時間は通常5〜24時間であり、好ましくは10〜12時間がよい。また、pHを6〜8、特に6.7〜6.8の間で一定になるように調整したジャーファーメンター(微生物培養装置もしくは細胞培養装置)での培養では、さらに活性の高い培養液を調製することができ、この時の培養温度は28〜30℃で、培養時間は8〜10時間程度が好ましい。   The culture conditions may be aerobic conditions or anaerobic conditions. The initial pH of the medium is usually 6-8, preferably 6.8-7.0. The culture temperature is usually 20 to 35 ° C, preferably about 30 ° C. The culture time is usually 5 to 24 hours, preferably 10 to 12 hours. In addition, in culture with a jar fermenter (microorganism culture apparatus or cell culture apparatus) adjusted to have a pH constant between 6 and 8, particularly 6.7 to 6.8, a culture solution with higher activity is used. The culture temperature at this time is preferably 28-30 ° C., and the culture time is preferably about 8-10 hours.

上記の培養によって得られる培養物は、菌体、菌体を含む培養液および菌体を含まない培養上清のいずれも利用できるが、通常、培養液から菌体を遠心分離等によって分離し、好ましくは培養上清液のpHを炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム等により中性(pH6〜7程度)にして、本発明の抗菌性物質として利用(例えば食品保存剤など)できる。また、培養上清液の粗精製物を抗菌性物質として利用することもできる。上記粗精製物質は、例えば培養上清液をイオン交換、限外濾過、逆浸透、ゲル濾過等の方法で処理することにより得ることができる。なお、本発明による抗菌性物質の製造法については、後記実施例にさらに具体的に記載されている。   The culture obtained by the above culture can use any of the cells, a culture solution containing the cells and a culture supernatant not containing the cells, but usually the cells are separated from the culture solution by centrifugation or the like, Preferably, the pH of the culture supernatant is neutralized (about pH 6 to 7) with sodium carbonate, sodium hydroxide, potassium hydroxide or the like, and can be used as an antibacterial substance of the present invention (for example, a food preservative). Moreover, the crudely purified product of the culture supernatant can be used as an antibacterial substance. The roughly purified substance can be obtained, for example, by treating the culture supernatant with a method such as ion exchange, ultrafiltration, reverse osmosis or gel filtration. In addition, about the manufacturing method of the antibacterial substance by this invention, it describes more concretely in the postscript Example.

本発明乳酸菌および抗菌性物質の用途
上述したような本発明乳酸菌もしくは乳酸菌株および抗菌性物質の特徴から、本発明は特に食品分野への適用が可能である。
本発明による乳酸菌は、食品製造、特に発酵原料または発酵食品の製造に使用することができる。すなわち、本発明は、本発明によるラクトコッカス・ラクティス・サブスピーシーズ・ラクティスに属する乳酸菌(代表的にはKMR−7株)を用いて製造した食品、特に発酵原料、発酵食品も包含するものである。
Uses of the Lactic Acid Bacteria and Antibacterial Substances of the Present Invention Due to the characteristics of the lactic acid bacteria or lactic acid strains of the present invention and antibacterial substances as described above, the present invention is particularly applicable to the food field.
The lactic acid bacteria according to the present invention can be used for food production, particularly for the production of fermentation raw materials or fermented foods. That is, the present invention also includes foods produced using lactic acid bacteria (typically KMR-7 strain) belonging to Lactococcus lactis subspecies lactis according to the present invention, particularly fermented raw materials and fermented foods. .

発酵原料としては麹、野菜、果物、乳等の発酵原料があげられ、これは漬物、味噌、醤油、乳製品等の食品に添加する調味料、原材料等として使用することができる。例えば麹では、米、大麦、豆腐などの原料に麹菌と組み合わせて使用することができ、具体的には、例えば蒸煮した原料に麹菌と本発明乳酸菌株を0.1〜10%の量で添加し、20〜35℃の条件で製麹すればよい。また、野菜、果物等では0.1〜10%の量で添加し、20〜35℃で発酵させればよく、乳等では0.1〜10%の量で添加し、20〜35℃で発酵させればよい(%表示はいずれも重量%)。
発酵食品としては、例えば漬物、ヨーグルト等の乳酸発酵食品に使用することができる。例えば、漬物食品では、塩漬けした食品に本発明乳酸菌株を0.1〜10%の量で添加し、20〜35℃の条件で製造することができる。
Fermentation raw materials include fermentation raw materials such as koji, vegetables, fruits and milk, which can be used as seasonings, raw materials and the like added to foods such as pickles, miso, soy sauce and dairy products. For example, in koji, it can be used in combination with koji molds in raw materials such as rice, barley and tofu. Specifically, for example, koji molds and the lactic acid bacterial strain of the present invention are added in an amount of 0.1 to 10% to the cooked ingredients. And it should just be ironed on 20-35 degreeC conditions. In addition, it may be added in an amount of 0.1 to 10% for vegetables, fruits, etc. and fermented at 20 to 35 ° C., and it may be added in an amount of 0.1 to 10% in milk and the like at 20 to 35 ° C. What is necessary is just to ferment (% display is all weight%).
As a fermented food, it can be used for lactic acid fermented foods, such as a pickle and a yoghurt, for example. For example, in pickled food, the lactic acid strain of the present invention can be added to a salted food in an amount of 0.1 to 10% and can be produced at 20 to 35 ° C.

本発明乳酸菌は、必要に応じて発酵原料、発酵食品等の食品に他の食品用微生物と組み合わせて使用することができる。このような微生物は本菌株により阻害を受けないものであり、具体的には例えば麹菌(アスペルギルス・オリゼー(Aspergillus oryzae)、アスペルギルス・ソーヤ(A.sojae)、酵母(Saccharomyces cerevisiaeなど)等があげられる。   The lactic acid bacteria of the present invention can be used in combination with other food microorganisms in foods such as fermentation raw materials and fermented foods as necessary. Such microorganisms are those that are not inhibited by this strain, and specific examples include Aspergillus oryzae, Aspergillus sojae, yeast (Saccharomyces cerevisiae, etc.), and the like. .

本発明抗菌性物質の用途
本発明による抗菌性物質は、グラム陽性菌であるラクトバチルス属、ラクトコッカス属、エンテロコッカス属、ロイコノストック属等の乳酸菌に対して特に強い抑制力を有し、このほかバチルス属、スタフィロコッカス属、ミクロコッカス属等の多くのグラム陽性の細菌に対しても抑制力を有する。
Use of the antibacterial substance of the present invention The antibacterial substance of the present invention has a particularly strong inhibitory power against gram-positive bacteria such as Lactobacillus, Lactococcus, Enterococcus, and Leuconostoc. In addition, it has inhibitory power against many gram-positive bacteria such as Bacillus, Staphylococcus, and Micrococcus.

従って、本発明による抗菌性物質、例えば前記したような本発明乳酸菌もしくは乳酸菌株(代表的にはKMR−7株)の培養物またはその培養上清は一般的食品(例えば漬物など)の製造に特に保存料、発酵調味料等として使用することができる。また、本発明による抗菌性物質は、熱および中性付近のpHに対しても安定であるため、培養液、培養上清の形で、あるいは培養液から分離、粗精製(イオン交換、限外濾過、逆浸透等)した後に食品、特に通常の乳酸菌が腐敗や品質低下などの原因になるような食品(漬物等)に添加してその保存性を高めることが可能である。抗菌性物質の食品への配合量は食品の種類などにより適宜設定すればよいが、例えば食品1容量に対して0.001〜0.1容量の割合(本発明乳酸菌の定常期培養液(例えば実施例1の培養液)として)を添加すればよい。   Therefore, the antibacterial substance according to the present invention, for example, the culture of the lactic acid bacterium of the present invention or the lactic acid bacterial strain (typically KMR-7) as described above or the culture supernatant thereof is used for the production of general foods (eg pickles) In particular, it can be used as a preservative, a fermented seasoning and the like. In addition, since the antibacterial substance according to the present invention is stable against heat and pH near neutrality, it is separated from the culture solution in the form of a culture solution or culture supernatant, or is roughly purified (ion exchange, ultrafiltration). After filtration, reverse osmosis, etc., it is possible to add to foods, particularly foods (pickles etc.) that cause normal lactic acid bacteria to cause spoilage or quality deterioration, thereby enhancing their storage stability. The amount of the antibacterial substance to be added to the food may be appropriately set depending on the kind of food. For example, a ratio of 0.001 to 0.1 volume per 1 volume of food (a stationary culture solution of the lactic acid bacteria of the present invention (for example, What is necessary is just to add as the culture solution of Example 1).

以下、実施例により本発明をさらに詳細に説明するが、これにより本発明が限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by this.

[実施例1]
MRS培地(ポリペプトン10.0g/L、肉エキス 8.0g/L、酵母エキス 4.0g/L、グルコース 20g/L、「ツイーン80」1.0g/L、リン酸水素二カリウム2.0g/L、クエン酸水素二アンモニウム2.0g/L、酢酸ナトリウム三水和物5.0g/L、硫酸マグネシウム七水和物0.2g/L、硫酸マンガン四水和物0.05g/L)をオートクレーブ中121℃で15分間滅菌したものに本発明のラクトコッカス・ラクティス・サブスピーシーズ・ラクティスKMR7‐株をMRS BROTH(OXOID社製)で一晩前培養した培養液を培地量の1%量で植菌し、30℃で8時間培養した。培養後、遠心分離(7500×g、4℃、15分間)により菌体を除去し、さらに有機酸による影響を取り除くために培養上清液を1.0Nまたは2.0Nの水酸化ナトリウムでpHを7.0に調整した。
[Example 1]
MRS medium (polypeptone 10.0 g / L, meat extract 8.0 g / L, yeast extract 4.0 g / L, glucose 20 g / L, “Tween 80” 1.0 g / L, dipotassium hydrogen phosphate 2.0 g / L L, diammonium hydrogen citrate 2.0 g / L, sodium acetate trihydrate 5.0 g / L, magnesium sulfate heptahydrate 0.2 g / L, manganese sulfate tetrahydrate 0.05 g / L) Lactococcus lactis sub-species lactis KMR7-strain of the present invention was pre-cultured overnight in MRS BROTH (manufactured by OXOID) at 1% in the amount of the medium. Inoculated and cultured at 30 ° C. for 8 hours. After culturing, the cells are removed by centrifugation (7500 × g, 4 ° C., 15 minutes), and the culture supernatant is further diluted with 1.0N or 2.0N sodium hydroxide to remove the influence of organic acids. Was adjusted to 7.0.

[実施例2]抗菌スペクトル
実施例1で得られた培養上清液を用いて抗菌スペクトルを測定した。まず、滅菌したプラスチックのペトリ皿にグルコース濃度を0.2%にしたMRS寒天培地(ポリペプトン10.0g/L、肉エキス8.0g/L、酵母エキス4.0g/L、グルコース2.0g/L、「ツイーン80」1.0g/L、リン酸水素二カリウム2.0g/L、クエン酸水素二アンモニウム2.0g/L、酢酸ナトリウム三水和物5.0g/L,硫酸マグネシウム七水和物0.2g/L、硫酸マンガン四水和物0.05g/L、寒天12g/L)を分注した平板培地に供試菌株をMRS BROTHで一晩前培養した培養液を1%接種したMRS軟寒天培地(前記組成、寒天7.0g/L)を重層し、直径3ミリの穴をコルクボーラーであけ、培養上清液を20μ1ずつ分注し、それぞれ供試菌株の最適温度で培養し、穴の周囲に形成した阻止円の直径を測定することにより行った(Appl. Environ. Microbiol. 1989 55(8) 1901‐1906)。抗菌スペクトルの試験の結果を表1に示す。
[Example 2] Antibacterial spectrum
The antibacterial spectrum was measured using the culture supernatant obtained in Example 1. First, an MRS agar medium (polypeptone 10.0 g / L, meat extract 8.0 g / L, yeast extract 4.0 g / L, glucose 2.0 g / L, with a glucose concentration of 0.2% in a sterilized plastic petri dish. L, “Tween 80” 1.0 g / L, dipotassium hydrogen phosphate 2.0 g / L, diammonium hydrogen citrate 2.0 g / L, sodium acetate trihydrate 5.0 g / L, magnesium sulfate seven water Japanese culture 0.2g / L, manganese sulfate tetrahydrate 0.05g / L, agar 12g / L) MRS soft agar medium (the above composition, agar 7.0 g / L) is overlaid, a hole with a diameter of 3 mm is opened with a cork borer, and 20 μl of the culture supernatant is dispensed at the optimum temperature of each test strain. Incubate around the hole And measuring the diameter of the inhibition circle form (Appl. Environ. Microbiol. 1989 55 (8) 1901-1906). The results of the antibacterial spectrum test are shown in Table 1.

表1
供試菌株 発育阻止円(直径mm)
ラクトバチルス・カゼイ ATCC 7469 15.63
(Lactobacillus casei)
ラクトバチルス・プランタラム ATCC 8014 8.59
(Lactobacillus plantarum)
ラクトバチルス・カルバタス ATCC 7469 8.44
(Lactobacillus curvatus)
ラクトバチルス・ハロトレランス ATCC 35410 14.96
(Lactobacillus halotolerans)
ラクトバチルス・ヒルガルディー ATCC 8290 13.65
(Lactobacillus hilgardii)
ラクトバチルス・ブレビス IFO 3345 8.66
(Lactobacillus brevis)
ラクトコッカス・ラクティス・
サブスピーシーズ・クレモリス IFO 3427 11.53
(Lactococcus lactis subsp. cremoris)
エンテロコッカス・フェーカリス JCM 5803 4.61
(Enterococcus faecalis)
エンテロコッカス・フェーシウム JCM 5804 5.61
(Enterococcus faecium)
エンテロコッカス・フェーシウム IFO 13131 5.04
(Enterococcus faecium)
ロイコノストック・メセンテロイデス・
サブスピーシーズ・メセンテロイデス JCM 6124 6.61
(Leuconostoc mesenteroides subsp. mesenteroides)
ロイコノストック・メセンテロイデス・
サブスピーシーズ・メセンテロイデス IFO 3426 8.94
(Leuconostoc mesenteroides subsp. mesenteroides)
ロイコノストック・メセンテロイデス・
サブスピーシーズ・デキストラニカム IFO 3349 5.20
(Leuconostoc mesenteroides subsp. dextranicum)
ロイコノストック・ラクティス JCM 6124 5.41
(Leuconostoc lactis)
ロイコノストック・パラメセンテロイデス NRIC 1542 12.10
(Leuconostoc paramesenteroides)
バチルス・サブチリス IFO 3335 5.33
(Bacillus subtilis)
バチルス・セレウス IFO 13494 −
(Bacillus cereus)
バチルス・コアグランス IFO 12583 4.70
(Bacillus coagulans)
バチルス・リケニフォルミス IFO 12200 −
(Bacillus licheniformis)
バチルス・サーキュランス IFO 13262 −
(Bacillus circulans)
ミクロコッカス・ルーテウス IFO 12708 18.28
(Micrococcus luteus)
スタフィロコッカス・オウレウス IFO 13276 4.93
(Staphylococcus aureus)
エッシェリシア・コリ IFO 3301 −
(Escherichia coli)
シュードモナス・フローレセンス JCM 5963 −
(Pseudomonas fluorescens)
アシネトバクター・クローセティクス IFO 12552 −
(Acinetobacter cloacetics)
デバリオミセス・ハンセニー IFO 0094 −
(Debaryomyces hansenii)
サッカロセス・セレビシエ IFO 2735 −
(Sacchromyces cerevisiae)
Table 1
Test strain Growth inhibition circle (diameter mm)
Lactobacillus casei ATCC 7469 15.63
(Lactobacillus casei)
Lactobacillus plantarum ATCC 8014 8.59
(Lactobacillus plantarum)
Lactobacillus carbatus ATCC 7469 8.44
(Lactobacillus curvatus)
Lactobacillus halotolerance ATCC 35410 14.96
(Lactobacillus halotolerans)
Lactobacillus hilgardi ATCC 8290 13.65
(Lactobacillus hilgardii)
Lactobacillus brevis IFO 3345 8.66
(Lactobacillus brevis)
Lactococcus lactis
Subspecies Cremolis IFO 3427 11.53
(Lactococcus lactis subsp. Cremoris)
Enterococcus faecalis JCM 5803 4.61
(Enterococcus faecalis)
Enterococcus faecium JCM 5804 5.61
(Enterococcus faecium)
Enterococcus faecium IFO 13131 5.04
(Enterococcus faecium)
Leuconostok Mecenteroides
Subspecies Mecenteroides JCM 6124 6.61
(Leuconostoc mesenteroides subsp.mesenteroides)
Leuconostok Mecenteroides
Subspecies Mecenteroides IFO 3426 8.94
(Leuconostoc mesenteroides subsp.mesenteroides)
Leuconostok Mecenteroides
Subspecies Dextranicum IFO 3349 5.20
(Leuconostoc mesenteroides subsp.dextranicum)
Leuconostok Ractis JCM 6124 5.41
(Leuconostoc lactis)
Leuconostok Paramescenteroides NRIC 1542 12.10
(Leuconostoc paramesenteroides)
Bacillus subtilis IFO 3335 5.33
(Bacillus subtilis)
Bacillus cereus IFO 13494 −
(Bacillus cereus)
Bacillus coagulance IFO 12583 4.70
(Bacillus coagulans)
Bacillus licheniformis IFO 12200 −
(Bacillus licheniformis)
Bacillus Circulation IFO 13262 −
(Bacillus circulans)
Micrococcus luteus IFO 12708 18.28
(Micrococcus luteus)
Staphylococcus aureus IFO 13276 4.93
(Staphylococcus aureus)
Escherichia coli IFO 3301 −
(Escherichia coli)
Pseudomonas florence JCM 5963 −
(Pseudomonas fluorescens)
Acinetobacter crocetics IFO 12552 −
(Acinetobacter cloacetics)
Debariomyces Hanseny IFO 0094 −
(Debaryomyces hansenii)
Saccharomyces cerevisiae IFO 2735 −
(Sacchromyces cerevisiae)

「実施例3」タンパク質分解酵素に対する感受性
実施例1で得られた培養上清液に、各種酵素を1.0mg/m1となるように添加し、37℃または25℃で18時間反応させた。ラクトバチルス・カゼイ ATCC 7469を指標菌とし、抗菌活性を測定することにより感受性の有無を調べた。抗菌活性の測定は、滅菌したプラスチックのペトリ皿に実施例2に記載のMRS寒天培地を分注した平板培地にラクトバチルス・カゼイ ATCC 7469を接種した実施例2に記載のMRS軟寒天培地を重層し、コルクボーラーで直径3ミリの穴をあけ、培養上清液の2倍希釈液列を調製したものを20μ1ずつ穴に接種し、30℃で24時間嫌気培養した後、生育を完全に阻害した最高希釈倍率を調べた。抗菌活性の定量化は、生育を完全に阻害した最高希釈倍率を50倍して1m1あたりの力価(AU/m1)を求めた。この結果を表2に示す。
"Example 3" Sensitivity to proteolytic enzymes Various enzymes were added to the culture supernatant obtained in Example 1 to a concentration of 1.0 mg / m1, and reacted at 37 ° C or 25 ° C for 18 hours. Lactobacillus casei ATCC 7469 was used as an indicator bacterium, and the antimicrobial activity was measured to determine the presence or absence of sensitivity. The antibacterial activity was measured by overlaying the MRS soft agar medium described in Example 2 in which Lactobacillus casei ATCC 7469 was inoculated on a plate medium in which the MRS agar medium described in Example 2 was dispensed into a sterilized plastic Petri dish. Then, a hole with a diameter of 3 mm was made with a cork borer, and 20 μl of a preparation of a 2-fold dilution series of the culture supernatant was inoculated into each well and anaerobically cultured at 30 ° C. for 24 hours, after which growth was completely inhibited. The highest dilution factor was examined. For the quantification of the antibacterial activity, the highest dilution factor that completely inhibited the growth was multiplied by 50 to obtain the titer per 1 ml (AU / m1). The results are shown in Table 2.

表2
酵素 抗菌活性(AU/ml)
ペプシン 400
パパイン 200
トリプシン 400
プロテアーゼ 0
未処理 800
Table 2
Enzyme Antibacterial activity (AU / ml)
Pepsin 400
Papain 200
Trypsin 400
Protease 0
Untreated 800

[実施例4]熱安定性
実施例1で得られた培養上清液を100,110,120,130℃でそれぞれ10分間加熱し、冷却後実施例3の方法でラクトバチルス・カゼイATCC 7469を指標菌とし、抗菌活性の定量により熱安定性を調べた。結果を表3に示す。
[Example 4] Thermal stability
The culture supernatant obtained in Example 1 was heated for 10 minutes at 100, 110, 120, and 130 ° C., respectively, and after cooling, the Lactobacillus casei ATCC 7469 was used as an indicator bacterium by the method of Example 3 to determine the antibacterial activity. The thermal stability was examined. The results are shown in Table 3.

表3
温度(℃) 抗菌活性(AU/ml)
100 800
110 800
120 400
130 200
未処理 800
Table 3
Temperature (℃) Antibacterial activity (AU / ml)
100 800
110 800
120 400
130 200
Untreated 800

[実施例5]pH安定性
実施例1で得られた培養上清液を1.0Nまたは0.1NのNaOH、1.0Nまたは0.1NのHClにてpHを2〜9に調整して、30℃で60分間処理し、pHを7.0に再調整して、実施例3の方法でラクトバチルス・カゼイ ATCC 7469を指標菌とし、抗菌活性の定量によりpH安定性を調べた。結果を表4に示す。
[Example 5] pH stability
The culture supernatant obtained in Example 1 was adjusted to pH 2-9 with 1.0N or 0.1N NaOH, 1.0N or 0.1N HCl, and treated at 30 ° C. for 60 minutes. The pH was readjusted to 7.0, and Lactobacillus casei ATCC 7469 was used as the indicator bacterium by the method of Example 3, and the pH stability was examined by quantifying the antibacterial activity. The results are shown in Table 4.

表4
pH 抗菌活性(AU/ml)
2 800
3 800
4 800
5 1600
6 1600
7 1600
8 1600
9 1600
Table 4
pH Antibacterial activity (AU / ml)
2 800
3 800
4 800
5 1600
6 1600
7 1600
8 1600
9 1600

[実施例6]
実施例1のMRS培地5Lをオートクレーブ中121℃で30分間滅菌したものに本発明のラクトコッカス・ラクティス・サブスピーシーズ・ラクティスKMR‐7株をMRS BROTHで一晩前培養した培養液を培地量の1%量で植菌し、培養中の培地のpHを6.7〜6.8で一定に調整しながら、ジャーファーメンターで30℃で8時間培養した。培養後は実施例1の通りに行った。実施例6と実施例1でそれぞれ培養した場合の増殖曲線と抗菌活性の関係を図1に示す。表1〜表4より、本発明のラクトコッカス・ラクティス・サブスピーシーズ・ラクティスKMR‐7株の産生する抗菌性物質は、乳酸菌をはじめ多くのグラム陽性菌(食品汚染菌もしくは食品腐敗菌を含む)に対して抗菌性を示す抗菌スペクトルを有し、ペプシン、パパイン、トリプシン、プロテアーゼに対して感受性があり、特にプロテアーゼに対しては完全消化されることからタンパク質もしくはペプチドで、典型的なバクテリオシンの特徴を示すものである。また、本発明の抗菌性物質は110℃で10分間、pH2〜9、特に5〜9で高い安定性を示すものである。さらにpHを調整(pH6.7〜6.8程度)してジャーファーメンターで培養すると、抗菌活性が2倍以上のものを得ることができる。
[Example 6]
A culture solution obtained by preculturing the Lactococcus lactis sub-species lactis KMR-7 strain of the present invention overnight in MRS BROTH to 5 L of the MRS medium of Example 1 sterilized at 121 ° C. for 30 minutes in an autoclave. The cells were inoculated in an amount of 1% and cultured at 30 ° C. for 8 hours on a jar fermenter while adjusting the pH of the medium during the culture to 6.7 to 6.8. After the cultivation, it was carried out as in Example 1. FIG. 1 shows the relationship between the growth curve and the antibacterial activity when cultured in Example 6 and Example 1, respectively. From Tables 1 to 4, antibacterial substances produced by the Lactococcus lactis subspecies lactis KMR-7 strain of the present invention are gram-positive bacteria including lactic acid bacteria (including food-contaminating bacteria or food spoilage bacteria) It has antibacterial spectrum showing antibacterial activity against, and is sensitive to pepsin, papain, trypsin and protease, and is particularly digested to protease, so it is a protein or peptide. It shows the characteristics. The antibacterial substance of the present invention exhibits high stability at 110 ° C. for 10 minutes, pH 2-9, especially 5-9. Furthermore, when the pH is adjusted (about pH 6.7 to 6.8) and cultured in a jar fermenter, one having an antibacterial activity of 2 times or more can be obtained.

[実施例7]抗菌物質の精製
実施例1のMRS培地(前記組成)からツイーン80を除いた培地で培養して得られた培養液9Lを遠心分離(9000×g、4℃、15分間)し、培養上清液を得た。得られた培養上清液に硫酸アンモニウムを加え、20%飽和溶液とし、4℃で一夜静置した。その後、これを遠心分離(9000×g、4℃、15分間)して沈殿画分を分取し、25mM Tris‐HCl緩衝液(pH7.0)に懸濁した。
次に分画サイズ3000の限外濾過を利用した遠心分離による濃縮、脱塩器(ミリポア社製)により精製、濃縮、脱塩を行った(2500×g、4℃、30分間)。
ここで得られた分画サイズ3000以上の画分を粗精製物とした。この粗精製物をCM‐トヨパール650(東ソー社製)を充填したカラム(カラム内径3.5cm、長さ33cm)に流速0.85ml/分で通液して吸着させ、1M NaClを含む25mM Tris‐HCl緩衝液(pH7.0)のリニアグラジエントにより溶出させ、(フラクションボリューム6ml)、フラクションナンバー31〜36の所で活性画分を得た。その結果を図2に示す。得られた活性画分は前記の分画サイズ3000の限外濾過を利用した遠心分離による濃縮、脱塩器により、濃縮、脱塩を行った(2500×g、4℃、30分間)。ここで分画サイズ3000以上の画分を得た。これをオクタデシル‐2PW (Octadecyl‐2PW;東ソー社製)を充填したカラム(カラム内径6.0mm,長さ15cm)を用いて、流速1ml/分で逆相の高速液体クロマトグラフィーを行った。これより得られた活性画分をバクテリオシン精製物とした。
[Example 7] Purification of antibacterial substance
9 L of a culture solution obtained by culturing in a medium excluding Tween 80 from the MRS medium (composition) of Example 1 was centrifuged (9000 × g, 4 ° C., 15 minutes) to obtain a culture supernatant. . Ammonium sulfate was added to the obtained culture supernatant to make a 20% saturated solution, and left overnight at 4 ° C. Thereafter, this was centrifuged (9000 × g, 4 ° C., 15 minutes), the precipitated fraction was collected, and suspended in 25 mM Tris-HCl buffer (pH 7.0).
Next, concentration by centrifugation using ultrafiltration with a fraction size of 3000, purification, concentration, and desalting were performed with a desalter (manufactured by Millipore) (2500 × g, 4 ° C., 30 minutes).
The fraction having a fraction size of 3000 or more obtained here was used as a crude product. This crude product was adsorbed by passing it through a column (column inner diameter 3.5 cm, length 33 cm) packed with CM-Toyopearl 650 (manufactured by Tosoh Corporation) at a flow rate of 0.85 ml / min, and 25 mM Tris containing 1M NaCl. Elution was carried out with a linear gradient of HCl buffer (pH 7.0) (fraction volume 6 ml), and active fractions were obtained at fraction numbers 31 to 36. The result is shown in FIG. The obtained active fraction was concentrated and desalted by a concentration and desalting apparatus by centrifugation using ultrafiltration with a fraction size of 3000 (2500 × g, 4 ° C., 30 minutes). Here, a fraction having a fraction size of 3000 or more was obtained. This was subjected to reversed-phase high-performance liquid chromatography at a flow rate of 1 ml / min using a column (column inner diameter 6.0 mm, length 15 cm) packed with Octadecyl-2PW (Octadecyl-2PW; manufactured by Tosoh Corporation). The active fraction obtained from this was used as a purified bacteriocin.

[実施例7−1]実施例7記載の方法に従い、粗精製物を調製した。粗精製物をCMトヨパール650を充填したカラムに流速0.85ml/分で通液して吸着させ、1M NaClを含む25mM Tris−HCl緩衝液(pH7.0)のリニアグラジエントにより溶出させ、活性画分を得た。本法(陽イオン交換クロマトグラフィー)における総タンパク質量(全画分)に対する活性画分のタンパク質量の割合は15%であった(図7)。更に得られた活性画分について高速液体クロマトグラフィーで確認したところ、活性画分のタンパク質量の割合は70%であった(図8)。
得られた精製物を、実施例7記載の方法に従い、高速液体クロマトグラフィーで2回精製を行ったところ、純度は90%以上になった。
Example 7-1 A crude product was prepared according to the method described in Example 7. The crude product was adsorbed by passing it through a column packed with CM Toyopearl 650 at a flow rate of 0.85 ml / min, and eluted with a linear gradient of 25 mM Tris-HCl buffer (pH 7.0) containing 1 M NaCl. Got the minute. The ratio of the protein amount of the active fraction to the total protein amount (total fraction) in this method (cation exchange chromatography) was 15% (FIG. 7). Further, when the obtained active fraction was confirmed by high performance liquid chromatography, the protein content ratio of the active fraction was 70% (FIG. 8).
When the obtained purified product was purified twice by high performance liquid chromatography according to the method described in Example 7, the purity became 90% or more.

[実施例8]SDS‐ポリアクリルアミドゲル電気泳動
実施例7で得られたバクテリオシン精製物の純度を確認するために、常法に従いSDS‐ポリアクリルアミドゲル電気泳動を行い、精製した。ゲルはアクリルアミドの25%の固定濃度のものを調製した。架橋剤はN,N’‐メチレンビスアクリルアミドを用いた。また電極液はグリシンをトリシンに変更して用いた。泳動したゲルは銀染色法により染色し、単一バンドとして検出された。
[Example 8] SDS-polyacrylamide gel electrophoresis
In order to confirm the purity of the purified bacteriocin obtained in Example 7, it was purified by SDS-polyacrylamide gel electrophoresis according to a conventional method. The gel was prepared with a fixed concentration of 25% of acrylamide. As the cross-linking agent, N, N′-methylenebisacrylamide was used. The electrode solution was changed from glycine to tricine. The migrated gel was stained by the silver staining method and detected as a single band.

[実施例9−1]精製度とpH安定性の検討
実施例7の各精製段階(培養上清、陽イオン交換クロマトグラフィー(粗精製物)、HPLC(精製物))におけるpH安定性の検討を実施例5の方法に準じて行った。その結果を抗菌活性の変化率(相対活性%)として表5に示す。
[Example 9-1] Examination of degree of purification and pH stability Examination of pH stability in each purification stage of Example 7 (culture supernatant, cation exchange chromatography (crude product), HPLC (purified product)) Was performed according to the method of Example 5. The results are shown in Table 5 as the rate of change of antibacterial activity (relative activity%).

表5
抗菌活性(変化率%)
(精製段階) 培養上清 陽イオン交換クロ HPLC
マトグラフィー
pH
2 (100) (100) (100)
3 100 100 200
4 100 200 200
5 200 200 200
6 200 200 200
7 200 200 100
8 200 100 50
9 200 50 50
Table 5
Antibacterial activity (% change)
(Purification stage) Culture supernatant Cation exchange chromatography HPLC
Matography
pH
2 (100) (100) (100)
3 100 100 200
4 100 200 200
5 200 200 200
6 200 200 200
7 200 200 100
8 200 100 50
9 200 50 50

表5の結果より、培養上清および粗精製物は広いpH域において高いpH安定性を示したが、精製物は特にpH中性〜アルカリ域において安定性が低下していた(図5参照)。   From the results shown in Table 5, the culture supernatant and the crudely purified product showed high pH stability in a wide pH range, but the purified product showed reduced stability particularly in the pH neutral to alkaline range (see FIG. 5). .

[実施例9−2]ナイシン類とのpH安定性の比較
ナイシンA生産菌(Lactococcus lactis subsp. lactis IFO 12007株)およびナイシンZ生産菌(Lactococcus lactis subsp. lactis JCM 7638株)の培養上清について、KMR−7株と同様にしてpH安定性の試験を行なった(実施例1、5参照)。
その結果、図6に示されるように、ナイシンAおよびZの培養上清は酸性域で安定な結果が得られたが、アルカリ域では低下した。一方、KMバクテリオシン(KMR−7株による)の培養上清は、低pH〜アルカリ側(特にpH5〜9)でも安定性を示していた。
[Example 9-2] Comparison of pH stability with nisins Culture supernatants of nisin A producing bacteria (Lactococcus lactis subsp. Lactis IFO 12007 strain) and nisin Z producing bacteria (Lactococcus lactis subsp. Lactis JCM 7638 strain) The pH stability was tested in the same manner as for the KMR-7 strain (see Examples 1 and 5).
As a result, as shown in FIG. 6, the nisin A and Z culture supernatants showed stable results in the acidic range, but decreased in the alkaline range. On the other hand, the culture supernatant of KM bacteriocin (according to the KMR-7 strain) showed stability even at low pH to alkali side (particularly pH 5 to 9).

[実施例10]アミノ酸配列
実施例7で得られたバクテリオシン精製物について気相配列決定装置(ヒューレットパッカード社製)を用いてアミノ酸配列の解析を行い配列情報を得た。結果から、抗菌性物質に含まれるペプチドは、ナイシンZのアミノ酸配列(Eur.J.Biochem. 201, 581-584(1991)参照)と同じ配列を有するペプチドであることが判明した。
[Example 10] Amino acid sequence The amino acid sequence of the purified bacteriocin obtained in Example 7 was analyzed using a gas phase sequencing apparatus (manufactured by Hewlett-Packard) to obtain sequence information. From the results, it was found that the peptide contained in the antibacterial substance was a peptide having the same sequence as the amino acid sequence of nisin Z (see Eur. J. Biochem. 201, 581-584 (1991)).

[実施例11]質量分析
実施例7で得られたバクテリオシン精製物を常法に従い、ESI-MSスペクトルを測定した。測定されたマススペクトラムの結果から、バクテリオシン精製物の分子量はナイシンZと同じ3328であることが明らかとなった(図3、4参照)。
[Example 11] Mass spectrometry The ESI-MS spectrum of the purified bacteriocin obtained in Example 7 was measured according to a conventional method. From the measured mass spectrum results, it was revealed that the molecular weight of the purified bacteriocin was 3328, the same as that of Nisin Z (see FIGS. 3 and 4).

[実施例12]
市販の料理用つゆ95mlをpH7.0に調整し、オートクレーブ滅菌後、実施例1で得られた培養上清液を1%および5%になるように添加し、全量を100mlとした。続いてラクトバチルス・カゼイ ATCC 7469の前培養液を各試験区に0.1%量ずつ接種し、25℃にて保存して経時的に菌数測定を行った。一般細菌数が10/mlになるまでの日数を有効保存日数とした。結果を表6に示す。
[Example 12]
95 ml of commercially available soup for cooking was adjusted to pH 7.0, and after autoclaving, the culture supernatant obtained in Example 1 was added to 1% and 5% to make a total volume of 100 ml. Subsequently, the preculture of Lactobacillus casei ATCC 7469 was inoculated into each test group in an amount of 0.1%, stored at 25 ° C., and the number of bacteria was measured over time. The number of days until the number of general bacteria reached 10 8 / ml was defined as the effective storage day. The results are shown in Table 6.

表6
添加量 有効保存日数(25℃)
無添加 3日
1% 6日
5% 8日
Table 6
Amount added Effective storage days (25 ° C)
3 days without additive
1% 6 days
5% 8 days

表6から明らかなように、本発明の抗菌性物質の添加により有効保存日数が長くなっている。   As is clear from Table 6, the effective storage days are increased by the addition of the antibacterial substance of the present invention.

[実施例13]
市販の豆腐100gをポリ容器に入れ、実施例1で得られた培養上清液、pH、食塩濃度を調製した滅菌調製液を150ml添加し、25℃及び4℃で保存して経時的に菌数測定を行った。一般細菌数が10/mlになるまでの日数を有効保存日数とした。結果を表7に示す。
[Example 13]
Put 100 g of commercially available tofu in a plastic container, add 150 ml of the sterilized preparation solution prepared in Example 1 with adjusted culture supernatant, pH, and salt concentration, store at 25 ° C. and 4 ° C., and store the bacteria over time. A number measurement was made. The number of days until the number of general bacteria reached 10 5 / ml was defined as the effective storage day. The results are shown in Table 7.

表7
試験区 有効保存日数
25℃ 1日
4℃ 6日
4℃+pH4 7日
4℃+NaC1 5% 11日
4℃+培養上清20% 7日
4℃+pH4+NaC1 5%+培養上清20% 16日
Table 7
Test zone Effective preservation days
25 ° C. 1 day 4 ° C. 6 days 4 ° C. + pH 4 7 days 4 ° C. + NaC1 5% 11 days 4 ° C. + culture supernatant 20% 7 days
4 ° C. + pH 4 + NaC1 5% + culture supernatant 20% 16 days

表7から明らかなように、本発明の抗菌性物質の添加により有効保存日数が長くなり、さらにpH調整および食塩添加による相乗効果でさらに有効保存日数が長くなっている。   As is clear from Table 7, the effective storage days are increased by the addition of the antibacterial substance of the present invention, and the effective storage days are further increased by the synergistic effect of pH adjustment and addition of salt.

本発明でジャーファーメンターを用いてpHを一定に調整して培養した場合と、pH未調整で通常の培養をした場合の増殖曲線と抗菌活性の関係を示す説明図。Explanatory drawing which shows the relationship between the growth curve at the time of culture | cultivating by adjusting pH constant using a jar fermenter in this invention, and the case of carrying out normal culture | cultivation without pH adjustment. 本発明による抗菌物質のCM−トヨパール650クロマトグラフィーによる溶出プロフィールを示す説明図。Explanatory drawing which shows the elution profile by CM-Toyopearl 650 chromatography of the antimicrobial substance by this invention. 本発明による抗菌物質のESI−MSスペクトラムを示す説明図。Explanatory drawing which shows the ESI-MS spectrum of the antibacterial substance by this invention. ナイシンZのESI−MSスペクトラムを示す説明図。Explanatory drawing which shows the ESI-MS spectrum of Nisin Z. KMR−7株の培養上清、粗精製物、精製物におけるpH安定性を示すグラフ。The graph which shows the pH stability in the culture supernatant of KMR-7 strain | stump | stock, a crude purified product, and a purified product. 各バクテリオシン生産菌の培養上清におけるpH安定性を示すグラフ。The graph which shows the pH stability in the culture supernatant of each bacteriocin producing microbe. 陽イオン交換クロマトグラフィーによる粗精製物の溶出プロフィールを示す説明図。Explanatory drawing which shows the elution profile of the crudely purified product by cation exchange chromatography. HPLCによる精製物の溶出プロフィールを示す説明図。Explanatory drawing which shows the elution profile of the purified material by HPLC.

Claims (9)

pH2〜9において安定であってグラム陽性菌に対して抗菌性を示すペプチド含有物質を産生する能力を有することを特徴とする、ラクトコッカス・ラクティス・サブスピーシーズ・ラクティスに属する乳酸菌。   A lactic acid bacterium belonging to Lactococcus lactis subspecies lactis, characterized in that it has the ability to produce a peptide-containing substance that is stable at pH 2 to 9 and exhibits antibacterial properties against gram-positive bacteria. KMR−7株(受託番号FERM P−18121)である、請求項1に記載の乳酸菌。   The lactic acid bacterium according to claim 1, which is KMR-7 strain (Accession No. FERM P-18121). 請求項1または2に記載の乳酸菌株を培養して得ることができ、下記の性質を有する抗菌性物質。
(イ)抗菌性のペプチドもしくはタンパク質を含有する。
(ロ)プロテアーゼで完全消化される。
(ハ)pH2〜9で安定で、特にpH5〜9で高い安定性を示す。
(二)pH7.0、110℃で10分間の処理条件下で熱安定性を示す。
An antibacterial substance obtained by culturing the lactic acid strain according to claim 1 or 2 and having the following properties.
(A) Contains an antibacterial peptide or protein.
(B) Completely digested with protease.
(C) Stable at pH 2-9, particularly high stability at pH 5-9.
(2) Shows thermal stability under treatment conditions of pH 7.0 and 110 ° C. for 10 minutes.
抗菌性物質が乳酸菌株の培養物である、請求項3に記載の抗菌性物質。   The antibacterial substance according to claim 3, wherein the antibacterial substance is a culture of a lactic acid strain. 請求項1または2に記載の乳酸菌株を培養し、その培養物を採取することを特徴とする、抗菌性物質の製造法。   A method for producing an antibacterial substance, comprising culturing the lactic acid strain according to claim 1 or 2 and collecting the culture. pH6〜8でジャーファーメンターで培養を行なう、請求項5に記載の製造法。   The production method according to claim 5, wherein the culture is performed with a jar fermenter at a pH of 6-8. 請求項1または2に記載の乳酸菌株の、食品製造のための使用。   Use of the lactic acid strain according to claim 1 or 2 for food production. 請求項1または2に記載された乳酸菌株を用いて製造された、発酵原料または発酵食品。   Fermentation raw material or fermented food manufactured using the lactic acid strain described in Claim 1 or 2. 請求項3または4に記載の抗菌性物質を含んでなる、食品保存剤。   A food preservative comprising the antibacterial substance according to claim 3 or 4.
JP2003348478A 2003-10-07 2003-10-07 Novel lactic acid bacteria, antibacterial substances produced by the lactic acid bacteria, and production method thereof Expired - Lifetime JP4302476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348478A JP4302476B2 (en) 2003-10-07 2003-10-07 Novel lactic acid bacteria, antibacterial substances produced by the lactic acid bacteria, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348478A JP4302476B2 (en) 2003-10-07 2003-10-07 Novel lactic acid bacteria, antibacterial substances produced by the lactic acid bacteria, and production method thereof

Publications (2)

Publication Number Publication Date
JP2005110566A true JP2005110566A (en) 2005-04-28
JP4302476B2 JP4302476B2 (en) 2009-07-29

Family

ID=34540663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348478A Expired - Lifetime JP4302476B2 (en) 2003-10-07 2003-10-07 Novel lactic acid bacteria, antibacterial substances produced by the lactic acid bacteria, and production method thereof

Country Status (1)

Country Link
JP (1) JP4302476B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296918A (en) * 2008-06-12 2009-12-24 Omu Milk Products Co Ltd Food quality improver
CN110527642A (en) * 2019-04-24 2019-12-03 上海海洋大学 A kind of enterococcus faecalis with biological antibiotic effect
CN113061550A (en) * 2021-04-01 2021-07-02 新疆农业科学院微生物应用研究所(中国新疆—亚美尼亚生物工程研究开发中心) Lactobacillus new strain Z6 and application thereof in food

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296918A (en) * 2008-06-12 2009-12-24 Omu Milk Products Co Ltd Food quality improver
CN110527642A (en) * 2019-04-24 2019-12-03 上海海洋大学 A kind of enterococcus faecalis with biological antibiotic effect
CN113061550A (en) * 2021-04-01 2021-07-02 新疆农业科学院微生物应用研究所(中国新疆—亚美尼亚生物工程研究开发中心) Lactobacillus new strain Z6 and application thereof in food

Also Published As

Publication number Publication date
JP4302476B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
Casaburi et al. Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture
Abo-Amer Characterization of a bacteriocin-like inhibitory substance produced by Lactobacillus plantarum isolated from Egyptian home-made yogurt
Grosu-Tudor et al. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods
Savadogo et al. Antimicrobial activities of lactic acid bacteria strains isolated from Burkina Faso fermented milk
Uhlman et al. Identification and characterization of two bacteriocin-producing strains of Lactococcus lactis isolated from vegetables
Ogunbanwo et al. Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1
EP1002051B1 (en) Probiotic strains from lactobacillus salivarius and antimicrobial agents obtained therefrom
Aspri et al. Raw donkey milk as a source of Enterococcus diversity: Assessment of their technological properties and safety characteristics
Gautam et al. Bacteriocin: safest approach to preserve food products
US10362796B2 (en) Method for reducing the content of pathogenic organisms present in food materials
Franz et al. Production of nisin‐like bacteriocins by Lactococcus lactis strains isolated from vegetables
Von Mollendorff et al. Comparison of bacteriocins produced by lactic-acid bacteria isolated from boza, a cereal-based fermented beverage from the Balkan Peninsula
Franz et al. Plantaricin D, a bacteriocin produced by Lactobacillus plantarum BFE 905 from ready‐to‐eat salad
Arakawa et al. Production of a bacteriocin‐like inhibitory substance by Leuconostoc mesenteroides subsp. dextranicum 213M0 isolated from Mongolian fermented mare milk, airag
KR100720815B1 (en) Lactobacillus plantarum AF1 with antifungal properties isolated from kimchi, and products produced by using them
Park et al. Identification and characteristics of nisin Z-producing Lactococcus lactis subsp. lactis isolated from Kimchi
Mah et al. Bacteriocin with a broad antimicrobial spectirum, produced by Bacillus sp. isolated from Kimchi
Olasupo et al. Bacteriocin production by Enterococcus faecium NA01 from ‘wara’—a fermented skimmed cow milk product from West Africa
Marie et al. Characterization of a bacteriocin produced by Lactobacillus plantarum Lp6SH isolated from" Sha'a", a maize-based traditionally fermented beverage from cameroon
Kato et al. Complete growth inhibition of Bacillus subtilis by nisin-producing lactococci in fermented soybeans
Olorunjuwon et al. Partial purification characterization and application of bacteriocin from bacteria isolated Parkia biglobosa seeds
JP4302476B2 (en) Novel lactic acid bacteria, antibacterial substances produced by the lactic acid bacteria, and production method thereof
ZHANG et al. Influence of pH, heat and enzymatic treatments on the activity of antibacterial substance in MRS and milk media produced by Lactobacillus fermentum F6
JP2004313171A (en) New lactic acid bacteria, bacteriocin produced from the same, method for processing fish and bean food and product obtained by the mehtod
Prema et al. Detection, purification and efficacy of warnerin produced by Staphylococcus warneri

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4302476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term