JP2005106728A - Road surface condition detection apparatus - Google Patents

Road surface condition detection apparatus Download PDF

Info

Publication number
JP2005106728A
JP2005106728A JP2003343143A JP2003343143A JP2005106728A JP 2005106728 A JP2005106728 A JP 2005106728A JP 2003343143 A JP2003343143 A JP 2003343143A JP 2003343143 A JP2003343143 A JP 2003343143A JP 2005106728 A JP2005106728 A JP 2005106728A
Authority
JP
Japan
Prior art keywords
road surface
vehicle
sound
sound pressure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003343143A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Saito
和敬 斎藤
Ichiro Ueno
一郎 上野
Fumitada Sato
文規 佐藤
Akira Nakamuta
旭 中牟田
Satoshi Hiyama
智 樋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003343143A priority Critical patent/JP2005106728A/en
Publication of JP2005106728A publication Critical patent/JP2005106728A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a road surface condition detection apparatus which constantly detects a road surface condition by using tire cavity resonance. <P>SOLUTION: A box 2 made from a metallic plank or a die casting and having a natural frequency of 500 to 1,000 Hz is placed on a vehicle floor 3. A microphone 1 as sound pressure detection means which detects sound is placed in a closed space formed within the box 2. A processor 5 connected to the microphone 1 through a connecting cable 4 detects two, high and low peak frequencies F_low and F_high and sound pressure levels P_low and P_high corresponding to F_low and F_high, respectively, from cavity resonance by a tire detected by the microphone 1. The processor 5 determines (detects) the condition of a road surface on which a vehicle is travelling from the detected sound pressure levels and the frequency difference between the two, high and low peak frequencies. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両装置等に搭載される路面状態検出装置に関する。   The present invention relates to a road surface state detection device mounted on a vehicle device or the like.

従来、車両が走行する路面の状態を検出する装置としては、例えば走行に伴うタイヤの空気圧の変化に基づいて路面の状態を推定するものがある。具体的には、車両の走行開始時点のタイヤ空気圧Po 及び外気温T等より走行開始後所定時間経過時点のタイヤ空気圧Pe を推定し、推定タイヤ空気圧Peと走行開始後所定時間経過時点の実際のタイヤ空気圧Pa との比較に基づき路面の状態を推定する(例えば、特許文献1参照。)。また、タイヤ内の空気圧の変動を検出して周波数分析を行うものもある(例えば、特許文献2参照。)。更に、各車輪の回転速度を検出する検出手段を備え、車両の走行速度と各車輪の回転速度とから各車輪と路面間のスリップ状況を推定し、各車輪を制動する制動力を制御するものもある(例えば、特許文献3参照)。   2. Description of the Related Art Conventionally, as a device for detecting the state of a road surface on which a vehicle travels, for example, there is a device that estimates the road surface state based on a change in tire air pressure associated with traveling. Specifically, the tire pressure Pe at a predetermined time after the start of travel is estimated from the tire air pressure Po at the start of travel of the vehicle, the outside air temperature T, and the like, and the estimated tire air pressure Pe and the actual time after the predetermined time has elapsed after the start of travel The road surface state is estimated based on the comparison with the tire pressure Pa (see, for example, Patent Document 1). In addition, there is a technique that performs frequency analysis by detecting a change in air pressure in a tire (see, for example, Patent Document 2). Furthermore, a detecting means for detecting the rotational speed of each wheel is provided, and a slip condition between each wheel and the road surface is estimated from the traveling speed of the vehicle and the rotational speed of each wheel, and the braking force for braking each wheel is controlled. (For example, refer to Patent Document 3).

一方、車両が走行する際に路面の凹凸とタイヤにより発生する車内騒音(一般にはロードノイズという)を低減する技術が開示されている(例えば、非特許文献1参照。)。非特許文献1の記載によれば、ロードノイズは、タイヤとディスクホイール(以下ホイールとする)によって構成されるドーナツ状の空洞音響系の共鳴モードが路面からの入力によって励起されて発生するものであり、空洞共鳴音は以下に示す3つの特徴があることが説明されている。   On the other hand, a technique for reducing in-vehicle noise (generally referred to as road noise) generated by road surface unevenness and tires when a vehicle travels is disclosed (for example, see Non-Patent Document 1). According to the description of Non-Patent Document 1, road noise is generated when a resonance mode of a doughnut-shaped hollow acoustic system composed of a tire and a disc wheel (hereinafter referred to as a wheel) is excited by input from a road surface. It is explained that the cavity resonance has the following three characteristics.

具体的には、図4に横軸を空洞共鳴音周波数、縦軸を音圧レベルとして示すように、
(ア)空洞共鳴音のピーク周波数は、タイヤが変形していない場合は1つであるが、タイヤが接地することにより部分的に変形した場合には2つ現れる。
(イ)また、2つのピーク周波数のうち、低い方の固有周波数(以下、F_lowとする)でホイールは前後に振動し、高い方の固有周波数(以下、F_highとする)でホイールは上下に振動する。
Specifically, in FIG. 4, the horizontal axis indicates the cavity resonance sound frequency and the vertical axis indicates the sound pressure level.
(A) The peak frequency of the cavity resonance sound is one when the tire is not deformed, but two appear when the tire is partially deformed by grounding.
(B) Of the two peak frequencies, the wheel vibrates back and forth at the lower natural frequency (hereinafter referred to as F_low), and the wheel vibrates up and down at the higher natural frequency (hereinafter referred to as F_high). To do.

更に、図5に横軸を車両の走行速度(車速)、縦軸を空洞共鳴音周波数として示すように、
(ウ)走行中、車両の走行速度(車速)が上昇するほどF_lowは低く、F_highは高くなる。
という特徴を備えている。
特開平8−156537号公報 特開2002−240520号公報 特開平9−109871号公報 山内裕司、秋好靖二、「タイヤ空洞共鳴音の改良手法の提案」、自動車技術、社団法人自動車技術会、2003年8月、Vol.57、No.7、p.59−63
Further, in FIG. 5, the horizontal axis indicates the vehicle traveling speed (vehicle speed), and the vertical axis indicates the cavity resonance sound frequency.
(C) During traveling, F_low becomes lower and F_high becomes higher as the traveling speed (vehicle speed) of the vehicle increases.
It has the characteristics.
JP-A-8-156537 JP 2002-240520 A Japanese Patent Laid-Open No. 9-109871 Yuji Yamauchi, Shinji Akiyoshi, “Proposal for improving tire cavity resonance sound”, Automotive Technology, Japan Society for Automotive Engineers, August 2003, Vol. 57, no. 7, p. 59-63

ところで、特許文献1から特許文献3に記載されている従来の技術では、路面の状態を常時検出することができないという問題があった。具体的には、特許文献1に記載の技術では、路面がドライ路面であるかウェット路面であるかの判定を確実に行うには、車両の走行開始時点より時間to が経過するのを待つ必要があった。また、特許文献2に記載の技術では、ハイドロプレーニング現象が発生しやすい状態が800[Hz]以上の高周波領域でのトレッド振動から判別できることを利用して路面とタイヤとの間の状態を検出しているので、ハイドロプレーニング現象が発生する寸前でなければ、その制御値を計算できなかった。更に、特許文献3に記載の技術では、制動時に所定のスリップ率を超えない範囲で制動を行うのみで、スリップが発生しない通常走行時の路面状態を検出することができなかった。
従って、従来の技術では、路面の状態を常時検出して通常走行状態での積極的な車両制御を行いにくいという問題があった。
Incidentally, the conventional techniques described in Patent Document 1 to Patent Document 3 have a problem that the road surface state cannot always be detected. Specifically, in the technique described in Patent Document 1, in order to reliably determine whether the road surface is a dry road surface or a wet road surface, it is necessary to wait for the time to elapse from the start of traveling of the vehicle. was there. In the technique described in Patent Document 2, the state between the road surface and the tire is detected by utilizing the fact that the state where the hydroplaning phenomenon is likely to occur can be determined from the tread vibration in the high frequency region of 800 [Hz] or higher. Therefore, the control value could not be calculated unless it was just before the hydroplaning phenomenon occurred. Furthermore, with the technique described in Patent Document 3, it is only possible to perform braking within a range that does not exceed a predetermined slip ratio during braking, and it has not been possible to detect a road surface state during normal traveling in which no slip occurs.
Therefore, the conventional technology has a problem in that it is difficult to perform active vehicle control in a normal traveling state by always detecting the road surface state.

本発明は、上記課題に鑑みてなされたもので、タイヤ空洞共鳴音を利用して常に路面状態を検出することができる路面状態検出装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a road surface state detection device that can always detect a road surface state using tire cavity resonance sound.

上記課題を解決するために、請求項1の発明に係る路面状態検出装置は、路面からタイヤを経て車体に伝達される振動の伝達経路中に配置されると共に、個体材料により閉塞された一定体積の気体室(例えば後述する実施例の箱体2)と、前記気体室内に配置されると共に、音を検出する音圧検出手段(例えば後述する実施例のマイクロフォン1)と、前記音圧検出手段の出力を周波数解析することにより、車両が走行している路面状態に関連する情報を得る演算装置(例えば後述する実施例の演算処理部5)とを備えたことを特徴とする。   In order to solve the above-mentioned problem, a road surface state detection device according to the invention of claim 1 is disposed in a transmission path of vibration transmitted from a road surface through a tire to a vehicle body, and is closed by a solid material. A gas chamber (for example, a box 2 in an embodiment to be described later), a sound pressure detecting means (for example, a microphone 1 in an embodiment to be described later) that is disposed in the gas chamber and detects sound, and the sound pressure detecting means. And an arithmetic device (for example, an arithmetic processing unit 5 in an embodiment described later) that obtains information related to the road surface condition where the vehicle is traveling.

以上の構成を備えた路面状態検出装置は、個体材料により閉塞された一定体積の気体室内に設けられた音圧検出手段を用いて、路面からタイヤを経て車体に伝達される振動を音として検出し、演算装置がこの音の周波数解析を実行することにより、車両が走行していればいつでも車両が走行している路面状態に関連する情報を得ることができる。   The road surface state detection device having the above configuration detects vibration transmitted from the road surface through the tire to the vehicle body as sound, using sound pressure detection means provided in a gas chamber of a constant volume closed by a solid material. In addition, when the arithmetic device performs the frequency analysis of the sound, information relating to the road surface state where the vehicle is traveling can be obtained whenever the vehicle is traveling.

請求項2の発明に係る路面状態検出装置は、請求項1に記載の路面状態検出装置において、前記演算装置が、前記音圧検出手段の出力における高、低2つのピーク周波数(例えば後述する実施例のピーク周波数F_low、F_high)とその周波数差、及び該2つのピーク周波数の少なくとも一方に対応する音圧レベル(例えば後述する実施例の音圧レベルP_low、P_high)を検出すると共に、前記音圧レベルと前記周波数差とに基づいて、車両が走行している路面状態に関連する情報を得ることを特徴とする。   According to a second aspect of the present invention, there is provided a road surface condition detecting device according to the first aspect, wherein the arithmetic unit is configured to output two high and low peak frequencies (for example, implementation described later) in the output of the sound pressure detecting means. And detecting a sound pressure level corresponding to at least one of the two peak frequencies (for example, sound pressure levels P_low and P_high in the embodiments described later) and the sound pressure. Based on the level and the frequency difference, information related to a road surface state where the vehicle is traveling is obtained.

以上の構成を備えた路面状態検出装置は、タイヤ空洞共鳴音の高、低2つのピーク周波数とその周波数差、及び該2つのピーク周波数に対応する音圧レベルが、タイヤの接地する路面の状況と密接な関係があることを利用することで、車両が走行していればいつでも正確に車両が走行している路面状態に関連する情報を得ることができる。   The road surface condition detection apparatus having the above configuration is such that the tire cavity resonance sound level is high, the low two peak frequencies and the frequency difference thereof, and the sound pressure level corresponding to the two peak frequencies are the conditions of the road surface on which the tire contacts the ground. By utilizing the fact that there is a close relationship with the vehicle, it is possible to accurately obtain information related to the road surface state where the vehicle is traveling, whenever the vehicle is traveling.

請求項3の発明に係る路面状態検出装置は、請求項1、または請求項2に記載の路面状態検出装置において、前記音圧検出手段が検出する音の周波数帯域を、100[Hz]から300[Hz]とすることを特徴とする。   A road surface condition detection apparatus according to a third aspect of the present invention is the road surface condition detection apparatus according to the first or second aspect, wherein the frequency band of the sound detected by the sound pressure detection means is from 100 [Hz] to 300 [Hz]. [Hz].

以上の構成を備えた路面状態検出装置は、一般的に利用される例えばタイヤ空洞断面の重心直径が36[cm]から110[cm]程度のタイヤに特化して、音圧検出手段が検出する音の周波数帯域を100[Hz]から300[Hz]に限定することで、最適なコストパフォーマンスを得ることができる。   The road surface state detection device having the above configuration is detected by the sound pressure detection means specialized for tires having a center of gravity diameter of about 36 [cm] to 110 [cm], for example, which is generally used. By limiting the frequency band of sound from 100 [Hz] to 300 [Hz], it is possible to obtain optimum cost performance.

請求項1に記載の路面状態検出装置によれば、車両が走行していればいつでも車両が走行している路面状態に関連する情報を得ることができる。従って、路面の状態を常時検出して通常走行状態での積極的な車両制御を実行することができるという効果が得られる。 また、請求項2に記載の路面状態検出装置によれば、車両が走行していればいつでも正確に車両が走行している路面状態に関連する情報を得ることができる。従って、高性能な路面状態検出装置を実現し、通常走行状態での精度の高い車両制御を実行することができるという効果が得られる。
更に、請求項3に記載の路面状態検出装置によれば、音圧検出手段が検出する音の周波数帯域を限定することで、最適なコストパフォーマンスを得ることができる。従って、高性能かつ低価格な路面状態検出装置を実現することができるという効果が得られる。
According to the road surface state detection device of the first aspect, information relating to the road surface state in which the vehicle is traveling can be obtained whenever the vehicle is traveling. Therefore, it is possible to obtain an effect that it is possible to always detect the road surface condition and execute the active vehicle control in the normal traveling state. Moreover, according to the road surface state detection device of the second aspect, information relating to the road surface state in which the vehicle is traveling can be obtained accurately whenever the vehicle is traveling. Therefore, an effect that a high-performance road surface state detection device can be realized and vehicle control with high accuracy in the normal traveling state can be performed.
Furthermore, according to the road surface state detection device of the third aspect, the optimum cost performance can be obtained by limiting the frequency band of the sound detected by the sound pressure detecting means. Therefore, the effect that a high-performance and low-priced road surface state detection device can be realized is obtained.

以下、図面を参照して本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(全体構成)
図1は、本発明の一実施例の路面状態検出装置の構成及び設置例を示す図である。本実施例の路面状態検出装置は、タイヤとホイールによって構成されるドーナツ状の空洞音響系に、路面からの外力が入力されることにより励起される空洞共鳴音を利用して路面状態を検出する。そのため、本実施例の路面状態検出装置は、ホイールから車両のサスペンション及びボディを介して車室内まで伝達される空洞共鳴音を、伝達途中で検出して利用する。
(overall structure)
FIG. 1 is a diagram illustrating a configuration and an installation example of a road surface state detection device according to an embodiment of the present invention. The road surface state detection apparatus according to the present embodiment detects a road surface state by using a cavity resonance sound that is excited when an external force is input from a road surface to a donut-shaped hollow acoustic system including tires and wheels. . For this reason, the road surface condition detection apparatus of the present embodiment detects and utilizes the cavity resonance sound transmitted from the wheel to the vehicle interior via the vehicle suspension and body.

図1において、マイクロフォン1は音を検出する音圧検出手段であって、金属の厚板あるいはダイカスト(ダイキャスト)からなる箱体2の内部(固体で閉ざされた空間)に設置される。
一方、車両床面3は本実施例の路面状態検出装置を搭載する車両の床面であって、車両床面3の上には、箱体2と、箱体2の内部に設置されたマイクロフォン1と電気的に接続する接続ケーブル4を介して接続されると共に、マイクロフォン1によって検出された空洞共鳴音を利用して路面状態検出処理を実行する演算処理部5とが取り付けられている。また、演算処理部5には、車両の走行速度(車速)を検出する車速センサ(図示せず)から、車両の走行速度を示す車速信号が入力されている。
In FIG. 1, a microphone 1 is sound pressure detecting means for detecting sound, and is installed inside a box 2 (a space closed with a solid) made of a thick metal plate or die cast (die cast).
On the other hand, the vehicle floor surface 3 is a vehicle floor surface on which the road surface condition detection device of the present embodiment is mounted. On the vehicle floor surface 3, a box 2 and a microphone installed inside the box 2 are provided. An arithmetic processing unit 5 that is connected via a connection cable 4 that is electrically connected to 1 and that executes a road surface state detection process using a cavity resonance sound detected by the microphone 1 is attached. In addition, a vehicle speed signal indicating the traveling speed of the vehicle is input to the arithmetic processing unit 5 from a vehicle speed sensor (not shown) that detects the traveling speed (vehicle speed) of the vehicle.

なお、接続ケーブル4による箱体2の内部に設置されたマイクロフォン1と箱体2の外部に設置された演算処理部5との接続は、箱体2の壁面に設置された端子と接続ケーブル4に設けられたコネクタ等の接続手段を用いて、マイクロフォン1が設置された箱体2の内部空間の密閉性を保つように接続されるものとする。また、演算処理部5の動作については、詳細を後述する。   The connection between the microphone 1 installed inside the box 2 by the connection cable 4 and the arithmetic processing unit 5 installed outside the box 2 is made by connecting the terminal installed on the wall surface of the box 2 and the connection cable 4. It is assumed that the connection means such as a connector provided in the connector is connected so as to maintain the airtightness of the internal space of the box 2 in which the microphone 1 is installed. Details of the operation of the arithmetic processing unit 5 will be described later.

図2は、図1のA−A線に沿った断面図であって、箱体2について更に詳細に説明すると、図2において、箱体2は例えば箱体2に溶接された断面がL型のブラケット6を介してボルト7によって車両床面3に取り付けられている。箱体2は、例えば固有周波数が500[Hz]から1000[Hz]で、かつ内部に閉ざされた空間が形成されるものであって、箱体2の上部にはボルト8により蓋2aが開閉自在に取り付けられている。また、箱体2の内部に取り付けられたマイクロフォン1は、箱体2内部の底壁(底面)9にブラケット10によって、マイクロフォン1が空間内の略中央部に位置するように固定されている。従って、タイヤの空洞共鳴音が箱体2を介して、箱体2の内部の空気に伝達されることにより、マイクロフォン1がこれを検出する。   FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and the box 2 will be described in more detail. In FIG. 2, the box 2 has, for example, an L-shaped cross section welded to the box 2. Are attached to the vehicle floor 3 by bolts 7. The box 2 has a natural frequency of 500 [Hz] to 1000 [Hz], for example, and a closed space is formed inside. The lid 2a is opened and closed by a bolt 8 at the top of the box 2 It is attached freely. The microphone 1 attached to the inside of the box body 2 is fixed to a bottom wall (bottom surface) 9 inside the box body 2 by a bracket 10 so that the microphone 1 is positioned at a substantially central portion in the space. Accordingly, the cavity resonance sound of the tire is transmitted to the air inside the box body 2 through the box body 2, so that the microphone 1 detects this.

すなわち、例えばもし開放された車外あるいは車室内にマイクロフォン1を設置した場合、その他の音による外乱と空洞共鳴音とが混在してフィルタ等での分離が困難であるため、上述のように、箱体2の内部にマイクロフォン1を設置することにより、空洞共鳴音が車両の固体部分を伝達している点を利用すると共に、空洞共鳴音以外の音からマイクロフォン1を絶縁して、正確に空洞共鳴音を検出することができるという効果が得られる。   That is, for example, if the microphone 1 is installed outside the vehicle or in the passenger compartment, it is difficult to separate with a filter or the like due to a mixture of disturbance due to other sounds and cavity resonance sound. By installing the microphone 1 inside the body 2, it is possible to utilize the point that the cavity resonance sound is transmitted through the solid part of the vehicle, and to insulate the microphone 1 from the sound other than the cavity resonance sound, thereby accurately performing the cavity resonance. The effect that sound can be detected is obtained.

なお、マイクロフォン1は、タイヤ空洞断面の重心直径が36[cm]から110[cm]程度のタイヤに対応できるように、下記(1)式に基づいて算出される空洞共鳴音周波数に対応し、例えば周波数範囲(周波数帯域)が100[Hz]から300[Hz]の音を検出可能なものを選択することで、コストパフォーマンスを最適化することができる。また、実際に車両毎のタイヤサイズに限定して検出可能な音の周波数範囲を限定すれば、更に周波数解析の精度を向上させることができ、コストパフォーマンスが向上する。なお、下記(1)式において、Rはタイヤ空洞断面の重心半径[m]である。また、音速は340[m/sec]とする。   The microphone 1 corresponds to the cavity resonance sound frequency calculated based on the following formula (1) so that the tire can have a center-of-gravity diameter of the tire cavity cross section of 36 [cm] to 110 [cm]. For example, the cost performance can be optimized by selecting a sound whose frequency range (frequency band) can be detected from 100 [Hz] to 300 [Hz]. Further, if the frequency range of sound that can be detected is limited to the tire size for each vehicle, the accuracy of frequency analysis can be further improved, and cost performance is improved. In the following formula (1), R is the center-of-gravity radius [m] of the tire cavity cross section. The sound speed is 340 [m / sec].

空洞共鳴音周波数=(音速)/(2×π×R) ・・・(1) Cavity resonance sound frequency = (sound speed) / (2 × π × R) (1)

また上述の説明では、箱体2を、例えば箱体2に溶接されたブラケット6を介してボルト7によって車両床面3に取り付けると説明したが、箱体2は車両床面3に溶接されていても良く、機械的に接触固定されていれば良い。更に、箱体2と演算処理部5とを別体として説明したが、箱体2の内部にマイクロフォン1と一緒に演算処理部5を収納しても良く、その場合、演算処理部5を収納する前と後で、箱体2の体積が一定であれば良い。   In the above description, the box 2 is described as being attached to the vehicle floor 3 with the bolts 7 via the bracket 6 welded to the box 2, for example, but the box 2 is welded to the vehicle floor 3. It may be sufficient if it is mechanically fixed by contact. Furthermore, although the box 2 and the arithmetic processing unit 5 have been described as separate units, the arithmetic processing unit 5 may be accommodated in the box 2 together with the microphone 1, and in this case, the arithmetic processing unit 5 is accommodated. The volume of the box 2 may be constant before and after the operation.

(路面状態検出処理)
次に、図面を参照して本実施例の路面状態検出装置の路面状態検出処理動作について説明する。図3は、本実施例の路面状態検出装置の演算処理部5による路面状態検出処理動作を示すフローチャートである。
図3において、まず演算処理部5は、マイクロフォン1により空洞共鳴音を取得する(ステップS1)と共に、車速センサからこの時の車両の走行速度(車速)を取得する(ステップS2)。
(Road surface detection process)
Next, the road surface state detection processing operation of the road surface state detection device of this embodiment will be described with reference to the drawings. FIG. 3 is a flowchart showing a road surface state detection processing operation by the arithmetic processing unit 5 of the road surface state detection device of the present embodiment.
In FIG. 3, the arithmetic processing unit 5 first acquires the cavity resonance sound by the microphone 1 (step S1) and also acquires the traveling speed (vehicle speed) of the vehicle at this time from the vehicle speed sensor (step S2).

次に、図4に示すマイクロフォン1により検出されたタイヤによる空洞共鳴音から、高、低2つのピーク周波数であるF_lowとF_high、及びF_lowとF_highにそれぞれ対応する音圧レベルP_lowとP_highを検出する(ステップS3)。具体的には、図4に示された高、低2つのピーク周波数F_lowとF_highは、前述の非特許文献1に記載されているように、タイヤが接地することにより部分的に変形した場合に現れる空洞共鳴音の2つのピーク周波数であって、ここでは、一例としてタイヤ空洞断面の重心直径が47[cm]で、基本空洞共鳴音周波数が230[Hz]の場合を示している。なお、図4は、横軸を空洞共鳴音周波数[Hz]、縦軸を音圧レベル[dB]として示す。   Next, sound pressure levels P_low and P_high corresponding to F_low and F_high and F_low and F_high, which are two high and low peak frequencies, are detected from the cavity resonance sound caused by the tire detected by the microphone 1 shown in FIG. (Step S3). Specifically, the two high and low peak frequencies F_low and F_high shown in FIG. 4 are obtained when the tire is partially deformed by grounding, as described in Non-Patent Document 1 described above. The two peak frequencies of the cavity resonance sound that appear, here, as an example, shows the case where the center of gravity diameter of the tire cavity cross section is 47 [cm] and the basic cavity resonance sound frequency is 230 [Hz]. In FIG. 4, the horizontal axis indicates the cavity resonance sound frequency [Hz] and the vertical axis indicates the sound pressure level [dB].

更に、演算処理部5は、高、低2つのピーク周波数F_lowとF_highが、車両の走行速度(車速)が上昇するほどF_lowは低く、F_highは高くなるという特徴を備えているため、マイクロフォン1により検出した空洞共鳴音の高、低2つのピーク周波数を、図5に示された車両の走行速度(車速)と空洞共鳴音周波数との計算例に基づいて、例えば車両の走行速度(車速)が「ゼロ」の時の空洞共鳴音の高、低2つのピーク周波数に換算し(ステップS4)、高、低2つのピーク周波数の周波数差を算出する(ステップS5)。なお、図5は、横軸を車両の走行速度(車速)[km/h]、縦軸を空洞共鳴音周波数[Hz]としてF_lowとF_highを示す。また、F_aveは、F_lowとF_highの平均値を示す。   Further, the arithmetic processing unit 5 is characterized in that the two high and low peak frequencies F_low and F_high are characterized in that F_low is low and F_high is high as the vehicle traveling speed (vehicle speed) increases. Based on the calculation example of the vehicle traveling speed (vehicle speed) and the cavity resonance sound frequency shown in FIG. 5, for example, the vehicle traveling speed (vehicle speed) is calculated based on the detected high and low peak frequencies of the cavity resonance sound. The cavity resonance sound at the time of “zero” is converted into high and low peak frequencies (step S4), and the frequency difference between the high and low peak frequencies is calculated (step S5). FIG. 5 shows F_low and F_high, with the horizontal axis representing the vehicle traveling speed (vehicle speed) [km / h] and the vertical axis representing the cavity resonance sound frequency [Hz]. F_ave represents an average value of F_low and F_high.

そして、演算処理部5は、検出された音圧レベルと高、低2つのピーク周波数の周波数差とから、車両が走行している路面状態を判定(検出)する(ステップS6)。
具体的に説明すると、図6は、既知の路面を走行して実験的に求めた路面状態を判定するための判定用マップであって、例えば横軸にピーク周波数F_highに対応する音圧レベルP_highが、縦軸に車両の走行速度(車速)が「ゼロ」の時の空洞共鳴音の高、低2つのピーク周波数の周波数差が示されている。
Then, the arithmetic processing unit 5 determines (detects) the road surface state in which the vehicle is traveling from the detected sound pressure level and the frequency difference between the high and low two peak frequencies (step S6).
More specifically, FIG. 6 is a determination map for determining a road surface state obtained experimentally by traveling on a known road surface. For example, the horizontal axis represents the sound pressure level P_high corresponding to the peak frequency F_high. However, the vertical axis indicates the frequency difference between the high and low peak frequencies of the cavity resonance sound when the vehicle traveling speed (vehicle speed) is “zero”.

また、音圧レベルと高、低2つのピーク周波数の周波数差とに関連付けられて区分される路面状態は、図6に示すように、横軸に示された音圧レベルP_high及び縦軸に示された高、低2つのピーク周波数の周波数差に対し、例えば(1)砂利路面、(2)凹凸路面、(3)通常舗装路面、(4)低摩擦係数舗装路面のように対応づけられて区分される。従って、演算処理部5は、検出された音圧レベルと高、低2つのピーク周波数の周波数差とから、図6に示す判定用マップに従って、車両が現在走行している路面状態を判定する。   Further, the road surface states classified in association with the sound pressure level and the frequency difference between the two high and low peak frequencies, as shown in FIG. 6, are indicated by the sound pressure level P_high shown on the horizontal axis and the vertical axis. For example, (1) gravel road surface, (2) uneven road surface, (3) normal paved road surface, (4) low friction coefficient paved road surface, and so on. It is divided. Therefore, the arithmetic processing unit 5 determines the road surface state in which the vehicle is currently traveling according to the determination map shown in FIG. 6 from the detected sound pressure level and the frequency difference between the high and low peak frequencies.

なお、上述のステップS4では、マイクロフォン1により検出した空洞共鳴音の高、低2つのピーク周波数を、その時の車両の走行速度(車速)に基づいて、車両の走行速度(車速)が「ゼロ」の時の空洞共鳴音の高、低2つのピーク周波数に換算するようにしたが、これは、どうのような走行条件下でも路面状態の判定において一定の結果を得られるようにしたもので、図6に示した路面の判定に用いる判定用マップの縦軸に、車両の走行速度(車速)が「ゼロ」の時の空洞共鳴音の高、低2つのピーク周波数の周波数差を示して路面状態の区分を現したことに対応している。   In step S4 described above, the vehicle traveling speed (vehicle speed) is “zero” based on the traveling speed (vehicle speed) of the vehicle at that time, based on the two high and low peak frequencies of the cavity resonance sound detected by the microphone 1. It was converted to two high and low peak frequencies of the cavity resonance sound at the time of this, but this is to make it possible to obtain a certain result in determining the road surface condition under any driving conditions, The vertical axis of the determination map used for determination of the road surface shown in FIG. 6 shows the frequency difference between the high and low peak frequencies of the cavity resonance sound when the vehicle traveling speed (vehicle speed) is “zero”. Corresponds to the state classification.

すなわち、図6に示した路面の判定に用いる判定用マップの縦軸に、例えば車両の走行速度(車速)が20[km/h]の時の空洞共鳴音の高、低2つのピーク周波数の周波数差を示して路面状態の区分を現した場合には、ステップS4では、マイクロフォン1により検出した空洞共鳴音の高、低2つのピーク周波数を、その時の車両の走行速度(車速)に基づいて、車両の走行速度(車速)が20[km/h]の時の空洞共鳴音の高、低2つのピーク周波数に換算して処理を行う必要がある。   That is, the vertical axis of the determination map used for determining the road surface shown in FIG. 6 shows the high and low two peak frequencies of the cavity resonance sound when the vehicle traveling speed (vehicle speed) is 20 km / h, for example. In the case where the road surface condition classification is shown by showing the frequency difference, in step S4, the high and low two peak frequencies of the cavity resonance sound detected by the microphone 1 are determined based on the traveling speed (vehicle speed) of the vehicle at that time. When the vehicle traveling speed (vehicle speed) is 20 [km / h], it is necessary to perform processing by converting the cavity resonance sound into high and low two peak frequencies.

また、図6に示した路面の判定に用いる判定用マップの横軸には、ピーク周波数F_highに対応する音圧レベルP_highを示したが、判定用マップの横軸に示す値は、ピーク周波数F_lowに対応する音圧レベルP_lowでも良いし、音圧レベルP_highとP_lowの平均値であっても良い。更に、温度による音速の変化から、空洞共鳴音周波数も変化するので、外気音や路面温度、あるいはタイヤの温度等を計測する温度センサを備えて、計測された温度により補正を行うことで、より一層確かな路面状態の判定を実行することができる。   Further, the horizontal axis of the determination map used for road surface determination shown in FIG. 6 shows the sound pressure level P_high corresponding to the peak frequency F_high, but the value shown on the horizontal axis of the determination map is the peak frequency F_low. May be the sound pressure level P_low corresponding to, or an average value of the sound pressure levels P_high and P_low. Furthermore, because the cavity resonance sound frequency also changes due to the change in sound speed due to temperature, it is equipped with a temperature sensor that measures outside air noise, road surface temperature, tire temperature, etc., and by correcting by the measured temperature, A more reliable determination of the road surface condition can be executed.

以上説明したように、本実施例の路面状態検出装置によれば、車両床面3の上に、金属の厚板あるいはダイカスト(ダイキャスト)からなる固有周波数が500[Hz]から1000[Hz]の箱体2を設置し、箱体2の内部に形成される閉ざされた空間に、音を検出する音圧検出手段としてマイクロフォン1を設置する。そして、マイクロフォン1に接続ケーブル4を介して接続された演算処理部5は、まずマイクロフォン1により空洞共鳴音を取得すると共に、車速センサからこの時の車両の走行速度(車速)を取得する。次に、マイクロフォン1により検出されたタイヤによる空洞共鳴音から、高、低2つのピーク周波数であるF_lowとF_high、及びF_lowとF_highにそれぞれ対応する音圧レベルP_lowとP_highを検出する。   As described above, according to the road surface condition detection apparatus of the present embodiment, the natural frequency of a thick metal plate or die-cast (die-cast) on the vehicle floor 3 is 500 [Hz] to 1000 [Hz]. The microphone 1 is installed in a closed space formed inside the box 2 as sound pressure detecting means for detecting sound. Then, the arithmetic processing unit 5 connected to the microphone 1 via the connection cable 4 first acquires the cavity resonance sound by the microphone 1 and acquires the traveling speed (vehicle speed) of the vehicle at this time from the vehicle speed sensor. Next, sound pressure levels P_low and P_high corresponding to F_low and F_high, and F_low and F_high, respectively, are detected from the cavity resonance sound by the tire detected by the microphone 1.

更に、演算処理部5は、マイクロフォン1により検出した空洞共鳴音の高、低2つのピーク周波数を、例えば車両の走行速度(車速)が「ゼロ」の時の空洞共鳴音の高、低2つのピーク周波数に換算し、高、低2つのピーク周波数の周波数差を算出する。そして、演算処理部5は、検出された音圧レベルと高、低2つのピーク周波数の周波数差とから、車両が走行している路面状態を判定(検出)する。これにより、個体材料により閉塞された一定体積の箱体2内に設けられたマイクロフォン1を用いて、路面からタイヤを経て車体に伝達される振動を音(空洞共鳴音)として検出し、演算処理部5がこの音の周波数解析を実行することにより、車両が走行していればいつでも車両が走行している路面状態に関連する情報を得ることができる。   Further, the arithmetic processing unit 5 uses two low and high peak frequencies of the cavity resonance sound detected by the microphone 1, for example, two high and low peak frequencies of the cavity resonance sound when the vehicle traveling speed (vehicle speed) is “zero”. Converted to the peak frequency, the frequency difference between the two high and low peak frequencies is calculated. Then, the arithmetic processing unit 5 determines (detects) the road surface state in which the vehicle is traveling from the detected sound pressure level and the frequency difference between the two high and low peak frequencies. Thereby, the vibration transmitted from the road surface through the tire to the vehicle body is detected as sound (cavity resonance sound) using the microphone 1 provided in the box 2 having a constant volume closed by the solid material, and the calculation processing is performed. By executing the frequency analysis of this sound, the unit 5 can obtain information related to the road surface state where the vehicle is traveling whenever the vehicle is traveling.

従って、高性能な路面状態検出装置を実現し、路面の状態を常時検出して通常走行状態での積極的かつ制度の高い車両制御を実行することができるという効果が得られる。更に、マイクロフォン1が検出する音の周波数帯域を限定することで、最適なコストパフォーマンスを得ることができるので、高性能かつ低価格な路面状態検出装置を実現することができるという効果が得られる。   Therefore, it is possible to realize a high-performance road surface state detection device, and to obtain an effect that the road surface state is constantly detected and the vehicle control can be executed positively and highly in the normal driving state. Furthermore, since the optimum cost performance can be obtained by limiting the frequency band of the sound detected by the microphone 1, an effect of realizing a high-performance and low-priced road surface state detecting device can be obtained.

本発明の一実施例における路面状態検出装置の構成及び設置例を示す図である。It is a figure which shows the structure and installation example of the road surface state detection apparatus in one Example of this invention. 図1のA−A線に沿った断面図である。It is sectional drawing along the AA line of FIG. 同実施例の路面状態検出装置の演算処理部による路面状態検出処理動作を示すフローチャートである。It is a flowchart which shows the road surface state detection processing operation by the arithmetic processing part of the road surface state detection apparatus of the Example. マイクロフォンにより検出されたタイヤによる空洞共鳴音を示す図である。It is a figure which shows the cavity resonance sound by the tire detected by the microphone. 車両の走行速度(車速)と空洞共鳴音周波数との関係を示す図である。It is a figure which shows the relationship between the travel speed (vehicle speed) of a vehicle, and a cavity resonance sound frequency. 既知の路面を走行して実験的に求めた路面状態を判定するための判定用マップを示す図である。It is a figure which shows the map for determination for driving | running | working a known road surface and determining the road surface state calculated | required experimentally.

符号の説明Explanation of symbols

1 マイクロフォン(音圧検出手段)
2 箱体(気体室)
5 演算処理部(演算装置)
1 Microphone (Sound pressure detection means)
2 Box (gas chamber)
5 Arithmetic processing part (arithmetic unit)

Claims (3)

路面からタイヤを経て車体に伝達される振動の伝達経路中に配置されると共に、個体材料により閉塞された一定体積の気体室と、
前記気体室内に配置されると共に、音を検出する音圧検出手段と、
前記音圧検出手段の出力を周波数解析することにより、車両が走行している路面状態に関連する情報を得る演算装置と
を備えたことを特徴とする路面状態検出装置。
A gas chamber of a constant volume that is disposed in a vibration transmission path that is transmitted from the road surface through the tire to the vehicle body and that is blocked by the solid material,
A sound pressure detecting means disposed in the gas chamber for detecting sound;
A road surface state detection apparatus comprising: an arithmetic unit that obtains information related to a road surface state where the vehicle is traveling by performing frequency analysis on the output of the sound pressure detection unit.
前記演算装置が、前記音圧検出手段の出力における高、低2つのピーク周波数とその周波数差、及び該2つのピーク周波数の少なくとも一方に対応する音圧レベルを検出すると共に、前記音圧レベルと前記周波数差とに基づいて、車両が走行している路面状態に関連する情報を得る
ことを特徴とする請求項1に記載の路面状態検出装置。
The arithmetic device detects the sound pressure level corresponding to at least one of the high and low two peak frequencies in the output of the sound pressure detecting means, the frequency difference thereof, and the two peak frequencies, and the sound pressure level. The road surface state detection device according to claim 1, wherein information related to a road surface state where the vehicle is traveling is obtained based on the frequency difference.
前記音圧検出手段が検出する音の周波数帯域を、100[Hz]から300[Hz]とする
ことを特徴とする請求項1、または請求項2に記載の路面状態検出装置。

The road surface condition detection device according to claim 1 or 2, wherein a frequency band of sound detected by the sound pressure detection means is set to 100 [Hz] to 300 [Hz].

JP2003343143A 2003-10-01 2003-10-01 Road surface condition detection apparatus Withdrawn JP2005106728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343143A JP2005106728A (en) 2003-10-01 2003-10-01 Road surface condition detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343143A JP2005106728A (en) 2003-10-01 2003-10-01 Road surface condition detection apparatus

Publications (1)

Publication Number Publication Date
JP2005106728A true JP2005106728A (en) 2005-04-21

Family

ID=34537207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343143A Withdrawn JP2005106728A (en) 2003-10-01 2003-10-01 Road surface condition detection apparatus

Country Status (1)

Country Link
JP (1) JP2005106728A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351000A (en) * 2005-05-13 2006-12-28 Tohoku Regional Bureau Ministry Of Land Infrastructure & Transport Road surface condition determination method and device thereof
WO2010050300A1 (en) * 2008-10-30 2010-05-06 株式会社ブリヂストン Method of estimating road surface condition
JP2017020961A (en) * 2015-07-14 2017-01-26 住友ゴム工業株式会社 Tire noise display method, and noise performance evaluation method using the same
WO2018047780A1 (en) * 2016-09-06 2018-03-15 株式会社デンソー Road surface condition estimation device
CN111223494A (en) * 2019-12-17 2020-06-02 深圳市联谛信息无障碍有限责任公司 Method and device for identifying road surface information and electronic equipment
EP3537430B1 (en) * 2018-03-05 2023-08-16 Harman International Industries, Incorporated Method and apparatus for a low cost, acoustic tire cavity resonance canellation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351000A (en) * 2005-05-13 2006-12-28 Tohoku Regional Bureau Ministry Of Land Infrastructure & Transport Road surface condition determination method and device thereof
WO2010050300A1 (en) * 2008-10-30 2010-05-06 株式会社ブリヂストン Method of estimating road surface condition
EP2343522A1 (en) * 2008-10-30 2011-07-13 Bridgestone Corporation Method of estimating road surface condition
JP5436442B2 (en) * 2008-10-30 2014-03-05 株式会社ブリヂストン Road surface condition estimation method
US8737628B2 (en) 2008-10-30 2014-05-27 Bridgestone Corporation Method for estimating road surface state
EP2343522A4 (en) * 2008-10-30 2014-07-09 Bridgestone Corp Method of estimating road surface condition
JP2017020961A (en) * 2015-07-14 2017-01-26 住友ゴム工業株式会社 Tire noise display method, and noise performance evaluation method using the same
WO2018047780A1 (en) * 2016-09-06 2018-03-15 株式会社デンソー Road surface condition estimation device
EP3537430B1 (en) * 2018-03-05 2023-08-16 Harman International Industries, Incorporated Method and apparatus for a low cost, acoustic tire cavity resonance canellation
CN111223494A (en) * 2019-12-17 2020-06-02 深圳市联谛信息无障碍有限责任公司 Method and device for identifying road surface information and electronic equipment

Similar Documents

Publication Publication Date Title
Iwao et al. A study on the mechanism of tire/road noise
JP5523023B2 (en) Road surface state estimation method and apparatus, and vehicle control method
US7579943B2 (en) Apparatus, method and program for alarming decrease in tire air-pressure
JP5218445B2 (en) Tire condition judging device
JP2009513945A (en) Method for detecting the internal pressure of a vehicle tire
WO2019129584A1 (en) Noise reducing tyre
JP4809199B2 (en) Tire pressure drop warning device and method, and tire pressure drop warning program
JP5895783B2 (en) Vehicle approach notification device
JP2009029348A (en) Vehicular wheel
JP2005106728A (en) Road surface condition detection apparatus
JP5066984B2 (en) Wheel mounting position determination device
US6584427B2 (en) Method and apparatus for estimating tire air pressure
US9970839B2 (en) Tire pressure decrease detection apparatus, method, and program
CN110871787A (en) Method and apparatus for internal noise sensing for efficient noise and vibration performance
JP4145534B2 (en) Road surface state estimation method and apparatus
KR20090010938A (en) Pneumatic tire with the sound absorber
JPH06258196A (en) Detector of road face friction coefficient
JP4252540B2 (en) Road surface judgment device
KR20030048779A (en) Apparatus for warning air pressure of tire in a vehicle
JP2005265561A (en) Wheel information processor and wheel revolution status estimation method
JP7006210B2 (en) μ Gradient detection device, mounted tire judgment device, road surface condition judgment device, mounted tire and road surface condition judgment device
JP2006327331A (en) Cavity resonance variable wheel and molding die therefor
JP5421895B2 (en) Tire determination apparatus, tire determination method, and tire determination program
KR20200032905A (en) Apparatus for tire noise control
KR101342771B1 (en) Apparatus for detecting road condition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205