JP2005108629A - Sealed battery and its manufacturing method - Google Patents

Sealed battery and its manufacturing method Download PDF

Info

Publication number
JP2005108629A
JP2005108629A JP2003340310A JP2003340310A JP2005108629A JP 2005108629 A JP2005108629 A JP 2005108629A JP 2003340310 A JP2003340310 A JP 2003340310A JP 2003340310 A JP2003340310 A JP 2003340310A JP 2005108629 A JP2005108629 A JP 2005108629A
Authority
JP
Japan
Prior art keywords
battery
sealed
electrolyte
injection port
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003340310A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mizuno
弘行 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Tochigi Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Tochigi Ltd, NEC Tokin Corp filed Critical NEC Tokin Tochigi Ltd
Priority to JP2003340310A priority Critical patent/JP2005108629A/en
Publication of JP2005108629A publication Critical patent/JP2005108629A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery with a small volume of deformation caused by the swelling of a battery can. <P>SOLUTION: The sealed battery 1 with a positive electrode and a negative electrode arranged in opposition with a separator interposed has pressure inside the battery can maintained lower than ambient pressure by making an electrolyte solution overflow from an electrolyte immersion inlet 8 by pressing the wall face of the battery can after immersing the electrolyte solution in the battery can 2 housing battery elements and sealing the electrolyte immersion inlet 8 with a pressing force maintained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、密閉型電池に関し、とくにリチウムイオン電池等の角柱状の電池缶に収納した密閉型電池に関する。   The present invention relates to a sealed battery, and more particularly to a sealed battery housed in a prismatic battery can such as a lithium ion battery.

ノート型パソコン、携帯電話をはじめとして電池使用機器においては、一般に直方体状の電池収納部が設けられている。このような電池収納部においては、円筒形状の電池では無効な容積が大きくなるという問題があった。さらに、電池収納部の厚さによって円筒型の電池の径が制限を受けるので、小型、あるいは薄型の機器においては、円筒型の電池に代えて、厚みの薄い角柱状の密閉型電池が用いられている。   In battery-operated devices such as notebook computers and mobile phones, a rectangular parallelepiped battery storage unit is generally provided. In such a battery storage unit, there is a problem that an invalid volume increases in a cylindrical battery. Further, since the diameter of the cylindrical battery is limited by the thickness of the battery storage portion, a thin prismatic sealed battery is used instead of the cylindrical battery in a small or thin device. ing.

リチウムイオン二次電池においては、負極にリチウムイオンをドープ、あるいは脱ドープする炭素質材料等が用いられており、充電時に、電極が膨張したり、あるいは気体の発生によって電池が膨張することが知られている。
例えば、充電によって膨張して厚みが厚くなった電池缶は、放電をすると負極からイオンが脱ドープする結果、ある程度は厚みは減少するものの、元の厚みには復帰することはない。しかも充放電を繰り返し行っていると、徐々に膨張し、電池の厚みが大きくなるという問題があった。
In a lithium ion secondary battery, a carbonaceous material that is doped or dedoped with lithium ions is used for the negative electrode, and it is known that the battery expands due to gas generation during charging. It has been.
For example, a battery can that has expanded due to charging and has a large thickness can be reduced to some extent as a result of ions being dedoped from the negative electrode when discharged, but does not return to its original thickness. In addition, when charging and discharging are repeated, there is a problem that the battery gradually expands and the thickness of the battery increases.

電池缶の膨らみが大きくなると、電池を機器に設けた穴状の電池収容部に装着する形式のものでは、穴から差し込むことができなくなったり、あるいは電池装着部に蓋体を取り付ける形式のものでも、蓋体の装着ができなくなる等の問題点があった。
また、近年の電池容量の増大の要求によって、集電体へ塗布する活物質の厚さを厚くする等の処置をした電池においては、充電時の電池の膨張の問題は、より大きな問題であった。
When the swelling of the battery can increases, the battery that is inserted into the hole-shaped battery housing provided in the device cannot be inserted from the hole, or the battery is attached to the battery mounting part. There was a problem that the lid could not be mounted.
In addition, in a battery that has been treated to increase the thickness of the active material applied to the current collector due to a recent increase in battery capacity, the problem of battery expansion during charging is a larger problem. It was.

そこで、多数回の充放電を繰り返しても、電池使用機器の電池装着空間に問題なく取り付けられるように、予め膨張量を予測して空間を準備すると無効な空間が増加する等の問題があった。しかも、小型の機器においては、電池の膨張を考慮して無効な空間を準備することは機器の設計上も問題であった。   Therefore, there is a problem that an invalid space increases if a space is prepared by predicting the expansion amount in advance so that the battery can be installed in the battery mounting space of the battery-operated device without any problem even after repeated charging / discharging many times. . In addition, in a small device, preparing an invalid space in consideration of the expansion of the battery has been a problem in device design.

また、電池要素の膨張を、厚みが厚く強度の大きな電池缶を使用することによって解決する方法も考えられるが、必要以上に厚みの厚い電池缶の使用は、電池重量を大きくし、また収容する電池要素が小さくなり、容積の小さな電池においては、電池缶の強度を大きくすることで対処することにも問題点があった。   In addition, a method of solving the expansion of the battery element by using a battery can having a large thickness and a large strength is also conceivable. However, using a battery can that is thicker than necessary increases the weight of the battery and accommodates it. In a battery with a small battery element and a small volume, there is a problem in dealing with it by increasing the strength of the battery can.

また、電池内部への電解液の注液は、それぞれの電池の電解液注液口から電池の内部の圧力を減圧した後に電解液を加圧気体によって加圧供給することが提案されている。そして、加圧気体による電解液の加圧供給時には、電池缶の壁面を押圧して電池缶の変形を防止することが提案されている(例えば、特許文献1)。   In addition, it has been proposed that the electrolytic solution is injected into the battery by reducing the pressure inside the battery from the electrolyte injection port of each battery and then supplying the electrolyte with a pressurized gas. And when pressurizing and supplying the electrolyte solution with pressurized gas, it is proposed to prevent the deformation of the battery can by pressing the wall surface of the battery can (for example, Patent Document 1).

また、電解液等の液体の注液方法として、注液室内に、単位注液槽に電池缶の電解液注液口を底部に位置させて収容して、注液室の圧力を大気圧以下に減圧した後に、大気圧もしくは大気圧以上の圧力に保持することによって電解液を注液する注液方法が提案されている(例えば、特許文献2)
ところが、これらのいずれの注液方法でも電解液の注液の後の封口は、電解液注液口に封口用の金属部材を載置して大気圧下でレーザー溶接等の方法によって封口を行っていた。
In addition, as a method for injecting a liquid such as an electrolytic solution, the electrolytic solution injection port of the battery can is placed in the unit injection tank with the bottom being located in the unit injection tank, and the pressure in the injection chamber is below atmospheric pressure. An infusion method for injecting an electrolytic solution by maintaining the pressure at atmospheric pressure or a pressure equal to or higher than atmospheric pressure after the pressure has been reduced to a low pressure is proposed (for example, Patent Document 2)
However, in any of these injection methods, the sealing after injection of the electrolytic solution is performed by placing a sealing metal member on the electrolytic solution injection port by laser welding or the like under atmospheric pressure. It was.

図3は、従来の密閉型電池の内部を透視した状態を説明する図である。
密閉型電池1の電池缶2の内部には、電池要素3が収納されており、内部には電解液4が満たされた状態で密封されているが、電池缶内の上部には電解液が存在しない内部空間5が存在していた。
しかも、電池缶の封口は大気圧雰囲気において行われているので、電池缶の内部には大気圧下の大気が存在した状態となっていた。
特開2001−110400号公報 特開2001−196050号公報
FIG. 3 is a diagram illustrating a state in which the inside of a conventional sealed battery is seen through.
A battery element 3 is accommodated inside the battery can 2 of the sealed battery 1 and is sealed in a state where the electrolyte 4 is filled therein. There was an internal space 5 that did not exist.
Moreover, since the sealing of the battery can is performed in an atmospheric pressure atmosphere, the atmosphere under the atmospheric pressure exists inside the battery can.
JP 2001-110400 A JP 2001-196050 A

本発明は、密閉型電池の充電時における電池要素の膨張に起因する電池缶の膨張や、電池内部での気体の発生による膨張を小さくした密閉型電池を提供することを課題とするものである。   An object of the present invention is to provide a sealed battery in which expansion of a battery can caused by expansion of a battery element during charging of the sealed battery and expansion due to generation of gas inside the battery are reduced. .

本発明の課題は、正極電極と負極電極とをセパレータを介在させて対向配置した密閉型電池において、電池要素を収納した電池缶内に気体の存在する空間を有さず、内部の圧力が大気圧よりも低い密閉型電池によって解決することができる。
アルミニウムまたはその合金製の電池缶を用いた前記の密閉型電池である。
非水電解液電池である前記の密閉型電池である。
また、リチウムイオン電池である前記の密閉型電池である。
An object of the present invention is to provide a sealed battery in which a positive electrode and a negative electrode are arranged to face each other with a separator interposed therebetween, and does not have a space in which a gas exists in a battery can containing battery elements, and the internal pressure is large. This can be solved by a sealed battery lower than the atmospheric pressure.
The sealed battery using a battery can made of aluminum or an alloy thereof.
The sealed battery as described above, which is a nonaqueous electrolyte battery.
The sealed battery is a lithium ion battery.

また、正極電極と負極電極とをセパレータを介在させて対向配置した密閉型電池の製造方法において、電池要素を収納した電池缶内に電解液を注液した後に電池缶の壁面を押圧して電解液を電解液注液口から溢流させ、押圧力を保持した状態で電解液注液口を封口する密閉型電池の製造方法である。
電池缶の押圧時に、電解液注液口から溢流する電解液を吸引除去する前記の密閉型電池の製造方法である。
Further, in a manufacturing method of a sealed battery in which a positive electrode and a negative electrode are disposed to face each other with a separator interposed therebetween, an electrolytic solution is injected into a battery can containing battery elements and then the wall surface of the battery can is pressed to perform electrolysis. This is a method for manufacturing a sealed battery in which a liquid is overflowed from an electrolyte solution injection port and the electrolyte solution injection port is sealed in a state where a pressing force is maintained.
The method of manufacturing a sealed battery as described above, wherein the electrolytic solution overflowing from the electrolytic solution pouring port is sucked and removed when the battery can is pressed.

本発明は、密閉型電池の封口前に電池缶を押圧して電解液を溢流させて電池缶内から気体を除去した状態で封口したので、封口後には電池缶内には気体は存在せず、また電池缶の壁面は大気圧と電池缶内部の圧力差によって内部へ押圧されるので、電池缶内に収納した電池要素は、電池缶の壁面によって圧迫される。その結果、その後の充電による電池缶内の気体の発生、電極活物質の膨張による電池の膨脹を小さくすることができ、寸法安定性の良好な密閉型電池が得られる。   In the present invention, the battery can is pressed before the sealed battery is sealed to overflow the electrolyte, and the gas is removed from the battery can. Therefore, no gas is present in the battery can after the sealing. In addition, since the wall surface of the battery can is pressed into the inside by the pressure difference between the atmospheric pressure and the inside of the battery can, the battery element housed in the battery can is pressed by the wall surface of the battery can. As a result, generation of gas in the battery can by subsequent charging and expansion of the battery due to expansion of the electrode active material can be reduced, and a sealed battery with good dimensional stability can be obtained.

本発明は、正極電極と負極電極とをセパレータを介して対向して配置した電池要素を金属製の電池缶内に収納した後に電池缶を密閉した電池において、電池缶内に電解液を注液した後に、電池缶内の側面を押圧して電解液を電解液注液口から溢流させた後に、側面を押圧した状態で電解液注液口に封口部材を装着して封口することによって、電池内部には気体の存在する空間が形成されない密閉型電池を提供することが可能であることを見出したものである。   In the battery in which the battery can is sealed after the battery element in which the positive electrode and the negative electrode are arranged to face each other with the separator interposed between the battery can and the battery can is sealed, the electrolytic solution is injected into the battery can. After pressing the side surface in the battery can and overflowing the electrolyte from the electrolyte solution injection port, by attaching a sealing member to the electrolyte solution injection port in a state of pressing the side surface, It has been found that it is possible to provide a sealed battery in which a space in which a gas exists is not formed inside the battery.

以下に図面を参照して本発明を説明する。
図1は、本発明の密閉型電池を説明する図である。
図1(A)は、本発明の密閉型電池の内部を透視した図である。
密閉型電池1は電池缶2の内部に電池要素3が収納されており、電極端子7および電解液注液口8が設けられた電池ヘッダー9が装着された電池缶の内部は電解液4で満たされ電池缶が押圧された状態で密封されて電池缶内の上部には気体の存在する内部空間は存在していない。
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating a sealed battery according to the present invention.
FIG. 1A is a perspective view of the inside of the sealed battery of the present invention.
In the sealed battery 1, the battery element 3 is housed inside the battery can 2, and the inside of the battery can equipped with the electrode header 7 and the battery header 9 provided with the electrolyte injection port 8 is the electrolyte 4. There is no internal space where gas is present in the upper part of the battery can that is filled and pressed in a pressed state.

その結果、図1(B)に示すように、電池缶2の壁面10は大気圧と電池缶内部の圧力との差によって圧力差6が作用し、図1(C)に密閉型電池を水平方向で切断した断面図を示すように、電池要素3が電池缶2の壁面10によって押圧されることとなる。   As a result, as shown in FIG. 1B, the wall surface 10 of the battery can 2 is subjected to a pressure difference 6 due to the difference between the atmospheric pressure and the pressure inside the battery can. The battery element 3 is pressed by the wall surface 10 of the battery can 2 as shown in the sectional view cut in the direction.

そして、内部に気体が存在していないので、温度上昇の際にも内部の気体の膨張による電池缶の膨張を防止することができ、また、電池電極の膨張による電池の膨張も防止することができる。   And since no gas is present inside, the expansion of the battery can due to the expansion of the internal gas can be prevented even when the temperature rises, and the expansion of the battery due to the expansion of the battery electrode can also be prevented. it can.

図2は、本発明の密閉型電池の製造工程を説明する図である。
図2(A)に示すように、電池缶2内に電池要素を収納した後に、電極端子7および電解液注液口8を備えた電池ヘッダー9を電池缶2の開口部に装着して溶接し、電解液注液口8から電解液を注入した後に、電池缶2の底面11を定盤12に載置した状態で、電池缶の4個の壁面10を2個のL字型押圧治具13および14によって押圧する。
FIG. 2 is a diagram for explaining the manufacturing process of the sealed battery of the present invention.
As shown in FIG. 2A, after the battery element is stored in the battery can 2, a battery header 9 having an electrode terminal 7 and an electrolyte injection port 8 is attached to the opening of the battery can 2 and welded. Then, after injecting the electrolytic solution from the electrolytic solution injection port 8, the four wall surfaces 10 of the battery can 2 are pressed and pressed with the bottom surface 11 of the battery can 2 placed on the surface plate 12. Press with tools 13 and 14.

これによって、図2(B)に示すように、電池缶2の壁面10に押圧力15が作用して、電解液注液口8から電解液が溢流する。
溢流した電解液は、図2(C)に示すように、電解液回収手段16によって吸引されて、電池ヘッダー9の上面の電解液は除去される。
As a result, as shown in FIG. 2B, the pressing force 15 acts on the wall surface 10 of the battery can 2, and the electrolytic solution overflows from the electrolytic solution injection port 8.
As shown in FIG. 2C, the overflowing electrolyte solution is sucked by the electrolyte solution recovery means 16, and the electrolyte solution on the upper surface of the battery header 9 is removed.

次いで、図2(D)に示すように、電池缶の壁面を押圧した状態で、電解液注液口8にピン状、粒状等の封口部材17を装着した状態でレーザー18を照射して封口部材17を電解液注液口8の周囲と溶接して封口する。   Next, as shown in FIG. 2 (D), with the wall surface of the battery can being pressed, the sealing member 17 is irradiated with a laser 18 in a state in which a sealing member 17 such as a pin or granule is attached to the electrolytic solution injection port 8. The member 17 is welded to the periphery of the electrolyte injection port 8 and sealed.

封口が終了した電池は、押圧治具による押圧力を取り除くと、電池缶内は上部まで電解液が充填された状態で封口されるとともに、電池缶の復元力によって電池缶内は負圧状態とされる。   When the pressure of the pressing jig is removed, the battery that has been sealed is sealed with the electrolyte filled up to the top, and the battery can has a negative pressure state due to the restoring force of the battery can. Is done.

以上の説明では、電池缶の側面をL字状の押圧治具によって押圧し、電解液を溢流させて内部の空間をなくす場合について説明をしたが、押圧部材は同時に電池缶の側面を押圧することができるものであれば、L字型に限らず平板状のものを用いても良い。   In the above description, the case where the side surface of the battery can is pressed with an L-shaped pressing jig and the electrolyte is overflowed to eliminate the internal space has been described, but the pressing member simultaneously presses the side surface of the battery can. If it can do, not only L-shape but a plate-shaped thing may be used.

あるいは、一方をL字型のものとして、角部に電池缶を装着して他方を平板状の部材で押圧しても良い。
また、押圧治具は、電池缶の壁面を押圧して電池缶内の電解液を電解液注液口から溢流させることが可能な大きさを有するものであれば充分であり、全面を覆わなくても良い。
一方、電池缶の底面は、電池缶の壁面を押圧した際に底面への膨らみを防止する点から底面は定盤状に保持することが好ましい。
以下に本発明の実施例を示し、本発明を説明する。
Alternatively, one may be L-shaped, a battery can may be attached to the corner, and the other may be pressed by a flat member.
Also, the pressing jig is sufficient if it has a size that allows the electrolyte in the battery can to overflow from the electrolyte injection port by pressing the wall surface of the battery can and covers the entire surface. It is not necessary.
On the other hand, the bottom surface of the battery can is preferably held in a platen shape from the viewpoint of preventing the bottom surface of the battery can from bulging when the wall surface of the battery can is pressed.
Examples of the present invention will be described below to explain the present invention.

縦50.0mm、横34.0mm、厚さ5.0mm、板厚0.25mmのアルミニウム合金(A3003)からなる電池缶に、アルミニウム箔上に形成した正極電極と、銅箔上に形成した負極電極を、セパレータ、正極電極、セパレータ、負極電極の順に配置し巻回した後に扁平に成形した電池要素を電池缶に収納した。   A positive electrode formed on an aluminum foil and a negative electrode formed on a copper foil in a battery can made of an aluminum alloy (A3003) having a length of 50.0 mm, a width of 34.0 mm, a thickness of 5.0 mm, and a plate thickness of 0.25 mm After the electrodes were placed in the order of the separator, the positive electrode, the separator, and the negative electrode and wound, the battery element formed into a flat shape was accommodated in a battery can.

電池缶の開口部に電池ヘッダーを取り付け、電池ヘッダーの電解液注液口から、エチレンカーボネート30容量部、ジエチルカーボネート70容量部からなる混合溶媒に濃度1.0mol/lとなるようにLiPF6 を溶解した電解液を注入した後に、電池缶を定盤上に載置して電池缶の側面を、電池面との接触面が32.0mm×48.0mmの面と、5.0mm×48.0mmの面とを有する2個のL字型の押圧部材に、押圧部材間の幅を34.0mm、49.0mmとする圧力を加えた。 A battery header is attached to the opening of the battery can, and LiPF 6 is added to a mixed solvent consisting of 30 parts by volume of ethylene carbonate and 70 parts by volume of diethyl carbonate from the electrolyte injection port of the battery header so that the concentration is 1.0 mol / l. After injecting the dissolved electrolyte, the battery can is placed on a surface plate and the side surface of the battery can is contacted with the battery surface at a surface of 32.0 mm × 48.0 mm and 5.0 mm × 48. The pressure which made the width | variety between pressing members 34.0 mm and 49.0 mm was applied to two L-shaped pressing members which have a 0-mm surface.

L字型押圧部材による押圧力を保持した状態で、電解液注液口から溢流した電解液を吸引手段によって除去した後に、電解液注液口に封口部材を載置して、レーザー溶接によって封口部材を溶接して封口した。   The electrolytic solution overflowing from the electrolyte solution injection port is removed by the suction means while holding the pressing force by the L-shaped pressing member, and then the sealing member is placed on the electrolyte solution injection port, and laser welding is performed. The sealing member was welded and sealed.

得られた100個の電池について、(イ)押圧前電池缶厚み、(ロ)封口後電池缶厚み、(ハ)初回充電後電池缶厚み、(ニ)初回充電後に、放電と充電とを2回行った後の電池缶厚みのそれぞれを測定し、それらの平均値表1に示す。   For the 100 batteries obtained, (a) the thickness of the battery can before pressing, (b) the thickness of the battery can after sealing, (c) the thickness of the battery can after initial charging, and (d) 2 discharges and charging after the initial charging. Each of the battery can thicknesses after the measurement was measured, and the average value is shown in Table 1.

比較例1
電池缶内部を減圧しない点を除き、実施例1と同様にして100個の電池を作製し、実施例1と同様にして電池缶の厚みを測定し、その結果を表1に示す。
Comparative Example 1
Except for not depressurizing the inside of the battery can, 100 batteries were produced in the same manner as in Example 1, the thickness of the battery can was measured in the same manner as in Example 1, and the results are shown in Table 1.

表1
実施例1 比較例1
(イ)押圧前電池缶厚み(mm) 5.15 5.15
(ロ)封口後電池缶厚み(mm) 5.02 5.15
(ハ)初回充電後電池缶厚み(mm) 5.15 5.30
(ニ)初回充電後(mm) 5.30 5.40
Table 1
Example 1 Comparative Example 1
(A) Battery can thickness before pressing (mm) 5.15 5.15
(B) Battery can thickness after sealing (mm) 5.02 5.15
(C) Battery can thickness after initial charge (mm) 5.15 5.30
(D) After initial charge (mm) 5.30 5.40

本発明によれば、電池ヘッダーを電池缶の開口部に装着した後に、封口前に電池缶を押圧して電解液を溢流させて電池缶内から気体を除去した状態で封口したので、封口後には電池缶内には気体は存在せず、また電池缶の壁面は大気圧と電池缶内部の圧力差によって内部へ押圧され、電池缶内に収納した電池要素は、電池缶の壁面によって圧迫されるので、充電時の電池缶内での気体の発生による電池の膨張、電極活物質の膨張による電池の膨脹を小さくすることができ、寸法安定性が良好な密閉型電池を提供することができる。   According to the present invention, after the battery header is attached to the opening of the battery can, the battery can is pressed before the sealing to overflow the electrolyte and the gas is removed from the inside of the battery can. Later, there is no gas in the battery can, and the wall surface of the battery can is pressed inside by the pressure difference between the atmospheric pressure and the inside of the battery can, and the battery element stored in the battery can is pressed by the wall surface of the battery can. Therefore, it is possible to reduce the expansion of the battery due to the generation of gas in the battery can during charging and the expansion of the battery due to the expansion of the electrode active material, and to provide a sealed battery with good dimensional stability. it can.

図1は、本発明の密閉型電池を説明する図である。FIG. 1 is a diagram illustrating a sealed battery according to the present invention. 図2は、本発明の密閉型電池の製造工程を説明する図である。FIG. 2 is a diagram for explaining the manufacturing process of the sealed battery of the present invention. 図3は、従来の密閉型電池の内部を透視した状態を説明する図である。FIG. 3 is a diagram illustrating a state in which the inside of a conventional sealed battery is seen through.

符号の説明Explanation of symbols

1…密閉型電池、2…電池缶、3…電池要素、4…電解液、5…内部空間、6…圧力差、7…電極端子、8…電解液注液口、9…電池ヘッダー、10…壁面、11…底面、12…定盤、13,14…L字型押圧治具、15…押圧力、16…電解液回収手段、17…封口部材、18…レーザー   DESCRIPTION OF SYMBOLS 1 ... Sealed battery, 2 ... Battery can, 3 ... Battery element, 4 ... Electrolyte, 5 ... Internal space, 6 ... Pressure difference, 7 ... Electrode terminal, 8 ... Electrolyte injection port, 9 ... Battery header, 10 ... Wall surface, 11 ... Bottom surface, 12 ... Surface plate, 13, 14 ... L-shaped pressing jig, 15 ... Pressing force, 16 ... Electrolyte recovery means, 17 ... Sealing member, 18 ... Laser

Claims (2)

正極電極と負極電極とをセパレータを介在させて対向配置した密閉型電池において、電池要素を収納した電池缶内に気体の存在する空間を有さず、内部の圧力が大気圧よりも低いことを特徴とする密閉型電池。 In a sealed battery in which a positive electrode and a negative electrode are arranged opposite to each other with a separator interposed therebetween, there is no space in which a gas exists in a battery can containing battery elements, and the internal pressure is lower than atmospheric pressure. A sealed battery. 正極電極と負極電極とをセパレータを介在させて対向配置した密閉型電池の製造方法において、電池要素を収納した電池缶内に電解液を注液した後に電池缶の壁面を押圧して電解液を電解液注液口から溢流させ、押圧力を保持した状態で電解液注液口を封口することを特徴とする密閉型電池の製造方法。 In a manufacturing method of a sealed battery in which a positive electrode and a negative electrode are disposed to face each other with a separator interposed therebetween, an electrolytic solution is injected into a battery can containing battery elements and then the wall surface of the battery can is pressed to apply the electrolytic solution. A method for producing a sealed battery, comprising overflowing an electrolyte solution injection port and sealing the electrolyte solution injection port while maintaining a pressing force.
JP2003340310A 2003-09-30 2003-09-30 Sealed battery and its manufacturing method Pending JP2005108629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003340310A JP2005108629A (en) 2003-09-30 2003-09-30 Sealed battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003340310A JP2005108629A (en) 2003-09-30 2003-09-30 Sealed battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005108629A true JP2005108629A (en) 2005-04-21

Family

ID=34535241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340310A Pending JP2005108629A (en) 2003-09-30 2003-09-30 Sealed battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005108629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150038387A (en) * 2012-08-07 2015-04-08 도요타지도샤가부시키가이샤 Hermetic battery manufacturing method
KR20180010393A (en) * 2016-07-21 2018-01-31 주식회사 엘지화학 Electrolyte Injection Apparatus for Prismatic Battery and Electrolyte Injection Method Using The Same
CN117410580A (en) * 2023-12-15 2024-01-16 珠海市嘉德电能科技有限公司 Packaging equipment for lithium battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132774A (en) * 1988-11-11 1990-05-22 Sanyo Electric Co Ltd Manufacture of flat type secondary battery
WO2000041263A1 (en) * 1998-12-28 2000-07-13 Mitsubishi Denki Kabushiki Kaisha Thin battery and method of manufacturing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132774A (en) * 1988-11-11 1990-05-22 Sanyo Electric Co Ltd Manufacture of flat type secondary battery
WO2000041263A1 (en) * 1998-12-28 2000-07-13 Mitsubishi Denki Kabushiki Kaisha Thin battery and method of manufacturing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150038387A (en) * 2012-08-07 2015-04-08 도요타지도샤가부시키가이샤 Hermetic battery manufacturing method
KR101672146B1 (en) 2012-08-07 2016-11-02 도요타지도샤가부시키가이샤 Hermetic battery manufacturing method
KR20180010393A (en) * 2016-07-21 2018-01-31 주식회사 엘지화학 Electrolyte Injection Apparatus for Prismatic Battery and Electrolyte Injection Method Using The Same
KR102234989B1 (en) 2016-07-21 2021-04-01 주식회사 엘지화학 Electrolyte Injection Apparatus for Prismatic Battery and Electrolyte Injection Method Using The Same
CN117410580A (en) * 2023-12-15 2024-01-16 珠海市嘉德电能科技有限公司 Packaging equipment for lithium battery

Similar Documents

Publication Publication Date Title
US6767667B1 (en) Sealed battery
US8431269B2 (en) Battery including battery case and sealing plate
CN102804449A (en) Sealed battery and vehicle
US7858225B2 (en) Cylindrical lithium secondary battery and method of fabricating the same
JP2000067821A (en) Prism type battery
JP2006338992A (en) Square lithium ion battery
JP7202532B2 (en) Non-aqueous electrolyte secondary battery
KR20140018014A (en) The manufacturing method of pouch type secondary battery
JP5472671B2 (en) Battery and manufacturing method thereof
JP2008251189A (en) Cylindrical battery manufacturing method
JP2005346965A (en) Battery and manufacturing method of battery
JP2007134156A (en) Sealed battery
JPH11176412A (en) Cap assembly of secondary battery
JP2003086240A (en) Sealed type battery and its manufacturing method
JP2000123860A (en) Electrolyte filling method of lithium secondary battery and electrode terminal structure
JP2005108629A (en) Sealed battery and its manufacturing method
KR101253660B1 (en) Process for Preparing of Battery Case for Improving Accuracy
JP4110924B2 (en) Square lithium ion secondary battery
KR100709874B1 (en) Prismatric type lithium secondary battery and method thereof
JPH09265966A (en) Rectangular battery outer packaging can
JP2003257385A (en) Sealed thin lithium ion secondary battery
KR101285961B1 (en) Lithium rechargeable battery
CN220065932U (en) Battery shell, battery unit, battery and electricity utilization device
KR100573102B1 (en) Case used in sealed battery
JPH09120836A (en) Nonaqueous electrolyte secondary battery and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080208