JP2005108600A - In-liquid plasma generation device and in-liquid plasma generation method - Google Patents

In-liquid plasma generation device and in-liquid plasma generation method Download PDF

Info

Publication number
JP2005108600A
JP2005108600A JP2003339641A JP2003339641A JP2005108600A JP 2005108600 A JP2005108600 A JP 2005108600A JP 2003339641 A JP2003339641 A JP 2003339641A JP 2003339641 A JP2003339641 A JP 2003339641A JP 2005108600 A JP2005108600 A JP 2005108600A
Authority
JP
Japan
Prior art keywords
liquid
bubbles
bubble
plasma
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003339641A
Other languages
Japanese (ja)
Other versions
JP4446030B2 (en
Inventor
Nobufuku Nomura
信福 野村
Hiromichi Toyoda
洋通 豊田
Tsunehiro Maehara
常弘 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Network Shikoku Co Ltd
Original Assignee
Techno Network Shikoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Network Shikoku Co Ltd filed Critical Techno Network Shikoku Co Ltd
Priority to JP2003339641A priority Critical patent/JP4446030B2/en
Publication of JP2005108600A publication Critical patent/JP2005108600A/en
Application granted granted Critical
Publication of JP4446030B2 publication Critical patent/JP4446030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in-liquid plasma generation device and an in-liquid plasma generation method capable of efficiently generating plasma even in a conductive liquid such as water or alcohol. <P>SOLUTION: In order to solve the problem, this in-liquid plasma generation device 1 comprises: a vessel 2 for keeping a liquid 3; an electromagnetic wave radiation means 4 for radiating electromagnetic waves into the liquid 3; an air bubble generation means for generating air bubbles 9 in the liquid; and an air bubble keeping means for keeping the air bubbles 9 in the vicinity of the electromagnetic wave radiation means 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、水やアルコール等導電性の液体において、高エネルギーのプラズマを発生するための液中プラズマ発生装置および液中プラズマ発生方法に関するものである。 The present invention relates to a submerged plasma generator and a submerged plasma generating method for generating high-energy plasma in a conductive liquid such as water or alcohol.

従来より、プラズマを用いた蒸着技術として気相プラズマによる蒸着技術が幅広く利用されている。たとえば特許文献1にはプラズマCVD法によってシリコンまたは立方晶シリコンカーバイトの表面にダイヤモンド膜を形成することが記載されている。また、非特許文献1には超音波キャビテーションと局所電磁場の重畳による液中プラズマの生成に関する研究が記載されている。さらに、非特許文献2には、水中にグラファイトの電極を挿入してアーク放電を行い、フラーレンを合成する技術が記載されている。
特開平10−81589号公報 野村 信福、豊田 洋通、「第4回愛媛大学全学シンポジウム予稿集」、愛媛大学全学シンポジウム実施準備委員会、平成13年11月12日、p.56 N. Sano,et al, Nature 414,506(2001)
Conventionally, vapor deposition technology using vapor phase plasma has been widely used as a deposition technology using plasma. For example, Patent Document 1 describes that a diamond film is formed on the surface of silicon or cubic silicon carbide by plasma CVD. Non-Patent Document 1 describes a research on generation of plasma in liquid by superposition of ultrasonic cavitation and local electromagnetic field. Furthermore, Non-Patent Document 2 describes a technique for synthesizing fullerene by inserting a graphite electrode into water and performing arc discharge.
Japanese Patent Laid-Open No. 10-81589 Nomura Shinfuku, Toyoda Hiromichi, "4th Ehime University Campus Symposium", Ehime University Campus Symposium Preparatory Committee, November 12, 2001, p. 56 N. Sano, et al, Nature 414,506 (2001)

特許文献1に記載の方法等プラズマCVD法では蒸着物質を大量に合成することは困難である。従って、ある程度厚みのある膜を形成しようとすれば、長時間を要する。あえて蒸着速度を上げるために、メタン等の原材料物質を急速に供給することは危険を招くことにもなりかねない。また、気相で高エネルギーのプラズマを発生させると高温になり、熱に弱い基板材料へ蒸着することはできない。一方、非特許文献1に記載の超音波キャビテーションと局所電磁場の重畳による液中プラズマの生成は、液体中でプラズマを発生させようとする極めて有望な考え方ではあるが、当該文献および発表は、この研究を開始するに当たっての方針を発表したものでありその詳細は全く記載されておらず、同発表者であり本願発明者によってなされた特願2002−98193に係る発明において具体的なものとして完成されている。 In the plasma CVD method such as the method described in Patent Document 1, it is difficult to synthesize vapor deposition materials in large quantities. Therefore, it takes a long time to form a film having a certain thickness. In order to increase the deposition rate, supplying raw materials such as methane rapidly can be dangerous. Further, when high energy plasma is generated in the gas phase, the temperature becomes high, and it cannot be deposited on a substrate material that is vulnerable to heat. On the other hand, the generation of plasma in liquid by superimposition of ultrasonic cavitation and local electromagnetic field described in Non-Patent Document 1 is a very promising idea to generate plasma in liquid, The policy for starting the research was announced and the details were not described at all. It was completed as a concrete one in the invention according to Japanese Patent Application No. 2002-98193 made by the presenter and the present inventor. ing.

非特許文献2に記載された例のような液体中でアーク放電を行う技術では、電力の大部分を電子の流れに消費するのでエネルギー効率が低いという問題がある。また、基板に蒸着を行う場合にはこの過大な電子流によってターゲットの基板を加熱するという問題があり、熱に弱い素材の基板は使用できないし、非導電性の基板を使用することもできない等、用途が極めて限定される。 The technique of performing arc discharge in a liquid as in the example described in Non-Patent Document 2 has a problem of low energy efficiency because most of the power is consumed in the flow of electrons. In addition, when vapor deposition is performed on the substrate, there is a problem that the substrate of the target is heated by this excessive electron flow, and a substrate made of a material that is weak against heat cannot be used, and a non-conductive substrate cannot be used. The use is extremely limited.

一方、非特許文献2に記載された液中に電磁波を照射して液中プラズマを発生する方法は、液相では分子密度が気相に比べて極めて高いことから、高い合成速度が得られることが期待される。しかしながら、水やアルコール等の導電性の液体では液中に渦電流が発生して、照射した電磁波のエネルギーが消耗されるという問題があり、また水酸基などが特定の周波数を吸収するために電磁波が減衰するという問題がある。この発明は、水やアルコール等の導電性の液体でも効率的にプラズマを発生させることができる液中プラズマ発生装置および液中プラズマ発生方法を提供することを目的とする。 On the other hand, the method described in Non-Patent Document 2 for generating an in-liquid plasma by irradiating an electromagnetic wave in the liquid is capable of obtaining a high synthesis rate because the liquid phase has a very high molecular density compared to the gas phase. There is expected. However, conductive liquids such as water and alcohol have the problem that eddy currents are generated in the liquid and the energy of the irradiated electromagnetic waves is consumed, and the electromagnetic waves are not absorbed because the hydroxyl groups absorb a specific frequency. There is a problem of attenuation. An object of the present invention is to provide an in-liquid plasma generating apparatus and an in-liquid plasma generating method capable of efficiently generating plasma even with a conductive liquid such as water or alcohol.

上記の課題を解決するために、本発明に係る液中プラズマ発生装置は、液体を保持するための容器と、液体中に電磁波を照射するための電磁波照射手段と、液体中で気泡を発生させるための気泡発生手段と、気泡を電磁波照射手段の近くに保持するための気泡保持手段を有するものである。前記気泡保持手段としては、気泡を挟んで上下に配置された超音波照射手段と超音波反射板の対、気泡を上部より保持する保持板、気泡を挟んで上下に配置された電磁波照射のための電極の対などが使用できる。 In order to solve the above problems, an in-liquid plasma generator according to the present invention generates a bubble in a liquid, a container for holding the liquid, an electromagnetic wave irradiation means for irradiating the liquid with an electromagnetic wave, and the like. A bubble generating unit for holding the bubble and a bubble holding unit for holding the bubble near the electromagnetic wave irradiation unit. As the bubble holding means, a pair of ultrasonic wave irradiation means and an ultrasonic reflector arranged above and below the bubble, a holding plate holding the bubble from above, and for electromagnetic wave irradiation arranged above and below the bubble A pair of electrodes can be used.

さらに、本発明に係る液中プラズマ発生方法は、導電性の液体中で気泡を発生させるとともにその気泡を電磁波照射手段の近くに保持し、気泡に電磁波を照射して気泡中にプラズマを発生させるものである。上下に配置された超音波照射手段と超音波反射板の対によって気泡を保持してもよく、上下に配置された電磁波照射のための電極の対によって気泡を保持してもよい。導電性の液体として水溶液を用いてもよい。 Furthermore, the method for generating plasma in liquid according to the present invention generates bubbles in a conductive liquid, holds the bubbles near the electromagnetic wave irradiation means, and generates plasma in the bubbles by irradiating the bubbles with electromagnetic waves. Is. Bubbles may be held by a pair of ultrasonic irradiation means and an ultrasonic reflector arranged above and below, or bubbles may be held by a pair of electrodes for electromagnetic wave irradiation arranged above and below. An aqueous solution may be used as the conductive liquid.

この発明の本発明に係る液中プラズマ発生装置および液中プラズマ発生方法は、導電性の液体を使用しても、局所的には高エネルギーでありながら巨視的には低温であり安全で取り扱いやすい液中プラズマを発生できるという効果を有する。 The submerged plasma generation apparatus and submerged plasma generation method according to the present invention of the present invention is safe and easy to handle because it is locally low in energy but macroscopically low temperature even when a conductive liquid is used. This has the effect of generating plasma in liquid.

この発明を実施するための最良の形態について、図面に基づいて説明する。図1はこの発明に係る液中プラズマ発生装置の一例を示す説明図である。液中プラズマ発生装置1の容器2には液体3を入れるようになっている。容器2の大きさは必要とされる処理能力に応じて適宜選択でき、ビーカー程度の小型のものであっても、大型プラントとして実施するための大型の処理槽であってもよい。ここで、アクリル製の容器を用いている。 The best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing an example of an in-liquid plasma generator according to the present invention. A liquid 3 is placed in the container 2 of the in-liquid plasma generator 1. The size of the container 2 can be appropriately selected according to the required processing capacity, and it may be a small one such as a beaker or a large processing tank for carrying out as a large plant. Here, an acrylic container is used.

電磁波照射手段4は液体3中に電磁波を照射するためのものであり、この例では電極の対5a、5bとこの電極の対に高周波を供給するための高周波供給装置6よりなっている。また、この発明の液中プラズマ発生装置1は気泡発生手段を備えるが、この例では電極5a、5bが気泡発生手段の役割をも果たしている。電磁波を照射するために高周波が供給されると電極5a、5bが加熱され、電極5a、5bに接している液体から気泡が発生する。気泡発生手段としては、電磁波照射手段4とは別に専用の加熱手段を設けてもよい。また、気泡発生手段として、容器2を別の容器で覆い、真空ポンプ等で減圧することによって気泡を発生させることもでき、あるいは外部より気体を導入するようにしてもよく、さらにはこれらの組み合わせであってもよい。 The electromagnetic wave irradiation means 4 is for irradiating the liquid 3 with an electromagnetic wave. In this example, the electromagnetic wave irradiation means 4 includes an electrode pair 5a and 5b and a high frequency supply device 6 for supplying a high frequency to the electrode pair. Moreover, although the in-liquid plasma generator 1 of this invention is provided with a bubble generation means, in this example, the electrodes 5a and 5b also serve as the bubble generation means. When a high frequency is supplied to irradiate electromagnetic waves, the electrodes 5a and 5b are heated, and bubbles are generated from the liquid in contact with the electrodes 5a and 5b. As the bubble generating means, a dedicated heating means may be provided separately from the electromagnetic wave irradiation means 4. Further, as the bubble generating means, the container 2 may be covered with another container and the bubbles may be generated by reducing the pressure with a vacuum pump or the like, or a gas may be introduced from the outside, or a combination thereof. It may be.

この発明の液中プラズマ発生装置1は気泡保持手段を備えるが、この例では容器2内に上下に配置された超音波照射装置7と超音波反射板8が気泡保持手段の役割を果たしている。気泡9が保持されるべき位置の下に超音波照射装置7を、気泡9が保持されるべき位置の上に超音波反射板7を設け、気泡を上下から挟むような配置にする。気泡9は上下からの超音波照射による放射力および浮力を受けるが、これらがつりあった位置で保持される。この気泡9が保持されるべき位置は、電極5の近くになるように設定されている。 The in-liquid plasma generator 1 of the present invention includes bubble holding means. In this example, the ultrasonic irradiation device 7 and the ultrasonic reflector 8 arranged vertically in the container 2 serve as the bubble holding means. The ultrasonic irradiation device 7 is provided below the position where the bubbles 9 are to be held, and the ultrasonic reflector 7 is provided above the position where the bubbles 9 are to be held, so that the bubbles are sandwiched from above and below. The bubble 9 receives radiation force and buoyancy due to ultrasonic irradiation from above and below, but is held at a position where they are balanced. The position where the bubbles 9 are to be held is set to be close to the electrode 5.

ついで、図1に示す液中プラズマ発生装置1により液中プラズマを発生する方法について説明する。容器2を液体3で満たす。液体3として、ベンゼンやドデカン等の非導電性の液体でもよいが、本発明の液中プラズマ発生方法では、水やアルコール類等の導電性の液体を使用することができる。特に水には水溶性の物質を大量に溶かすことができるので、処理の目的に応じた水溶液を調整することができる。高周波供給装置6より高周波を電極5に供給すると電極5が加熱され、電極5より気泡が発生する。さらに、超音波照射装置7を作動させることによって、超音波照射装置7と超音波反射板8との間に超音波が上下から照射される。この上下からの超音波による放射力がつりあう位置で気泡9は保持され、電極の近くに単一、または数個の大きな気泡9が形成・保持される。 Next, a method for generating submerged plasma by the submerged plasma generator 1 shown in FIG. 1 will be described. Fill container 2 with liquid 3. The liquid 3 may be a non-conductive liquid such as benzene or dodecane, but in the in-liquid plasma generation method of the present invention, a conductive liquid such as water or alcohols can be used. In particular, since a large amount of water-soluble substances can be dissolved in water, an aqueous solution can be prepared according to the purpose of treatment. When a high frequency is supplied to the electrode 5 from the high frequency supply device 6, the electrode 5 is heated and bubbles are generated from the electrode 5. Furthermore, by operating the ultrasonic irradiation device 7, ultrasonic waves are irradiated from above and below between the ultrasonic irradiation device 7 and the ultrasonic reflector 8. The bubble 9 is held at a position where the radiant forces from the ultrasonic waves from above and below are balanced, and a single or several large bubbles 9 are formed and held near the electrode.

電極5a、5b間には電磁波が照射されているので、その位置に保持されている気泡9にも電磁波が照射される。気泡9は電極5の近くに保持されているために、電磁波は途中で減衰することなく気泡に到達し、気泡9内にプラズマを発生させる。このプラズマは局所的には高温・高エネルギーであって物質の分解・合成に効果的なものであるが、一方、液中にあるために巨視的には低温であり安全で取り扱いやすいものである。 Since electromagnetic waves are irradiated between the electrodes 5a and 5b, the electromagnetic waves are also irradiated to the bubbles 9 held at the positions. Since the bubble 9 is held near the electrode 5, the electromagnetic wave reaches the bubble without being attenuated on the way and generates plasma in the bubble 9. This plasma is locally high temperature and high energy and is effective for decomposition and synthesis of substances, but on the other hand, it is macroscopically low in temperature and safe and easy to handle. .

このように発生させたプラズマはさまざまな処理を行うことができる。例えば、蒸着を行うべき基板を気泡9に接するように配置し、蒸着膜の原料となる物質を液体中に含有させておくことにより、基板上に蒸着を行うことができる。CCVD法等従来の気相による蒸着と異なり、物質密度の高い液体を原料として使用するために蒸着膜の形成速度は著しく向上する。また、炭素を含む液体を使用して、カーボンナノチューブ、フラーレン、ダイヤモンド等の物質を合成したり、ダイオキシンやフロン等通常の処理法では分解が困難な有害物質の分解処理を行う化学反応炉としても使用できる。 The plasma generated in this way can be subjected to various treatments. For example, deposition can be performed on the substrate by disposing the substrate to be deposited so as to be in contact with the bubbles 9 and containing a material as a raw material for the deposited film in the liquid. Unlike conventional vapor deposition such as the CCVD method, since a liquid having a high material density is used as a raw material, the deposition rate of the deposited film is remarkably improved. It can also be used as a chemical reactor that uses carbon-containing liquids to synthesize carbon nanotubes, fullerenes, diamonds, and other substances, and to decompose harmful substances that are difficult to decompose by conventional treatment methods such as dioxin and chlorofluorocarbon. Can be used.

ついで、液中プラズマ発生装置の別の例について説明する。図2は液中プラズマ発生装置の別の例を示す説明図である。図1に示す例と共通な事項については説明を省略する。この例は、おもに1GHz〜200GHzの高周波数の電磁波を使用するのに適したものである。電磁波照射手段4として、マイクロ波集中装置10を使用する。このマイクロ波集中装置10の先端より、液体3中に電磁波を照射する。気泡は図1の例と同様に超音波照射装置7と超音波反射板8の対によって一定の位置に保持されるが、マイクロ波集中装置10の先端付近に保持されるように設定されている。したがって、電磁波はマイクロ波集中装置10より集中的に気泡9に対して照射される。 Next, another example of the in-liquid plasma generator will be described. FIG. 2 is an explanatory view showing another example of the in-liquid plasma generator. Description of matters common to the example shown in FIG. 1 is omitted. This example is suitable for using electromagnetic waves having a high frequency of 1 GHz to 200 GHz. A microwave concentrator 10 is used as the electromagnetic wave irradiation means 4. An electromagnetic wave is irradiated into the liquid 3 from the tip of the microwave concentration apparatus 10. As in the example of FIG. 1, the bubbles are held at a fixed position by the pair of the ultrasonic irradiation device 7 and the ultrasonic reflection plate 8, but are set to be held near the tip of the microwave concentration device 10. . Therefore, the electromagnetic waves are radiated to the bubbles 9 in a concentrated manner from the microwave concentration apparatus 10.

さらに、液中プラズマ発生装置の別の例について説明する。図3は液中プラズマ発生装置の別の例を示す説明図である。この例は、電磁波照射手段4として、レーザー光源を使用するものであり、液体3に保持されている気泡9に対してレーザー光を照射するものである。レーザー光を使用してプラズマを発生することにより、電波によるプラズマとは異なる反応を実現し、本発明の適用範囲を広げるものである。このように、本発明において電磁波とは、短波、中波、マイクロ波等電波の領域のもの以外にも、X線、赤外線、可視光、紫外線等も含む。 Furthermore, another example of the in-liquid plasma generator will be described. FIG. 3 is an explanatory view showing another example of the in-liquid plasma generator. In this example, a laser light source is used as the electromagnetic wave irradiation means 4, and laser light is irradiated to the bubbles 9 held in the liquid 3. By generating plasma using laser light, a reaction different from plasma by radio waves is realized and the scope of application of the present invention is expanded. Thus, in the present invention, the electromagnetic wave includes X-rays, infrared rays, visible light, ultraviolet rays, and the like in addition to those in the radio wave region such as short waves, medium waves, and microwaves.

この発明の液中プラズマ発生方法の第1の実施例について説明する。図4はこの実施例において使用する液中プラズマ発生装置を示す説明図である。図5はこの実施例において使用する高周波供給装置を示す回路図である。この実施例は中波帯(MF帯)の電磁波を使用する例である。アクリル製の容器2には、水が入れられている。電極5a、5bは真鍮製であって、上下に配置されており、上側5aは直径40mmの円柱型、下側5bは直径2mmの釘を使用している。 A first embodiment of the in-liquid plasma generation method of the present invention will be described. FIG. 4 is an explanatory view showing an in-liquid plasma generator used in this embodiment. FIG. 5 is a circuit diagram showing a high-frequency supply device used in this embodiment. This embodiment is an example in which electromagnetic waves in the medium wave band (MF band) are used. Water is put in the acrylic container 2. The electrodes 5a and 5b are made of brass and are arranged vertically. The upper side 5a uses a columnar shape with a diameter of 40 mm, and the lower side 5b uses a nail with a diameter of 2 mm.

図5の共振回路を使用した。共振回路部はコイル(0.24Ω、9μH)11とコイル12(1.7Ω、57μH)および磁器コンデンサ13(500pF)を並列接続したもので、回路全体の共振周波数は855kHzである。整合器15を端子A'およびB'に接続し、高周波電源14側からのインピーダンスを50Ωになるよう、整合器15を調整する。さらに、液中プラズマ発生装置1を接続し、反射波が最小となるよう整合器15を微調整する。 The resonant circuit of FIG. 5 was used. The resonance circuit unit is formed by connecting a coil (0.24Ω, 9 μH) 11, a coil 12 (1.7Ω, 57 μH) and a ceramic capacitor 13 (500 pF) in parallel, and the resonance frequency of the entire circuit is 855 kHz. The matching unit 15 is connected to the terminals A ′ and B ′, and the matching unit 15 is adjusted so that the impedance from the high frequency power source 14 side becomes 50Ω. Further, the in-liquid plasma generator 1 is connected, and the matching unit 15 is finely adjusted so that the reflected wave is minimized.

855kHz・200Wの高周波を供給すると、電極間(距離5mm)に赤紫色のプラズマを得た。電力を下げても100Wまでプラズマを安定に維持することが出来た。 When a high frequency of 855 kHz / 200 W was supplied, a reddish purple plasma was obtained between the electrodes (distance 5 mm). Even if the power was lowered, the plasma could be stably maintained up to 100W.

この発明の液中プラズマ発生方法の第2の実施例について説明する。図6はこの実施例において使用する高周波供給装置を示す回路図である。この実施例は短波帯(HF帯)の電磁波を使用する例である。液中プラズマ発生装置は図4のものを使用する。電極5a、5bは上下に配置されており、上5a側は真鍮製で直径40mmの円柱型、下側5bはアルミニウム製で直径3mmの円柱を鋭利に加工したものを使用している。 A second embodiment of the in-liquid plasma generation method of the present invention will be described. FIG. 6 is a circuit diagram showing a high-frequency supply device used in this embodiment. In this embodiment, an electromagnetic wave in a short wave band (HF band) is used. The submerged plasma generator uses the one shown in FIG. The electrodes 5a and 5b are arranged vertically, and the upper 5a side is made of brass and has a columnar shape with a diameter of 40 mm, and the lower side 5b is made of aluminum with a sharply processed column having a diameter of 3 mm.

図6の共振回路を使用した。コンデンサ16の容量は1nFであり、コンデンサ17の容量は91pF(1nFを11ヶ直列接続)である。また、コイル18のインダクタンスは1.4μHである。液中プラズマ発生装置1を接続し、回路全体の共振周波数を測定すると、12.6MHzとなっていた(液中プラズマ発生装置1の容量は30pF程度あり、この影響は無視できない)。整合器15を端子A'およびB'に接続し、高周波電源14からのインピーダンスを50Ωになるよう、整合器15を調整する。 The resonant circuit of FIG. 6 was used. The capacity of the capacitor 16 is 1 nF, and the capacity of the capacitor 17 is 91 pF (11 nF in series of 11). The inductance of the coil 18 is 1.4 μH. When the submerged plasma generator 1 was connected and the resonance frequency of the entire circuit was measured, it was 12.6 MHz (the submerged plasma generator 1 has a capacity of about 30 pF, and this effect cannot be ignored). The matching unit 15 is connected to the terminals A ′ and B ′, and the matching unit 15 is adjusted so that the impedance from the high frequency power source 14 becomes 50Ω.

高周波電源14より、12.6MHz・200Wの高周波を供給すると、電極5a、5b間に赤紫色のプラズマを得た。 When a high frequency of 12.6 MHz · 200 W was supplied from the high frequency power source 14, reddish purple plasma was obtained between the electrodes 5a and 5b.

この発明の液中プラズマ発生装置および液中プラズマ発生方法は、水やアルコール類等の導電性の液体中に高エネルギーのプラズマを発生することができるものであり、化学蒸着や化学反応炉あるいは有害物質の分解炉として適用することができるものである。 The submerged plasma generation apparatus and submerged plasma generation method of the present invention can generate high energy plasma in conductive liquids such as water and alcohols, and can be used for chemical vapor deposition, chemical reaction furnaces, or harmful. It can be applied as a material decomposition furnace.

液中プラズマ発生装置の第1の例を示す説明図である。It is explanatory drawing which shows the 1st example of a plasma generator in a liquid. 液中プラズマ発生装置の第2の例を示す説明図である。It is explanatory drawing which shows the 2nd example of a plasma generator in a liquid. 液中プラズマ発生装置の第3の例を示す説明図である。It is explanatory drawing which shows the 3rd example of a plasma generator in a liquid. 液中プラズマ発生装置の実施例を示す説明図である。It is explanatory drawing which shows the Example of the plasma generator in a liquid. 高周波供給装置の一例を示す回路図である。It is a circuit diagram which shows an example of a high frequency supply apparatus. 高周波供給装置の別の例を示す回路図である。It is a circuit diagram which shows another example of a high frequency supply apparatus.

符号の説明Explanation of symbols

1.液中プラズマ発生装置
2.容器
3.液体
4.電磁波照射手段
5a、5b.電極
6.高周波供給装置
7.超音波照射手段
8.超音波反射板
9.気泡
10.マイクロ波集中装置
11,12,18 コイル
13,16,17 コンデンサ
1. Submerged plasma generator 2. Container 3. Liquid 4. Electromagnetic wave irradiation means 5a, 5b. Electrode 6. 6. High frequency supply device Ultrasonic irradiation means8. Ultrasonic reflector 9 Bubble 10. Microwave concentrator 11, 12, 18 Coil 13, 16, 17 Capacitor

Claims (8)

液体を保持するための容器と、液体中に電磁波を照射するための電磁波照射手段と、液体中で気泡を発生させるための気泡発生手段と、気泡を電磁波照射手段の近くに保持するための気泡保持手段を有する液中プラズマ発生装置。 A container for holding a liquid, an electromagnetic wave irradiation means for irradiating an electromagnetic wave in the liquid, a bubble generation means for generating bubbles in the liquid, and a bubble for holding the bubbles near the electromagnetic wave irradiation means An in-liquid plasma generator having a holding means. 前記気泡保持手段が気泡を挟んで上下に配置された超音波照射手段と超音波反射板の対である請求項1に記載の液中プラズマ発生装置。 The in-liquid plasma generator according to claim 1, wherein the bubble holding unit is a pair of an ultrasonic wave irradiation unit and an ultrasonic wave reflection plate arranged above and below the bubble. 前記気泡保持手段が気泡を上部より保持する保持板である請求項1に記載の液中プラズマ発生装置。 The in-liquid plasma generator according to claim 1, wherein the bubble holding means is a holding plate that holds bubbles from above. 前記気泡保持手段が気泡を挟んで上下に配置された電磁波照射のための電極である請求項1に記載の液中プラズマ発生装置。 The in-liquid plasma generator according to claim 1, wherein the bubble holding means is an electrode for electromagnetic wave irradiation arranged above and below the bubble. 導電性の液体中で気泡を発生させるとともにその気泡を電磁波照射手段の近くに保持し、気泡に電磁波を照射して気泡中にプラズマを発生させる液中プラズマ発生方法。 A submerged plasma generation method in which bubbles are generated in a conductive liquid, the bubbles are held near an electromagnetic wave irradiation means, and the bubbles are irradiated with electromagnetic waves to generate plasma in the bubbles. 上下に配置された超音波照射手段と超音波反射板の対によって気泡を保持する請求項5に記載の液中プラズマ発生方法。 The in-liquid plasma generation method according to claim 5, wherein the bubbles are held by a pair of ultrasonic irradiation means and an ultrasonic reflector arranged above and below. 上下に配置された電磁波照射のための電極の対によって気泡を保持する請求項5に記載の液中プラズマ発生方法。 The method of generating plasma in liquid according to claim 5, wherein bubbles are held by a pair of electrodes for electromagnetic wave irradiation arranged above and below. 導電性の液体として水溶液を用いる請求項5ないし請求項7のいずれかに記載の液中プラズマ発生方法。

8. The in-liquid plasma generation method according to claim 5, wherein an aqueous solution is used as the conductive liquid.

JP2003339641A 2003-09-30 2003-09-30 Liquid plasma generator and liquid plasma generation method Expired - Lifetime JP4446030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339641A JP4446030B2 (en) 2003-09-30 2003-09-30 Liquid plasma generator and liquid plasma generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339641A JP4446030B2 (en) 2003-09-30 2003-09-30 Liquid plasma generator and liquid plasma generation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009114083A Division JP4517098B2 (en) 2009-05-11 2009-05-11 Method for generating plasma in liquid

Publications (2)

Publication Number Publication Date
JP2005108600A true JP2005108600A (en) 2005-04-21
JP4446030B2 JP4446030B2 (en) 2010-04-07

Family

ID=34534778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339641A Expired - Lifetime JP4446030B2 (en) 2003-09-30 2003-09-30 Liquid plasma generator and liquid plasma generation method

Country Status (1)

Country Link
JP (1) JP4446030B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306029A (en) * 2003-03-27 2004-11-04 Techno Network Shikoku Co Ltd Chemical reactor and decomposing method of toxic substance
JP2005235662A (en) * 2004-02-23 2005-09-02 Techno Network Shikoku Co Ltd Plasma device in liquid, and plasma generating method in liquid
JP2008071656A (en) * 2006-09-15 2008-03-27 Nagaoka Univ Of Technology Solution plasma reaction apparatus, and manufacturing method for nanomaterial using the solution plasma reaction apparatus
JP2008308730A (en) * 2007-06-14 2008-12-25 Toyota Industries Corp Film-forming method using plasma in liquid, and film-forming apparatus using plasma in liquid
JP2009072716A (en) * 2007-09-21 2009-04-09 Honda Electronic Co Ltd Apparatus and method for treatment with plasma in liquid
JP2009181960A (en) * 2009-05-11 2009-08-13 Ehime Univ Method for generating plasma in liquid
WO2009119059A1 (en) * 2008-03-26 2009-10-01 Nuエコ・エンジニアリング株式会社 Process for producing graphene
JP2010009993A (en) * 2008-06-27 2010-01-14 National Institute Of Advanced Industrial & Technology Solution plasma discharge device
JP2011503360A (en) * 2007-11-14 2011-01-27 ゴンサレス,フィデル フランコ Method and apparatus for using hydrogen
WO2012147334A1 (en) * 2011-04-28 2012-11-01 国立大学法人愛媛大学 Nanoparticle manufacturing device, nanoparticle manufacturing method, nanoparticles, zinc/zinc oxide nanoparticles and magnesium hydroxide nanoparticles
JP2013185171A (en) * 2012-03-06 2013-09-19 Ulvac Japan Ltd Method for producing metal fine particle
US20150057376A1 (en) * 2012-04-02 2015-02-26 TAANE Co. Method and Device for Generating Hydrogen Plasma

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306029A (en) * 2003-03-27 2004-11-04 Techno Network Shikoku Co Ltd Chemical reactor and decomposing method of toxic substance
JP2005235662A (en) * 2004-02-23 2005-09-02 Techno Network Shikoku Co Ltd Plasma device in liquid, and plasma generating method in liquid
JP2008071656A (en) * 2006-09-15 2008-03-27 Nagaoka Univ Of Technology Solution plasma reaction apparatus, and manufacturing method for nanomaterial using the solution plasma reaction apparatus
JP2008308730A (en) * 2007-06-14 2008-12-25 Toyota Industries Corp Film-forming method using plasma in liquid, and film-forming apparatus using plasma in liquid
JP2009072716A (en) * 2007-09-21 2009-04-09 Honda Electronic Co Ltd Apparatus and method for treatment with plasma in liquid
JP2011503360A (en) * 2007-11-14 2011-01-27 ゴンサレス,フィデル フランコ Method and apparatus for using hydrogen
US8349142B2 (en) 2008-03-26 2013-01-08 Masaru Hori Method for producing graphene
JP5463282B2 (en) * 2008-03-26 2014-04-09 勝 堀 Method for producing graphene
WO2009119059A1 (en) * 2008-03-26 2009-10-01 Nuエコ・エンジニアリング株式会社 Process for producing graphene
JP2010009993A (en) * 2008-06-27 2010-01-14 National Institute Of Advanced Industrial & Technology Solution plasma discharge device
JP4517098B2 (en) * 2009-05-11 2010-08-04 国立大学法人愛媛大学 Method for generating plasma in liquid
JP2009181960A (en) * 2009-05-11 2009-08-13 Ehime Univ Method for generating plasma in liquid
WO2012147334A1 (en) * 2011-04-28 2012-11-01 国立大学法人愛媛大学 Nanoparticle manufacturing device, nanoparticle manufacturing method, nanoparticles, zinc/zinc oxide nanoparticles and magnesium hydroxide nanoparticles
US9440213B2 (en) 2011-04-28 2016-09-13 National University Corporation Ehime University Nanometer-size-particle production apparatus, nanometer-size-particle production process, nanometer-size particles, zinc/zinc oxide nanometer-size particles, and magnesium hydroxide nanometer-size particles
US9943822B2 (en) 2011-04-28 2018-04-17 National University Corporation Ehime University Nanometer-size-particle production apparatus, nanometer-size-particle production process, nanometer-size particles, zinc/zinc oxide nanometer-size particles, and magnesium hydroxide nanometer-size particles
JP2013185171A (en) * 2012-03-06 2013-09-19 Ulvac Japan Ltd Method for producing metal fine particle
US20150057376A1 (en) * 2012-04-02 2015-02-26 TAANE Co. Method and Device for Generating Hydrogen Plasma
US20150111974A1 (en) * 2012-04-02 2015-04-23 TAANE Co. Method and Device for Generating Hydrogen Plasma Field

Also Published As

Publication number Publication date
JP4446030B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP4909741B2 (en) Electrode for submerged plasma, submerged plasma generator and submerged plasma generating method
JP5182989B2 (en) Liquid plasma film forming apparatus, liquid plasma electrode, and film forming method using liquid plasma
JP2005108600A (en) In-liquid plasma generation device and in-liquid plasma generation method
EP2434975B1 (en) Plasma device for wide area surface treatment of tissue
JP3624239B2 (en) Liquid plasma generator, thin film forming method, and silicon carbide film
JP4517098B2 (en) Method for generating plasma in liquid
JP4982658B2 (en) Submerged plasma processing apparatus and submerged plasma processing method
JP2008098128A (en) Atmospheric pressure plasma generating and irradiating device
JP2012149278A (en) Method for producing silicon-containing film
JP3624238B2 (en) Method and apparatus for generating plasma
JP2007059318A (en) Plasma generator
WO2003086615A1 (en) Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
TWI294257B (en) Low temperature plasma discharging device and the applying method thereof
WO2011099247A1 (en) Electrode for plasma in liquid, plasma in liquid generator device, and plasma generation method
JP2004306029A (en) Chemical reactor and decomposing method of toxic substance
JPH0740336A (en) Diamond machining method
Kusano Plasma surface modification at atmospheric pressure
JP3769625B1 (en) Liquid plasma generator and liquid plasma generation method
JP4930918B2 (en) Diamond manufacturing method
JP2006260955A (en) Supercritical fluid plasma generating device and supercritical fluid plasma generating method
Law et al. The domestic microwave oven as a rapid prototyping tool
JP2009146837A (en) Surface wave exciting plasma treatment device
WO2024024817A1 (en) Microwave plasma generation device, microwave plasma processing device, and microwave plasma processing method
JP2007227285A (en) Plasma treatment device and method
JP2004247485A (en) Plasma generating system, plasma processing system, plasma generating method, and plasma processing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4446030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term