JP2005105456A - Acoustic material for high temperature and acoustic structure - Google Patents

Acoustic material for high temperature and acoustic structure Download PDF

Info

Publication number
JP2005105456A
JP2005105456A JP2003339556A JP2003339556A JP2005105456A JP 2005105456 A JP2005105456 A JP 2005105456A JP 2003339556 A JP2003339556 A JP 2003339556A JP 2003339556 A JP2003339556 A JP 2003339556A JP 2005105456 A JP2005105456 A JP 2005105456A
Authority
JP
Japan
Prior art keywords
sound
absorbing material
temperature
high temperature
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003339556A
Other languages
Japanese (ja)
Inventor
Toru Morimoto
徹 森本
Tadataka Azuma
忠孝 東
Masamichi Sekiya
正道 関谷
Kanji Ihara
貫示 井原
Tomotsugu Shiraishi
知嗣 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unix Co Ltd
Original Assignee
Unix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unix Co Ltd filed Critical Unix Co Ltd
Priority to JP2003339556A priority Critical patent/JP2005105456A/en
Publication of JP2005105456A publication Critical patent/JP2005105456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acoustic material for high temperature, keeping the shape without damaging the structure of a porous body constituted of fibers even in a high temperature atmosphere, and having effective acoustic characteristics; and to provide an acoustic structure for the high temperature. <P>SOLUTION: The acoustic material for the high temperature is obtained by using a composite twisted yarn obtained by subjecting a heat-resistant artificial inorganic amorphous staple fiber and a small amount of an organic fiber to blend spinning and reinforcing the resultant yarn with a heat-resistant reinforcing wire, and is in a shape of a cloth having 1.5-3 mm thickness, and 600-1,400 g/m<SP>2</SP>surface density. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、約350℃〜1000℃の高温雰囲気中でも使用可能な吸音材ならびに吸音構造体に関する。   The present invention relates to a sound-absorbing material and a sound-absorbing structure that can be used in a high-temperature atmosphere of about 350 ° C. to 1000 ° C.

従来最も一般的に用いられている、グラスウールやロックウール等の無機質繊維集合体吸音材の実用最高温度は、バインダーの耐熱性に律則されて、およそ350℃レベルである。また、アルミ繊維系吸音材の実用最高温度は約150℃レベルであり、約350℃以上の高温条件に用いる吸音材としては使用不可能か、あるいは実用上多くの欠点を含んでいる。   The practical maximum temperature of the inorganic fiber aggregate sound-absorbing material such as glass wool and rock wool, which has been most commonly used in the past, is about 350 ° C., depending on the heat resistance of the binder. Moreover, the practical maximum temperature of the aluminum fiber-based sound absorbing material is about 150 ° C., and it cannot be used as a sound absorbing material used in a high temperature condition of about 350 ° C. or higher, or has many practical disadvantages.

さて、ガラス繊維やロックウールなどの無機質繊維集合体吸音材は、その繊維基材の材質がガラス繊維や融解鉱物であり、いずれもそれらの転移点・軟化点温度までの温度範囲においては一定の耐熱性を有するものの、それらの多孔質体を構成する無機質繊維集合体吸音材の、各繊維相互を固着させる結合材がフェノール樹脂などの有機高分子物質であるため、350℃以上の雰囲気に曝されると分解・炭化を始め、さらに高温においては発煙・着火して無機質繊維集合体吸音材より各単繊維の分離、離脱、飛散をともない、多孔質体の組織が崩れるなどの問題が惹起するので実用上大きな問題がある。   Now, inorganic fiber aggregate sound-absorbing materials such as glass fiber and rock wool are made of glass fiber or molten mineral, and all of them are constant in the temperature range up to their transition point and softening point temperature. Although it has heat resistance, the binder for fixing each fiber of the inorganic fiber aggregate sound-absorbing material constituting the porous body is an organic polymer substance such as phenol resin, so that it is exposed to an atmosphere of 350 ° C. or higher. If this happens, decomposition and carbonization will start, and smoke and ignition will occur at higher temperatures, causing problems such as the separation of individual fibers from the inorganic fiber aggregate sound-absorbing material, separation and scattering, and collapse of the porous structure. So there is a big problem in practical use.

また、上記課題を解決するために、シリカ処理したガラス繊維やセラミックファイバーなどの耐熱繊維を基材として、結束材を用いない方法で作られた無機質繊維集合体吸音材がある。これらは前記繊維基材の集合体を一定の厚みにし、不繊布製法のひとつであるニードル加工を施して、厚み方向に短繊維をからませて成形したものである。この方法は結束材を用いないことから高温における結束材の消失はないが、これらの耐熱性繊維は表面が円滑かつ直線的で短いため、繊維どうしのからみによる繊維相互の結束力が弱いために空隙率が定まらないので、任意の厚みならびに面密度の吸音材として安定した製品を得ることは極めて困難である。さらに、当該吸音材の繊維相互結合力は充分でないので、高温雰囲気での使用中に、風圧などに起因する繊維の離脱・飛散を惹起する。   Moreover, in order to solve the said subject, there exists an inorganic fiber aggregate sound-absorbing material made by the method which uses heat-resistant fibers, such as a glass fiber and ceramic fiber which carried out the silica process, as a base material, and does not use a binding material. These are formed by making the aggregate of the fiber bases into a certain thickness, performing needle processing, which is one of the non-woven fabric manufacturing methods, and entangled the short fibers in the thickness direction. Since this method does not use a binding material, there is no loss of the binding material at high temperatures, but because these heat-resistant fibers have a smooth, straight and short surface, the binding force between the fibers due to the entanglement between the fibers is weak. Since the porosity is not determined, it is extremely difficult to obtain a stable product as a sound absorbing material having an arbitrary thickness and surface density. Furthermore, since the fiber mutual bonding force of the sound absorbing material is not sufficient, the fiber is detached or scattered due to wind pressure or the like during use in a high temperature atmosphere.

本発明の目的は、上記従来の諸課題を解決するために、高温雰囲気中でも繊維で構成される多孔質体の組織が壊れることなくその形状を保持し、かつ有効な吸音特性を有する高温用吸音材ならびに高温用吸音構造体を提供することである。   An object of the present invention is to solve the above-mentioned conventional problems, and to maintain the shape of a porous body composed of fibers even in a high-temperature atmosphere without breaking the structure and to have an effective sound-absorbing characteristic. It is to provide a material and a sound absorbing structure for high temperature.

本発明者等は、繊維集合多孔質体であって、各繊維の結合が有機高分子の結合によらず、また、不織布のように各繊維同士が絡みや摩擦による緩やかな結合ではなく、各繊維が撚リ合わされた撚糸をなすことにより織物(布状)となり、繊維構成組織がより安定化されている繊維集合多孔質体の存在に着目した。   The inventors of the present invention are fiber aggregate porous bodies in which each fiber is not bonded by an organic polymer, and each fiber is not a loose bond due to entanglement or friction like a nonwoven fabric. Attention was paid to the presence of a fiber aggregate porous body in which a woven fabric (cloth shape) is formed by forming twisted yarns in which fibers are twisted together, and the fiber structure is further stabilized.

すなわち、請求項1〜3に記載の、耐熱性のある人造無機非晶質繊維の短繊維と少量の有機繊維を混合紡績し、さらに各種の補強線で強度を上げて得られる複合撚糸よりなる織物繊維は、耐熱パッキンや断熱被覆材として既知であるが、これまで吸音材としての用途は見当たらない。   That is, it is composed of a composite twisted yarn obtained by mixing and spinning short fibers of artificial inorganic amorphous fibers having heat resistance and a small amount of organic fibers according to claims 1 to 3, and further increasing the strength with various reinforcing wires. Textile fibers are known as heat-resistant packings and heat-insulating coating materials, but no use as a sound-absorbing material has been found so far.

そこで、本発明者等は、本発明の出発材料である糸の構成、および材料を変化させた織物の吸音率の測定を行うなど、鋭意研究した結果、請求項1に示す厚さならびに面密度の製品が良好な吸音特性を有することを見出した。さらに当該製品中の有機繊維をあらかじめ燃焼・消失することにより吸音特性が大幅に向上すること、更に当該製品が長時間高温雰囲気に曝されても吸音特性が劣化しないことを見出し、本発明をなすに至った。   Accordingly, the present inventors have conducted extensive research such as measuring the sound absorption coefficient of the woven fabric obtained by changing the composition of the yarn as the starting material of the present invention, and the thickness and area density shown in claim 1. It was found that this product has good sound absorption characteristics. Furthermore, it is found that the sound absorption characteristics are greatly improved by burning and disappearing the organic fibers in the product in advance, and that the sound absorption characteristics are not deteriorated even if the product is exposed to a high temperature atmosphere for a long time. It came to.

本発明の第一の態様は、耐熱性のある人造無機非晶質繊維の短繊維と、少量の有機繊維を混合紡績し、さらに各種の補強線で強度を上げた複合撚糸よりなる織物であって、厚さが1.5mm〜3mmで、かつ、面密度が600g/m〜1400g/mの布状であることを特徴とする、高温吸音材である。 The first aspect of the present invention is a woven fabric made of a composite twisted yarn in which short fibers of heat-resistant artificial inorganic amorphous fibers and a small amount of organic fibers are mixed and spun up with various reinforcing wires. Te, a thickness of 1.5 mm to 3 mm, and wherein the surface density of the cloth-like 600g / m 2 ~1400g / m 2 , a hot sound absorbing material.

本発明の第二の態様は、第一の態様に記載の高温吸音材の有機繊維をあらかじめ燃焼させ消失させることにより、多孔率を向上させたことを特徴とする、高温用吸音材である。   According to a second aspect of the present invention, there is provided a high-temperature sound-absorbing material characterized in that the porosity is improved by burning the organic fibers of the high-temperature sound-absorbing material described in the first aspect in advance.

本発明の第三の態様は、第一の態様および第二の態様に記載の高温用吸音材の片面に、剛性の高い耐熱性金網を耐熱性のある針金を用いて取り付けたことを特徴とする、高温用吸音材である。   A third aspect of the present invention is characterized in that a high-temperature heat-resistant wire mesh is attached to one side of the high-temperature sound-absorbing material according to the first and second aspects using a heat-resistant wire. It is a high-temperature sound-absorbing material.

本発明の第四の態様は、耐熱性を有する剛壁と空気層を介して、音源側に、請求項1〜3に記載の高温用吸音材を平板状に、もしくは曲面状に配設したことを特徴とする、高温用吸音構造体である。   According to a fourth aspect of the present invention, the sound absorbing material for high temperature according to any one of claims 1 to 3 is disposed in a flat plate shape or a curved surface on the sound source side through a rigid wall having heat resistance and an air layer. This is a high-temperature sound-absorbing structure.

本発明の第五の態様は、第四の態様に記載の高温用吸音構造体の空気層部分に、第一の態様あるいは第二の態様に記載の高温用吸音材を、波型に成形して配設したことを特徴とする、高温用吸音構造体である。   According to a fifth aspect of the present invention, the sound absorbing material for high temperature according to the first aspect or the second aspect is formed into a corrugated shape in the air layer portion of the sound absorbing structure for high temperature according to the fourth aspect. This is a high-temperature sound-absorbing structure.

本発明によって、織物繊維を構成することにより、耐熱性があり、薄くて、軽量で、且つ自己保持性がある、吸音特性の優れた、布状の吸音材が経済的合理的に得られる。また、あらかじめ焼成することにより、従来の吸音材に見られる有機系結合材(バインダー)に起因する、燃焼時に発生する有毒ガスの懸念が全く無い新規吸音材が得られる。さらに、この布状の高温用吸音材の薄くて軽い特性により設計自由度が増すので、優れた吸音特性を有する高温用吸音構造体を提供することを可能ならしめる。   By constituting the woven fiber according to the present invention, a cloth-like sound-absorbing material that is heat-resistant, thin, lightweight, self-holding, and excellent in sound-absorbing properties can be obtained economically and reasonably. Further, by firing in advance, a new sound absorbing material free from any concern about toxic gas generated during combustion due to the organic binder (binder) found in conventional sound absorbing materials can be obtained. Furthermore, since the design flexibility is increased by the thin and light characteristics of the cloth-like high-temperature sound-absorbing material, it is possible to provide a high-temperature sound-absorbing structure having excellent sound-absorbing characteristics.

本発明の布状の高温用吸音材(織物)に用いられる複合撚糸の出発材料は人造無機非晶質繊維の短繊維とこれらの短繊維に介在する有機繊維および補強線で構成されている。人造無機非晶質繊維の短繊維はリフラクトリーセラミックファイバー、即ち組成中、アルミナ(Al)とシリカ(SiO)の合計が85%以上で、繊維経2〜4μmのもの、または、スーパーウールと呼称され、組成がシリカ(SiO)と参加アルカリ土類(CaO、MgO)よりなる繊維径3〜5μmの、耐熱性のある、通常、繊維長10数mm以内の短繊維である。 The starting material of the composite twisted yarn used for the cloth-like high-temperature sound-absorbing material (woven fabric) of the present invention is composed of short fibers of artificial inorganic amorphous fibers, organic fibers interposed between these short fibers, and reinforcing wires. Short fibers of artificial inorganic amorphous fibers are refractory ceramic fibers, that is, the total of alumina (Al 2 O 3 ) and silica (SiO 2 ) in the composition is 85% or more, and the fiber diameter is 2 to 4 μm, or It is called super wool, and is a heat-resistant short fiber having a fiber diameter of 3 to 5 μm, usually composed of silica (SiO 2 ) and participating alkaline earths (CaO, MgO), usually having a fiber length of less than 10 mm. .

介在有機繊維はレーヨン繊維にクリンプのあるフェラメントまたはステーブルを6〜25mmに切断した短繊維を用いる。レーヨン繊維の他、ビニロン、アクリル、ポリエステル等の短繊維に置き換えることも出来るが、この介在有機繊維の形状や材質は本発明においては製造工程上の付加的要素であり本質的な問題ではない。   As the intervening organic fiber, a short fiber obtained by cutting a fermentor or a crimp with a rayon fiber crimped to 6 to 25 mm is used. In addition to the rayon fiber, it can be replaced with short fibers such as vinylon, acrylic and polyester. However, the shape and material of the intervening organic fiber are additional elements in the production process and are not an essential problem in the present invention.

補強線は、耐熱使用条件によって綿糸、ガラス長繊維ヤーン、ステンレス繊維ヤーン、アルミナ繊維ヤーンなどフィラメント糸が用いられ、さらに高温雰囲気での補強を必要とする場合には、前述のフィラメント糸に加えて、直径200μm以内の各種耐熱金属細線、即ちステンレス鋼線、ニクロム線、およびインコネル線等が用いられる。   For the reinforcing wire, filament yarn such as cotton yarn, long glass fiber yarn, stainless fiber yarn, alumina fiber yarn, etc. is used depending on the heat-resistant use conditions. In addition, if reinforcement in a high temperature atmosphere is required, in addition to the above filament yarn Various heat-resistant metal fine wires having a diameter of 200 μm or less, that is, stainless steel wires, nichrome wires, inconel wires, and the like are used.

本発明の布状の高温用吸音材は、前項記載の材料によりなる複合撚糸により、通常の織機で織物にすることが出来る。すなわち、当該複合撚糸の製造は、紡績工程で、まず人造無機非晶質繊維の短繊維に有機繊維を(15〜20重量%)混入し打綿、梳綿、練条の各工程を経て、ウェブおよびスライバー(太い柔らかな紐状繊維集合体)を得る。次にスライバーは粗・精紡機で伸ばされ撚りをかけつつ、ガラス長繊維ヤーンなどフィラメント糸が挿入され、あらかじめ補強された下撚捲糸(原糸と呼ぶ)となる。さらに当該原糸を複数本とステンレス鋼線等の耐熱金属細線が撚り合わされ、複合撚糸となる。   The cloth-like high-temperature sound-absorbing material of the present invention can be made into a woven fabric with a normal loom using the composite twisted yarn made of the material described in the preceding paragraph. That is, in the production of the composite twisted yarn, in the spinning process, first, organic fibers (15 to 20% by weight) are mixed into the short fibers of the artificial inorganic amorphous fibers, and then the steps of cotton battering, carding, and kneading are performed. A web and sliver (thick soft string-like fiber aggregate) is obtained. Next, the sliver is drawn by a roughing / spinning machine and twisted, and a filament yarn such as a long glass fiber yarn is inserted into a pre-reinforced base twisted yarn (called a raw yarn). Further, a plurality of the raw yarns and a heat-resistant metal fine wire such as a stainless steel wire are twisted to form a composite twisted yarn.

ここで得られた複合撚糸は、通常の織機で任意の厚さ、および面密度の織物となすことが出来る。織物の面密度および厚さは、織物を構成する縦糸、横糸の打ち込み本数、糸の番手(単位長さでの重さ)、太さ、および糸の塑性変形性より規定される。人造無機非晶質繊維(真比重2.4〜2.7)と介在有機繊維(真比重0.9〜1.2)の混合比を、80重量%対20重量%とし、補強線の全体容積を数%以下にした場合、糸の太さが2〜3mmの可塑変形性のある複合撚糸が得られる。この複合撚糸を用いて厚さ1.2〜3.5mm、面密度400〜1700g/mの織物を得ることが出来る。 The composite twisted yarn obtained here can be made into a woven fabric having an arbitrary thickness and areal density with a normal loom. The areal density and thickness of the woven fabric are defined by the number of warp yarns and weft yarns constituting the woven fabric, yarn count (weight in unit length), thickness, and plastic deformability of the yarn. The mixing ratio of the artificial inorganic amorphous fiber (true specific gravity 2.4 to 2.7) and the intervening organic fiber (true specific gravity 0.9 to 1.2) is 80% by weight to 20% by weight. When the volume is set to several percent or less, a composite twisted yarn having plastic deformability with a thickness of 2 to 3 mm is obtained. A woven fabric having a thickness of 1.2 to 3.5 mm and an area density of 400 to 1700 g / m 2 can be obtained using the composite twisted yarn.

これらの複合撚糸および当該複合撚糸による織物は繊維集合体多孔質体である。複合撚糸が人造無機非晶質繊維(真比重2.6)と介在有機繊維(真比重1)で構成され、それらの混合比を80重量%対20重量%とし、糸の太さが2mmの可塑変形性のあるものとした場合、補強線の全体に占める容積を無視すれば、当該複合撚糸の空隙率は86%程度となる。また当該複合撚糸を用いて、縦糸および横糸本数を調整して、厚さ2mm、面密度1000g/mとした場合、78%程度の空隙率のものが得られる。この状態の当該複合撚糸を焼成処理し介在有機繊維を消失させれば、焼失部分は新たな空隙(微細孔)となり、見かけ厚さが変わらないものとして算定すると、当該繊維の空隙率(微細孔)は84%となる。 These composite twisted yarns and fabrics made of the composite twisted yarns are fiber aggregate porous bodies. The composite twisted yarn is composed of artificial inorganic amorphous fiber (true specific gravity 2.6) and intervening organic fiber (true specific gravity 1), the mixing ratio thereof is 80% by weight to 20% by weight, and the thickness of the yarn is 2 mm. In the case of plastic deformation, if the volume of the entire reinforcing wire is ignored, the porosity of the composite twisted yarn is about 86%. Further, when the number of warp and weft yarns is adjusted using the composite twisted yarn so as to have a thickness of 2 mm and an area density of 1000 g / m 2 , a porosity of about 78% is obtained. If the composite twisted yarn in this state is baked and the intervening organic fibers disappear, the burned-out part becomes new voids (micropores), and it is calculated that the apparent thickness does not change. ) Is 84%.

さて、実施例中の表1および図5から明らかなように、本発明者等は、本発明に用いた無処理品(原反)を焼成処理することにより吸音特性が大幅に改善されることを、残響室法吸音率を測定することにより見出した。   As is apparent from Table 1 and FIG. 5 in the examples, the present inventors greatly improve the sound absorption characteristics by firing the untreated product (raw fabric) used in the present invention. Was found by measuring the sound absorption coefficient of the reverberation chamber method.

そもそも本発明の高温用吸音材の吸音は、まず、繊維集合多孔質体中を貫通する微細孔の中を音波が通過する過程で発現する。すなわち、騒音源から発生した音波が前記多孔質体に入射すると、多数の微細孔内の空気粒子が振動して微細孔内面の摩擦抵抗を受けることにより、音(振動)のエネルギーが熱エネルギーに変換されることにより吸音が起こるとされている。   In the first place, sound absorption of the high-temperature sound-absorbing material of the present invention is first manifested in a process in which sound waves pass through fine holes penetrating through the fiber assembly porous body. That is, when sound waves generated from a noise source enter the porous body, air particles in a large number of micropores vibrate and receive frictional resistance on the inner surface of the micropores, so that sound (vibration) energy is converted into thermal energy. It is said that sound absorption occurs when converted.

さらに当該吸音材を貫通した音波は、吸音構造体の空気層の中を移動して、後述する耐熱性を有する剛壁に衝突し反射する。この反射波と入射波より発現する干渉現象と、前記当該吸音材の取り付け位置、すなわち空気層の大きさの関係で最大吸音率を示す周波数が決定される。   Furthermore, the sound wave penetrating the sound absorbing material moves in the air layer of the sound absorbing structure, and collides with and reflects the heat-resistant rigid wall described later. The frequency indicating the maximum sound absorption rate is determined by the relationship between the interference phenomenon generated from the reflected wave and the incident wave and the mounting position of the sound absorbing material, that is, the size of the air layer.

表1および図5において、いずれの高温用吸音材も焼成前(無処理前)に較べて焼成処理品の吸音率が大幅に向上している理由は、前記のごとく焼成処理を施すことにより介在有機繊維が消失する。この焼失部分は新たな空隙となるが、この空隙の増加は、微細孔すなわち前記繊維集合多孔質体中を貫通する細孔の数を比例的に増加させる。その結果、音波に対する微細孔内面での摩擦抵抗が増加することにより吸音率が向上するものと推察する。   In Table 1 and FIG. 5, the reason why the sound absorption rate of the fired product is greatly improved compared to that before firing (before treatment) in any of the high-temperature sound-absorbing materials is that the firing treatment is performed as described above. Organic fibers disappear. The burned-out portion becomes a new void, and the increase in the void proportionally increases the number of micropores, that is, the pores penetrating through the fiber assembly porous body. As a result, it is presumed that the sound absorption rate is improved by increasing the frictional resistance on the inner surface of the fine hole against the sound wave.

ところで、請求項1に明記した本発明の高温用吸音材の範囲は、厚さが1.5mm〜3mmでかつ、面密度600g/m〜1400g/mであるが、表1に示す、焼成処理無しの比較例1と比較例3を比較すれば明らかなように、前記範囲を超えた吸音材厚みが3.5mmの比較例3の吸音特性は、比較例1に較べて劣る。この理由は元の厚みが3mmを超えると前記繊維集合多孔質体すなわち吸音材を貫通する微細孔の数が、繊維の重なりが増加することを伴って減少することに起因するものと推測する。 Incidentally, the range of high temperature sound absorbing material of the present invention as specified in claim 1, and a thickness of 1.5 mm to 3 mm, is a surface density 600g / m 2 ~1400g / m 2 , are shown in Table 1, As is clear from comparison between Comparative Example 1 and Comparative Example 3 without firing treatment, the sound absorption characteristics of Comparative Example 3 having a sound absorbing material thickness of 3.5 mm exceeding the above range are inferior to those of Comparative Example 1. This reason is presumed to be caused by the fact that when the original thickness exceeds 3 mm, the number of fine pores penetrating the fiber aggregate porous body, that is, the sound absorbing material, decreases with an increase in fiber overlap.

しかしながら、高温吸音材の厚さと面密度が前記に定める範囲を下回ると、吸音材を構成する繊維間の網目が開き過ぎるので、織物としての安定性の維持が困難となる。   However, if the thickness and surface density of the high-temperature sound-absorbing material are below the range defined above, the mesh between the fibers constituting the sound-absorbing material is excessively open, so that it is difficult to maintain stability as a woven fabric.

また、後述する実施例1ならびに比較例1および2に明記の、好ましい形態の高温吸音材を、炉内温度800℃にて4時間保持した結果、いずれも実質的な寸法変化、収縮、亀裂、繊維の離脱等は生じなかった。また吸音特性の劣化も認められなかった。   Moreover, as a result of holding the high-temperature sound-absorbing material in a preferable form specified in Example 1 and Comparative Examples 1 and 2 to be described later for 4 hours at an in-furnace temperature of 800 ° C., substantial dimensional change, shrinkage, cracking, No fiber detachment or the like occurred. In addition, no deterioration of the sound absorption characteristics was observed.

図5に示す残響室法吸音率は、室温(約25℃)において測定したものであるが、高温状態においては温度上昇による音速の向上に伴って、吸音特性が高温域に移動する傾向がある。算定結果によれば、500℃で2/3オクターブ、また1000℃で1オクターブ右に移動する。しかしながら、吸音特性的には、空気層の大きさの選択等により実用的には実用上、全く問題ないものと推察する。   The reverberation chamber method sound absorption coefficient shown in FIG. 5 is measured at room temperature (about 25 ° C.), but in a high temperature state, the sound absorption characteristics tend to move to a high temperature region as the sound speed increases due to temperature rise. . According to the calculation result, it moves 2/3 octaves at 500 ° C. and 1 octave right at 1000 ° C. However, in terms of sound absorption characteristics, it is presumed that there is no practical problem at all due to selection of the size of the air layer or the like.

次に、本発明の高温用吸音構造体について述べる。耐熱性を有する剛壁とは耐火煉瓦、不定形耐火物、耐熱性鋼鈑等で構築された剛壁を意味する。また、鋼鈑の内面、すなわち本発明の高温用吸音材と相対する側に不定形耐火物あるいはセラミックファイバー製のブランケット等で断熱層を形成した剛壁も含まれる。また、鋼鈑製の箱型構造とし、この中に空気あるいは水を循環させることにより連続的に冷却する方式の剛壁も含まれる。   Next, the high temperature sound absorbing structure of the present invention will be described. The rigid wall having heat resistance means a rigid wall constructed of refractory bricks, irregular refractories, heat-resistant steel plates and the like. Further, a rigid wall is also included in which a heat insulating layer is formed of an indeterminate refractory or a ceramic fiber blanket on the inner surface of the steel plate, that is, the side facing the high-temperature sound absorbing material of the present invention. In addition, a steel-walled box-type structure, which includes a rigid wall that is continuously cooled by circulating air or water, is also included.

本発明の吸音構造体は、前記耐熱性を有する剛壁と空気層を介して、前記本発明の高温用吸音材を音源側に配設した構造体である。空気層の厚さは特に限定はなく、目的とする吸音特性に応じて適宜選択すればよいが、通常50〜150mm程度である。構造体の空気層は構造体内で一定である必要はなく、施工レイアウトに応じて上記の範囲で適宜変動してもよい。また、本発明の布状の高温用吸音材は、剛壁が平板で空気層が一定の場合には平板状に配設すればいい。また、剛壁がアーチ状の場合にはアーチの形状に合わせてアーチ状曲面を形成するように配設すればよい。   The sound absorbing structure of the present invention is a structure in which the sound absorbing material for high temperature of the present invention is disposed on the sound source side through the rigid wall having heat resistance and an air layer. The thickness of the air layer is not particularly limited and may be appropriately selected depending on the intended sound absorption characteristics, but is usually about 50 to 150 mm. The air layer of the structure does not need to be constant in the structure, and may vary as appropriate within the above range depending on the construction layout. The cloth-like high-temperature sound absorbing material of the present invention may be arranged in a flat plate shape when the rigid wall is a flat plate and the air layer is constant. Further, when the rigid wall has an arch shape, it may be arranged so as to form an arch-shaped curved surface in accordance with the shape of the arch.

さて、本発明の布状高温吸音材に、より大きな耐風圧特性が要求される場合には本発明の布状高温吸音材の剛壁側に、ステンレス製の金網を取り付けて剛性の向上を計ればよい。金網の網目は正方形の形状にこだわらないが、正方形の場合には一辺の長さが、10mm〜75mm程度が一般的である。金網の線径は要求される耐風圧によって適宜選択すればよいが、前記金網の一辺長さと関連して1.0mmΦ〜4.0mmΦのものが選択可能である。   When the cloth-like high-temperature sound-absorbing material of the present invention requires a higher wind pressure resistance, a stainless steel wire mesh is attached to the rigid wall side of the cloth-like high-temperature sound-absorbing material of the present invention to improve the rigidity. That's fine. The mesh of the metal mesh is not particular about the square shape, but in the case of a square, the length of one side is generally about 10 mm to 75 mm. The wire diameter of the wire mesh may be appropriately selected depending on the required wind-resistant pressure, but a wire having a diameter of 1.0 mmΦ to 4.0 mmΦ can be selected in relation to the length of one side of the wire mesh.

前記高温用吸音構造体の空気層部分に、本発明の第一もしくは第二の発明の高温用吸音材を波型に配設することにより、吸音特性の一層の向上が可能である。図4に示すように、波型ピッチ(λ)と山および谷部分の空気層の大きさ(X,Y)を選択することにより、特定の周波数帯域の吸音率を調整することも可能である。   By arranging the high-temperature sound absorbing material of the first or second aspect of the present invention in a corrugated form in the air layer portion of the high-temperature sound-absorbing structure, the sound absorption characteristics can be further improved. As shown in FIG. 4, the sound absorption coefficient in a specific frequency band can be adjusted by selecting the corrugated pitch (λ) and the size (X, Y) of the air layer in the peaks and valleys. .

(請求項1と4対応)複合撚糸の人造無機非晶質繊維として、繊維径2〜4μm、組成として、Alが46重量%、SiOが54重量%のリフラクトリーセラミックファイバーを用いた。また、介在有機繊維には長さ12mm、繊維径約10μmのクリンプの有るレーヨン繊維を用いた。混合比はリフラクトリーセラミックファイバー80重量%、レーヨン繊維20重量%とした。 (Corresponding to Claims 1 and 4) As the artificial inorganic amorphous fiber of the composite twisted yarn, a refractory ceramic fiber having a fiber diameter of 2 to 4 μm and a composition of 46% by weight of Al 2 O 3 and 54% by weight of SiO 2 is used. It was. As the intervening organic fiber, a rayon fiber having a length of 12 mm and a fiber diameter of about 10 μm and having a crimp was used. The mixing ratio was 80% by weight of refractory ceramic fiber and 20% by weight of rayon fiber.

原糸補強線にはガラス長繊維ヤーン(ECG150 1/2)一本を用いて500g/1000mの原糸を得た。さらに金属繊維として150μのステンレス鋼線(SUS310S)一本と前述の原糸二本を撚り合わせ1150g/1000mの複合撚糸をなした。当該複合撚糸を、密度(縦糸57本/100mm,横糸28本/100mm)で織り、面密度1030g/m、厚さ2mmの織物である、平板状の高温用吸音材aを準備した。 A single yarn of glass long fiber (ECG150 1/2) was used as the yarn reinforcing wire to obtain a yarn of 500 g / 1000 m. Further, one 150 μm stainless steel wire (SUS310S) and two of the above-mentioned raw yarns were twisted as metal fibers to form a composite twisted yarn of 1150 g / 1000 m. The composite twisted yarn was woven at a density (57 warps / 100 mm, 28 wefts / 100 mm), and a flat, high-temperature sound-absorbing material a, which is a woven fabric having a surface density of 1030 g / m 2 and a thickness of 2 mm, was prepared.

さて、図2の(b)に示すような、2000mm(長さ)×500mm(幅)×100mm(深さ)で、上面のみが開放する筐体5を準備した。この筐体5の底部材6(剛壁)は厚さが1.6mmのステンレス(SUS302)鋼鈑を用いた。また、側壁7の枠部材は厚さ1mmの前記鋼鈑を用いて箱状に加工してなる、幅25mm(すなわち、これが側壁7の厚さ)の、板材を組み合わせたものである。この筐体5の上面(開放面)を閉塞するように前記高温用吸音材a4を切断・加工して固定し、高温用吸音構造体8を製作した。この吸音構造体a8を、JIS A1409−1998に準じて残響室法吸音率を測定した。測定結果を図5の曲線aに示す。いずれも315Hz以上の周波数領域において、比較的有効な吸音特性が得られた。   Now, as shown in FIG. 2B, a housing 5 having 2000 mm (length) × 500 mm (width) × 100 mm (depth) and having only the upper surface opened was prepared. The bottom member 6 (rigid wall) of the casing 5 is a stainless steel (SUS302) steel plate having a thickness of 1.6 mm. Further, the frame member of the side wall 7 is a combination of plate materials having a width of 25 mm (that is, the thickness of the side wall 7) formed into a box shape using the steel plate having a thickness of 1 mm. The high-temperature sound-absorbing material a4 was cut and fixed so as to close the upper surface (open surface) of the casing 5, and the high-temperature sound-absorbing structure 8 was manufactured. The sound absorption structure a8 was measured for the reverberation chamber method sound absorption coefficient according to JIS A1409-1998. The measurement result is shown by curve a in FIG. In both cases, relatively effective sound absorption characteristics were obtained in a frequency region of 315 Hz or higher.

(請求項2と4対応)実施例1の織物を焼成処理した。焼成処理の方法は当該織物を長さ方向に垂直に広げ、下端部より着火させて織物全体を焼成し、含有レーヨン繊維等を取り除いた。当該焼成処理後の織物寸法は変わらず、質量は860g/m、厚さ1.9mmとなった。この繊維を用いて、平板状の高温用吸音材bを準備した。 (Corresponding to Claims 2 and 4) The fabric of Example 1 was fired. The firing process was performed by spreading the fabric vertically in the length direction, igniting from the lower end, firing the entire fabric, and removing contained rayon fibers and the like. The fabric dimensions after the baking treatment were not changed, and the mass was 860 g / m 2 and the thickness was 1.9 mm. A flat plate-shaped sound absorbing material b for high temperature was prepared using this fiber.

前記吸音構造体aと同様の筐体5を製作し、この筐体の上面(開放面)を閉塞するように前記高温用吸音材b4を切断・加工して固定し、高温用吸音構造体b8を製作した。上記吸音構造体bについて、実施例1と同様にJIS A1409−1998に準じて残響室法吸音率を測定した結果と同じく、図5の曲線bに示す。いずれも315Hz以上の周波数帯域において有効な吸音特性を示す。また、事前に焼成処理を施した本実施例の方が、実施例1の焼成処理をしない無処理の高温用吸音構造体aよりも吸音特性が有効なことが明白である。   A housing 5 similar to the sound absorbing structure a is manufactured, and the high temperature sound absorbing material b4 is cut and fixed so as to close the upper surface (open surface) of the housing, and the high temperature sound absorbing structure b8. Was made. The sound absorption structure b is shown by a curve b in FIG. 5, similar to the result of measuring the reverberation chamber method sound absorption rate according to JIS A1409-1998 as in Example 1. Both exhibit effective sound absorption characteristics in a frequency band of 315 Hz or higher. In addition, it is apparent that the present embodiment, which has been subjected to the firing treatment in advance, has more effective sound absorption characteristics than the untreated high-temperature sound-absorbing structure a that is not subjected to the firing treatment of the first embodiment.

(比較例1) さて、比較例として、本発明の高温用吸音材織物の好ましい他の形態は、実施例1に記載した同仕様材料で、複合撚糸にリフラクトリーセラミックファイバーを用い、介在有機繊維にレーヨン繊維を用いて、原糸補強線にはガラス長繊維ヤーン一本を用いて500g/1000mの原糸を得た。さらに金属繊維としてステンレス鋼線一本と前述の原糸三本を撚り合わせ1650g/1000mの複合撚糸となした。当該複合撚糸を、密度:縦糸40本/100mm,横糸18本/100mmで織り、質量1020g/m、厚さ2.7mmの織物を得た。当該織物を実施例1と同様の方法で残響室法吸音率を測定したところ、表1の比較例1に示すように有効な吸音特性が得られた。 (Comparative Example 1) As a comparative example, another preferred embodiment of the high-temperature sound-absorbing material fabric of the present invention is the same specification material described in Example 1, using a refractory ceramic fiber for the composite twisted yarn, and intervening organic fiber A 500 g / 1000 m yarn was obtained by using rayon fiber and a glass long fiber yarn for the yarn reinforcing wire. Furthermore, one stainless steel wire and three of the above-mentioned raw yarns were twisted as metal fibers to form a composite twisted yarn of 1650 g / 1000 m. The composite twisted yarn was woven at a density of 40 warp yarns / 100 mm and 18 weft yarns / 100 mm to obtain a woven fabric having a mass of 1020 g / m 2 and a thickness of 2.7 mm. When the sound absorption coefficient of the reverberation chamber method was measured for the woven fabric in the same manner as in Example 1, effective sound absorption characteristics were obtained as shown in Comparative Example 1 in Table 1.

(比較例2) 比較例1の織物を焼成処理した。焼成処理の方法は当該織物を長さ方向に垂直に広げ下端部より、着火させ織物全面を焼成し、含有レーヨン繊維等を取り除いた。当該焼成処理後の織物寸法は変わらず、面密度855g/m、厚さ2.6mmとなった。この織物を用いて、平板状の高温用吸音材を準備した。当該織物を、実施例1と同様の方法で残響室法吸音率を測定した結果を、表1の比較例2に示す。焼成処理を施すことにより、吸音特性の向上が認められた。 (Comparative Example 2) The fabric of Comparative Example 1 was fired. The firing process was performed by spreading the fabric vertically in the length direction and igniting the bottom of the fabric to fire the entire surface of the fabric and removing the rayon fibers and the like. The dimensions of the fabric after the baking treatment remained unchanged, and the surface density was 855 g / m 2 and the thickness was 2.6 mm. A flat plate-like sound absorbing material for high temperature was prepared using this fabric. The result of measuring the reverberation chamber method sound absorption rate of the woven fabric in the same manner as in Example 1 is shown in Comparative Example 2 of Table 1. Improvement of sound absorption characteristics was recognized by performing the baking treatment.

(比較例3) また、好ましくない比較例として、前項記載と同仕様の複合撚糸(1650g/1000m)を密度:縦糸54本/100mm,横糸28本/100mmで織り、面密度1510g/m、厚さ3.5mmの織物を得た。当該織物をJIS A1409−1998に準じて残響室法吸音率を測定したところ、表1の比較例3を示すように、好ましくない結果となった。 (Comparative Example 3) Further, as an unfavorable comparative example, a composite twisted yarn (1650 g / 1000 m) having the same specifications as described above is woven with a density: 54 warps / 100 mm, weft 28/100 mm, surface density 1510 g / m 2 , A woven fabric having a thickness of 3.5 mm was obtained. When the sound absorption coefficient of the reverberation chamber method was measured in accordance with JIS A1409-1998, the result was unfavorable as shown in Comparative Example 3 in Table 1.

(比較例4) 比較例3の織物を焼成処理した。焼成処理の方法は当該織物を長さ方向に垂直に広げ下端部より、着火させ織物全体を焼成し、含有レーヨン繊維等を取り除いた。当該焼成処理後の織物寸法は変わらず、面密度1270g/m、厚さ3.3mmとなった。この織物を用いて、平板状の高温用吸音材を準備した。当該織物を実施例1と同様の方法で残響室法吸音率を測定した結果を表1の比較例4に示す。焼成処理を施すことにより、吸音特性の向上は認められたものの、吸音材として採用可能なレベルには到達していない。 (Comparative Example 4) The fabric of Comparative Example 3 was fired. The firing process was performed by spreading the fabric vertically in the length direction, firing it from the lower end, firing the entire fabric, and removing contained rayon fibers and the like. The dimensions of the fabric after the baking treatment were not changed, and the surface density was 1270 g / m 2 and the thickness was 3.3 mm. A flat plate-like sound absorbing material for high temperature was prepared using this fabric. The result of measuring the sound absorption coefficient of the reverberation chamber method in the same manner as in Example 1 is shown in Comparative Example 4 in Table 1. Although an improvement in sound absorption characteristics was recognized by applying the baking treatment, it did not reach a level that can be adopted as a sound absorbing material.

(請求項3と5対応)下記のごとく、ステンレス網強化型高温用吸音材c11を準備した。すなわち、図3に示すように、焼成処理済みの前記高温用吸音材b4の片側に、ステンレス製(SUS304)で線径が2mmΦ、網目の形状が正方形でその格子の一辺が30mmの金網9を取り付けた。取り付けは、ステンレス製(SUS304)で線径が1mmΦの針金10を用いた。前記一辺が30mmの正方形の格子を有する金網の格子点のほぼ10格子点毎に、すなわち直線方向でほぼ30cm毎に、高温用吸音材の折り目を通して吸音材と格子を前記針金10により固定した。図3の(c)は説明図であり、ほぼ10格子点毎に固定した図になっていない。   (Corresponding to Claims 3 and 5) A stainless steel reinforced high temperature sound absorbing material c11 was prepared as described below. That is, as shown in FIG. 3, on one side of the fire-treated sound absorbing material b4, a wire mesh 9 made of stainless steel (SUS304), having a wire diameter of 2 mmΦ, a mesh shape of square, and a side of the grid of 30 mm is provided. Attached. For attachment, a wire 10 made of stainless steel (SUS304) and having a wire diameter of 1 mmΦ was used. The sound-absorbing material and the lattice were fixed by the wire 10 through the creases of the high-temperature sound-absorbing material at approximately every 10 lattice points of the wire mesh having a square lattice with a side of 30 mm, that is, approximately every 30 cm in the linear direction. (C) of FIG. 3 is explanatory drawing, and is not the figure fixed about every 10 lattice points.

実施例1ならびに2と同様の2000mm(長さ)×500mm(幅)×100mm(深さ)で、上面のみが開放する筐体5を準備した。図4の(b)に示すように、この筐体5の中に、焼成処理を施した前記高温用吸音材bを、波のピッチλ(山部から次の山部までの距離)が325mm、山の部分の空気層(筐体低部からの距離X)が100mm、谷の部分の空気層Yが50mm、従って波の震幅を50mmとなるように配設した。これを高温用波型吸音材d13と呼ぶ。図4の(b)に示すような波型を形成するために、ステンレス製(SUS302)で外形が4mmΦの鋼棒12を用いた。   A casing 5 having a size of 2000 mm (length) × 500 mm (width) × 100 mm (depth), which is the same as in Examples 1 and 2, was opened. As shown in FIG. 4B, the high-temperature sound-absorbing material b that has been subjected to the firing treatment is placed in the casing 5 with a wave pitch λ (distance from the peak to the next peak) of 325 mm. The air layer in the mountain part (distance X from the lower part of the housing) is 100 mm, the air layer Y in the valley part is 50 mm, and the seismic amplitude of the waves is 50 mm. This is called a high-temperature wave-type sound absorbing material d13. In order to form a waveform as shown in FIG. 4B, a steel rod 12 made of stainless steel (SUS302) and having an outer diameter of 4 mmφ was used.

この高温用波型吸音材d13の上に、前記ステンレス網強化高温用吸音材c11を配設して筐体に固定して、高温用吸音構造体c14とした。この高温用吸音構造体c14に対して、前記実施例1ならびに2と同様、JIS A1409−1998に準じて残響室法吸音率を測定した結果を図5に示した。図5の曲線cから明らかなように、250Hz以上の周波数領域において吸音特性の改善効果が顕著である。   The stainless steel reinforced high temperature sound absorbing material c11 is disposed on the high temperature wave type sound absorbing material d13, and is fixed to the casing to obtain a high temperature sound absorbing structure c14. FIG. 5 shows the result of measuring the sound absorption coefficient of the reverberation chamber method according to JIS A1409-1998 for the high temperature sound absorbing structure c14 in the same manner as in Examples 1 and 2. As apparent from the curve c in FIG. 5, the effect of improving the sound absorption characteristics is remarkable in the frequency region of 250 Hz or higher.

雰囲気温度が350℃以上となる自動車の排気筒(マフラー)やジェットエンジンの試運転室、船舶等大型内燃機関のエンジンルーム、今後の急速な発展が予測されるコジェネラーターの消音等に利用される可能性がある。   Can be used for mufflers of automobiles with an atmospheric temperature of 350 ° C or higher, jet engine test operation rooms, engine rooms of large internal combustion engines such as ships, and silencers of cogeneration systems that are expected to develop rapidly in the future. There is sex.

布状の高温吸音材の説明図であり、(a)はその平面構造を示す図である。また(b)は(a)のa−a断面を示す図である。It is explanatory drawing of a cloth-like high temperature sound-absorbing material, (a) is a figure which shows the planar structure. Moreover, (b) is a figure which shows the aa cross section of (a). 高温用吸音構造体aおよびbの構成を示す図であり、(a)はその平面図である。また(b)は(a)のb−b断面を示す図である。It is a figure which shows the structure of the high temperature sound-absorbing structure a and b, (a) is the top view. Moreover, (b) is a figure which shows the bb cross section of (a). ステンレス網強化型高温吸音材cの構成を示す図であり、(a)は平板状の高温用吸音材aまたはbを、(b)はステンレス網を示す図である。また(c)は、(b)の網の上に(a)を重ねた状態でのb−b断面を示す図である。It is a figure which shows the structure of the stainless steel net strengthening type high temperature sound-absorbing material c, (a) is a flat plate-shaped high-temperature sound-absorbing material a or b, (b) is a figure which shows a stainless steel net. Moreover, (c) is a figure which shows the bb cross section in the state which accumulated (a) on the net | network of (b). 高温用吸音構造体cの構成を示す図であり、(a)はその平面図である。また(b)は(a)のc−c断面を示す図であるIt is a figure which shows the structure of the high-temperature sound-absorbing structure c, (a) is the top view. Moreover, (b) is a figure which shows the cc cross section of (a). 高温用吸音構造体a、bおよびcの残響室吸音率の測定結果を示す図である。It is a figure which shows the measurement result of the reverberation room sound absorption rate of the sound-absorption structure a for high temperature, b, and c.

符号の説明Explanation of symbols

1 縦糸
2 横糸
3 補強線
5 筐体
6 底部材(剛壁)
7 側壁
8 高温用吸音構造体aまたは高温用吸音構造体b
9 金網
10 針金
11 ステンレス網強化型高温用吸音材c
12 棒鋼
13 高温用波型吸音材d
14 高温用吸音構造体c
λ 波型吸音材の山のピッチ
X 山部分の空気層深さ
Y 谷部分の空気層深さ
DESCRIPTION OF SYMBOLS 1 Warp 2 Weft 3 Reinforcing wire 5 Case 6 Bottom member (rigid wall)
7 Side wall 8 High-temperature sound-absorbing structure a or High-temperature sound-absorbing structure b
9 Wire mesh 10 Wire 11 Stainless steel reinforced sound absorbing material for high temperature c
12 Steel bar 13 High-temperature wave type sound absorbing material d
14 High-temperature sound absorbing structure c
λ Pitch of wave-type sound absorbing material mountain X Air layer depth of mountain part Y Air layer depth of valley part

Claims (5)

耐熱性のある人造無機非晶質繊維の短繊維と、少量の有機繊維を混合紡績し、さらに各種の補強線で強度を上げた複合撚糸よりなる織物であって、厚さが1.5mm〜3mmで、かつ、面密度が600g/m〜1400g/mの布状であることを特徴とする、高温用吸音材。 A woven fabric made of a composite twisted yarn in which short fibers of artificial inorganic amorphous fibers with heat resistance and a small amount of organic fibers are mixed and increased in strength with various reinforcing wires, and the thickness is 1.5 mm to in 3 mm, and wherein the surface density of the cloth-like 600g / m 2 ~1400g / m 2 , high temperature sound absorbing material. 請求項1に記載の高温吸音材の有機繊維をあらかじめ燃焼させ焼失させることにより、多孔率を向上させたことを特徴とする、高温用吸音材。   A high-temperature sound-absorbing material, wherein the porosity is improved by burning the organic fiber of the high-temperature sound-absorbing material according to claim 1 in advance and burning it. 請求項1および2に記載の高温用吸音材の片面に、剛性の高い耐熱性金網を耐熱性のある針金を用いて取り付けたことを特徴とする、高温用吸音材。   A high-temperature sound-absorbing material, comprising a heat-resistant wire mesh having high rigidity attached to one surface of the high-temperature sound-absorbing material according to claim 1 or 2 using a heat-resistant wire. 耐熱性を有する剛壁と空気層を介して、音源側に、請求項1〜3に記載の高温用吸音材を平板状に、もしくは曲面状に配設したことを特徴とする、高温用吸音構造体。   A high-temperature sound absorbing material characterized in that the high-temperature sound-absorbing material according to any one of claims 1 to 3 is disposed in a flat plate shape or a curved surface on a sound source side through a rigid wall having heat resistance and an air layer. Structure. 請求項4に記載の高温用吸音構造体の空気層部分に、請求項1あるいは請求項2に記載の高温用吸音材を波型に成形して配設したことを特徴とする、高温用吸音構造体。   The sound absorbing material for high temperature according to claim 4, wherein the sound absorbing material for high temperature according to claim 1 or 2 is formed into a wave shape in the air layer portion of the sound absorbing structure for high temperature according to claim 4. Structure.
JP2003339556A 2003-09-30 2003-09-30 Acoustic material for high temperature and acoustic structure Pending JP2005105456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339556A JP2005105456A (en) 2003-09-30 2003-09-30 Acoustic material for high temperature and acoustic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339556A JP2005105456A (en) 2003-09-30 2003-09-30 Acoustic material for high temperature and acoustic structure

Publications (1)

Publication Number Publication Date
JP2005105456A true JP2005105456A (en) 2005-04-21

Family

ID=34534720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339556A Pending JP2005105456A (en) 2003-09-30 2003-09-30 Acoustic material for high temperature and acoustic structure

Country Status (1)

Country Link
JP (1) JP2005105456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020106697A (en) * 2018-12-27 2020-07-09 ブリヂストンケービージー株式会社 Sound absorbing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020106697A (en) * 2018-12-27 2020-07-09 ブリヂストンケービージー株式会社 Sound absorbing structure

Similar Documents

Publication Publication Date Title
CN102770630B (en) For the multilayer mounting mat of pollution control device
CN108995329B (en) Sound absorption felt
US4898783A (en) Sound and thermal insulation
CA2340613A1 (en) Burn through resistant nonwoven mat, barrier, and insulation system
JP2017106471A (en) Fitting mat for exhaust gas treatment device
JP2013514496A5 (en)
KR101719006B1 (en) Mounting mat and pollution control device with the same
KR101719007B1 (en) Mounting mat and pollution control device with the same
CA1317709C (en) Sound and thermal insulation
US20040117958A1 (en) High temperature needle-felts with woven basalt scrims
JP2011236526A (en) Mat, manufacturing method of mat and exhaust gas purification apparatus
JP2005105456A (en) Acoustic material for high temperature and acoustic structure
JP2008223165A (en) Heat insulating and sound absorbing material
RU2428529C2 (en) Composite material
US20220227100A1 (en) Nonwoven fibrous web
JPWO2018174180A1 (en) Sound absorbing material and vehicle parts
JPH0641727B2 (en) Silencer for internal combustion engine
US20220242089A1 (en) Flame-resistant foam and nonwoven fiberous web thereof
US11932178B2 (en) Sound-absorbing material
CN210737834U (en) Sound-absorbing wall
EP1780317B1 (en) Soundproofing and thermal insulating fibrous material
KR200349376Y1 (en) Fluff type absorption materials for automotive muffler
JP2002004832A (en) Silencing material and method for manufacturing the silencing material
JPH1144210A (en) Silencer for internal combustion engine
JP2007237625A (en) Method for manufacturing glass-wool insulating material and glass-wool insulating material