JP2005110561A - Gel-like food - Google Patents
Gel-like food Download PDFInfo
- Publication number
- JP2005110561A JP2005110561A JP2003348241A JP2003348241A JP2005110561A JP 2005110561 A JP2005110561 A JP 2005110561A JP 2003348241 A JP2003348241 A JP 2003348241A JP 2003348241 A JP2003348241 A JP 2003348241A JP 2005110561 A JP2005110561 A JP 2005110561A
- Authority
- JP
- Japan
- Prior art keywords
- milk
- raw material
- protein
- gel
- food
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Grain Derivatives (AREA)
- Jellies, Jams, And Syrups (AREA)
Abstract
Description
本発明は、ゲル化剤を配合した原料液をゲル化してなるゲル状食品に関し、特に、原料液にカゼインたんぱく質が含まれており、かつゲル化剤としてκカラギナンを用いたゲル状食品に関するものである。 The present invention relates to a gel-like food obtained by gelling a raw material liquid containing a gelling agent, and particularly relates to a gel-like food containing casein protein in the raw material liquid and using κ carrageenan as the gelling agent. It is.
例えばプリンなどのゲル状食品を工業的に製造する方法としては、(1)卵成分を含む原料液を容器に充填した後、静置加熱して卵成分を熱凝固させる方法がある。加熱方法としては焼く方法および/または蒸す方法が用いられる。または(2)冷却によりゲル化するゲル化剤を含む原料液を調製した後、容器に充填し、静置冷却してゲル化させる方法もある。本発明は、後者(2)のゲル化剤を用いて製造されるゲル状食品に関する。 For example, as a method for industrially producing a gel food such as pudding, there is (1) a method in which a raw material liquid containing an egg component is filled in a container and then left to stand to heat and solidify the egg component. As the heating method, a baking method and / or a steaming method are used. Or (2) After preparing the raw material liquid containing the gelatinizer which gelatinizes by cooling, there also exists the method of filling a container and allowing it to stand still and gelatinize. The present invention relates to a gel food manufactured using the latter (2) gelling agent.
前記ゲル化剤としては、ゼラチン、寒天、カラギナン、ローカストビーンガム、キサンタンガム、ペクチン、ジェランガム、ファーセルラン等が用いられている。中でも、食感の嗜好性が高いという点で、κ型のカラギナン(本明細書ではκカラギナンと記載する)とローカストビーンガムの混合ゲル化剤が使用される場合が多い。
κカラギナンとローカストビーンガムを併用すると、κカラギナンはゲル化する際にローカストビーンガムのマンノースの直鎖部分と会合して、κカラギナンのゲルを強固にし、弾力を有するゲルを形成する性質があることが知られている(下記、非特許文献1)。この性質は、嗜好性の高い食感のゲル状食品を製造するのに好適であると考えられる。
As the gelling agent, gelatin, agar, carrageenan, locust bean gum, xanthan gum, pectin, gellan gum, farsellan and the like are used. Among them, a mixed gelling agent of κ-type carrageenan (described as κ carrageenan in the present specification) and locust bean gum is often used because of its high palatability of texture.
When κ carrageenan and locust bean gum are used in combination, κ carrageenan has the property of forming a gel with elasticity by forming a gel of κ carrageenan by associating with the linear part of mannose of locust bean gum when gelling. It is known (the following, nonpatent literature 1). This property is considered suitable for producing a gel food with a highly palatable texture.
また、κカラギナンは、カゼインミセルの表面に付着して静電気的錯体を構成し、ミルクゲルを形成する性質があることも知られている(下記、非特許文献2)。
この性質は、原料液に乳原料が含まれる場合に、嗜好性の高い食感のゲル状食品を製造するのに好適であると考えられる。
It is considered that this property is suitable for producing a gel food having a high palatability when the raw material liquid contains a milk raw material.
しかしながら、例えば原料液に乳原料を配合し、ゲル化剤として少なくともκカラギナンを用いたプリンにおいて、生乳(未殺菌乳)、牛乳(殺菌乳)、脱脂乳、脱脂粉乳、バター、クリーム等の乳原料の種類が変わると、κカラギナンおよびカゼインの含有量が一定であっても、ゲル化した時のプリンの硬さが異なるという問題があった。
この主な原因は、カゼインたんぱく質の熱履歴の違いによると考えられている。
例えば、無脂固形分を供給する原料を、加熱殺菌処理を施した脱脂乳、比較的低温で加熱殺菌処理を施したローヒート脱脂粉乳、比較的高温で加熱殺菌処理を施したハイヒート脱脂粉乳の3種類に変えてそれぞれプリンを製造すると、冷却によりゲル化して得られるプリンの硬さは、脱脂乳、ローヒート脱脂粉乳、ハイヒート脱脂粉乳の順に低くなっていくことが観察されている。
However, for example, in a pudding that contains a milk raw material in a raw material liquid and uses at least κ carrageenan as a gelling agent, milk such as raw milk (unsterilized milk), cow milk (sterilized milk), skim milk, skim milk powder, butter, cream, etc. When the type of raw material was changed, there was a problem that the hardness of the pudding when gelled differed even if the content of κ carrageenan and casein was constant.
The main cause of this is thought to be due to differences in the heat history of casein proteins.
For example, the raw materials for supplying non-fat solids are skim milk subjected to heat sterilization treatment, low heat skim milk powder subjected to heat sterilization treatment at a relatively low temperature, and high heat skim milk powder subjected to heat sterilization treatment at a relatively high temperature. It has been observed that when pudding is produced in place of each type, the hardness of the pudding obtained by gelation by cooling decreases in the order of skim milk, low-heat skim milk powder, and high-heat skim milk powder.
このことから、例えばミルクプリンなど、乳原料を含むゲル状食品を、ゲル化剤としてκカラギナンを使用して製造する場合に、製品の硬さを安定に製造するためには、カゼインたんぱく質の供給源となる乳原料における熱履歴の変動を抑えることが必要となる。
しかしながら、そのためには、加熱を伴う処理工程は厳密にコントロールすることが必要となり、乳原料の品質管理が大きな負担となることが問題であった。また、乳原料の需給状況の変動に応じて、乳原料を異なる処理工程を経たものに代えることが難しいという問題もあった。
For this reason, when producing gelatinous foods containing milk ingredients, such as milk pudding, using κ carrageenan as a gelling agent, it is necessary to supply casein protein in order to stably produce the product. It is necessary to suppress fluctuations in heat history in the milk material that is the source.
However, in order to do so, it is necessary to strictly control the processing steps involving heating, and the quality control of the milk raw material is a big burden. In addition, there is a problem that it is difficult to replace the milk raw material with a different processing step according to the fluctuation of the supply and demand situation of the milk raw material.
本発明は、上記事情に鑑みてなされたもので、原料液にカゼインたんぱく質を含むとともに、ゲル化剤としてκカラギナンを用いたゲル状食品において、カゼインたんぱく質が由来する乳原料の熱履歴が変動しても、ゲル状食品の安定した硬度が得られるようにすることを目的とする。 The present invention has been made in view of the above circumstances, and in a gel food using κ carrageenan as a gelling agent and containing a casein protein in the raw material liquid, the heat history of the milk raw material from which the casein protein is derived varies. However, an object is to obtain a stable hardness of the gel food.
本発明者等は、鋭意研究した結果、原料液にチーズホエー由来のたんぱく質を含有させることによりκカラギナンのゲル強度の安定性を向上できることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that the stability of the gel strength of kappa carrageenan can be improved by including a protein derived from cheese whey in the raw material solution, and the present invention has been completed.
すなわち本発明のゲル状食品は、カゼインたんぱく質を含有するとともにゲル化剤としてκカラギナンを含む原料液を、ゲル化してなるゲル状食品であって、前記原料液にチーズホエー由来のたんぱく質が配合されていることを特徴とする。
前記原料液において、前記カゼインたんぱく質に対する前記チーズホエー由来のたんぱく質の含有率が10〜40%であることが好ましい。
なお、本明細書におけるたんぱく質の含有率(たんぱく質含量)は質量基準である。
That is, the gel food of the present invention is a gel food obtained by gelling a raw material liquid containing a casein protein and containing κ carrageenan as a gelling agent, wherein the raw material liquid is mixed with a protein derived from cheese whey. It is characterized by.
In the raw material liquid, the content of the protein derived from the cheese whey with respect to the casein protein is preferably 10 to 40%.
In addition, the content rate (protein content) of the protein in this specification is a mass reference | standard.
本発明によれば、原料液にカゼインたんぱく質を含み、ゲル化剤としてκカラギナンを用いたゲル状食品であって、カゼインたんぱく質が由来する乳原料の熱履歴が変動しても、硬度が変化し難いゲル状食品が得られる。
これにより、原料液に配合される乳原料を、種類が異なるものに置き換えたり、加熱殺菌処理条件が異なるものに代えた場合にもゲル状食品の硬度が安定するので、乳原料の需給管理の負担を軽減することができるとともに、品質管理の負担も軽減することができる。
According to the present invention, a gel-like food containing a casein protein in a raw material liquid and using κ carrageenan as a gelling agent, the hardness changes even if the heat history of the milk raw material from which the casein protein is derived varies. Difficult gelled food is obtained.
As a result, the hardness of the gel-like food is stabilized even when the milk raw material blended in the raw material liquid is replaced with a different type or with a different heat sterilization treatment condition. The burden can be reduced and the burden of quality control can also be reduced.
本発明のゲル状食品は、少なくともカゼインたんぱく質を含む原料を用い、少なくともκカラギナンを含むゲル化剤によりゲル化された食品であり、特に限定されないが、具体例としてはミルクプリン、ババロア、チーズケーキ等が挙げられる。 The gel food of the present invention is a food gelled with a gelling agent containing at least kappa carrageenan, using a raw material containing at least casein protein, and specific examples include milk pudding, bavarois, cheesecake Etc.
本発明において、κカラギナンの他に、一般的にゲル状食品の製造に用いられる各種ゲル化剤を用いることができる。具体例としては、ゼラチン、寒天、ローメトキシルペクチン、アルギン酸ナトリウム、ファーセルラン、ジェランガム、キサンタンガム、ローカストビンガム等が挙げられる。ゲル化剤は1種単独で用いてよく、2種以上を混合して用いてもよい。特にκカラギナンとローカストビーンガムを併用することが好ましい。 In the present invention, in addition to kappa carrageenan, various gelling agents generally used for the production of gelled foods can be used. Specific examples include gelatin, agar, low methoxyl pectin, sodium alginate, farsellan, gellan gum, xanthan gum, locust bin gum and the like. A gelling agent may be used individually by 1 type, and may mix and use 2 or more types. In particular, it is preferable to use κ carrageenan and locust bean gum in combination.
乳原料として、少なくとも、カゼインたんぱく質を含むものと、チーズホエー由来のたんぱく質を含むものが用いられる。
カゼインたんぱく質を含む乳原料の具体例としては、牛乳、全粉乳、脱脂乳、脱脂粉乳、バター、チーズ、クリーム、無糖れん乳、加糖れん乳、バターオイル、バターミルク、バターミルクパウダー等が挙げられる。これらは1種でもよく、2種以上を併用してもよい。
チーズホエー由来のたんぱく質を含む乳原料の具体例としては、チーズホエーを限外濾過濃縮した濃縮物、チーズホエーをイオン交換樹脂に吸着させて濃縮した濃縮物、チーズホエー由来のホエーパウダー等が挙げられる。これらは1種でもよく、2種以上を併用してもよい。
As the milk material, at least one containing casein protein and one containing cheese whey-derived protein are used.
Specific examples of milk ingredients containing casein protein include cow's milk, whole milk powder, skim milk, skim milk powder, butter, cheese, cream, sugar-free milk, sweetened milk, butter oil, buttermilk, buttermilk powder, etc. It is done. These may be used alone or in combination of two or more.
Specific examples of milk ingredients containing protein derived from cheese whey include concentrates obtained by ultrafiltration concentration of cheese whey, concentrates obtained by adsorbing cheese whey on an ion exchange resin, and whey powder derived from cheese whey. It is done. These may be used alone or in combination of two or more.
また、その他の原料として、例えば卵類、糖類、乳化剤、油脂、色素、調味料、香料、チョコレート等を適宜添加することができる。 Further, as other raw materials, for example, eggs, sugars, emulsifiers, fats and oils, pigments, seasonings, fragrances, chocolates and the like can be added as appropriate.
本発明のゲル状食品を製造するには、まず原料液を調製する。そして得られた原料液に対して、必要に応じて加熱殺菌処理や均質化処理を適宜行った後、容器に充填し、冷却して固化させることによりゲル状食品が得られる。 In order to produce the gel food of the present invention, first, a raw material solution is prepared. The obtained raw material liquid is appropriately subjected to a heat sterilization treatment or a homogenization treatment as necessary, and then filled into a container, cooled and solidified to obtain a gel food.
原料液は、少なくともカゼインたんぱく質、チーズホエー由来のたんぱく質を含むとともに、ゲル化剤として少なくともκカラギナンを含む。
原料液中の、カゼインたんぱく質に対する、チーズホエー由来のたんぱく質の含有率が10〜40%であることが好ましい。より好ましい範囲は15〜25%である。チーズホエー由来のたんぱく質の含有率を上記の範囲内とすることにより、風味を損なわずに、ゲル状食品の硬度安定性を効果的に向上させることができる。ゲル状食品における硬度変動の許容範囲は、例えば後述のレオメーターを用いた破断強度の評価方法で得られる測定値が、±5gの範囲内であることが好ましい。
原料液におけるゲル化剤の含有量は、使用するゲル化剤の種類に応じて、冷却後に好ましいゲル化状態が得られるように、適宜設定することができる。例えば、カラギナンの好ましい含有量は0.15〜0.3質量%の範囲内であり、ローカストビーンガムの好ましい含有量は0.2〜0.5質量%の範囲内である。
The raw material solution contains at least a casein protein and a protein derived from cheese whey, and at least κ carrageenan as a gelling agent.
It is preferable that the content rate of the protein derived from cheese whey to the casein protein in the raw material liquid is 10 to 40%. A more preferable range is 15 to 25%. By setting the content of the protein derived from cheese whey within the above range, the hardness stability of the gel food can be effectively improved without impairing the flavor. As for the tolerance range of the hardness fluctuation in the gel food, for example, the measured value obtained by the evaluation method of breaking strength using a rheometer described later is preferably within a range of ± 5 g.
The content of the gelling agent in the raw material liquid can be appropriately set according to the type of the gelling agent to be used so that a preferable gelling state can be obtained after cooling. For example, the preferable content of carrageenan is in the range of 0.15 to 0.3% by mass, and the preferable content of locust bean gum is in the range of 0.2 to 0.5% by mass.
原料液の配合は、製造しようとするゲル状食品の種類に応じた好適な配合とすることができ、該好適な配合における乳原料の一部として、チーズホエー由来のたんぱく質を含む乳原料を用いることが好ましい。
例えば、あるゲル状食品の原料液について、チーズホエー由来のたんぱく質を含む乳原料を用いない配合が、好適な配合として設定されている場合、その好適な配合における乳原料に由来する総たんぱく質量と固形分の配合割合がほぼ維持されるように、乳原料の一部を、チーズホエー由来のたんぱく質を含む乳原料に置き換えることが好ましい。
The composition of the raw material liquid can be a suitable composition according to the type of gel food to be produced, and a milk material containing a protein derived from cheese whey is used as a part of the milk material in the suitable composition. It is preferable.
For example, for a raw material solution of a certain gel-like food, when a blend that does not use milk ingredients containing protein derived from cheese whey is set as a suitable blend, the total protein mass derived from the milk ingredients in the preferred blend and It is preferable to replace a part of the milk raw material with a milk raw material containing a protein derived from cheese whey so that the blending ratio of the solid content is substantially maintained.
[試験例]
以下の試験例および実施例において、配合割合(配合比)の単位は質量部であり、%は特に断りのない限り質量%である。
また、以下の試験例および実施例において、各原料としては、特に断りのない限り以下のものを用いた。
[Test example]
In the following test examples and examples, the unit of blending ratio (blending ratio) is part by mass, and% is mass% unless otherwise specified.
In the following test examples and examples, the following materials were used as raw materials unless otherwise specified.
バター:商品名 無塩バター、森永乳業社製
クリーム:商品名 フレッシュヘビー、森永乳業社製
脱脂乳:商品名 脱脂乳、森永乳業社製、加熱殺菌処理を経ていないもの。
脱脂粉乳(ローヒート):常法で製造した脱脂粉乳。ただし、脱脂乳の加熱条件を「UHT殺菌機の第一加熱部で75℃に加熱し、ホールダーで6分保持し、第二加熱部は加熱無し」としたもの。
脱脂粉乳(ミディァムヒート):常法で製造した脱脂粉乳。ただし、脱脂乳の加熱条件を「UHT殺菌機の第一加熱部で85℃に加熱し、ホールダーで6分保持し、第二加熱部で105℃に加熱し、2秒保持する」としたもの。
脱脂粉乳(ハイヒート):常法で製造した脱脂粉乳。ただし、脱脂乳の加熱条件を「UHT殺菌機の第一加熱部で85℃に加熱し、ホールダーで6分保持し、第二加熱部で120℃に加熱し、2秒保持する」としたもの。
加糖卵黄:商品名 サンヨーク、太陽化学社製
砂糖:商品名 グラニュー糖、東洋精糖社製
κカラギナン:商品名 カラギニン、三栄源FFI社製
ローカストビーンガム:商品名 ローカストビーンガム、三栄源FFI社製
カロチン色素:商品名 カロチンベース、三栄源FFI社製
ミルクフレーバー:商品名 ミルクフレーバー、高砂香料社製
カスタードフレーバー:商品名 カスタードフレーバー、長谷川香料社製
Butter: Product name Unsalted butter, Morinaga Milk Industry Co., Ltd. Cream: Product name Fresh Heavy, Morinaga Milk Industry Co., Ltd. Skim milk: Product name Skim milk, Morinaga Milk Industry Co., Ltd.
Nonfat dry milk (low heat): nonfat dry milk produced by a conventional method. However, the heating condition of skim milk was “heated to 75 ° C. in the first heating part of the UHT sterilizer and held for 6 minutes in the holder, and the second heating part was not heated”.
Non-fat dry milk (medium heat): non-fat dry milk produced by a conventional method. However, the heating condition of skim milk was “heated to 85 ° C. in the first heating part of the UHT sterilizer, held for 6 minutes in the holder, heated to 105 ° C. in the second heating part and held for 2 seconds” .
Nonfat dry milk (high heat): nonfat dry milk produced by a conventional method. However, the heating condition of skim milk was “heated to 85 ° C. in the first heating part of the UHT sterilizer, held for 6 minutes in the holder, heated to 120 ° C. in the second heating part, and held for 2 seconds” .
Sugared egg yolk: Trade name San York, Taiyo Kagaku Co. Sugar: Trade name Granulated sugar, Toyo Seika Co., Ltd. κ Carrageenan: Trade name Carrageenan, Saneigen FFI Locust Bean Gum: Tradename Locust Bean Gum, Saneigen FFI Carotene Color: Product name Carotene base, Saneigen FFI Co., Ltd. Milk flavor: Product name Milk flavor, made by Takasago Fragrance Co., Ltd. Custard flavor: Product name Custard flavor, made by Hasegawa Fragrance Co., Ltd.
また、チーズホエー由来のたんぱく質を含む乳原料としては次のものを用いた。
・商品名 WPC−34、森永乳業社製:チーズホエーをUF(限外濾過、以下同様)濃縮してたんぱく質含量を34%にしたもの。
・商品名 WPC−45、森永乳業社製:チーズホエーをUF濃縮してたんぱく質含量を45%にしたもの。
・商品名 WPC−75、森永乳業社製:チーズホエーをUF濃縮してたんぱく質含量を75%にしたもの。
・WPI(商品名 イソラック、森永乳業社製):チーズホエーをイオン交換樹脂に吸着させてたんぱく質含量を90%にしたもの。
・ホエイパウダー(商品名 ホエイパウダー、森永乳業社製):チーズホエーを原料として製造されたもの。たんぱく質含量12%
・乳糖(商品名 乳糖、森永乳業社製):チーズホエーを原料として製造されたもの。たんぱく質含量は0%。
Moreover, the following were used as a milk raw material containing the protein derived from cheese whey.
-Product name: WPC-34, manufactured by Morinaga Milk Industry Co., Ltd .: Cheese whey concentrated to UF (ultrafiltration, the same applies hereinafter) to a protein content of 34%.
-Product name WPC-45, manufactured by Morinaga Milk Industry Co., Ltd .: Protein whey with 45% protein content by UF concentration.
-Product name: WPC-75, manufactured by Morinaga Milk Industry Co., Ltd .: Cheese whey concentrated in UF to a protein content of 75%.
-WPI (trade name Isolac, manufactured by Morinaga Milk Industry Co., Ltd.): A cheese whey adsorbed on an ion exchange resin to a protein content of 90%.
・ Whey powder (trade name: Whey Powder, manufactured by Morinaga Milk Industry Co., Ltd.): Made with cheese whey as a raw material. Protein content 12%
・ Lactose (trade name: Lactose, manufactured by Morinaga Milk Industry Co., Ltd.): Made from cheese whey as a raw material. Protein content is 0%.
以下の試験例および実施例において、試料(ゲル状食品)の硬さの評価は次の方法で行った。
(評価の方法)
レオメーター(SUN RHEO METER COMPACK-100,サン科学社製)を用い、プランジャーにヨーグルト用ナイフを装着し、80mm/minのテーブル上昇速度、試料の温度10℃の条件で、試料の破断強度を測定した。ヨーグルト用ナイフの形状は「日本薬学会編、『乳製品試験法・注解』、金原出版株式会社、1999年、p263」に従い、サン科学社で作製したヨーグルト用ナイフを使用した。
破断強度は、応力が上昇から下降に転じてから6g以上連続的に下降した時点で測定を終了し、そこまでの応力の最大値を破断強度とした。
測定は1種類の試料につき3回の測定を行い、3回の破断強度の平均値をその試料の測定値とした。
In the following test examples and examples, the hardness of the sample (gel food) was evaluated by the following method.
(Method of evaluation)
Using a rheometer (SUN RHEO METER COMPACK-100, manufactured by Sun Kagaku Co., Ltd.), a knife for yogurt is attached to the plunger, and the breaking strength of the sample is measured under the conditions of a table rising speed of 80 mm / min and a sample temperature of 10 ° C. It was measured. The shape of the knife for yogurt was a yogurt knife manufactured by Sun Science Co., Ltd. according to “Japan Pharmaceutical Association edited by“ Dairy Product Testing Method and Comment ”, Kanehara Publishing Co., Ltd., 1999, p263”.
The breaking strength was measured when the stress continuously decreased from 6 g after the stress changed from rising to falling, and the maximum value of the stress up to that point was defined as the breaking strength.
The measurement was performed three times for one type of sample, and the average value of the three break strengths was taken as the measured value of the sample.
<試験例1>
(目的)
この試験は、乳原料を含むゲル状食品において、乳原料の熱履歴の違いによる硬度の変動に対する、チーズホエー由来のたんぱく質の影響を調べる目的で実施された。
<Test Example 1>
(the purpose)
This test was conducted for the purpose of investigating the influence of protein derived from cheese whey on the fluctuation of hardness due to the difference in the heat history of milk ingredients in gelled foods containing milk ingredients.
(試料の調製)
下記表1の配合割合に従って原料を溶解し、85℃に加温して10分保持した後、均質機(HOMOGENIZER,三丸機械工業社製)で15MPaの圧力で均質化して、65℃に冷却した。このようにして調製した原料液を、プラスチック容器(生駒化学社製)に100gずつ充填し、冷蔵庫にて10℃に静置冷却して、試料(ゲル状食品)を調製した。
尚、表1の配合割合では、乳原料の一部を、熱履歴が互いに異なる脱脂乳、脱脂粉乳(ローヒート)、脱脂粉乳(ミディアムヒート)、および脱脂粉乳(ハイヒート)の4種類に変化させた。またテストNo.1〜8の原料液における総たんぱく量と固形分が互いに等しくなるように、脱脂乳、脱脂粉乳及びチーズホエー由来のたんぱく質を含む乳原料(WPC−34)の添加量を調整した。
各試料の硬度(破断強度)の評価結果を表2に示す。
(Sample preparation)
The raw materials were dissolved in accordance with the blending ratio shown in Table 1 below, heated to 85 ° C. and held for 10 minutes, then homogenized at a pressure of 15 MPa with a homogenizer (HOMOGENIZER, manufactured by Sanmaru Machinery Co., Ltd.) and cooled to 65 ° C. did. 100 g of the raw material liquid prepared in this manner was filled into a plastic container (Ikoma Chemical Co., Ltd.) and allowed to cool to 10 ° C. in a refrigerator to prepare a sample (gel food).
In addition, in the mixture ratio of Table 1, a part of milk raw material was changed into four types, skim milk, skim milk powder (low heat), skim milk powder (medium heat), and skim milk powder (high heat) having different heat histories. . Test no. The added amount of skim milk, skim milk powder and protein derived from cheese whey (WPC-34) was adjusted so that the total protein amount and the solid content in the raw material liquids 1 to 8 were equal to each other.
Table 2 shows the evaluation results of the hardness (breaking strength) of each sample.
表2に示されるように、テストNo.2、6(ローヒート脱脂粉乳を主体とする試料)の破断強度(47g)を基準とすると、チーズホエー由来のたんぱく質を含有しないテストNo.1〜4の破断強度は、基準(47g)に対して+3g〜−7gの範囲にある。
一方、チーズホエー由来のたんぱく質が配合されているテストNo.5〜8の破断強度は、基準(47g)に対して+4g〜−1gの範囲にある。
ここで、ローヒート脱脂粉乳は供給安定性が高いので、通常、乳たんぱく源として多用されるものであり、またローヒート脱脂粉乳の熱履歴は各種の乳たんぱく源の中でも低いものであることから、テストNo.2、6(ローヒート脱脂粉乳を主体とする試料)の破断強度を基準とした。
(考察)
この試験の結果より、乳原料を熱履歴が異なるものに変更したことによる、試料(ゲル状食品)の破断強度の変動幅が、チーズホエー由来のたんぱく質を含有させることによって低減されたことがわかる。
例えばチーズホエー由来のたんぱく質を含有しないテストNo.4は、No.2を基準(47g)とする破断強度の許容範囲±5gの範囲外であったのが、その脱脂粉乳(ハイヒート)の一部をWPC−34で置換したテストNo.8では、破断強度が大きく向上して許容範囲内となった。
As shown in Table 2, test no. Based on the breaking strength (47 g) of Samples 2 and 6 (samples mainly composed of low-heat skim milk powder), test No. 1 containing no protein derived from cheese whey. The breaking strength of 1-4 is in the range of +3 g to -7 g with respect to the reference (47 g).
On the other hand, Test No. in which a protein derived from cheese whey is blended. The breaking strength of 5 to 8 is in the range of +4 g to −1 g with respect to the reference (47 g).
Here, since low heat skim milk powder has high supply stability, it is usually used frequently as a milk protein source, and the heat history of low heat skim milk powder is low among various milk protein sources. No. Based on the breaking strength of Nos. 2 and 6 (samples mainly composed of low-heat skim milk powder).
(Discussion)
From the results of this test, it can be seen that the fluctuation range of the breaking strength of the sample (gel food) due to the change of the milk raw material to one having a different heat history was reduced by including the protein derived from cheese whey. .
For example, test No. containing no protein derived from cheese whey. 4 is No. 4; Test No. 1 in which a part of the skim milk powder (high heat) was replaced with WPC-34 was outside the allowable range of break strength ± 5 g with reference to 2 (47 g). In No. 8, the breaking strength was greatly improved and was within the allowable range.
<試験例2>
(目的)
この試験は、カゼインたんぱく質に対するチーズホエー由来のたんぱく質の含有比率の好ましい範囲を調べる目的で実施された。
<Test Example 2>
(the purpose)
This test was carried out for the purpose of examining the preferable range of the content ratio of the protein derived from cheese whey to the casein protein.
(試料の調製)
表3の配合割合に従い試験例1と同一の方法で各試料を調製した。
尚、表3の配合割合では、原料液における総たんぱく量と固形分が、基準である試験例1におけるテストNo.2と等しくなるように、且つ、カゼインたんぱく質に対するチーズホエー由来のたんぱく質の含有率が段階的に変化するように、脱脂粉乳とWPC−34の添加量を調整した。
各試料の硬度(破断強度)の評価結果を表4に示す。
(Sample preparation)
Each sample was prepared in the same manner as in Test Example 1 according to the blending ratio in Table 3.
In addition, in the mixing ratio of Table 3, the test No. 1 in Test Example 1 in which the total protein amount and the solid content in the raw material liquid are standards. The addition amounts of skim milk powder and WPC-34 were adjusted so that the content of protein derived from cheese whey with respect to casein protein was changed stepwise to be equal to 2.
Table 4 shows the evaluation results of the hardness (breaking strength) of each sample.
また、10人のパネルにて、各試料の風味評価をし、風味の良い順に順位をつけ、各試料の順位の合計を求める方法で官能検査を行った。この結果から、順位法の検定表を用いる方法(古川秀子著、「おいしさを測る−食品官能検査の実際」、幸書房、1994年、p28)で有意差を検定した。その結果を表5に示す。
表5において*は5%の危険率で有意差あり、**は1%の危険率で有意差ありを示す
Moreover, the taste evaluation of each sample was performed with a panel of 10 people, the ranking was given in the order of good taste, and the sensory test was performed by the method of obtaining the total ranking of each sample. From this result, a significant difference was tested by a method using a test table of rank method (Hideko Furukawa, “Measuring deliciousness-Actual state of food sensory test”, Kobo, 1994, p28). The results are shown in Table 5.
In Table 5, * indicates a significant difference at a 5% risk rate, and ** indicates a significant difference at a 1% risk rate.
表4の結果より、試験例1と同じ破断強度の基準(47g)に対して、破断強度の許容範囲±5gの範囲内にあるのはテストNo.13〜16であった。テストNo.11,12は−5gを下回っていた。テストNo.17,18も−5gを下回っていた。
また表5に示されるように、風味評価については、テストNo.11,12に対して、No.17,18は有意差がある。またテストNo.13,14に対して、No.18は有意差がある。
(考察)
この試験の結果より、チーズホエー由来のたんぱく質の含有率がカゼインたんぱく質に対して10〜40%の範囲であれば、破断強度の変動が許容範囲(±5g)内に抑えられることが分かった。
この結果については、チーズホエー由来のたんぱく質の含有率が10%未満では、チーズホエー由来のたんぱく質による破断強度を引き上げる効果が十分に得られず、40%を超える範囲では、カゼインたんぱく質の減少によって、κカラギナンとカゼインミセルとの反応量が減少するために破断強度が低下するものと考えられる。
また、風味評価では、カゼインたんぱく質に対して、チーズホエー由来のたんぱく質の含有率が40%を超える範囲では、乳の味が減少するので、風味的に好ましくなくなることが分かった。
From the results of Table 4, it is shown in Test No. that the tolerance of the breaking strength is within ± 5 g with respect to the same breaking strength standard (47 g) as in Test Example 1. 13-16. Test No. 11 and 12 were less than -5g. Test No. 17 and 18 were also less than -5g.
Further, as shown in Table 5, for flavor evaluation, test no. 11 and 12, no. 17 and 18 are significantly different. Test no. 13 and 14, no. 18 is significantly different.
(Discussion)
From the results of this test, it was found that when the content of the protein derived from cheese whey is in the range of 10 to 40% with respect to the casein protein, the fluctuation in breaking strength can be suppressed within the allowable range (± 5 g).
For this result, if the content of protein derived from cheese whey is less than 10%, the effect of raising the breaking strength due to the protein derived from cheese whey cannot be sufficiently obtained, and in the range exceeding 40%, due to a decrease in casein protein, It is considered that the breaking strength decreases because the amount of reaction between κ carrageenan and casein micelles decreases.
Moreover, in flavor evaluation, since the taste of milk fell in the range which the content rate of the protein derived from cheese whey exceeds 40% with respect to casein protein, it turned out that it becomes unpreferable in flavor.
<試験例3>
(目的)
この試験は、チーズホエー由来のたんぱく質の種類による影響を調べる目的で実施された。
(試料の調製)
表6の配合割合に従い試験例1と同一の方法で各試料を調製した。
尚、表6の配合割合では、原料液における総たんぱく量と固形分が、基準である試験例1におけるテストNo.2と等しくなるように、脱脂粉乳、ホエーパウダー、WPC−34,45,75、WPI、及び乳糖の添加量を調整した。
各試料の硬度(破断強度)の評価結果を表7に示す。
<Test Example 3>
(the purpose)
This test was carried out for the purpose of examining the influence of the type of protein derived from cheese whey.
(Sample preparation)
Each sample was prepared in the same manner as in Test Example 1 according to the blending ratio in Table 6.
In addition, in the compounding ratio of Table 6, test No. 1 in Test Example 1 in which the total protein amount and the solid content in the raw material liquid are standards. The amount of skim milk powder, whey powder, WPC-34, 45, 75, WPI, and lactose was adjusted to be equal to 2.
Table 7 shows the evaluation results of the hardness (breaking strength) of each sample.
表7の結果より、試験例1と同じ破断強度の基準(47g)に対して、テストNo.21〜25のいずれも破断強度の差が+1g〜−3gの範囲内であり、破断強度の許容範囲内であった。
すなわち、チーズホエー由来のたんぱく質が、WPC−34,45,75、WPIである場合、またホエーパウダーとWPCの混合である場合のいずれも、破断強度の変動を効果的に抑えることができることが分かった。
From the results of Table 7, the test No. 1 was compared to the same breaking strength standard (47 g) as in Test Example 1. In all of 21 to 25, the difference in breaking strength was within the range of +1 g to -3 g, and was within the allowable range of breaking strength.
That is, when the protein derived from cheese whey is WPC-34, 45, 75, or WPI, or when it is a mixture of whey powder and WPC, it can be seen that the fluctuation in breaking strength can be effectively suppressed. It was.
<実施例1>
表8のa,b,cのそれぞれの配合割合で、3種類のミルクプリンa,b,cをそれぞれ製造した。これらの配合の違いは、原料液における総たんぱく量と固形分を維持しつつ、脱脂粉乳の種類を変更した点である。
まず原料を混合し、UHT殺菌機(MOプレート式殺菌機;森永エンジニアリング社製)で140℃に加温し、2秒間保持して加熱殺菌処理を行った。この後、85℃に冷却し、均質機(HOMOGENIZER;三丸機械工業社製)で15MPaの圧力で均質化し、殺菌機の冷却部で25℃に冷却し、タンク(アセプティックタンク;ヤスダファインテ社製)に入れて、ミルクプリンベースミックス(原料液)を調製した。ミルクプリンベースミックスをアセプティックタンクで1日貯蔵した後、ミルクプリンベースミックスのゲル化能力を回復させる為に、多管式熱交換機(スピフレックス;新光産業社製)で85℃に加温し60℃に冷却した。これを、充填機(Dogaseptic;GASTI社製)でプラスチックカップ(吉野工業所社製)に180gずつ充填し、アルミ蓋(エムエーパッケージング社製)をヒートシールして密封し、冷蔵庫にて10℃に冷却して、3種類のミルクプリンa,b,cを製造した。
<Example 1>
Three types of milk puddings a, b, and c were produced at the blending ratios of a, b, and c in Table 8, respectively. The difference between these blends is that the type of skim milk powder was changed while maintaining the total protein amount and solid content in the raw material liquid.
First, the raw materials were mixed, heated to 140 ° C. with a UHT sterilizer (MO plate type sterilizer; manufactured by Morinaga Engineering Co., Ltd.), and held for 2 seconds for heat sterilization. Then, it is cooled to 85 ° C., homogenized at a pressure of 15 MPa with a homogenizer (HOMOGENIZER; manufactured by Sanmaru Kikai Kogyo Co., Ltd.), cooled to 25 ° C. with a cooling unit of a sterilizer, and a tank (Aseptic Tank; To prepare a milk pudding base mix (raw material solution). After storing the milk pudding base mix in an aseptic tank for one day, in order to restore the gelling ability of the milk pudding base mix, it is heated to 85 ° C with a multi-tube heat exchanger (Spiflex; manufactured by Shinko Sangyo Co., Ltd.). Cooled to ° C. This is filled into plastic cups (manufactured by Yoshino Kogyo Co., Ltd.) 180 g at a time using a filling machine (Dogeptic; manufactured by GASTI Co.), and an aluminum lid (manufactured by MPackaging Co., Ltd.) is heat-sealed and sealed. Then, three types of milk puddings a, b, and c were produced.
この3種類のミルクプリンa,b,cはいずれも風味が良く、試験例1と同一の方法で破断強度を測定した結果、a=45g,b=41g,c=42gであった。これらの破断強度の最大値と最小値との差は4gであり、風味・食感に差は認められなかった。
この実施例から、乳原料の需給事情の変化により乳原料を変更しても、風味を損なわずに食感の変動が少ないミルクプリンを安定して製造できることが分かった。
All of these three types of milk puddings a, b, and c had good flavor, and the breaking strength was measured by the same method as in Test Example 1. As a result, a = 45 g, b = 41 g, and c = 42 g. The difference between the maximum value and the minimum value of these breaking strengths was 4 g, and there was no difference in flavor and texture.
From this example, it was found that even if the milk raw material was changed due to a change in the supply and demand situation of the milk raw material, milk pudding with less change in texture could be stably produced without impairing the flavor.
<実施例2>
表9のa,b,cのそれぞれの配合割合で、3種類のカスタードミルクプリンa,b,cをそれぞれ製造した。これらの配合の違いは、原料液における総たんぱく量と固形分を維持しつつ、脱脂乳および脱脂粉乳の配合を変更した点である。
まず原料を混合し、UHT殺菌機(MOプレート式殺菌機;森永エンジニアリング社製)で130℃に加温し、2秒間保持して加熱殺菌処理を行った。この後、85℃に冷却し、均質機(HOMOGENIZER;三丸機械工業社製)で15MPaの圧力で均質化し、殺菌機の冷却部で65℃に冷却して、カスタードミルクプリンベースミックス(原料液)を調製した。これを充填機(BK Cup Filler;HAMBA社製)でプラスチックカップ(大日本印刷社製)に100gづつ充填し、フィルム蓋(東洋アルミニウム社製)をヒートシールして密封し、冷蔵庫にて10℃に冷却して、3種類のカスタードミルクプリンa,b,cを製造した。
<Example 2>
Three types of custard milk puddings a, b, and c were produced at the blending ratios of a, b, and c in Table 9, respectively. The difference in these blends is that the blend of skim milk and skim milk powder was changed while maintaining the total protein amount and solid content in the raw material liquid.
First, the raw materials were mixed, heated to 130 ° C. with a UHT sterilizer (MO plate type sterilizer; manufactured by Morinaga Engineering Co., Ltd.), and held for 2 seconds for heat sterilization. Then, it is cooled to 85 ° C., homogenized at a pressure of 15 MPa with a homogenizer (HOMOGENIZER; manufactured by Sanmaru Kikai Kogyo Co., Ltd.), cooled to 65 ° C. with a cooling unit of a sterilizer, and a custard milk pudding base mix ) Was prepared. This is filled with 100 g of plastic cups (Dai Nippon Printing Co., Ltd.) with a filling machine (BK Cup Filler; manufactured by HAMBA Co.), and the film lid (Toyo Aluminum Co., Ltd.) is heat-sealed and sealed. Then, three types of custard milk pudding a, b and c were produced.
この3種類カスタードミルクプリンa,b,cはいずれも風味が良く、試験例1と同一の方法で破断強度を測定した結果、a=40,b=35,c=37であった。これらの破断強度の最大値と最小値との差は5gであり、風味・食感に差は認められなかった。
この実施例から、乳原料の需給事情が変化により乳原料を変更しても、風味を損なわずに食感の変動が少ないカスタードミルクプリンを安定して製造できることが分かった。
The three types of custard milk pudding a, b, and c all had a good flavor, and the breaking strength was measured by the same method as in Test Example 1. As a result, a = 40, b = 35, and c = 37. The difference between the maximum value and the minimum value of these breaking strengths was 5 g, and there was no difference in flavor and texture.
From this example, it was found that custard milk pudding with less change in texture can be stably produced without losing the flavor even if the milk raw material is changed due to a change in the supply and demand situation of the milk raw material.
Claims (2)
前記原料液にチーズホエー由来のたんぱく質が配合されていることを特徴とするゲル状食品。 It is a gel-like food formed by gelling a raw material liquid containing casein protein and containing κ carrageenan as a gelling agent,
A gel food characterized in that a protein derived from cheese whey is blended in the raw material liquid.
2. The gel food according to claim 1, wherein a content of the protein derived from the cheese whey with respect to the casein protein in the raw material solution is 10 to 40%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003348241A JP2005110561A (en) | 2003-10-07 | 2003-10-07 | Gel-like food |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003348241A JP2005110561A (en) | 2003-10-07 | 2003-10-07 | Gel-like food |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005110561A true JP2005110561A (en) | 2005-04-28 |
Family
ID=34540506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003348241A Pending JP2005110561A (en) | 2003-10-07 | 2003-10-07 | Gel-like food |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005110561A (en) |
-
2003
- 2003-10-07 JP JP2003348241A patent/JP2005110561A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006289831B2 (en) | Method of improving the texture of fermented milk | |
JP6639043B2 (en) | Method for producing high-protein yogurt-like fermented milk | |
JP2002262787A (en) | Gel-like food and method for producing the same | |
JP7496701B2 (en) | Fermented milk and its manufacturing method | |
JP3805492B2 (en) | Fermented dairy dessert and its production method | |
JP3657679B2 (en) | Fermented dairy dessert and its production method | |
JPH10313781A (en) | Manufacture of acidic milk drink | |
JP6705635B2 (en) | Fermented milk manufacturing method | |
JPH0352940B2 (en) | ||
JP6752825B2 (en) | Food Compositions, Convenience Foods, Convenience Food Mixtures and Preparation Methods | |
JP7349814B2 (en) | Liquid fermented milk and its manufacturing method | |
JP2005110561A (en) | Gel-like food | |
JP5955615B2 (en) | Weakly acidic protein-containing gel food and drink | |
JP7184323B2 (en) | Gel-like food and method for producing the same | |
RU2318404C2 (en) | Acidified food product with continuous aqueous phase, adapted to be eaten by means of spoon | |
CN106455611A (en) | A method for producing a dairy product containing chocolate and such dairy product | |
JP4101720B2 (en) | Process for producing weakly acidic milk processed product and weakly acidic milk processed product | |
JP7372113B2 (en) | Method for producing sour milk food stored at room temperature, method for improving physical property stability, and heat sterilization method for sour milk food | |
JP7273589B2 (en) | ginger-containing composition | |
JP2013031458A (en) | Method for improving shape retaining property of ice cream | |
JP7420538B2 (en) | new yogurt | |
JP7184322B2 (en) | Gel-like food and method for producing the same | |
JP5336878B2 (en) | Method for simultaneously improving the richness and sharpness of creams | |
JP7184321B2 (en) | Gel-like food and method for producing the same | |
JP3789910B2 (en) | Production method of Western confectionery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080129 |