JP2005108470A - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
JP2005108470A
JP2005108470A JP2003336654A JP2003336654A JP2005108470A JP 2005108470 A JP2005108470 A JP 2005108470A JP 2003336654 A JP2003336654 A JP 2003336654A JP 2003336654 A JP2003336654 A JP 2003336654A JP 2005108470 A JP2005108470 A JP 2005108470A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
aperture
hole
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003336654A
Other languages
Japanese (ja)
Other versions
JP4276918B2 (en
Inventor
Hidetoshi Morokuma
秀俊 諸熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003336654A priority Critical patent/JP4276918B2/en
Publication of JP2005108470A publication Critical patent/JP2005108470A/en
Application granted granted Critical
Publication of JP4276918B2 publication Critical patent/JP4276918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged particle device having a diaphragm easy to adjusted and managed. <P>SOLUTION: The charged particle beam device comprises a diaphragm control device 18 capable of controlling the position of a diaphragm hole 16 with high precision, a computer 30 managing the history of the usage of the diaphragm, and a storage medium 34. By this, even in the case that the position of the diaphragm is frequently changed, diaphragm position adjusting work is reduced and the history of the usage of a plurality of diaphragm hole can be efficiently managed. Further, by arranging the storage medium storing the position of the adjusted diaphragm, the diaphragm control device 18 reproduces the position of the diaphragm stored in the storage medium. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子線やイオン線等の荷電粒子線を用いる荷電粒子線装置に係り、特に、荷電粒子線の一部を透過させるための絞り穴を備えた荷電粒子線装置に関する。   The present invention relates to a charged particle beam apparatus using a charged particle beam such as an electron beam or an ion beam, and more particularly to a charged particle beam apparatus having a throttle hole for transmitting a part of the charged particle beam.

走査型電子顕微鏡に代表される荷電粒子線装置では、細く集束された荷電粒子線を試料上で走査して試料から所望の情報(例えば試料像)を得る。また、荷電粒子線は絞り板によって不要な領域が除去され、試料上に必要なプローブ電流で最小のプローブ径が得られるようにする。この絞り板には常に荷電粒子線が照射されており、ハイドロカーボンなどのコンタミネーションが徐々に付着して絞り穴がふさがるため、一定期間使用したらに絞り板を交換する必要がある。   In a charged particle beam apparatus typified by a scanning electron microscope, desired information (for example, a sample image) is obtained from a sample by scanning a finely focused charged particle beam on the sample. Further, an unnecessary region of the charged particle beam is removed by the diaphragm plate so that the minimum probe diameter can be obtained with a necessary probe current on the sample. The aperture plate is always irradiated with charged particle beams, and contamination such as hydrocarbons gradually adheres to block the aperture hole. Therefore, it is necessary to replace the aperture plate after a certain period of use.

絞り板の交換頻度を低減するためにこの絞り板に複数の絞り穴が設けられている場合がある。このようなタイプの絞り板は真空外からの操作によってその位置を動かしたり、同じ絞り板に設けられた別の絞り穴に移動したりできる。   In order to reduce the replacement frequency of the diaphragm plate, a plurality of diaphragm holes may be provided in the diaphragm plate. This type of diaphragm can be moved from outside the vacuum or moved to another diaphragm hole provided in the same diaphragm.

しかし、理想的な荷電粒子線を得るためには絞り穴は荷電粒子線の中心に正確に合わせる必要があり、その調整作業には熟練を要するため、未熟な作業者による調整不良によって装置の性能が劣化してしまう場合がある。また、絞りは図2に示したように絞り板8の絞り穴16の位置を真空外からの操作によって調整することができるのであるが、装置によっては人間の手の届かない位置に絞り調整機構が配置されていたり、絞り調整機構に触れることができる位置からは絞り穴の調整結果を確認するための表示部を見ることができなかったりする。   However, in order to obtain an ideal charged particle beam, the aperture hole must be accurately aligned with the center of the charged particle beam, and adjustment work requires skill. May deteriorate. In addition, as shown in FIG. 2, the diaphragm can adjust the position of the diaphragm hole 16 of the diaphragm plate 8 by operating from outside the vacuum. Or the display unit for confirming the adjustment result of the aperture hole cannot be seen from the position where the aperture adjustment mechanism can be touched.

これらの問題を解決する方法として絞り穴の位置を自動調整できる機能を備えた自動制御タイプの絞りが提案されている。   As a method for solving these problems, an automatic control type diaphragm having a function capable of automatically adjusting the position of the throttle hole has been proposed.

絞りの位置を自動調整する技術として、特許文献1には、高精度に位置検出可能な検出センサーを荷電粒子線の中心に配置し、荷電粒子線に対する絞り穴の位置を測定し、その結果を絞りの制御部にフィードバックして絞り位置を最適化する手法が開示されている。また、特許文献2には、絞り穴に一対の電極を取付け、その電極に入射する荷電粒子の偏りを求めることによって荷電粒子の中心に絞り穴を合わせる手法が開示されている。   As a technique for automatically adjusting the position of the diaphragm, Patent Document 1 discloses that a detection sensor capable of detecting a position with high accuracy is arranged at the center of the charged particle beam, the position of the aperture hole with respect to the charged particle beam is measured, and the result is obtained. A method of optimizing the aperture position by feeding back to the aperture control unit is disclosed. Japanese Patent Application Laid-Open No. 2004-228561 discloses a technique of attaching a pair of electrodes to the aperture hole and aligning the aperture hole with the center of the charged particle by obtaining the bias of the charged particle incident on the electrode.

特開平6−349435号公報JP-A-6-349435 特開平11−96952号公報JP-A-11-96952

特許文献1に記載されている、検出センサーを使って荷電粒子線に対する絞り穴の位置を測定する方法は、通常観察する試料の代わりに専用の検出センサーを高真空に保たれた荷電粒子線の軌道上に配置する必要があり、作業が煩雑である。また、絞り穴は数μmの精度で位置を調整する必要があるのであるが、一時的に取り付けたり取外したりするセンサーの場合、センサー自体の位置再現性が問題となり、絞り穴位置を正確に測定できないという問題もある。   The method of measuring the position of the aperture hole with respect to the charged particle beam using the detection sensor described in Patent Document 1 is that of a charged particle beam in which a dedicated detection sensor is maintained in a high vacuum instead of a sample to be normally observed. It is necessary to arrange on the track, and the work is complicated. In addition, it is necessary to adjust the position of the aperture hole with an accuracy of several μm, but in the case of a sensor that is temporarily attached or removed, the position reproducibility of the sensor itself becomes a problem, and the aperture hole position is accurately measured. There is also a problem that it cannot be done.

一方、特許文献2に記載されている、絞り穴に一対の電極を取付け、その電極に入射する荷電粒子の偏りを求めることによって荷電粒子の中心に絞り穴を合わせる手法は、絞り穴に取り付けるセンサーの位置をかなり厳密に管理しないと必要な精度を確保できない。   On the other hand, the method described in Patent Document 2 is that a pair of electrodes is attached to a diaphragm hole, and the method of aligning the diaphragm hole with the center of the charged particle by obtaining the bias of the charged particles incident on the electrode is a sensor attached to the diaphragm hole. The required accuracy cannot be ensured unless the position of the head is managed strictly.

製作時にこのような厳しい管理を必用とする絞りはコストが高くなるという問題がある。他にも、本方式のセンサー表面にハイドロカーボンなどの不導体膜がコンタミネーションした場合、検出感度が低下したり、それによってセンサー間に誤差が生まれたりするという問題もある。   A diaphragm that requires such strict management at the time of production has a problem of high cost. In addition, when a non-conductive film such as hydrocarbon is contaminated on the surface of the sensor of this method, there is a problem that the detection sensitivity is lowered and an error is generated between the sensors.

このような結果、熟練作業者が手動で調整した状態に匹敵するだけの絞り穴位置を簡便かつ安価に実現できる自動調整方式は提案されていない。   As a result, there has not been proposed an automatic adjustment method that can easily and inexpensively realize a throttle hole position comparable to a state in which a skilled worker manually adjusts.

また、絞り板に複数の絞り穴が設けられている場合は、複数の絞り穴を順に使用して絞り板自体の寿命を長くすることができるのだが、そのためには1〜数ヶ月に一度の頻度で新しい絞り穴に変更する必要がある。交換頻度はそれほど高くないが、たくさんの装置を管理している場合などは逆にうっかり交換するタイミングを忘れてしまったり、どの装置がどの絞り穴を使用済みかなどの使用履歴を忘れてしまったりする可能性がある。   In addition, when a plurality of aperture holes are provided in the aperture plate, the aperture plate itself can be made longer by using a plurality of aperture holes in order. It is necessary to change to a new aperture at a frequency. The replacement frequency is not so high, but if you manage a lot of devices, you may forget the time to replace them inadvertently, or forget the usage history such as which device has used which aperture. there's a possibility that.

また、装置がクリーンルームなどの特別な部屋に設置されている場合は、絞り穴の変更や絞り板の交換のためにクリーンルームに入室する必要があり、作業者の負担になるという問題がある。   Further, when the apparatus is installed in a special room such as a clean room, it is necessary to enter the clean room in order to change the aperture hole or replace the aperture plate, which causes a burden on the operator.

また、絞り穴径を変えることによって、プローブ電流を大幅に変化させることができ、そのために絞り板に異なる穴径の絞り穴が設けられる場合があるのであるが、絞り穴変更後の調整作業に技術がいるため一部の熟練者以外はその機能を使うことができない。また、熟練者であっても調整に時間がかかるため、頻繁にその機能を使うことはできない。   In addition, by changing the aperture diameter, the probe current can be significantly changed.Therefore, an aperture plate with a different aperture diameter may be provided on the aperture plate. Because of the technology, only some skilled people can use the function. Moreover, even an expert can take time to adjust, so the function cannot be used frequently.

本発明の目的は、絞り穴を任意の位置に容易に変更可能な荷電粒子線装置を提供することにある。   An object of the present invention is to provide a charged particle beam apparatus capable of easily changing the aperture hole to an arbitrary position.

上記目的を達成するため、絞り穴の位置を高精度に移動できる制御手段と、絞り板もしくは絞り穴の使用履歴を管理し、絞り穴もしくは絞り板の適当な交換時期を使用者に知らせる手段と、荷電粒子線を使用する必要が無い場合に可動絞り穴を荷電粒子線が当たらない位置までずらして絞り穴の寿命を延ばす手段と、遠隔操作によって可動絞りの状態確認と調整が実施可能な手段を備えた荷電粒子線装置を提供する。   In order to achieve the above object, a control means capable of moving the position of the aperture hole with high accuracy, a means for managing the use history of the aperture plate or aperture hole, and notifying the user of an appropriate replacement period of the aperture hole or aperture plate; When there is no need to use a charged particle beam, a means for extending the life of the throttle hole by shifting the movable throttle hole to a position where the charged particle beam does not hit, and a means for checking and adjusting the state of the movable diaphragm by remote control A charged particle beam device comprising:

本発明によれば、絞りの位置を意図的に頻繁に変更した場合に、絞り位置の調整作業を軽減し、複数の絞り穴の使用履歴を効果的に管理できる。   ADVANTAGE OF THE INVENTION According to this invention, when the position of an aperture is intentionally changed frequently, the adjustment work of an aperture position can be reduced and the use log | history of a some aperture hole can be managed effectively.

以下、図面を用いて本発明の実施の形態を説明する。以下、荷電粒子線装置の一例として、走査電子顕微鏡を用いた説明を行うが、無論これに限られることはなく、例えば集束イオンビーム装置,透過型電子顕微鏡、或いは走査透過電子顕微鏡のような絞りを用いる他の荷電粒子線装置にも適用が可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Hereinafter, a description will be given using a scanning electron microscope as an example of a charged particle beam apparatus. However, the present invention is not limited to this, and a diaphragm such as a focused ion beam apparatus, a transmission electron microscope, or a scanning transmission electron microscope is used. The present invention can also be applied to other charged particle beam apparatuses using the above.

図1は、本発明の一例である走査電子顕微鏡の概略構成図である。陰極1と第一陽極2の間には、コンピュータ30(制御装置と称する場合もある)で制御される高圧制御電源20により電圧が印加され、所定のエミッション電流で一次電子線4が陰極1から引き出される。陰極1と第二陽極3の間には、コンピュータ30で制御される高圧制御電源20により加速電圧が印加され、陰極1から放出された一次電子線4が加速されて後段のレンズ系に進行する。一次電子線4は、レンズ制御電源21で制御された集束レンズ5で集束され、絞り板8の絞り穴16(開口と称することもある)で一次電子線の不要な領域が除去された後に、レンズ制御電源22で制御された集束レンズ6、および対物レンズ制御電源23で制御された対物レンズ7により、試料10に微小スポットとして集束される。対物レンズ7は、インレンズ方式,アウトレンズ方式、およびシュノーケル方式(セミインレンズ方式)など、種々の形態をとることができる。また、試料に負の電圧を印加して一次電子線を減速させるリターディング方式も可能である。さらに、各々のレンズは、複数の電極で構成される静電型レンズで構成してもよい。   FIG. 1 is a schematic configuration diagram of a scanning electron microscope which is an example of the present invention. A voltage is applied between the cathode 1 and the first anode 2 by a high-voltage control power source 20 controlled by a computer 30 (sometimes referred to as a control device), and the primary electron beam 4 is discharged from the cathode 1 with a predetermined emission current. Pulled out. An acceleration voltage is applied between the cathode 1 and the second anode 3 by a high-voltage control power source 20 controlled by a computer 30, and the primary electron beam 4 emitted from the cathode 1 is accelerated and proceeds to the subsequent lens system. . The primary electron beam 4 is focused by the focusing lens 5 controlled by the lens control power source 21, and after the unnecessary region of the primary electron beam is removed by the aperture hole 16 (also referred to as an opening) of the aperture plate 8, The sample 10 is focused as a minute spot by the focusing lens 6 controlled by the lens control power source 22 and the objective lens 7 controlled by the objective lens control power source 23. The objective lens 7 can take various forms such as an in-lens system, an out-lens system, and a snorkel system (semi-in-lens system). A retarding method is also possible in which a negative voltage is applied to the sample to decelerate the primary electron beam. Furthermore, each lens may be composed of an electrostatic lens composed of a plurality of electrodes.

一次電子線4は、走査コイル制御電源によって制御される走査コイル9で試料10上を二次元的に走査される。一次電子線の照射で試料10から発生した二次電子等の二次信号12は、対物レンズ7の上部に進行した後、二次信号分離用の直交電磁界発生装置11により、一次電子と分離されて二次信号検出器13に検出される。二次信号検出器13で検出された信号は、信号増幅器14で増幅された後、画像メモリ25に転送されて像表示装置26に試料像として表示される。   The primary electron beam 4 is scanned two-dimensionally on the sample 10 by a scanning coil 9 controlled by a scanning coil control power source. The secondary signal 12 such as secondary electrons generated from the sample 10 by the irradiation of the primary electron beam travels to the upper part of the objective lens 7 and is then separated from the primary electrons by the orthogonal electromagnetic field generator 11 for secondary signal separation. And detected by the secondary signal detector 13. The signal detected by the secondary signal detector 13 is amplified by the signal amplifier 14 and then transferred to the image memory 25 and displayed on the image display device 26 as a sample image.

試料ステージ15は、試料を少なくとも一次電子線と垂直な面内の2方向(X方向,Y方向)に試料10を移動することができる。入力装置32からは、画像の取り込み条件
(走査速度,加速電圧など)やビーム傾斜条件(傾斜方向や傾斜角度)の指定、および画像の出力や記憶装置31への保存などを指定することができる。
The sample stage 15 can move the sample 10 in at least two directions (X direction and Y direction) in a plane perpendicular to the primary electron beam. From the input device 32, it is possible to specify image capture conditions (scanning speed, acceleration voltage, etc.) and beam tilt conditions (tilt direction and tilt angle), and output of images and storage in the storage device 31. .

絞り板8は絞り駆動および位置検出部17を備えており、コンピュータ30の制御命令に従って、絞り制御装置18によってその位置を可変することができる。   The diaphragm plate 8 includes a diaphragm drive and position detection unit 17, and the position of the diaphragm plate 8 can be varied by the diaphragm control device 18 in accordance with a control command from the computer 30.

図1の構成を有する走査電子顕微鏡により、絞り穴位置を高精度に移動・制御できる機構の実施例について、その主要部分を抜粋した図3を用いて以下に詳細に説明する。   An embodiment of a mechanism that can move and control the aperture position with high precision by the scanning electron microscope having the configuration of FIG. 1 will be described in detail below with reference to FIG.

絞り板8は絞り板支持部42に取り付けられた状態で、真空外に配置されたX軸駆動機構45,Y軸駆動機構46によって電子光学系の鏡筒40の内部をX,Y方向に移動する。X,Y方向の移動量はX軸位置検出機構47,Y軸位置検出機構48によって検出される。絞り制御装置18はコンピュータ30から命令された位置に絞り板8が移動したかどうかをX軸位置検出機構47,Y軸位置検出機構48によって検出された絞り板8の位置情報を使って確認し、X軸駆動機構45,Y軸駆動機構46をフィードバック制御することによって絞り板8を目的の位置に正確に移動させる。例えばX軸駆動機構45,Y軸駆動機構46に研削ボールネジを使用した高精度モータを使用し、更に、X軸位置検出機構47,Y軸位置検出機構48に高分解能のリニアエンコーダを使用した場合、絞り板8の移動誤差を±2μm以下にすることができる。この移動誤差は電子光学系の性能確保のために必用な絞り穴位置再現性の要求精度を満たすものである。   The aperture plate 8 is attached to the aperture plate support 42 and is moved in the X and Y directions inside the electron optical column 40 by the X axis drive mechanism 45 and the Y axis drive mechanism 46 arranged outside the vacuum. To do. The amount of movement in the X and Y directions is detected by an X axis position detection mechanism 47 and a Y axis position detection mechanism 48. The diaphragm control device 18 confirms whether or not the diaphragm plate 8 has moved to the position commanded by the computer 30 using the position information of the diaphragm plate 8 detected by the X-axis position detection mechanism 47 and the Y-axis position detection mechanism 48. The diaphragm plate 8 is accurately moved to a target position by feedback control of the X-axis drive mechanism 45 and the Y-axis drive mechanism 46. For example, when a high-precision motor using a grinding ball screw is used for the X-axis drive mechanism 45 and the Y-axis drive mechanism 46, and a high-resolution linear encoder is used for the X-axis position detection mechanism 47 and the Y-axis position detection mechanism 48 The movement error of the diaphragm plate 8 can be made ± 2 μm or less. This movement error satisfies the required accuracy of aperture hole position reproducibility necessary for ensuring the performance of the electron optical system.

絞り板8は絞り穴16が一次電子線4の中心に合うように調整する必要がある。この状態を検出する方法としては特開平10−302689号公報で開示された方法などがある。本発明においては絞り穴16の最適な位置を検出する方法については特に規定しないが、何らかの手法で絞り穴16の位置を最適に調整された状態の絞り板8のX,Y位置をコンピュータ30の記憶媒体34に登録する。この登録された絞り板8の位置は、前述したように絞り制御装置18によって±2μmの精度で再現されるため、移動後に絞り板8の位置を再調整する必要は無い。   The diaphragm plate 8 needs to be adjusted so that the diaphragm hole 16 is aligned with the center of the primary electron beam 4. As a method for detecting this state, there is a method disclosed in JP-A-10-302688. In the present invention, a method for detecting the optimum position of the aperture hole 16 is not particularly defined. However, the X and Y positions of the aperture plate 8 in a state where the position of the aperture hole 16 is optimally adjusted by some method are determined by the computer 30. Register in the storage medium 34. Since the registered position of the diaphragm plate 8 is reproduced with an accuracy of ± 2 μm by the diaphragm control device 18 as described above, it is not necessary to readjust the position of the diaphragm plate 8 after the movement.

このように高精度に位置を調整(再現)することができる絞り移動機構を備えた走査電子顕微鏡では、何らかの理由で絞り板8の位置を動かしてしまった場合でも、十分な精度で絞り穴16の位置を再現できるため、電子光学系の性能を劣化することが無い。なお、予期しない原因により画像劣化が検出された場合、絞りと電子ビームの相対的な位置関係が何等かの原因によりずれてしまったことが考えられることから、絞りに対するビームの位置を走査することによって、像質が向上するビームの照射位置を検出する自己診断機能を設けるようにしても良い。   In the scanning electron microscope provided with the diaphragm moving mechanism capable of adjusting (reproducing) the position with high accuracy as described above, even if the position of the diaphragm plate 8 is moved for some reason, the diaphragm hole 16 is sufficiently accurate. Therefore, the performance of the electron optical system is not deteriorated. If image deterioration is detected due to an unexpected cause, the relative positional relationship between the aperture and the electron beam may have shifted due to some cause, so scan the beam position relative to the aperture. Thus, a self-diagnosis function for detecting the irradiation position of the beam that improves the image quality may be provided.

図4,図5は複数の絞り穴16を備える絞り板8の実施例を示したものである。   4 and 5 show an embodiment of the diaphragm plate 8 having a plurality of diaphragm holes 16.

図4(a)は同じ穴径の絞り穴16を複数備えた絞り板8の実施例であるが、絞り穴
16は長時間(数ヶ月間)使用するとコンタミネーションなどが発生してその絞り穴がふさがり、使用できなくなるのであるが、複数の絞り穴が設けられているため絞り板自体の交換頻度は低減することができる。図4(b)は異なる穴径の絞り穴16を複数備えた絞り板の実施例であるが、穴径を変えることによってプローブ電流を変化させることができる。もちろん、図1に示した陰極1,第一陽極2,第二陽極3などの条件を変えてもプローブ電流を変化させることはできるが、これらの条件を頻繁に変化させると陰極1からの一次電子線4の発生状態が不安定になり、装置の性能が劣化する場合がある。これらの条件を変化させることでは大幅にプローブ電流を変えることはできない。これに対して、絞り穴径を変更する手法であればこのような問題が生じない。図4(c)は異なる穴径の絞り穴16をそれぞれ複数設けた絞り板8の実施例である。図4(a),図4(b),図4(c)では4つの絞り穴16を設けた実施例を示しているが、もちろん絞り穴の数も種類もこの限りではない。なお、図4の実施例では全ての絞り穴が直線的に配置されていたが、隣り合う絞り穴16同士が十分な距離(例えば、絞り板8に照射される一次電子線4のビームスポット径よりも大きい距離)離れてさえいれば、図5(a)のように2次元的に配置されていても、図5(b)のように同心円状に配置されていても良い。
FIG. 4A shows an embodiment of the diaphragm plate 8 having a plurality of throttle holes 16 having the same hole diameter. However, when the throttle hole 16 is used for a long time (several months), contamination and the like occur. However, since a plurality of aperture holes are provided, the replacement frequency of the aperture plate itself can be reduced. FIG. 4B shows an embodiment of a diaphragm plate provided with a plurality of throttle holes 16 having different hole diameters, but the probe current can be changed by changing the hole diameter. Of course, the probe current can be changed by changing the conditions such as the cathode 1, the first anode 2 and the second anode 3 shown in FIG. 1, but if these conditions are changed frequently, the primary current from the cathode 1 can be changed. The generation state of the electron beam 4 may become unstable, and the performance of the apparatus may deteriorate. The probe current cannot be changed greatly by changing these conditions. On the other hand, such a problem does not occur as long as the diameter of the throttle hole is changed. FIG. 4C shows an embodiment of the diaphragm plate 8 provided with a plurality of throttle holes 16 having different hole diameters. 4 (a), 4 (b), and 4 (c) show an embodiment in which four throttle holes 16 are provided. Of course, the number and types of the throttle holes are not limited to this. In the embodiment of FIG. 4, all the aperture holes are linearly arranged. However, the adjacent aperture holes 16 have a sufficient distance (for example, the beam spot diameter of the primary electron beam 4 irradiated on the aperture plate 8). As long as they are separated by a larger distance), they may be arranged two-dimensionally as shown in FIG. 5 (a) or concentrically as shown in FIG. 5 (b).

図4,図5の実施例で示したように、絞り穴16を複数もつ絞り板8を効果的に使うためには、実施例1で示したような絞り穴16の位置を登録でき、かつ、その位置に絞り穴を正確に移動させることができる手段が必要である。具体的な使用例を図4(a)を使って説明する。まず、熟練者によって絞り穴16の位置を最適な位置に調整し、その位置を登録する。この作業を全ての絞り穴16に対して実施する。一般の使用者は登録された絞り穴16の位置情報を使用して任意の絞り穴16に変更する。この際の絞り穴16の位置再現精度は電子光学系の性能を劣化させない精度(例えば±2μm以内)を満足しているため、面倒な調整をしなくてもその絞り穴16を使用することができる。   4 and 5, in order to effectively use the diaphragm plate 8 having a plurality of diaphragm holes 16, the position of the diaphragm hole 16 as shown in the first embodiment can be registered, and Therefore, there is a need for means capable of accurately moving the aperture hole to the position. A specific use example will be described with reference to FIG. First, a skilled person adjusts the position of the aperture 16 to an optimum position and registers the position. This operation is performed for all the throttle holes 16. A general user uses the registered position information of the aperture hole 16 to change to an arbitrary aperture hole 16. In this case, since the position reproduction accuracy of the aperture hole 16 satisfies an accuracy (for example, within ± 2 μm) that does not deteriorate the performance of the electron optical system, the aperture hole 16 can be used without troublesome adjustment. it can.

前述したように、絞り穴16に一次電子線4を長期間(例えば数ヶ月)照射するとハイドロカーボンなどのコンタミネーションが発生し穴がつぶれて使用できなくなってしまう。また、一次電子線4の安定性を確保するため、一次電子線4は頻繁にON/OFFすることができない。そのため、一次電子線4を試料10に照射する必用が無い場合も絞り板8には一次電子線4が照射されるため、絞り穴16の寿命を無駄に費やしている。   As described above, if the aperture 16 is irradiated with the primary electron beam 4 for a long period (for example, several months), contamination such as hydrocarbon occurs and the hole is crushed and cannot be used. Moreover, in order to ensure the stability of the primary electron beam 4, the primary electron beam 4 cannot be frequently turned ON / OFF. Therefore, even when it is not necessary to irradiate the sample 10 with the primary electron beam 4, the aperture plate 16 is irradiated with the primary electron beam 4, so that the life of the aperture hole 16 is wasted.

図6はこの問題を解決する実施例を示したものである。図6(a)に示したように第一集束レンズ5で収束された一次電子線4aは一定のスポットサイズで絞り板8に照射される。通常使用状態では絞り穴16は一次電子線4aのスポットの中心に配置され、一次電子線4aの一部を一次電子4bとして透過させる。この状態を長時間(例えば数ヶ月)続けると絞り穴16はコンタミネーションによってふさがれてしまう。これに対して図6
(b)に示したように、絞り板8の絞り穴16が開いていない場所に十分な面積(例えば、絞り板8に照射される一次電子線4aのビームスポット径よりも大きい面積)の場所を設け、一次電子線4aを試料10に照射する必用が無いタイミングにはこの位置に絞り板8を移動させるようにする。これによって、一次電子線4aが無用に絞り穴16に照射されるのを低減し、絞り板8の交換頻度を低減することができる。
FIG. 6 shows an embodiment for solving this problem. As shown in FIG. 6A, the primary electron beam 4a converged by the first focusing lens 5 is irradiated to the diaphragm plate 8 with a constant spot size. In the normal use state, the aperture hole 16 is disposed at the center of the spot of the primary electron beam 4a, and transmits a part of the primary electron beam 4a as the primary electron 4b. If this state is continued for a long time (for example, several months), the throttle hole 16 is blocked by contamination. In contrast, FIG.
As shown in (b), a location having a sufficient area (for example, an area larger than the beam spot diameter of the primary electron beam 4a irradiated on the aperture plate 8) where the aperture hole 16 of the aperture plate 8 is not opened. And the diaphragm plate 8 is moved to this position at a timing when it is not necessary to irradiate the sample 10 with the primary electron beam 4a. As a result, it is possible to reduce unnecessary irradiation of the aperture hole 16 with the primary electron beam 4a and to reduce the replacement frequency of the aperture plate 8.

なお、この実施例では絞り板8を動かすことによって一次電子線4が絞り穴16に照射されないようにしたが、絞り板8の上部に設けられた偏向コイルによって一次電子線4aの軌道を曲げることによって絞り板8の絞り穴16が開いていない部分に一次電子線4が照射されるようにしても良い。   In this embodiment, the diaphragm plate 8 is moved so that the primary electron beam 4 is not irradiated onto the diaphragm hole 16. However, the trajectory of the primary electron beam 4 a is bent by a deflection coil provided on the top of the diaphragm plate 8. Thus, the primary electron beam 4 may be irradiated to a portion where the aperture hole 16 of the aperture plate 8 is not opened.

また、絞り板以外のもので一次電子線4aをさえぎったり、一次電子線4aが絞り板8から完全に外れた位置まで偏向する手法が提案されているが、これらは結局別の場所にコンタミネーションを発生させてしまうという別の問題が生じるので好ましくない。   In addition, a method has been proposed in which the primary electron beam 4a is interrupted by something other than the diaphragm plate or the primary electron beam 4a is deflected to a position completely deviated from the diaphragm plate 8, but these are eventually contaminated in another place. This is not preferable because it causes another problem of generating.

実施例2,3で説明したように絞り穴16を意図的に変えたり、装置可動状態であっても絞り穴16に一次電子線4が当たらないように制御したりすると、どの絞り穴16をどれくらいの期間使用したのか把握することが難しくなる。このような使用状況においては各絞り穴の使用履歴を自動的に記録する手段が必要となる。この手段の実施例を、図7を使って説明する。   As described in the second and third embodiments, when the aperture 16 is intentionally changed, or when it is controlled so that the primary electron beam 4 does not hit the aperture 16 even when the apparatus is movable, which aperture 16 is selected. It becomes difficult to know how long it has been used. In such a usage situation, means for automatically recording the usage history of each aperture is required. An embodiment of this means will be described with reference to FIG.

前述したように一次電子線4はコンピュータ30で制御される高圧制御電源20によってその動作状況が制御される。また、絞り板8はコンピュータ30の命令に従って絞り制御装置18によってその位置を制御されている。従って、いずれの動作もコンピュータがその状態を、経過時間を含めて記録できる。ここで、図7に示したように、一次電子線4の照射時間と、各絞り穴16の使用時間をそれぞれ記録する。   As described above, the operation state of the primary electron beam 4 is controlled by the high voltage control power source 20 controlled by the computer 30. The position of the diaphragm plate 8 is controlled by the diaphragm controller 18 in accordance with a command from the computer 30. Accordingly, in any operation, the computer can record the state including the elapsed time. Here, as shown in FIG. 7, the irradiation time of the primary electron beam 4 and the usage time of each aperture 16 are recorded.

一次電子線4の照射時間と絞り穴16の使用時間が重なった部分を演算し、その時間をその絞り穴16に対する電子線照射時間であるとして記録する。このようにすればどの絞り穴16がどれだけ一次電子線4の照射を受けたか正確に把握することができる。また、どの絞り穴16が使用済みで、どの絞り穴16が未使用であるかも簡単に把握できる。更に、各絞り穴16の積算使用時間を目視で判断できるような表示を行えば、オペレータは絞り穴或いは絞り板の交換時期を容易に判断することができる。   A portion where the irradiation time of the primary electron beam 4 and the use time of the aperture hole 16 overlap is calculated, and the time is recorded as being the electron beam irradiation time for the aperture hole 16. In this way, it is possible to accurately grasp which aperture 16 has been irradiated with the primary electron beam 4 and how much. Further, it is possible to easily grasp which throttle hole 16 has been used and which throttle hole 16 has not been used. Furthermore, if a display is provided so that the accumulated usage time of each aperture 16 can be visually determined, the operator can easily determine the replacement time of the aperture or aperture plate.

なお、図7ではこの実施例では3つの絞り穴16の使用状態を管理しているが、この限りではない。また、絞り板8を交換した場合は記録を新たに開始する機能を備えても良い。   In FIG. 7, in this embodiment, the use state of the three throttle holes 16 is managed, but this is not restrictive. Further, when the diaphragm plate 8 is replaced, a function of newly starting recording may be provided.

一次電子線4を試料10に対して斜めに入射させることによって試料ステージ15を傾けなくても試料10を斜めから観察した画像が得られる。この場合、一次電子線4の軌道が対物レンズ7の中心軸の外を通るため、軸外収差とよばれるひずみが生じる。この軸外収差を補正する技術の一つとして、絞り穴16の位置を意図的にずらす技術がある。図8にこの技術の概略を示す。一次電子線4bは偏向コイル19によって対物レンズ7に入射する軌道を変えられ、試料10に斜めに入射する。この際に発生する対物レンズ7の軸外収差を打ち消す軸外収差が第二集束レンズ6で発生するように、絞り穴16の位置を移動させて第二集束レンズ6に入射する一次電子線4bの軌道をかえる。これによって収差の少ない傾斜像を得ることができる。このときの絞り穴の位置はその他の場合と同様に±2μm程度の精度が必要となる。   By causing the primary electron beam 4 to enter the sample 10 obliquely, an image obtained by observing the sample 10 from an oblique direction can be obtained without tilting the sample stage 15. In this case, since the trajectory of the primary electron beam 4 passes outside the central axis of the objective lens 7, distortion called off-axis aberration occurs. One technique for correcting this off-axis aberration is a technique for intentionally shifting the position of the aperture 16. FIG. 8 shows an outline of this technique. The primary electron beam 4 b has its trajectory incident on the objective lens 7 changed by the deflection coil 19, and is incident obliquely on the sample 10. The primary electron beam 4b incident on the second focusing lens 6 by moving the position of the aperture 16 so that the off-axis aberration that cancels off the off-axis aberration of the objective lens 7 that occurs at this time is generated in the second focusing lens 6. Change the orbit. As a result, an inclined image with less aberration can be obtained. The position of the aperture hole at this time requires an accuracy of about ± 2 μm, as in the other cases.

一次電子線4bを斜めに入射させて試料10の傾斜像を観察する場合は使い勝手の面から、瞬時に一次電子線を傾斜させることと、瞬時に元の一次電子線を垂直に戻すことが要求される。このような機能を実現するためには、実施例1で示したような時間のかかる調整作業を必要としない高精度に絞り穴16の位置を移動できる手段を備えた走査電子顕微鏡が必要となる。   When observing the tilted image of the sample 10 by making the primary electron beam 4b obliquely incident, it is necessary to incline the primary electron beam instantaneously and return the original primary electron beam to the vertical direction instantaneously from the viewpoint of convenience. Is done. In order to realize such a function, a scanning electron microscope including means capable of moving the position of the aperture hole 16 with high accuracy without requiring time-consuming adjustment work as shown in the first embodiment is required. .

また、図8の状態は絞り穴16に対して第一集束レンズ5で収束された一次電子線4aが偏心して(開口中心が荷電粒子線の光軸から外れて)照射されている。なお、本実施例で言うところの光軸とは、陰極1から放出される一次電子線が何の偏向も受けない状態で通過する軌道、或いは陰極1を始点とする試料10に対する垂線を指す。   In the state of FIG. 8, the primary electron beam 4a converged by the first focusing lens 5 with respect to the aperture hole 16 is decentered (the center of the opening deviates from the optical axis of the charged particle beam) and is irradiated. The optical axis in the present embodiment refers to a trajectory through which a primary electron beam emitted from the cathode 1 passes without undergoing any deflection, or a perpendicular to the sample 10 starting from the cathode 1.

このような状態を長く続けるとハイドロカーボンなどの不導体膜のコンタミネーションが絞り穴16に対して非対称に付着してしまう。一次電子線4が照射されると絞り板8上の不導体膜は帯電する。絞り穴16に対して不導体膜が大量に非対称に付着していた場合は、不導体膜の帯電が発生する非対称な静電レンズ効果によって、絞り穴16を透過した一次電子線bに補正できないほどの大きな収差が発生する。このような状態を避けるためには図8の状況が必要以上に続かないようにする必要がある。例えば5分間以上図8の状態が続いた場合は自動的に絞り穴16の位置を一次電子線4aの中心に戻すようにしたり、その絞り穴16に対する一次電子線4のトータルの照射時間に対する図8の状態の比率が一定値以上(例えば全体の5%)、所定時間に達した場合は自動的に絞り穴16の位置を一次電子線4aの中心に戻すようにしたりすればよい。他の開口に自動的に切り替えるような制御を行っても良い。   If such a state is continued for a long time, contamination of a non-conductive film such as hydrocarbon adheres to the throttle hole 16 asymmetrically. When the primary electron beam 4 is irradiated, the nonconductive film on the diaphragm plate 8 is charged. If a large amount of a non-conductive film is asymmetrically attached to the aperture hole 16, the primary electron beam b that has passed through the aperture hole 16 cannot be corrected by the asymmetric electrostatic lens effect in which the non-conductive film is charged. A large aberration occurs. In order to avoid such a state, it is necessary to prevent the situation of FIG. 8 from continuing more than necessary. For example, when the state of FIG. 8 continues for 5 minutes or more, the position of the aperture 16 is automatically returned to the center of the primary electron beam 4a, or the total irradiation time of the primary electron beam 4 to the aperture 16 is shown. When the ratio of the state 8 is equal to or greater than a certain value (for example, 5% of the whole) and reaches a predetermined time, the position of the aperture 16 may be automatically returned to the center of the primary electron beam 4a. You may perform control which switches to another opening automatically.

また、像表示装置26に、オペレータに対し他の絞り穴、或いは絞り板に交換することを促すような表示を行うようにしても良い。他にも単に警告を発したり、視覚、或いは聴覚で判断できる信号を発するようにしても良い。   In addition, the image display device 26 may be displayed so as to prompt the operator to replace with another aperture hole or aperture plate. In addition, a warning may be issued or a signal that can be visually or auditorily determined may be generated.

以上のような構成によれば、絞り穴に形成される不均一なチャージアップを抑制しつつ、安定した傾斜ビームによる観察が可能となる。   According to the above configuration, it is possible to perform observation with a stable inclined beam while suppressing uneven charge-up formed in the aperture hole.

図9を使って実施例1に遠隔操作の機能を追加した実施例を説明する。装置の制御の中心であるコンピュータ30を、ネットワーク接続手段35を使って遠隔操作用コンピュータ36に接続する。遠隔操作用コンピュータ36はコンピュータ30と同様の像表示装置
26,記憶装置31,入力装置32,操作画面表示部33,記憶媒体34が装備されている。このような形態をとれば装置の近くに行かなくても絞り穴16の位置調整および位置登録を実施したり、各絞り穴16の使用履歴を確認したりすることができる。また、絞り穴16使用状況から、絞り板8の交換時期を予測できるので、装置の保守計画を作成する際の手助けになる。
An embodiment in which a remote control function is added to the first embodiment will be described with reference to FIG. A computer 30 which is the center of control of the apparatus is connected to a remote operation computer 36 using a network connection means 35. The remote operation computer 36 includes an image display device 26, a storage device 31, an input device 32, an operation screen display unit 33, and a storage medium 34 similar to the computer 30. By adopting such a configuration, it is possible to adjust the position and register the position of the throttle hole 16 and check the usage history of each throttle hole 16 without going close to the apparatus. Further, since the replacement time of the diaphragm plate 8 can be predicted from the use state of the diaphragm hole 16, it is helpful when preparing a maintenance plan for the apparatus.

遠隔操作用コンピュータ36はネットワーク接続できるところであればどこでも配置できるため、例えば装置が設置されているクリーンルームの外や、装置が設置されている建物と別の場所から絞りの管理を実施することができる。これによって熟練者が複数の装置の絞りを管理する際の負担を軽減することができる。   Since the remote operation computer 36 can be placed anywhere as long as it can be connected to the network, for example, it is possible to manage the diaphragm from outside the clean room where the device is installed or from a place different from the building where the device is installed. . As a result, it is possible to reduce the burden on the skilled person when managing the apertures of a plurality of devices.

本発明の一例である走査電子顕微鏡の概略構成図。1 is a schematic configuration diagram of a scanning electron microscope that is an example of the present invention. 手動で操作される絞り機構の概略構成図。The schematic block diagram of the aperture mechanism operated manually. 本発明の実施例である絞り自動制御機構の概略構成図。1 is a schematic configuration diagram of an automatic diaphragm control mechanism that is an embodiment of the present invention. 複数の絞り穴を持つ絞り板の概略図。Schematic of a diaphragm plate having a plurality of diaphragm holes. 複数の絞り穴を持つ絞り板の概略図。Schematic of a diaphragm plate having a plurality of diaphragm holes. 本発明の実施例での一次電子線を遮蔽する部分を備えた絞り板の概略構成図。The schematic block diagram of the aperture plate provided with the part which shields the primary electron beam in the Example of this invention. 本発明の実施例での絞りの使用履歴を監視するための表示機能。The display function for monitoring the use history of the diaphragm in the embodiment of the present invention. 一次電子を試料に傾斜させる走査電子顕微鏡の概略構成図。The schematic block diagram of the scanning electron microscope which inclines a primary electron to a sample. 本発明の一例である遠隔操作を組合わせた走査電子顕微鏡の概略構成図。The schematic block diagram of the scanning electron microscope which combined the remote control which is an example of this invention.

符号の説明Explanation of symbols

1…陰極、2…第一陽極、3…第二陽極、4…一次電子線、5…第一集束レンズ、6…第二集束レンズ、7…対物レンズ、8…絞り板、9…走査コイル、10…試料、11…二次信号分離用直交電磁界(ExB)発生装置、12…二次信号、13…二次信号検出器、14…信号増幅器、15…試料ステージ、16…絞り穴、17…絞り駆動および位置検出部、18…絞り制御装置、19…偏向コイル、20…高圧制御電源、21…第一集束レンズ制御電源、22…第二集束レンズ制御電源、23…対物レンズ制御電源、24…走査コイル制御電源、25…画像メモリ、26…像表示装置、30…コンピュータ、31…記憶装置、32…入力装置、33…操作画面表示部、34…記憶媒体、35…ネットワーク接続手段、36…遠隔操作用コンピュータ、40…鏡筒、41…絞り機構部、42…絞り板支持部、43…X軸調整機構、44…Y軸調整機構、45…X軸駆動機構、46…Y軸駆動機構、47…X軸位置検出機構、48…Y軸位置検出機構。

DESCRIPTION OF SYMBOLS 1 ... Cathode, 2 ... 1st anode, 3 ... 2nd anode, 4 ... Primary electron beam, 5 ... 1st focusing lens, 6 ... 2nd focusing lens, 7 ... Objective lens, 8 ... Diaphragm plate, 9 ... Scanning coil DESCRIPTION OF SYMBOLS 10 ... Sample, 11 ... Orthogonal electromagnetic field (ExB) generator for secondary signal separation, 12 ... Secondary signal, 13 ... Secondary signal detector, 14 ... Signal amplifier, 15 ... Sample stage, 16 ... Diaphragm hole, DESCRIPTION OF SYMBOLS 17 ... Diaphragm drive and position detection part, 18 ... Diaphragm control apparatus, 19 ... Deflection coil, 20 ... High voltage control power supply, 21 ... First focusing lens control power supply, 22 ... Second focusing lens control power supply, 23 ... Objective lens control power supply 24 ... Scanning coil control power supply 25 ... Image memory 26 ... Image display device 30 ... Computer 31 ... Storage device 32 ... Input device 33 ... Operation screen display unit 34 ... Storage medium 35 ... Network connection means 36 ... Remote control console 40, lens barrel, 41 ... diaphragm mechanism, 42 ... diaphragm plate support, 43 ... X-axis adjustment mechanism, 44 ... Y-axis adjustment mechanism, 45 ... X-axis drive mechanism, 46 ... Y-axis drive mechanism, 47 ... X-axis position detection mechanism, 48... Y-axis position detection mechanism.

Claims (15)

荷電粒子源と、当該荷電粒子源から放出される荷電粒子線を集束して試料上で走査する荷電粒子光学系と、前記荷電粒子線の一部を選択的に通過させる絞りと、当該絞りの位置を制御する絞り制御装置を備えた荷電粒子線装置において、
前記絞り制御装置は、調整された絞りの位置を記憶する記憶媒体を備え、当該記憶媒体に記憶された絞り位置を再現することを特徴とする荷電粒子線装置。
A charged particle source; a charged particle optical system that focuses and scans a charged particle beam emitted from the charged particle source; and a diaphragm that selectively passes a part of the charged particle beam; and In a charged particle beam apparatus equipped with a diaphragm control device for controlling the position,
The charged particle beam apparatus, wherein the aperture control device includes a storage medium that stores the adjusted aperture position, and reproduces the aperture position stored in the storage medium.
荷電粒子源と、前記荷電粒子源から放出される荷電粒子線を集束して試料上で走査する荷電粒子光学系と、前記荷電粒子線の走査によって試料から発生する二次信号粒子を検出する検出手段とを備え、前記二次信号粒子検出手段の信号を用いて試料像を形成する荷電粒子線装置において、
前記荷電粒子線の一部だけを透過させるための絞り穴の位置を自動的に移動させる手段と、前記絞り穴の移動位置を検出する手段を備えることを特徴とする荷電粒子線装置。
A charged particle source, a charged particle optical system that focuses and scans a charged particle beam emitted from the charged particle source, and detection that detects secondary signal particles generated from the sample by scanning the charged particle beam A charged particle beam apparatus for forming a sample image using a signal of the secondary signal particle detecting means,
A charged particle beam apparatus comprising: means for automatically moving a position of a throttle hole for transmitting only part of the charged particle beam; and means for detecting a movement position of the throttle hole.
請求項2の荷電粒子線装置において、等価な性能の複数の前記絞り穴、または異なる性能の複数の前記絞り穴、もしくは等価な性能の複数の前記絞り穴と異なる性能の複数の前記絞り穴との両方を同一の絞りまたは異なる絞りに備えることを特徴とする荷電粒子線装置。   The charged particle beam device according to claim 2, wherein the plurality of throttle holes having equivalent performance, the plurality of throttle holes having different performance, or the plurality of throttle holes having different performance from the plurality of throttle holes having equivalent performance The charged particle beam apparatus is characterized in that both are provided in the same diaphragm or different diaphragms. 請求項2の荷電粒子線装置において、前記絞り穴の性能劣化を検出または予測する手段と、劣化した前記絞り穴を区別する手段を備え、性能が劣化していない別の前記絞り穴に自動的に交換する手段を備えることを特徴とする荷電粒子線装置。   3. The charged particle beam apparatus according to claim 2, further comprising means for detecting or predicting performance deterioration of the throttle hole and means for distinguishing the deteriorated throttle hole, and automatically assigning another throttle hole whose performance has not deteriorated. A charged particle beam apparatus comprising means for exchanging with a charged particle beam. 請求項2の荷電粒子線装置において、前記絞り穴を交換した際に前記絞り穴の位置を最適な位置に自動調整する手段を備えることを特徴とする荷電粒子線装置。   3. The charged particle beam apparatus according to claim 2, further comprising means for automatically adjusting the position of the throttle hole to an optimum position when the throttle hole is replaced. 請求項2の荷電粒子線装置において、前記荷電粒子線を使用する必要が無い場合に、前記絞り穴に荷電粒子線が照射されない位置まで移動させ、前記絞り穴の性能劣化を防ぐ手段を備えることを特徴とする荷電粒子線装置。   3. The charged particle beam apparatus according to claim 2, further comprising means for preventing deterioration of the performance of the aperture hole by moving the aperture to a position where no charged particle beam is irradiated to the aperture when there is no need to use the charged particle beam. Charged particle beam device characterized by the above. 請求項6の荷電粒子線装置において、再び荷電粒子線を使用する必要が生じた場合に、自動的に元の前記絞り穴位置に戻す手段と、元の前記絞り穴位置に戻した際に前記絞り穴の位置を最適な位置に自動調整する手段を備えることを特徴とする荷電粒子線装置。   7. The charged particle beam apparatus according to claim 6, wherein when it becomes necessary to use the charged particle beam again, the means for automatically returning to the original aperture position, and when returning to the original aperture position, A charged particle beam apparatus comprising means for automatically adjusting the position of the aperture hole to an optimum position. 請求項2の荷電粒子線装置において、前記絞り穴の位置を自動的に移動させる手段の動作履歴を記録する手段と、前記動作履歴から前記絞り穴の位置を自動的に移動させる手段の性能劣化を予測する手段を備え、前記予測結果から前記絞り穴の位置を自動的に移動させる手段の保守や交換時期を警告する手段を備えることを特徴とする荷電粒子線装置。   3. The charged particle beam apparatus according to claim 2, wherein performance deterioration of means for recording an operation history of means for automatically moving the position of the aperture hole and means for automatically moving the position of the aperture hole from the operation history. A charged particle beam apparatus comprising: means for predicting maintenance, and means for warning the maintenance or replacement timing of means for automatically moving the position of the throttle hole from the prediction result. 請求項2の荷電粒子線装置において、遠隔操作によって前記絞り穴を移動する手段と、遠隔操作によって前記絞り穴の移動位置確認する手段を備えることを特徴とする荷電粒子線装置。   3. The charged particle beam apparatus according to claim 2, further comprising means for moving the aperture hole by remote operation and means for confirming a movement position of the aperture hole by remote operation. 請求項3の荷電粒子線装置において、遠隔操作によって前記絞り穴を移動または交換する手段または前記絞りを交換する手段と、遠隔操作によって前記絞り穴の移動位置や、遠隔操作によってどの絞りを使用しているかや、どの種類の前記絞り穴を使用しているかや、どの前記絞り穴を使用しているかを確認する手段を備えることを特徴とする荷電粒子線装置。   4. The charged particle beam apparatus according to claim 3, wherein means for moving or exchanging the aperture hole by remote operation or means for exchanging the aperture, and a moving position of the aperture hole by remote operation or which aperture is used by remote operation. A charged particle beam apparatus comprising: means for confirming which type of aperture hole is used and which aperture hole is used. 請求項10の荷電粒子線装置において、遠隔操作によって前記絞り穴の性能劣化を確認または予測する手段と、遠隔操作によってどの前記絞り穴やどの絞りが性能劣化していないかを確認する手段と、遠隔操作によって性能が劣化していない別の等価な前記絞り穴もしくは前記絞りに交換する手段を備えることを特徴とする荷電粒子線装置。   In the charged particle beam device according to claim 10, means for confirming or predicting performance degradation of the throttle hole by remote operation, means for confirming which throttle hole or which diaphragm has not degraded performance by remote operation, A charged particle beam apparatus comprising: another equivalent throttle hole whose performance has not deteriorated by remote operation or a means for exchanging with the throttle. 請求項11の荷電粒子線装置において、前記絞り穴を交換した際に、遠隔操作によって前記絞り穴の位置を最適な位置に調整する手段を備えることを特徴とする荷電粒子線装置。   12. The charged particle beam apparatus according to claim 11, further comprising means for adjusting the position of the throttle hole to an optimum position by remote control when the throttle hole is replaced. 荷電粒子源と、当該荷電粒子源から放出される荷電粒子線を集束して試料上で走査する荷電粒子光学系と、前記荷電粒子線の一部を選択的に通過させる開口を有する絞り板と、当該絞り板に対する前記荷電粒子線の照射位置を制御する制御装置を備えた荷電粒子線装置において、
前記制御装置は、前記試料に対する荷電粒子線の照射停止に伴って、前記開口以外の前記絞り板に前記荷電粒子線が照射されるように制御することを特徴とする荷電粒子線装置。
A charged particle source; a charged particle optical system that focuses and scans a charged particle beam emitted from the charged particle source; and a diaphragm having an aperture that selectively passes a part of the charged particle beam; In the charged particle beam apparatus provided with a control device for controlling the irradiation position of the charged particle beam to the diaphragm plate,
The said control apparatus controls so that the said charged particle beam is irradiated to the said diaphragm | throttle plate other than the said opening with the irradiation stop of the charged particle beam with respect to the said sample, The charged particle beam apparatus characterized by the above-mentioned.
荷電粒子源と、当該荷電粒子源から放出される荷電粒子線を集束して試料上で走査する荷電粒子光学系と、前記荷電粒子線の一部を選択的に通過させる開口を複数備えた絞り板と、当該絞り板に対する前記荷電粒子線の照射位置を制御する制御装置を備えた荷電粒子線装置において、
前記制御装置は、前記開口の中心が前記荷電粒子線の光軸から外れて、且つ当該開口を前記荷電粒子線の一部が通過するような状態が所定時間達したときに、前記開口中心と前記光軸が一致するように前記絞り板を移動させる、前記絞り板の他の開口を前記荷電粒子線の通過開口として切り替える、或いは警報を発生することを特徴とする荷電粒子線装置。
A charged particle source, a charged particle optical system that focuses and scans a charged particle beam emitted from the charged particle source, and a plurality of apertures that selectively pass a part of the charged particle beam In a charged particle beam apparatus comprising a plate and a control device for controlling the irradiation position of the charged particle beam with respect to the diaphragm plate,
When the state where the center of the opening deviates from the optical axis of the charged particle beam and a part of the charged particle beam passes through the opening reaches a predetermined time, the control device A charged particle beam apparatus, wherein the diaphragm plate is moved so that the optical axes coincide with each other, another opening of the diaphragm plate is switched as a passage opening for the charged particle beam, or an alarm is generated.
請求項14において、
前記試料に対し、前記光軸とは異なる方向から前記荷電粒子線を照射するための偏向器を備え、前記制御装置は、当該偏向器による前記荷電粒子線の偏向が行われたときに、前記開口の中心が前記荷電粒子線の光軸から外れて、且つ当該開口を前記荷電粒子線の一部が通過するような位置に位置付けることを特徴とする荷電粒子線装置。
In claim 14,
A deflector for irradiating the sample with the charged particle beam from a direction different from the optical axis is provided, and the control device, when the charged particle beam is deflected by the deflector, A charged particle beam apparatus characterized in that the center of the opening deviates from the optical axis of the charged particle beam and is positioned at a position where a part of the charged particle beam passes through the opening.
JP2003336654A 2003-09-29 2003-09-29 Charged particle beam equipment Expired - Fee Related JP4276918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336654A JP4276918B2 (en) 2003-09-29 2003-09-29 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336654A JP4276918B2 (en) 2003-09-29 2003-09-29 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JP2005108470A true JP2005108470A (en) 2005-04-21
JP4276918B2 JP4276918B2 (en) 2009-06-10

Family

ID=34532686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336654A Expired - Fee Related JP4276918B2 (en) 2003-09-29 2003-09-29 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP4276918B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070727A1 (en) * 2009-12-08 2011-06-16 株式会社 日立ハイテクノロジーズ Focused ion beam device and focused ion beam processing method
WO2012063749A1 (en) * 2010-11-12 2012-05-18 株式会社日立ハイテクノロジーズ Charged particle optical equipment and method for measuring lens aberration
JP5464534B1 (en) * 2013-06-14 2014-04-09 株式会社日立ハイテクノロジーズ Charged particle beam device and method for adjusting charged particle beam device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070727A1 (en) * 2009-12-08 2011-06-16 株式会社 日立ハイテクノロジーズ Focused ion beam device and focused ion beam processing method
JP2011123998A (en) * 2009-12-08 2011-06-23 Hitachi High-Technologies Corp Focused ion beam device and focused ion beam processing method
US8552397B2 (en) 2009-12-08 2013-10-08 Hitachi High-Technologies Corporation Focused ion beam device and focused ion beam processing method
WO2012063749A1 (en) * 2010-11-12 2012-05-18 株式会社日立ハイテクノロジーズ Charged particle optical equipment and method for measuring lens aberration
JP2012104426A (en) * 2010-11-12 2012-05-31 Hitachi High-Technologies Corp Charged particle optical device, and method of measuring lens aberration
US20130256531A1 (en) * 2010-11-12 2013-10-03 Hitachi High-Technologies Corporation Charged particle optical equipment and method for measuring lens aberration
US9224574B2 (en) 2010-11-12 2015-12-29 Hitachi High-Technologies Corporation Charged particle optical equipment and method for measuring lens aberration
JP5464534B1 (en) * 2013-06-14 2014-04-09 株式会社日立ハイテクノロジーズ Charged particle beam device and method for adjusting charged particle beam device
WO2014199709A1 (en) * 2013-06-14 2014-12-18 株式会社日立ハイテクノロジーズ Charged particle radiation device and adjustment method for charged particle radiation device
CN105359250A (en) * 2013-06-14 2016-02-24 株式会社日立高新技术 Charged particle radiation device and adjustment method for charged particle radiation device
US10176968B2 (en) 2013-06-14 2019-01-08 Hitachi High-Technologies Corporation Method for adjusting charged particle beam device and adjusting beam aperture based on a selected emission condition and charged particle beam device for same
DE112014002398B4 (en) 2013-06-14 2024-02-01 Hitachi High-Tech Corporation Charged particle beam device and method for adjusting a charged particle beam device

Also Published As

Publication number Publication date
JP4276918B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
US11239053B2 (en) Charged particle beam system and method
JP3944373B2 (en) Sample length measuring method and scanning microscope
US10483088B2 (en) Multi charged particle beam writing apparatus and multi charged particle beam writing method
CN108463869B (en) Charged particle beam device and optical axis adjusting method thereof
JP2007012290A (en) Charged particle beam application device
JP4621097B2 (en) Electron beam apparatus and control method thereof
JP2014026834A (en) Charged particle beam application apparatus
JP4276918B2 (en) Charged particle beam equipment
JP2007194126A (en) Scanning electron microscope
US8124940B2 (en) Charged particle beam apparatus
JP2024023374A (en) Mechanical alignment of the X-ray source
JPH10162769A (en) Ion beam work device
JP2007012516A (en) Charged particle beam apparatus and test piece information detection method using the same
JP2001006591A (en) Charged particle beam device
JP4221817B2 (en) Projection type ion beam processing equipment
JP2002352758A (en) Adjusting method of charged particle beam, and charged particle beam system
JP4528589B2 (en) Mask inspection apparatus, mask inspection method, and electron beam exposure apparatus
JP5896870B2 (en) Scanning electron microscope
KR102650476B1 (en) Charged particle beam adjusting method, charged particle beam drawing method, and charged particle beam illuminating apparatus
JP2010282977A (en) Electron beam device, and control method for the same
JP3915812B2 (en) Electron beam equipment
JPH10223169A (en) Scanned sample image display device, scanned sample image display method, mark detecting method, and electron beam exposing device
JPH11283548A (en) Electron microscope equipment and sample observing method using the same
JP2910936B2 (en) Electron beam exposure equipment
JP3325695B2 (en) Charged particle beam exposure method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4276918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees