JP2005110211A - Transmission quality measuring apparatus and method - Google Patents

Transmission quality measuring apparatus and method Download PDF

Info

Publication number
JP2005110211A
JP2005110211A JP2004204340A JP2004204340A JP2005110211A JP 2005110211 A JP2005110211 A JP 2005110211A JP 2004204340 A JP2004204340 A JP 2004204340A JP 2004204340 A JP2004204340 A JP 2004204340A JP 2005110211 A JP2005110211 A JP 2005110211A
Authority
JP
Japan
Prior art keywords
circuit
transmission quality
optical signal
calculating
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004204340A
Other languages
Japanese (ja)
Inventor
Ayako Murakami
絢子 村上
Yukio Horiuchi
幸夫 堀内
Michiaki Hayashi
通秋 林
Hideaki Tanaka
英明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2004204340A priority Critical patent/JP2005110211A/en
Publication of JP2005110211A publication Critical patent/JP2005110211A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Dc Digital Transmission (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To present a transmission quality measuring apparatus and method for measuring a Q factor with high accuracy based on asynchronous code judgement. <P>SOLUTION: The stochastic distribution of input signals is measured by a photoelectric transducer 10, a binary identification circuit 12, a threshold sweep circuit 14 and an averaging circuit 16, and its result is stored in a memory 18. A differentiation circuit 20 differentiates the stochastic distribution with a threshold to calculate stochastic density distribution. A data extraction circuit 21 extracts data in a portion corresponding to the outside of an I waveform from the stochastic density distribution. An average value/standard deviation calculation circuit 22a calculates a space side average μ<SB>0</SB>and a standard deviation σ<SB>0</SB>from an output of the circuit 21, and an average value/standard deviation calculation circuit 22b calculates a mark side average value μ<SB>1</SB>and a standard deviation σ<SB>1</SB>from the output of the circuit 21. A pseudo Q factor calculation circuit 24 calculates ¾μ<SB>0</SB>-μ<SB>1</SB>¾/(σ<SB>0</SB>+σ<SB>1</SB>). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、伝送品質計測装置及び方法に関し、より具体的には、光伝送システムにおける伝送品質、例えば擬似的なQ値を簡易に計測する方法及び装置に関する。   The present invention relates to a transmission quality measuring apparatus and method, and more specifically to a method and apparatus for easily measuring transmission quality in an optical transmission system, for example, a pseudo Q value.

光伝送システムの伝送路のQ値を計測する方法として、従来、非同期の符号判定により受信信号の振幅の確率密度分布(PDF:Probability distribution function)を算出し、その確率密度分布からQ値を推定する方法が提案されている(例えば、特許文献1、特許文献2及び非特許文献1参照)。   As a method of measuring the Q value of a transmission line in an optical transmission system, conventionally, the probability density distribution (PDF: Probability distribution function) of received signal amplitude is calculated by asynchronous code determination, and the Q value is estimated from the probability density distribution. Have been proposed (see, for example, Patent Document 1, Patent Document 2, and Non-Patent Document 1).

図4は、従来のQ値計測装置の概略構成ブロック図を示す。光電変換器110が、光伝送路から入力する光信号を電気信号に変換する。光電変換器110の出力する電気信号は、光伝送路から入力する光信号の波形にほぼ対応する波形を具備する。データ識別回路112は、閾値掃引回路114からの閾値電圧Vthに従い、光電変換回路110の出力信号を2値識別する。データ識別回路112は例えば、Dフリップフロップからなる。閾値掃引回路114は、データ識別回路112に印加する閾値電圧Vthを、図5に示すように、電圧V0とV1の間で、一定時間T内で100ms毎に段階的に変化させる。電圧V0はスペース電圧であり、電圧V1はマーク電圧である。   FIG. 4 shows a schematic block diagram of a conventional Q value measuring apparatus. The photoelectric converter 110 converts an optical signal input from the optical transmission path into an electrical signal. The electrical signal output from the photoelectric converter 110 has a waveform substantially corresponding to the waveform of the optical signal input from the optical transmission line. The data identification circuit 112 binarizes the output signal of the photoelectric conversion circuit 110 according to the threshold voltage Vth from the threshold sweep circuit 114. The data identification circuit 112 is composed of, for example, a D flip-flop. The threshold sweep circuit 114 changes the threshold voltage Vth applied to the data identification circuit 112 stepwise between the voltages V0 and V1 every 100 ms within a fixed time T as shown in FIG. The voltage V0 is a space voltage, and the voltage V1 is a mark voltage.

平均化回路116は、同じ閾値電圧Vthのときの2値識別回路112の出力を平均化し、その平均値をメモリ118に書き込む。図6は、メモリ118に書き込まれた平均値の閾値に対する分布の一例を示す。図6の横軸は、閾値電圧Vthを示し、横軸は平均化回路116から出力される平均値を示す。図6は,光伝送路から入力する光信号(より具体的には,光電変換機110の出力信号)の閾値Vthに対する確率分布を示す。   The averaging circuit 116 averages the output of the binary identification circuit 112 at the same threshold voltage Vth and writes the average value in the memory 118. FIG. 6 shows an example of the distribution of the average value written in the memory 118 with respect to the threshold value. The horizontal axis in FIG. 6 indicates the threshold voltage Vth, and the horizontal axis indicates the average value output from the averaging circuit 116. FIG. 6 shows a probability distribution with respect to the threshold value Vth of an optical signal (more specifically, an output signal of the photoelectric converter 110) input from the optical transmission line.

微分回路120は、メモリ118に格納された確率分布を閾値電圧Vthで微分する。図7は、その微分波形例、即ち確率密度分布例を示す。図7の横軸は閾値電圧Vthを示し、横軸は、Vthに対する微分値、即ち確率密度を示す。このようにして算出された確率密度分布は、図7に明確に図示されるように、スペース側の電力分布を示す山と、マーク側の電力分布を示す山の2つの山を具備する。   The differentiating circuit 120 differentiates the probability distribution stored in the memory 118 with the threshold voltage Vth. FIG. 7 shows an example of the differential waveform, that is, an example of probability density distribution. The horizontal axis of FIG. 7 indicates the threshold voltage Vth, and the horizontal axis indicates the differential value with respect to Vth, that is, the probability density. The probability density distribution calculated in this way includes two peaks, a peak indicating the power distribution on the space side and a peak indicating the power distribution on the mark side, as clearly shown in FIG.

平均値・標準偏差算出回路122a,122bは、これらの2つの山のそれぞれにガウス関数をフィッティングして、それぞれの山の平均値μ,μと標準偏差σ,σを算出する。擬似Q値算出回路124は、平均値・標準偏差算出回路122a,122bの出力μ,μ,σ,σから
Q=|μ−μ|/(σ+σ
に従い、Q値を算出する。上式によるQ値の算出は、特許文献3及び特許文献4に記載されている。
The average value / standard deviation calculation circuits 122a and 122b fit a Gaussian function to each of these two peaks, and calculate the average values μ 0 and μ 1 and standard deviations σ 0 and σ 1 of the peaks. The pseudo Q value calculation circuit 124 calculates Q = | μ 0 −μ 1 | / (σ 0 + σ 1 ) from the outputs μ 0 , μ 1 , σ 0 , and σ 1 of the average value / standard deviation calculation circuits 122 a and 122 b.
According to the above, the Q value is calculated. The calculation of the Q value by the above equation is described in Patent Literature 3 and Patent Literature 4.

擬似Q値算出回路124により得られるQ値は、非同期の符号判定に基づき算出されたものである。本来、光伝送路のQ値は、伝送信号のBER(ビット誤り率)から算出される。従って、比較のためには、擬似Q値算出回路124により得られるQ値を、BERに基づくQ値に換算する必要がある。換算のために、予め、同じ光伝送路の同じ光信号伝送状態でBERに基づくQ値をも測定しておき、擬似Q値算出回路124により得られるQ値(擬似Q値)とBERに基づくQ値との相関を得ておく。補正回路126は、擬似Q値算出回路124の算出結果に予め得ておいた相関を適用することにより、擬似Q値算出回路124の算出結果をBERに基づくQ値に補正又は換算する。これにより、BERに基づくQ値に相当するQ値を得ることができる。
特開2000−358015公報 英国特許出願公開2352597公報 特開平7−154378号公報 米国特許第5585954公報 菅原 満、井出 和彦、「確率分布測定による光信号品質監視方法の提案」、1999年電子情報通信学会通信ソサイエティ大会,B−10−73,p.250
The Q value obtained by the pseudo Q value calculation circuit 124 is calculated based on asynchronous code determination. Originally, the Q value of the optical transmission line is calculated from the BER (bit error rate) of the transmission signal. Therefore, for comparison, it is necessary to convert the Q value obtained by the pseudo Q value calculation circuit 124 into a Q value based on the BER. For conversion, the Q value based on the BER is also measured in advance in the same optical signal transmission state on the same optical transmission line, and based on the Q value (pseudo Q value) obtained by the pseudo Q value calculation circuit 124 and the BER. Obtain a correlation with the Q value. The correction circuit 126 corrects or converts the calculation result of the pseudo Q value calculation circuit 124 into a Q value based on the BER by applying a correlation obtained in advance to the calculation result of the pseudo Q value calculation circuit 124. Thereby, the Q value corresponding to the Q value based on the BER can be obtained.
JP 2000-358015 A UK Patent Application Publication No. 2352597 JP-A-7-154378 US Pat. No. 5,585,954 Mitsuru Sugawara and Kazuhiko Ide, “Proposal of Optical Signal Quality Monitoring Method by Probability Distribution Measurement”, 1999 IEICE Communication Society Conference, B-10-73, p. 250

従来の非同期符号判定では、信号光のパルスの立ち上がり時間及び立ち下がり時間の影響を受け、図4に示されるように、確率密度分布のアイ波形の内側部分がガウス分布から外れた分布形状になる。特に、スペース側に相当する山の内側部分が、ガウス分布から大きく外れる。   In the conventional asynchronous code determination, as shown in FIG. 4, the inner part of the eye waveform of the probability density distribution has a distribution shape deviating from the Gaussian distribution due to the influence of the rise time and fall time of the pulse of the signal light. . In particular, the inner part of the mountain corresponding to the space side deviates greatly from the Gaussian distribution.

従来例では、ガウス分布から外れた分布にいわば強引にガウス関数を適用していたので、高い精度を得られなかった。   In the conventional example, since a Gaussian function is forcibly applied to a distribution deviating from the Gaussian distribution, high accuracy cannot be obtained.

本発明は、非同期符号判定により、従来よりも高い精度でQ値を計測できる伝送品質計測装置及び方法を提示することを目的とする。   An object of the present invention is to provide a transmission quality measuring apparatus and method capable of measuring a Q value with higher accuracy than before by asynchronous code determination.

本発明に係る伝送品質計測装置は、スペース及びマークを有する符号を搬送する光信号の伝送品質を計測する装置であって、当該光信号を電気信号に変換する光電変換器と、当該光電変換器の出力電気信号を離散的に掃引される閾値により2値識別し、閾値に対する累積分布を算出する累積分布算出回路と、当該累積分布を当該閾値で微分して確率密度分布を算出する微分回路と、当該確率密度分布からアイ波形の外側に相当するデータを抽出するデータ抽出回路と、当該データ抽出回路により抽出されたデータにガウス関数をフィッティングし、当該確率密度分布における当該スペースの平均値及び標準偏差、並びに当該マークの平均値及び標準偏差を算出する平均値・標準偏差算出回路と、当該スペース及び当該マークの平均値及び標準偏差から当該光信号の伝送品質の指標を算出する指標算出回路とを具備することを特徴とする。   The transmission quality measuring device according to the present invention is a device for measuring the transmission quality of an optical signal carrying a code having a space and a mark, the photoelectric converter for converting the optical signal into an electric signal, and the photoelectric converter A cumulative distribution calculating circuit that discriminates binary of the output electric signal by a threshold value that is discretely swept, calculates a cumulative distribution with respect to the threshold value, and a differentiating circuit that calculates a probability density distribution by differentiating the cumulative distribution with the threshold value A data extraction circuit for extracting data corresponding to the outside of the eye waveform from the probability density distribution, and fitting a Gaussian function to the data extracted by the data extraction circuit to obtain an average value and a standard of the space in the probability density distribution Deviation, and average / standard deviation calculation circuit for calculating the average value and standard deviation of the mark, and the average value and standard of the space and the mark Characterized by comprising the index calculation circuit for calculating an indication of the transmission quality of the optical signal from the difference.

当該光電変換器及び/又は当該累積分布算出回路は、当該光信号の信号周波数より低い応答性の素子又は回路からなってもよい。   The photoelectric converter and / or the cumulative distribution calculation circuit may be composed of a responsive element or circuit that is lower than the signal frequency of the optical signal.

本発明に係る伝送品質計測方法は、スペース及びマークを有する符号を搬送する光信号の伝送品質を計測する方法であって、当該光信号を電気信号に変換する光電変換ステップと、離散的に掃引される閾値により当該電気信号を2値識別することにより、閾値に対する累積分布を算出する累積分布算出ステップと、当該累積分布を当該閾値で微分して確率密度分布を算出する確率密度分布算出ステップと、当該確率密度分布の、アイ波形の外側に相当するデータにガウス関数をフィッティングして、当該確率密度分布における当該スペースの平均値及び標準偏差、並びに当該マークの平均値及び標準偏差を算出する平均値・標準偏差算出ステップと、当該スペース及び当該マークの平均値及び標準偏差から当該光信号の伝送品質の指標を算出する伝送品質指標算出ステップとを具備することを特徴とする。   The transmission quality measuring method according to the present invention is a method for measuring the transmission quality of an optical signal carrying a code having a space and a mark, the photoelectric conversion step for converting the optical signal into an electric signal, and discrete sweeping A cumulative distribution calculating step of calculating a cumulative distribution with respect to the threshold value by binary identification of the electric signal by the threshold value, a probability density distribution calculating step of differentiating the cumulative distribution by the threshold value and calculating a probability density distribution; An average for calculating the average value and standard deviation of the space and the average value and standard deviation of the mark in the probability density distribution by fitting a Gaussian function to data corresponding to the outside of the eye waveform of the probability density distribution. The transmission quality index of the optical signal is calculated from the value / standard deviation calculation step and the average value and standard deviation of the space and the mark. Characterized by comprising a transmission quality index calculation step that.

当該光電変換ステップ及び/又は当該累積分布算出ステップの応答速度は、当該光信号の信号周波数より低いものであってもよい。   The response speed of the photoelectric conversion step and / or the cumulative distribution calculation step may be lower than the signal frequency of the optical signal.

本発明によれば、ガウス分布から外れた形状になりがちな、確率密度分布のアイ波形の内側に相当する部分を予め除外してから、ガウス関数をフィッティングするので、従来よりも高い精度で、スペースの平均値及び標準偏差、並びに当該マークの平均値及び標準偏差を算出できる。その結果、従来よりも高い精度、伝送品質の指標、例えば擬似的なQ値を算出できる。   According to the present invention, the portion corresponding to the inside of the eye waveform of the probability density distribution, which tends to be out of the shape of the Gaussian distribution, is excluded in advance, and the Gaussian function is fitted. The average value and standard deviation of the space, and the average value and standard deviation of the mark can be calculated. As a result, it is possible to calculate a higher accuracy and transmission quality index than the conventional one, for example, a pseudo Q value.

また、光電変換器及び/又は当該累積分布算出が光信号の信号周波数より低い応答性の素子又は回路からなる場合、又は、光電変換ステップ及び/又は累積分布算出ステップの応答速度が当該光信号の信号周波数より低い場合には、より安価な回路素子を使用できるようになり、従来よりも安価な装置で伝送品質指標をモニタできるようになる。   Further, when the photoelectric converter and / or the cumulative distribution calculation is composed of a responsive element or circuit lower than the signal frequency of the optical signal, or the response speed of the photoelectric conversion step and / or the cumulative distribution calculation step is that of the optical signal. When the frequency is lower than the signal frequency, a cheaper circuit element can be used, and the transmission quality index can be monitored with a device cheaper than the conventional one.

以下、図面を参照して、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例の概略構成ブロック図を示す。光電変換器10が、光伝送路から入力する光信号を電気信号に変換する。光電変換器10の出力する電気信号は、光伝送路から入力する光信号の波形にほぼ対応する波形を具備する。データ識別回路12は、閾値掃引回路14からの閾値電圧Vthに従い、光電変換回路10の出力信号を2値識別する。データ識別回路12は例えば、Dフリップフロップからなる。閾値掃引回路14は、データ識別回路12に印加する閾値電圧Vthを、図5に示すように、電圧V0とV1の間で、一定時間T内で100ms毎に段階的に変化させる。電圧V0はスペース電圧であり、電圧V1はマーク電圧である。平均化回路16は、同じ閾値電圧Vthのときの2値識別回路12の出力を平均化し、その平均値をメモリ18に書き込む。微分回路20は、メモリ18に格納された確率分布を閾値電圧Vthで微分する。ここまでの動作は、図4に示す従来例と全く同じである。   FIG. 1 shows a schematic block diagram of an embodiment of the present invention. The photoelectric converter 10 converts an optical signal input from the optical transmission path into an electrical signal. The electric signal output from the photoelectric converter 10 has a waveform substantially corresponding to the waveform of the optical signal input from the optical transmission line. The data identification circuit 12 identifies the output signal of the photoelectric conversion circuit 10 in binary according to the threshold voltage Vth from the threshold sweep circuit 14. The data identification circuit 12 is composed of, for example, a D flip-flop. The threshold sweep circuit 14 changes the threshold voltage Vth applied to the data identification circuit 12 stepwise between the voltages V0 and V1 every 100 ms within a fixed time T as shown in FIG. The voltage V0 is a space voltage, and the voltage V1 is a mark voltage. The averaging circuit 16 averages the output of the binary identification circuit 12 at the same threshold voltage Vth and writes the average value in the memory 18. The differentiating circuit 20 differentiates the probability distribution stored in the memory 18 with the threshold voltage Vth. The operation so far is exactly the same as the conventional example shown in FIG.

データ抽出回路21は、微分回路20により得られる確率密度分布からアイ波形の外側に相当するデータのみを抽出する。勿論、データ抽出回路21は、微分回路20により得られる確率密度分布からアイ波形の内側に相当するデータを除去しても良い。確率密度分布の2つの山のピークの内側を、アイ波形の内側と見做して良い。データ抽出回路21の抽出後のサンプル点数が十分に多ければ、確率密度分布の2つの山のピークのデータを除去しても良いが、データ抽出回路21の抽出後のサンプル点数が少なければ、確率密度分布の2つの山のピークのデータを残す。   The data extraction circuit 21 extracts only data corresponding to the outside of the eye waveform from the probability density distribution obtained by the differentiation circuit 20. Of course, the data extraction circuit 21 may remove data corresponding to the inside of the eye waveform from the probability density distribution obtained by the differentiation circuit 20. The inside of the peaks of the two peaks in the probability density distribution may be regarded as the inside of the eye waveform. If the number of sample points after extraction by the data extraction circuit 21 is sufficiently large, the data of two peak peaks in the probability density distribution may be removed. If the number of sample points after extraction by the data extraction circuit 21 is small, the probability Leave the data for the peaks of the two peaks in the density distribution.

平均値・標準偏差算出回路22a,22bはそれぞれ、データ抽出回路21により抽出された確率密度分布のデータに対し、アイ波形の外側に相当する分布にガウス関数をフィッティングして、それぞれの山の平均値μ,μと標準偏差σ,σを算出する。図2は、微分回路20による確率密度分布上で、平均値・標準偏差算出回路22a,22bがガウス関数をフィッティングする範囲を例示する。 Each of the average value / standard deviation calculation circuits 22a and 22b fits a Gaussian function to the distribution corresponding to the outside of the eye waveform with respect to the probability density distribution data extracted by the data extraction circuit 21, and averages the respective peaks. Values μ 0 and μ 1 and standard deviations σ 0 and σ 1 are calculated. FIG. 2 illustrates a range in which the average value / standard deviation calculation circuits 22a and 22b fit a Gaussian function on the probability density distribution by the differentiation circuit 20.

先に指摘したように、非同期符号判定では、信号光のパルスの立ち上がり時間及び立ち下がり時間の影響を受け、確率密度分布のアイ波形の内側部分がガウス分布から外れた分布形状になるが、本実施例では、データ抽出回路21により確率密度分布のアイ波形の内側部分のデータを除去した後で、各山にガウス関数をフィッティングするので、従来よりも精度良く、スペース側及びマーク側の平均値μ,μと標準偏差σ,σを算出できる。 As pointed out earlier, asynchronous code determination is affected by the rise time and fall time of the pulse of signal light, and the inner part of the eye waveform of the probability density distribution has a distribution shape that deviates from the Gaussian distribution. In the embodiment, since the data extraction circuit 21 removes the data of the inner part of the eye waveform of the probability density distribution, the Gaussian function is fitted to each mountain, so that the average values on the space side and the mark side are more accurate than before. μ 0 and μ 1 and standard deviations σ 0 and σ 1 can be calculated.

擬似Q値算出回路24は、擬似Q値算出回路124と同様に、平均値・標準偏差算出回路22a,22bの出力μ,μ,σ,σから
Q=|μ−μ|/(σ+σ
に従い、Q値を算出する。本来のQ値は、伝送信号のBER(ビット誤り率)から算出されるので、本実施例でも、比較のためには、擬似Q値算出回路24により得られるQ値を、BERに基づくQ値に換算する必要がある。換算のために、予め、同じ光伝送路の同じ光信号伝送状態でBERに基づくQ値をも測定しておき、擬似Q値算出回路24により得られるQ値(擬似Q値)とBERに基づくQ値との相関を得ておく。補正回路26は、擬似Q値算出回路24の算出結果に予め得ておいた相関を適用することで、擬似Q値算出回路24の算出結果をBERに基づくQ値に補正又は換算する。これにより、BERに基づくQ値に相当するQ値を得ることができる。
Similar to the pseudo Q value calculation circuit 124, the pseudo Q value calculation circuit 24 uses the outputs μ 0 , μ 1 , σ 0 , and σ 1 of the average value / standard deviation calculation circuits 22a and 22b as Q = | μ 0 −μ 1. | / (Σ 0 + σ 1 )
According to the above, the Q value is calculated. Since the original Q value is calculated from the BER (bit error rate) of the transmission signal, in this embodiment as well, for comparison, the Q value obtained by the pseudo Q value calculation circuit 24 is used as the Q value based on the BER. It is necessary to convert to For conversion, a Q value based on the BER is also measured in advance in the same optical signal transmission state on the same optical transmission line, and based on the Q value (pseudo Q value) obtained by the pseudo Q value calculation circuit 24 and the BER. Obtain a correlation with the Q value. The correction circuit 26 corrects or converts the calculation result of the pseudo Q value calculation circuit 24 into a Q value based on the BER by applying a correlation obtained in advance to the calculation result of the pseudo Q value calculation circuit 24. Thereby, the Q value corresponding to the Q value based on the BER can be obtained.

図3は、擬似Q値算出回路24で算出した擬似Q値と、BER測定によるQ値との比較例を示す。横軸は、BER測定によるQ値を示し、縦軸は、擬似Q値算出回路24で算出したQ値を示す。両者の間に良好な相関関係があることが分かる。擬似Q値算出回路24で算出したQ値を、光信号の伝送品質、具体的にはSNR(信号対雑音比)の指標として使用可能である。BER測定に因るQ値に換算する必要が無い場合、補正回路26は不要である。   FIG. 3 shows a comparative example of the pseudo Q value calculated by the pseudo Q value calculation circuit 24 and the Q value by BER measurement. The horizontal axis indicates the Q value obtained by BER measurement, and the vertical axis indicates the Q value calculated by the pseudo Q value calculation circuit 24. It can be seen that there is a good correlation between the two. The Q value calculated by the pseudo Q value calculation circuit 24 can be used as an index of transmission quality of an optical signal, specifically, SNR (signal to noise ratio). When it is not necessary to convert the Q value due to the BER measurement, the correction circuit 26 is unnecessary.

メモリ18から補正回路26までの部分は、実際には、パーソナルコンピュータにより実現され、微分回路20から補正回路26までの部分は、ソフトウエアにより実装される。勿論、微分回路20から補正回路26までの部分の一部又は全部をハードウエア又はファームウエアにより実現できる。   The part from the memory 18 to the correction circuit 26 is actually realized by a personal computer, and the part from the differentiation circuit 20 to the correction circuit 26 is implemented by software. Of course, part or all of the part from the differentiation circuit 20 to the correction circuit 26 can be realized by hardware or firmware.

O/E変換器10、2値識別回路12及び平均化回路16は、光伝送路から入力する光信号の信号レートに追従できるものでなくてもよい。例えば、図8に示すように、O/E変換器10と2値識別回路12の間に、高域成分を除去する電気ローパスフィルタ30を配置しても良い。例えば、入力信号光の信号レートが10Gbpsの場合に、電気ローパスフィルタ30として、高域遮断周波数が、8GHz、5GHz、又は2GHzといった、信号レートに相当する周波数よりも低い周波数であってもよい。このように高域を遮断しても、入力信号光のマーク及びスペースがそれぞれ相当数、連続することで、光パルスのピークレベル及びスペースレベルの確率密度を検出できるからである。   The O / E converter 10, the binary identification circuit 12, and the averaging circuit 16 may not be able to follow the signal rate of the optical signal input from the optical transmission line. For example, as shown in FIG. 8, an electrical low-pass filter 30 that removes high-frequency components may be disposed between the O / E converter 10 and the binary identification circuit 12. For example, when the signal rate of the input signal light is 10 Gbps, the high-frequency cutoff frequency may be lower than the frequency corresponding to the signal rate, such as 8 GHz, 5 GHz, or 2 GHz, as the electrical low-pass filter 30. This is because even if the high frequency is cut off in this way, the probability density of the peak level and the space level of the optical pulse can be detected by allowing a considerable number of marks and spaces of the input signal light to continue.

図9は、電気フィルタ30の高域遮断周波数を7.5GHz,4.8GHz及び1.866GHzに設定したときのQ測定結果を示す。横軸は、BER測定により算出したQ値を示し、縦軸は、本実施例により測定したQ値を示す。Q値が大きいときにBER測定により算出したQ値との乖離が大きくなるが、伝送路をモニタする用途では、Q値が低い状況を精度良く検出できれば良い。図9から、図8に示すように高域を遮断した電気信号でQ値をモニタする構成でも、十分に必要な精度を確保できていることが分かる。   FIG. 9 shows the Q measurement results when the high-frequency cutoff frequency of the electrical filter 30 is set to 7.5 GHz, 4.8 GHz, and 1.866 GHz. The horizontal axis shows the Q value calculated by BER measurement, and the vertical axis shows the Q value measured by this example. When the Q value is large, the deviation from the Q value calculated by the BER measurement becomes large. However, in the application for monitoring the transmission path, it is only necessary to accurately detect the situation where the Q value is low. From FIG. 9, it can be seen that sufficient accuracy can be ensured even in the configuration in which the Q value is monitored by an electrical signal with the high frequency cut off as shown in FIG.

このようにO/E変換器10から出力される電気信号の高域を遮断しても良いということは、O/E変換器10として、入力光信号に追従できないような低速のフォトダイオードを使用しても良いことを意味し、また、2値識別回路12及びこれ以降の回路として、低速な回路及びデバイスを使用できることを意味する。これにより、より安価な装置構成で光伝送路をモニタできるようになる。   The fact that the high range of the electrical signal output from the O / E converter 10 may be cut off in this way means that a low-speed photodiode that cannot follow the input optical signal is used as the O / E converter 10. This means that a low-speed circuit and a device can be used as the binary identification circuit 12 and subsequent circuits. As a result, the optical transmission line can be monitored with a cheaper device configuration.

本発明の一実施例の概略構成ブロック図である。It is a schematic block diagram of one Example of this invention. 本実施例によるガウス関数のフィッティング範囲を示す図である。It is a figure which shows the fitting range of the Gaussian function by a present Example. 本実施例で得られる擬似Q値と、BER測定により算出したQ値との比較図である。It is a comparison figure of pseudo | simulation Q value obtained in a present Example, and Q value computed by BER measurement. 従来のQ値計測装置の概略構成ブロック図である。It is a schematic block diagram of a conventional Q value measuring apparatus. 閾値の変化例を示す模式図である。It is a schematic diagram which shows the example of a change of a threshold value. 非同期符号判定における累積分布の模式図である。It is a schematic diagram of the cumulative distribution in asynchronous code determination. 非同期符号判定における確率密度分布の模式図である。It is a schematic diagram of probability density distribution in asynchronous code determination. 本発明の変更実施例の概略構成ブロック図である。It is a schematic block diagram of a modified embodiment of the present invention. 第2実施例の測定結果と、BER測定により算出したQ値との対比を示す図である。It is a figure which shows the contrast of the measurement result of 2nd Example, and Q value computed by BER measurement.

符号の説明Explanation of symbols

10:光電変換器
12:データ識別回路
14:閾値掃引回路
16:平均化回路
18:メモリ
20:微分回路
21:データ抽出回路
22a,122b:平均値・標準偏差算出回路
24:擬似Q値算出回路
26:補正回路
30:電気ローパスフィルタ
110:光電変換器
112:データ識別回路
114:閾値掃引回路
116:平均化回路
118:メモリ
120:微分回路
122a,122b:平均値・標準偏差算出回路
124:擬似Q値算出回路
126:補正回路
10: photoelectric converter 12: data identification circuit 14: threshold sweep circuit 16: averaging circuit 18: memory 20: differentiation circuit 21: data extraction circuits 22a and 122b: average value / standard deviation calculation circuit 24: pseudo Q value calculation circuit 26: correction circuit 30: electrical low-pass filter 110: photoelectric converter 112: data identification circuit 114: threshold sweep circuit 116: averaging circuit 118: memory 120: differentiation circuits 122a and 122b: average value / standard deviation calculation circuit 124: pseudo Q value calculation circuit 126: correction circuit

Claims (9)

スペース及びマークを有する符号を搬送する光信号の伝送品質を計測する装置であって、
当該光信号を電気信号に変換する光電変換器(10,30)と、
当該光電変換器(10,30)の出力電気信号を離散的に掃引される閾値により2値識別し、閾値に対する累積分布を算出する累積分布算出回路(12,14,16,18)と、
当該累積分布を当該閾値で微分して確率密度分布を算出する微分回路(20)と、
当該確率密度分布からアイ波形の外側に相当するデータを抽出するデータ抽出回路(21)と、
当該データ抽出回路(21)により抽出されたデータにガウス関数をフィッティングし、当該確率密度分布における当該スペースの平均値及び標準偏差、並びに当該マークの平均値及び標準偏差を算出する平均値・標準偏差算出回路(22a,22b)と、
当該スペース及び当該マークの平均値及び標準偏差から当該光信号の伝送品質の指標を算出する指標算出回路(24)
とを具備することを特徴とする伝送品質計測装置。
An apparatus for measuring transmission quality of an optical signal carrying a code having a space and a mark,
A photoelectric converter (10, 30) for converting the optical signal into an electrical signal;
A cumulative distribution calculating circuit (12, 14, 16, 18) for performing binary discrimination on the output electrical signal of the photoelectric converter (10, 30) by a threshold value that is discretely swept and calculating a cumulative distribution with respect to the threshold value;
A differentiating circuit (20) for differentiating the cumulative distribution by the threshold and calculating a probability density distribution;
A data extraction circuit (21) for extracting data corresponding to the outside of the eye waveform from the probability density distribution;
Mean value / standard deviation for fitting the Gaussian function to the data extracted by the data extraction circuit (21) and calculating the average value and standard deviation of the space in the probability density distribution, and the average value and standard deviation of the mark A calculation circuit (22a, 22b);
An index calculation circuit (24) for calculating an index of transmission quality of the optical signal from the average value and standard deviation of the space and the mark
And a transmission quality measuring device.
当該光電変換器が、当該光信号を受光する受光素子(10)と、当該受光素子の出力から、当該光信号の信号周波数成分の一部を除去するフィルタ(30)とを具備することを特徴とする請求項1に記載の伝送品質計測装置。   The photoelectric converter includes a light receiving element (10) that receives the optical signal, and a filter (30) that removes part of the signal frequency component of the optical signal from the output of the light receiving element. The transmission quality measuring device according to claim 1. 当該光電変換器が、当該光信号の信号周波数より低い応答性の光電変換素子からなることを特徴とする請求項1に記載の伝送品質計測装置。   The transmission quality measuring apparatus according to claim 1, wherein the photoelectric converter includes a photoelectric conversion element having a response lower than a signal frequency of the optical signal. 当該累積分布算出回路が、当該光信号の信号周波数より低い応答性の回路を具備することを特徴とする請求項1乃至3の何れか1項に記載の伝送品質計測装置。   The transmission quality measuring apparatus according to any one of claims 1 to 3, wherein the cumulative distribution calculating circuit includes a circuit having a response lower than a signal frequency of the optical signal. 当該累積分布算出回路は、当該光電変換器(10,30)の出力信号を離散的に掃引される閾値により2値識別する2値識別回路(12,14)と、当該2値識別回路の出力を平均化することにより、閾値に対して識別回路出力値の累積分布を算出する平均化回路(16,18)とを具備することを特徴とする請求項1乃至4の何れか一項に記載の伝送品質計測装置。   The cumulative distribution calculation circuit includes a binary identification circuit (12, 14) for binary-identifying an output signal of the photoelectric converter (10, 30) by a threshold value that is discretely swept, and an output of the binary identification circuit. 5. An averaging circuit (16, 18) for calculating a cumulative distribution of discriminator circuit output values with respect to a threshold value by averaging Transmission quality measuring device. スペース及びマークを有する符号を搬送する光信号の伝送品質を計測する方法であって、
当該光信号を電気信号に変換する光電変換ステップと、
離散的に掃引される閾値により当該電気信号を2値識別することにより、閾値に対する累積分布を算出する累積分布算出ステップと、
当該累積分布を当該閾値で微分して確率密度分布を算出する確率密度分布算出ステップと、
当該確率密度分布の、アイ波形の外側に相当するデータにガウス関数をフィッティングして、当該確率密度分布における当該スペースの平均値及び標準偏差、並びに当該マークの平均値及び標準偏差を算出する平均値・標準偏差算出ステップと、
当該スペース及び当該マークの平均値及び標準偏差から当該光信号の伝送品質の指標を算出する伝送品質指標算出ステップ
とを具備することを特徴とする伝送品質計測方法。
A method for measuring transmission quality of an optical signal carrying a code having a space and a mark,
A photoelectric conversion step for converting the optical signal into an electrical signal;
A cumulative distribution calculating step of calculating a cumulative distribution with respect to the threshold by discriminating the electric signal in binary using a threshold that is discretely swept;
A probability density distribution calculating step of calculating the probability density distribution by differentiating the cumulative distribution by the threshold value;
Fitting a Gaussian function to the data corresponding to the outside of the eye waveform of the probability density distribution to calculate the average value and standard deviation of the space and the average value and standard deviation of the mark in the probability density distribution・ Standard deviation calculation step;
A transmission quality measuring method comprising: a transmission quality index calculating step for calculating an index of transmission quality of the optical signal from the space and the average value and standard deviation of the mark.
当該光電変換ステップが、当該光信号を受光器(10)で受光するステップと、当該受光器(10)の出力から当該光信号の信号周波数成分を除去する高域除去ステップとを具備することを特徴とする請求項6に記載の伝送品質計測方法。   The photoelectric conversion step includes a step of receiving the optical signal by the light receiver (10), and a high frequency removing step of removing the signal frequency component of the optical signal from the output of the light receiver (10). The transmission quality measuring method according to claim 6, wherein: 当該光電変換ステップは、当該光信号の信号周波数より低い応答性で当該光信号を電気信号に変換することを特徴とする請求項6に記載の伝送品質計測方法。   The transmission quality measuring method according to claim 6, wherein the photoelectric conversion step converts the optical signal into an electric signal with a response lower than the signal frequency of the optical signal. 当該累積分布算出ステップは、当該光信号の信号周波数より低い応答性で、当該電気信号を2値識別することを特徴とする請求項6乃至8の何れか1項に記載の伝送品質計測方法。   9. The transmission quality measuring method according to claim 6, wherein the cumulative distribution calculating step identifies the electrical signal in binary with a response lower than the signal frequency of the optical signal.
JP2004204340A 2003-09-08 2004-07-12 Transmission quality measuring apparatus and method Withdrawn JP2005110211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204340A JP2005110211A (en) 2003-09-08 2004-07-12 Transmission quality measuring apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003314899 2003-09-08
JP2004204340A JP2005110211A (en) 2003-09-08 2004-07-12 Transmission quality measuring apparatus and method

Publications (1)

Publication Number Publication Date
JP2005110211A true JP2005110211A (en) 2005-04-21

Family

ID=34554144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204340A Withdrawn JP2005110211A (en) 2003-09-08 2004-07-12 Transmission quality measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP2005110211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512286A (en) * 2005-10-13 2009-03-19 ナショナル・アイシーティ・オーストラリア・リミテッド Method and apparatus for monitoring a sampled optical signal
WO2022157981A1 (en) * 2021-01-25 2022-07-28 日本電気株式会社 Communication device, communication control method, non-transitory computer-readable medium, and optical communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512286A (en) * 2005-10-13 2009-03-19 ナショナル・アイシーティ・オーストラリア・リミテッド Method and apparatus for monitoring a sampled optical signal
WO2022157981A1 (en) * 2021-01-25 2022-07-28 日本電気株式会社 Communication device, communication control method, non-transitory computer-readable medium, and optical communication system

Similar Documents

Publication Publication Date Title
KR100464584B1 (en) Laser Rangefinder and method thereof
KR101817544B1 (en) Bluetooth signal receiving method and device using improved carrier frequency offset compensation
US8238413B2 (en) Adaptive equalizer for high-speed serial data
CN107846250B (en) Method, apparatus and readable medium for monitoring and controlling performance of optical communication system
JPH07154378A (en) Optical transmission characteristic measuring instrument
KR20190011068A (en) Method for simultaneously performing packet detection, symbol timing acquisition and carrier frequency offset estimation using multiple correlation detection and bluetooth apparatus using the same
JP2007147472A (en) Data processing method and apparatus for characteristics measurement of photon detection device and photon receiver using it
JP2009506344A (en) Measurement and display of video peak jitter by expected probability
JP2005110211A (en) Transmission quality measuring apparatus and method
JP2007181048A (en) Signal light processor
EP1800422A1 (en) Method and apparatus for recognizing a disturbing effect in an information channel
JP5326759B2 (en) FSK receiving apparatus, FSK receiving method, and program
WO2004073244A1 (en) Bit error rate monitoring method and device
JP7057500B2 (en) Receiver and receiving method
CN112422177B (en) Optical channel identification method, device, optical communication monitoring equipment and storage medium
EP3110037B1 (en) Method and device for testing a wavelength channel
CN107241173B (en) System and method for broadband adaptive equalization and eye opening monitoring for link quality detection
US7606487B1 (en) Distortion measurement in optical communication systems
US20220116031A1 (en) Signal analysis method and signal analysis module
KR101068414B1 (en) How to monitor the performance of optical signals
KR20050007210A (en) Laser Rangefinder and method thereof
CN112367166B (en) High-precision state distinguishing detection method, system, medium, computer equipment and application
CN110572170B (en) Signal receiving device and wireless transmitting device screening method
JP4772476B2 (en) Optical receiver and method for determining discrimination threshold in optical receiver
KR102129285B1 (en) Method for simultaneously performing carrier frequency offset estimation and packet detection using binary correlator and segment sum feedback, and receiver using the method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002