JP2005104765A - Aluminum nitride powder and its producing method - Google Patents

Aluminum nitride powder and its producing method Download PDF

Info

Publication number
JP2005104765A
JP2005104765A JP2003339892A JP2003339892A JP2005104765A JP 2005104765 A JP2005104765 A JP 2005104765A JP 2003339892 A JP2003339892 A JP 2003339892A JP 2003339892 A JP2003339892 A JP 2003339892A JP 2005104765 A JP2005104765 A JP 2005104765A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride powder
alkoxy
modified silicone
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003339892A
Other languages
Japanese (ja)
Inventor
Shinji Otsuki
真士 大築
Motoharu Fukazawa
元晴 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003339892A priority Critical patent/JP2005104765A/en
Publication of JP2005104765A publication Critical patent/JP2005104765A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum nitride powder which exhibits sufficient moisture resistance even under high temperature and high humidity conditions and does not remarkably reduce high thermal conductivity of a resin composition; and to provide a method for producing the same. <P>SOLUTION: The aluminum nitride powder has been subjected to surface treatment using an alkoxy-modified silicone. The method for producing the aluminum nitride powder comprises adding the alkoxy-modified silicone to an aluminum nitride powder having a hydroxy group, then mixing, and curing the resulting mixture until the hydroxy group and the alkoxy-modified silicone chemically bind and the alkoxy-modified silicone condenses with each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高熱伝導性樹脂組成物を製造するのに好適な窒化アルミニウム粉末およびその製造方法に関する。 The present invention relates to an aluminum nitride powder suitable for producing a high thermal conductive resin composition and a method for producing the same.

窒化アルミニウム焼結体は、金に近い高熱伝導性を有する絶縁性セラミックスであり、しかも熱膨張係数がSi半導体素子に近いことから、高電力半導体素子の絶縁・放熱基板(ヒートシンク)として賞用されている。また、含ハロゲン気体のプラズマに対する、耐プラズマ性に優れていることから、静電チャック等の半導体製造装置部材への適用も検討されている。 Aluminum nitride sintered body is an insulating ceramic with high thermal conductivity close to that of gold, and its thermal expansion coefficient is close to that of Si semiconductor elements. Therefore, it is used as an insulating and heat dissipation substrate (heat sink) for high power semiconductor elements. ing. In addition, since it has excellent plasma resistance against halogen-containing gas plasma, application to semiconductor manufacturing apparatus members such as electrostatic chucks is also being studied.

一方、高熱伝導性樹脂組成物を製造するための熱伝導性フィラーとしての適用に関しては、まだ途上の段階である。窒化アルミニウム粉末が高い熱伝導率を有するにも関わらず、熱伝導性フィラーとして適用用途が制限されているのは、窒化アルミニウム粉末が空気中の水分により容易に加水分解し、水酸化アルミニウムとアンモニアが生じるためである。この加水分解生成物が本来の特性である熱伝導性や電気絶縁性を損なうという問題点がある。 On the other hand, the application as a heat conductive filler for producing a high heat conductive resin composition is still in the middle of the process. Despite the fact that aluminum nitride powder has high thermal conductivity, its application as a heat conductive filler is limited because aluminum nitride powder is easily hydrolyzed by moisture in the air, and aluminum hydroxide and ammonia This is because. There is a problem that this hydrolysis product impairs the heat conductivity and electrical insulation, which are the original characteristics.

そこで、窒化アルミニウム粉末の加水分解を抑制する方策が種々提案されているが、一長一短がある。すなわち、高温水蒸気や加圧熱水で処理して窒化アルミニウム粒子表面に緻密なアルミナ水和物層を形成する方法(特許文献1)、窒化アルミニウム粉末表面を燐酸または燐酸化合物で処理する方法(特許文献2)では、樹脂組成物の流動性が著しく低下する問題がある。アルコキシシランで表面処理してから数百℃で加熱して酸窒化物被膜(特許文献3)や、酸化ケイ素被膜を形成する方法(特許文献4)では、表面酸化層が厚くなるため熱伝導性が低下することが問題であり、しかも高温処理を必要とする。シランカップリング剤による処理方法(特許文献5、特許文献6)では、耐湿性が不十分であり、しかも水の添加された有機溶剤中でシランカップリング剤をあらかじめ加水分解させ、そのオリゴマー溶液を用いて窒化アルミニウム粉末を処理するものであるのでプロセスが複雑化し、また溶液中の過剰の水分により窒化アルミニウムが加水分解するのを抑制させることの別の配慮が必要であった。
特開平3−93612号公報 特許第3396510号公報 特表平7−507760号公報 特許第3175073号公報 特許第2981002号公報 特開2002−53736号公報
Various measures for suppressing the hydrolysis of the aluminum nitride powder have been proposed, but there are advantages and disadvantages. That is, a method of forming a dense alumina hydrate layer on the surface of aluminum nitride particles by treatment with high-temperature steam or pressurized hot water (Patent Document 1), a method of treating the surface of aluminum nitride powder with phosphoric acid or a phosphoric acid compound (Patent) In literature 2), there is a problem that the fluidity of the resin composition is remarkably lowered. In the method of forming an oxynitride film (Patent Document 3) and a silicon oxide film (Patent Document 4) by heating at several hundred degrees Celsius after surface treatment with alkoxysilane, the surface oxide layer becomes thick, and thus the thermal conductivity. Is a problem, and high temperature treatment is required. In the treatment method using a silane coupling agent (Patent Document 5 and Patent Document 6), the moisture resistance is insufficient, and the silane coupling agent is hydrolyzed in advance in an organic solvent to which water is added. Since this process uses aluminum nitride powder, the process is complicated, and another consideration is required to suppress hydrolysis of aluminum nitride due to excessive moisture in the solution.
JP-A-3-93612 Japanese Patent No. 3396510 JP 7-507760 Gazette Japanese Patent No. 3175073 Japanese Patent No. 2981002 JP 2002-53736 A

以上のように、従来の方法では、窒化アルミニウム粉末に十分な耐湿性を付与できなかったり、樹脂組成物の高熱伝導性や流動性を損なわせたり、プロセスが複雑であったり、処理が高価であるなどの問題点があり、必ずしも満足できるものではなかった。本発明の目的は、高温高湿条件下でも十分な耐湿性を示し、樹脂組成物の高熱伝導性を著しく損なわせることのない、窒化アルミニウム粉末を提供することである。本発明の別の目的は、このような特性を有する窒化アルミニウム粉末を簡単なプロセスで容易に製造することである。 As described above, in the conventional method, sufficient moisture resistance cannot be imparted to the aluminum nitride powder, the high thermal conductivity and fluidity of the resin composition are impaired, the process is complicated, and the treatment is expensive. There were some problems and it was not always satisfactory. An object of the present invention is to provide an aluminum nitride powder that exhibits sufficient moisture resistance even under high-temperature and high-humidity conditions and does not significantly impair the high thermal conductivity of the resin composition. Another object of the present invention is to easily produce an aluminum nitride powder having such characteristics by a simple process.

すなわち、本発明は、アルコキシ変性シリコーンによる表面処理が施されてなることを特徴とする窒化アルミニウム粉末である。この場合において、アルコキシ変性シリコーンがアルキルアルコキシレジンまたはアルキルアルコキシシリコーンであり、それによる処理量が全炭素量で0.05〜0.5質量%であることが好ましい。さらに、窒化アルミニウム粉末が、窒化アルミニウム焼結体を粉砕して得られた粉末であることが好ましい。また、本発明は、ヒドロキシル基を有する窒化アルミニウム粉末にアルコキシ変性シリコーンを添加混合した後、ヒドロキシル基とアルコキシ変性シリコーンとが化学結合し、アルコキシ変性シリコーン同士が縮合するまで養生することを特徴とする上記窒化アルミニウム粉末の製造方法である。この場合において、養生が、120〜300℃で30分間以上保持による加温養生を含むものであることが好ましい。 That is, the present invention is an aluminum nitride powder that is surface-treated with an alkoxy-modified silicone. In this case, it is preferable that the alkoxy-modified silicone is an alkyl alkoxy resin or an alkyl alkoxy silicone, and the treatment amount thereof is 0.05 to 0.5% by mass in terms of the total carbon amount. Furthermore, the aluminum nitride powder is preferably a powder obtained by pulverizing an aluminum nitride sintered body. In addition, the present invention is characterized in that after the alkoxy-modified silicone is added to and mixed with the aluminum nitride powder having a hydroxyl group, the hydroxyl group and the alkoxy-modified silicone are chemically bonded and cured until the alkoxy-modified silicone is condensed. It is a manufacturing method of the said aluminum nitride powder. In this case, it is preferable that the curing includes heating curing by holding at 120 to 300 ° C. for 30 minutes or more.

高温高湿条件下でも十分な耐湿性を示し、樹脂組成物の高熱伝導性を著しく損なわせることのない、窒化アルミニウム粉末が提供される。また、このような特性を有する窒化アルミニウム粉末を簡単なプロセスで容易に製造することができる。 Provided is an aluminum nitride powder that exhibits sufficient moisture resistance even under high-temperature and high-humidity conditions and does not significantly impair the high thermal conductivity of the resin composition. In addition, an aluminum nitride powder having such characteristics can be easily manufactured by a simple process.

本発明で用いられる窒化アルミニウム粉末には特段の制約はなく、その一例を示せば、金属アルミニウムと窒素を反応させる直接窒化法、アルミナと炭素の混合物を窒素中で加熱する還元窒化法、有機アルミニウム化合物とアンモニアを反応させる気相法などで製造されたものである。なかでも、窒化アルミニウム粉末を窒素、アルゴン等の非酸化性雰囲気下、温度1600〜2000℃で焼結し、それを粉砕して製造された窒化アルミニウム焼結体の粉末であることが好ましい。このような粉末は、金属不純物や酸素が窒化アルミニウム粒子から粒子界面に放出されていること、また窒化アルミニウム粒子内部の格子欠陥等が減少しているため、より高熱伝導となる。窒化アルミニウム粉末の粒度構成の一例を示すと、平均粒子径が10〜50μm、比表面積が0.1〜1.0m/gである。 There are no particular restrictions on the aluminum nitride powder used in the present invention. For example, a direct nitriding method in which metal aluminum and nitrogen are reacted, a reduction nitriding method in which a mixture of alumina and carbon is heated in nitrogen, and organic aluminum It is manufactured by a gas phase method in which a compound and ammonia are reacted. Especially, it is preferable that it is a powder of the aluminum nitride sintered compact manufactured by sintering aluminum nitride powder at the temperature of 1600-2000 degreeC in non-oxidizing atmospheres, such as nitrogen and argon, and grind | pulverizing it. Such powder has higher thermal conductivity because metal impurities and oxygen are released from the aluminum nitride particles to the particle interface and lattice defects inside the aluminum nitride particles are reduced. An example of the particle size constitution of the aluminum nitride powder is an average particle size of 10 to 50 μm and a specific surface area of 0.1 to 1.0 m 2 / g.

本発明で用いられる表面処理剤はアルコキシ変性シリコーンである。なかでも、アルキルアルコキシレジンまたはアルキルアルコキシシリコーンが好適である。これらの具体例を一般式(1)、(2)に示す。

Figure 2005104765
Figure 2005104765
(式中、Meはメチル基、Rはメチル基またはエチル基、R1,R2,R3はアルキル基(炭素数1以上)、nは0以上の整数、x,y,zは1以上の整数である。) The surface treating agent used in the present invention is an alkoxy-modified silicone. Of these, alkyl alkoxy resins or alkyl alkoxy silicones are suitable. Specific examples of these are shown in general formulas (1) and (2).
Figure 2005104765
Figure 2005104765
(In the formula, Me is a methyl group, R is a methyl group or an ethyl group, R1, R2, and R3 are alkyl groups (1 or more carbon atoms), n is an integer of 0 or more, and x, y, and z are integers of 1 or more. is there.)

アルコキシ変性シリコーンは、水分により脱アルコールし、窒化アルミニウム粉末のヒドロキシル基と化学結合し、またアルコキシ変性シリコーン同士が縮合することによって、高温高湿条件下でも十分な耐湿性が付与される。従来のシランカップリング剤では、化学結合をさせるのに水分を補給する必要があったので、窒化アルムニウム粉末までが加水分解し、熱伝導性を悪化させたが、アルコキシ変性シリコーンでは水分を補給することなく、窒化アルミニウム粉末の吸着水のみで十分に化学結合するので、処理粉の熱伝導性が著しく悪化することはなく、処理前と同等の熱伝導性が保持される。窒化アルミニウム粉末のヒドロキシル基の量は、アルコキシ変性シリコーンのアルコキシ基を加水分解するのに充分な量あればよく、その精密な定量法はないので、本発明においては、カールフィッシャー法により測定された水分値として、0.02〜1.0質量%であることが好ましい。なお、アルコキシ基の定性分析は、赤外分光分析法による3500cm−1付近に現れる水素−酸素の伸縮振動ピークによって、また熱分析法による250℃付近に現れる水の脱離ピークによって行うことができる。 The alkoxy-modified silicone is dealcoholized with moisture, chemically bonded to the hydroxyl group of the aluminum nitride powder, and the alkoxy-modified silicone is condensed to give sufficient moisture resistance even under high temperature and high humidity conditions. With conventional silane coupling agents, it was necessary to replenish water to cause chemical bonding, so the aluminum nitride powder was hydrolyzed and the thermal conductivity deteriorated, but with alkoxy-modified silicone, water was replenished. In addition, since the chemical bonding is sufficiently performed only with the adsorbed water of the aluminum nitride powder, the thermal conductivity of the treated powder is not significantly deteriorated, and the thermal conductivity equivalent to that before the treatment is maintained. The amount of hydroxyl groups in the aluminum nitride powder only needs to be sufficient to hydrolyze the alkoxy groups of the alkoxy-modified silicone, and since there is no precise quantitative method, in the present invention, it was measured by the Karl Fischer method. The moisture value is preferably 0.02 to 1.0% by mass. The qualitative analysis of the alkoxy group can be performed by a hydrogen-oxygen stretching vibration peak appearing in the vicinity of 3500 cm −1 by infrared spectroscopy and a water desorption peak appearing near 250 ° C. by thermal analysis. .

アルコキシ変性シリコーンの使用量は、窒化アルミニウム粉末に対し、炭素量で0.05〜0.5質量%(外割、以下同じ)となる量であり、特に好ましくは、0.1〜0.4質量%となる量である。0.05質量%未満では高温高湿条件下でも十分な耐湿性が得られず、0.5質量%をこえると、樹脂組成物の流動性が低下するようになる。ここで、表面処理剤の炭素量は、表面処理された窒化アルミニウムの全炭素量から、プラズマなどによる低温灰化処理、酸素などの酸化雰囲気化での加熱酸化処理あるいは硝酸やハロゲン類などを用いた湿式酸化処理等により表面処理剤を分解除去した窒化アルミニウムの全炭素量を差し引くことによって求めることができる。なお、全炭素量は、例えばLECO社製炭素硫黄同時分析装置(CS−444LS)を用い、社団法人日本鉄鋼連盟の標準試料を用いて検量線法により測定される。その際の助燃剤としては、LECO社製商品名「HIGHPOPITY IRON CHIP」、LECO社製商品名「LECOCEL II」などが用いられる。 The amount of alkoxy-modified silicone used is 0.05 to 0.5% by mass (outer percentage, the same shall apply hereinafter) with respect to the aluminum nitride powder, and particularly preferably 0.1 to 0.4. It is the amount that becomes mass%. If it is less than 0.05% by mass, sufficient moisture resistance cannot be obtained even under high-temperature and high-humidity conditions, and if it exceeds 0.5% by mass, the fluidity of the resin composition decreases. Here, the carbon content of the surface treatment agent is determined from the total carbon content of the surface-treated aluminum nitride by using a low-temperature ashing treatment with plasma, a heat oxidation treatment in an oxidizing atmosphere such as oxygen, or nitric acid or halogens. It can be determined by subtracting the total carbon content of aluminum nitride from which the surface treating agent has been decomposed and removed by wet oxidation treatment or the like. The total carbon amount is measured by a calibration curve method using, for example, a carbon-sulfur simultaneous analyzer (CS-444LS) manufactured by LECO and using a standard sample of the Japan Iron and Steel Federation. As the auxiliary combustor at that time, a product name “HIGHPOPITY IRON CHIP” manufactured by LECO, a product name “LECOCEL II” manufactured by LECO, and the like are used.

本発明において、窒化アルミニウム粉末の表面処理は、窒化アルミニウム粉末にアルコキシ変性シリコーンを噴霧などにより添加した後、ヘンシェルミキサー、スーパーミキサー、Vブレンダーなどの混合機で混合したのち加温養生して行われる。アルコキシ変性シリコーンは希釈せずにそのまま用いても良いし、また、トルエン、ベンゼン、ヘキサン、イソプロピルアルコール、メチルイソブチルケトンなどの溶剤で希釈して用いても良い。 In the present invention, the surface treatment of the aluminum nitride powder is performed by adding the alkoxy-modified silicone to the aluminum nitride powder by spraying, etc., and then mixing with a mixer such as a Henschel mixer, a super mixer, or a V blender, followed by heating and curing. . The alkoxy-modified silicone may be used as it is without being diluted, or may be used after being diluted with a solvent such as toluene, benzene, hexane, isopropyl alcohol, or methyl isobutyl ketone.

養生は、窒化アルミニウム粉末のヒドロキシル基とアルコキシ変性シリコーンとが化学結合し、またアルコキシ変性シリコーン同士が縮合するまで行われ、室温10時間以上、好ましくは20時間以上の静置又は混合によって行われる。より好ましくは、室温養生した後、大気下、又は窒素、二酸化炭素、一酸化炭素、ヘリウム等の非酸化性雰囲気下、120〜300℃、特に125〜150℃で、30分間以上、特に1時間以上保持することである。これによって、安定な耐湿被膜を短時間で形成することができる。温度が120℃未満ではこのような効果は小さく、また300℃をこえると、過剰な吸着水の脱離を起こさせ、アルコキシ変性シリコーンの分解が起こる。養生時間が30分間未満では、未反応のアルコキシ変性シリコーンが多く存在し、耐湿安定性に劣るようになる。 Curing is performed until the hydroxyl group of the aluminum nitride powder and the alkoxy-modified silicone are chemically bonded and the alkoxy-modified silicones are condensed with each other, and is allowed to stand at room temperature for 10 hours or more, preferably for 20 hours or more. More preferably, after curing at room temperature, in the air or in a non-oxidizing atmosphere such as nitrogen, carbon dioxide, carbon monoxide, helium, etc., at 120 to 300 ° C., particularly 125 to 150 ° C., for 30 minutes or more, particularly 1 hour. The above is to hold. Thereby, a stable moisture-resistant film can be formed in a short time. When the temperature is lower than 120 ° C., such an effect is small. When the temperature exceeds 300 ° C., excess adsorbed water is desorbed and the alkoxy-modified silicone is decomposed. When the curing time is less than 30 minutes, a large amount of unreacted alkoxy-modified silicone is present, and the moisture resistance stability becomes poor.

ヒドロキシル基とアルコキシ変性シリコーンとの化学結合、ないしはアルコキシ変性シリコーン同士の縮合は何も完結されている必要はなく、エタノール洗浄前後の炭素分析による定着率、「定着率=エタノール洗浄後炭素/エタノール洗浄前炭素」、が0.4以上、好ましくは0.8以上となっておればよい。 The chemical bond between the hydroxyl group and the alkoxy-modified silicone, or the condensation between the alkoxy-modified silicones does not have to be completed, and the fixing rate by carbon analysis before and after the ethanol cleaning, “fixing rate = carbon after ethanol cleaning / ethanol cleaning” The “pre-carbon” may be 0.4 or more, preferably 0.8 or more.

本発明において、耐湿性指標は、AlN+3HO → Al(OH)+NH、による加水分解によって生じた酸素の増加量を用いた。加水分解条件は、温度80℃、相対湿度95%の雰囲気下、72時間放置である。 In the present invention, as the moisture resistance index, an increase amount of oxygen generated by hydrolysis with AlN + 3H 2 O → Al (OH) 3 + NH 3 was used. Hydrolysis conditions are left for 72 hours in an atmosphere at a temperature of 80 ° C. and a relative humidity of 95%.

実施例1
市販窒化アルミニウム焼結体(熱伝導率:130W/mK)の粉末(平均粒子径24μm)に対し、メチルアルコキシレジン(GE東芝シリコーン社製商品名「XC96−B0446」:一般式1)を炭素量で0.14質量%を添加混合した後、24時間室温で養生して処理を行った。
Example 1
Carbon powder of methyl alkoxy resin (trade name “XC96-B0446” manufactured by GE Toshiba Silicone Co., Ltd .: general formula 1) is used for commercially available aluminum nitride sintered body (thermal conductivity: 130 W / mK) (average particle diameter: 24 μm). Then, 0.14% by mass was added and mixed, followed by curing at room temperature for 24 hours.

実施例2
メチルアルコキシレジンとして、メチルアルコキシレジン(GE東芝シリコーン社製商品名「XR31−B1410」:一般式1)を炭素量で0.16質量%としたこと以外は、実施例1と同様にして処理を行った。
Example 2
The treatment was performed in the same manner as in Example 1 except that methyl alkoxy resin (trade name “XR31-B1410” manufactured by GE Toshiba Silicone Co., Ltd .: general formula 1) was changed to 0.16% by mass as the methyl alkoxy resin. went.

実施例3
メチルアルコキシレジンのかわりに、アルキルアルコキシシリコーン(日本ユニカー社製商品名「FZ−3511」:一般式2)を用い、その添加量を炭素量で0.07質量%としたこと以外は、実施例1と同様にして処理を行った。
Example 3
Example except that alkylalkoxysilicone (trade name “FZ-3511” manufactured by Nihon Unicar Co., Ltd .: general formula 2) was used instead of methylalkoxy resin, and the amount added was 0.07% by mass in terms of carbon content. The treatment was carried out in the same manner as in 1.

実施例4
アルキルアルコキシシリコーンの添加量を炭素量で0.10質量%とし、24時間養生した後に、更に150℃で1時間、大気中で加温処理したこと以外は、実施例3と同様にして処理を行った。
Example 4
The treatment was performed in the same manner as in Example 3 except that the amount of the alkylalkoxysilicone was 0.10% by mass in terms of carbon and was cured for 24 hours, and further heated at 150 ° C. for 1 hour in the air. went.

実施例5
アルキルアルコキシシリコーンの添加量を炭素量で0.12質量%とし、24時間の室温養生時間を8時間としたこと以外は、実施例3と同様にして処理を行った。
Example 5
The treatment was performed in the same manner as in Example 3 except that the addition amount of the alkylalkoxysilicone was 0.12% by mass in terms of carbon and the room temperature curing time for 24 hours was 8 hours.

実施例6
窒化アルミニウム焼結体の粉末のかわりに、市販窒化アルミニウム粉末(トクヤマ社製Hグレード4μm)を用いたこと以外は、実施例3と同様にして処理を行った。
Example 6
The treatment was performed in the same manner as in Example 3 except that a commercially available aluminum nitride powder (H grade 4 μm manufactured by Tokuyama Corporation) was used instead of the powder of the aluminum nitride sintered body.

比較例1
メチルアルコキシレジンによる処理を行わないで、実施例1と同様にして加水分解試験を行った。
Comparative Example 1
A hydrolysis test was conducted in the same manner as in Example 1 without performing the treatment with methyl alkoxy resin.

比較例2〜4
メチルアルコキシレジンのかわりに、γ−グリシドキシプロピルトリメトキシシラン(日本ユニカー社製商品名「A−187」)、又はシリコーンオイル(信越化学工業社製商品名「KF96−100CS」)、又はメチルアルコキシレジン(GE東芝シリコーン社製商品名「XR31−B1410」)を用いたこと以外は、実施例1と同様にして処理を行った。
Comparative Examples 2-4
Instead of methyl alkoxy resin, γ-glycidoxypropyltrimethoxysilane (trade name “A-187” manufactured by Nihon Unicar Co., Ltd.), or silicone oil (trade name “KF96-100CS” manufactured by Shin-Etsu Chemical Co., Ltd.), or methyl The treatment was performed in the same manner as in Example 1 except that an alkoxy resin (trade name “XR31-B1410” manufactured by GE Toshiba Silicones) was used.

上記窒化アルミニウム粉末を用いて製造された樹脂組成物の熱伝導率と、窒化アルミニウム粉末の耐湿性を以下に従って測定した。それらの結果を表1に示す。
(1)熱伝導率:窒化アルミニウム粉末(平均粒径24μm)100質量部と、アルミナ粉末(平均粒径1.3μm)(住友化学工業社製商品名「スミコランダム」)250質量部と、シリコーンゲル(GE東芝シリコーン社製商品名「XE14−B8530(A)」)40質量部と、シリコーンゲル(GE東芝シリコーン社製商品名「XE14−B8530(B)」)40質量部と、シリコーンオイル(信越化学工業社製商品名「KF96−100CS」)20質量部とを混合し、厚さ1.0mmのシート状に成型し、乾燥機中、120℃の6時間保持し加硫させて得られた樹脂組成物を、TO−3型銅製ヒーターケースと銅板との間に挟み、樹脂組成物の厚みの10%を圧縮した後、銅製のヒーターに電力5Wかけて4分間保持し、銅製ヒーターケースと銅版との温度差を測定し、熱伝導率(W/m・K)={電力(W)×厚み(m)}/{温度差(K)×測定面積(m)、にて熱伝導率を算出した。
(2)耐湿性:温度80℃、相対湿度95%の雰囲気下で72時間放置した前後の酸素の増加量を測定した。
The thermal conductivity of the resin composition produced using the aluminum nitride powder and the moisture resistance of the aluminum nitride powder were measured as follows. The results are shown in Table 1.
(1) Thermal conductivity: 100 parts by mass of aluminum nitride powder (average particle size 24 μm), 250 parts by mass of alumina powder (average particle size 1.3 μm) (trade name “Sumicorundum” manufactured by Sumitomo Chemical Co., Ltd.), silicone 40 parts by mass of gel (trade name “XE14-B8530 (A)” manufactured by GE Toshiba Silicone), 40 parts by mass of silicone gel (trade name “XE14-B8530 (B)” manufactured by GE Toshiba Silicone), and silicone oil ( 20 parts by weight of Shin-Etsu Chemical Co., Ltd. trade name “KF96-100CS”) are mixed, molded into a sheet with a thickness of 1.0 mm, and kept in a dryer at 120 ° C. for 6 hours for vulcanization. The resin composition was sandwiched between a TO-3 type copper heater case and a copper plate, and after compressing 10% of the thickness of the resin composition, the copper heater was held for 4 minutes with electric power of 5 W. The temperature difference between the heater case and the copper plate is measured, and thermal conductivity (W / m · K) = {power (W) × thickness (m)} / {temperature difference (K) × measurement area (m 2 ) The thermal conductivity was calculated.
(2) Moisture resistance: The amount of increase in oxygen before and after being left for 72 hours in an atmosphere at a temperature of 80 ° C. and a relative humidity of 95% was measured.

Figure 2005104765
Figure 2005104765

表1に示すように、本発明の窒化アルミニウム粉末は、高温高湿条件下でも十分な耐湿性を示し、(実施例1〜6と比較例1の酸素増加量の対比)、樹脂組成物の高熱伝導性を著しく損なわせることのない(実施例1〜6と比較例1の熱伝導率の対比)、窒化アルミニウム粉末が提供される。 As shown in Table 1, the aluminum nitride powder of the present invention exhibits sufficient moisture resistance even under high-temperature and high-humidity conditions (contrast of oxygen increase amounts of Examples 1 to 6 and Comparative Example 1). Aluminum nitride powder is provided that does not significantly impair high thermal conductivity (contrast of thermal conductivity of Examples 1-6 and Comparative Example 1).

本発明の窒化アルミニウム粉末は、電子機器の放熱部材と好適な高熱伝導性樹脂組成物を製造する充填剤として、また窒化アルミニウム焼結体製造用原料などとして使用できる。 The aluminum nitride powder of the present invention can be used as a filler for producing a heat radiating member of an electronic device and a suitable high thermal conductive resin composition, and as a raw material for producing an aluminum nitride sintered body.

Claims (5)

アルコキシ変性シリコーンによる表面処理が施されてなることを特徴とする窒化アルミニウム粉末。 An aluminum nitride powder obtained by surface treatment with an alkoxy-modified silicone. アルコキシ変性シリコーンがアルキルアルコキシレジンまたはアルキルアルコキシシリコーンであり、それによる処理量が炭素量で0.05〜0.5質量%であることを特徴とする請求項1記載の窒化アルミニウム粉末。 The aluminum nitride powder according to claim 1, wherein the alkoxy-modified silicone is an alkyl alkoxy resin or an alkyl alkoxy silicone, and a treatment amount thereof is 0.05 to 0.5% by mass in terms of carbon. 窒化アルミニウム粉末が、窒化アルミニウム焼結体を粉砕して得られた粉末であることを特徴とする請求項1又は2記載の窒化アルミニウム粉末。 The aluminum nitride powder according to claim 1 or 2, wherein the aluminum nitride powder is a powder obtained by pulverizing an aluminum nitride sintered body. ヒドロキシル基を有する窒化アルミニウム粉末にアルコキシ変性シリコーンを添加混合した後、ヒドロキシル基とアルコキシ変性シリコーンとが化学結合し、アルコキシ変性シリコーン同士が縮合するまで養生することを特徴とする請求項1、2又は3記載の窒化アルミニウム粉末の製造方法。 The alkoxy group-modified silicone is added to and mixed with the aluminum nitride powder having a hydroxyl group, and thereafter the hydroxyl group and the alkoxy-modified silicone are chemically bonded and cured until the alkoxy-modified silicone is condensed. 3. The method for producing an aluminum nitride powder as described in 3. 養生が、120〜300℃で30分間以上保持による加温養生を含むものであることを特徴とする請求項4記載の窒化アルミニウム粉末の製造方法。 The method for producing an aluminum nitride powder according to claim 4, wherein the curing includes heating curing by holding at 120 to 300 ° C for 30 minutes or more.
JP2003339892A 2003-09-30 2003-09-30 Aluminum nitride powder and its producing method Pending JP2005104765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339892A JP2005104765A (en) 2003-09-30 2003-09-30 Aluminum nitride powder and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339892A JP2005104765A (en) 2003-09-30 2003-09-30 Aluminum nitride powder and its producing method

Publications (1)

Publication Number Publication Date
JP2005104765A true JP2005104765A (en) 2005-04-21

Family

ID=34534959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339892A Pending JP2005104765A (en) 2003-09-30 2003-09-30 Aluminum nitride powder and its producing method

Country Status (1)

Country Link
JP (1) JP2005104765A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236376A (en) * 2010-05-13 2011-11-24 Hitachi Chem Co Ltd High thermal conductivity composite particle and heat radiating material using the same
JP2017210518A (en) * 2016-05-24 2017-11-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product of the same
WO2018139632A1 (en) * 2017-01-30 2018-08-02 日本山村硝子株式会社 Silicone-based hybrid polymer-coated aln filler
WO2020040309A1 (en) * 2018-08-24 2020-02-27 昭和電工株式会社 Method for producing silicon-containing oxide-coated aluminum nitride particles, and silicon-containing oxide-coated aluminum nitride particles
CN112292346A (en) * 2018-06-21 2021-01-29 株式会社Adeka Method for producing surface-treated aluminum nitride, resin composition, and cured product
WO2021020540A1 (en) * 2019-08-01 2021-02-04 Showa Denko K.K. Inorganic particle dispersion resin composition and manufacturing method of inorganic particle dispersion resin composition
KR20230118810A (en) 2020-12-15 2023-08-14 가부시끼가이샤 도꾸야마 Hydrophobic aluminum nitride powder and manufacturing method thereof
JP7468803B1 (en) 2022-12-16 2024-04-16 株式会社レゾナック Method for producing aluminum nitride particles coated with silicon-containing oxide

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236376A (en) * 2010-05-13 2011-11-24 Hitachi Chem Co Ltd High thermal conductivity composite particle and heat radiating material using the same
JP2017210518A (en) * 2016-05-24 2017-11-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product of the same
KR20190011743A (en) * 2016-05-24 2019-02-07 신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition and its cured product
KR102257273B1 (en) 2016-05-24 2021-05-27 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition and cured product thereof
WO2018139632A1 (en) * 2017-01-30 2018-08-02 日本山村硝子株式会社 Silicone-based hybrid polymer-coated aln filler
CN112292346A (en) * 2018-06-21 2021-01-29 株式会社Adeka Method for producing surface-treated aluminum nitride, resin composition, and cured product
CN112292346B (en) * 2018-06-21 2023-10-20 株式会社Adeka Method for producing surface-treated aluminum nitride, resin composition, and cured product
JP6687818B1 (en) * 2018-08-24 2020-04-28 昭和電工株式会社 Method for producing silicon-containing oxide-coated aluminum nitride particles and silicon-containing oxide-coated aluminum nitride particles
WO2020040309A1 (en) * 2018-08-24 2020-02-27 昭和電工株式会社 Method for producing silicon-containing oxide-coated aluminum nitride particles, and silicon-containing oxide-coated aluminum nitride particles
CN114507382A (en) * 2018-08-24 2022-05-17 昭和电工株式会社 Silicon-containing oxide-coated aluminum nitride particles
US11396602B2 (en) 2018-08-24 2022-07-26 Showa Denko K.K. Silicon-containing oxide-coated aluminum nitride particle and method of manufacturing the same
WO2021020540A1 (en) * 2019-08-01 2021-02-04 Showa Denko K.K. Inorganic particle dispersion resin composition and manufacturing method of inorganic particle dispersion resin composition
KR20230118810A (en) 2020-12-15 2023-08-14 가부시끼가이샤 도꾸야마 Hydrophobic aluminum nitride powder and manufacturing method thereof
DE112021006805T5 (en) 2020-12-15 2023-11-02 Tokuyama Corporation Hydrophobic aluminum nitride powder and process for producing the same
JP7468803B1 (en) 2022-12-16 2024-04-16 株式会社レゾナック Method for producing aluminum nitride particles coated with silicon-containing oxide

Similar Documents

Publication Publication Date Title
JP4374567B2 (en) Ultraviolet curing treatment for porous low dielectric constant materials
JP2938429B1 (en) Thermal conductive silicone composition
JP4170735B2 (en) Zeolite sol and manufacturing method thereof, composition for forming porous film, porous film and manufacturing method thereof, interlayer insulating film and semiconductor device
WO2003025993A1 (en) Plasma curing process for porous low-k materials
KR102592111B1 (en) thermal conductive sheet
JP2009286936A (en) Organic silicon oxide-based fine particle and method for producing the same, composition for forming porous membrane, porous membrane and method for forming the same, as well as semiconductor device
WO2005108469A1 (en) Method for forming organic silica film, organic silica film, wiring structure, semiconductor device, and composition for film formation
JP7419938B2 (en) Silicon-containing oxide coated aluminum nitride particles
JP4088768B2 (en) Aluminum nitride powder
JP2005104765A (en) Aluminum nitride powder and its producing method
JP4804023B2 (en) Aluminum nitride powder, method for producing the same, and heat conductive material containing the same
TW499715B (en) A method for forming low dielectric coefficient silica coating film and a semiconductive substrate having the low dielectric efficient coating film
JP5695290B2 (en) Method for preparing a coating solution for forming a silica-based film
WO2018194052A1 (en) Sintered body, board, circuit board, and method for manufacturing sintered body
JP3468615B2 (en) Filler and adhesive sheet
KR101524728B1 (en) High heat -dissipating ceramic composite, manufacturing method therefor, and uses thereof
JP2002217508A (en) Metal base substrate and its manufacturing method
JP2003115482A (en) Insulation film forming composition
KR102172600B1 (en) Manufacturing method of silicon nitride having excellent heat dissipation properties
JP2017197648A (en) Resin composition for circuit board and metal base circuit board using the same
JP2004250281A (en) Method for producing waterproof aluminum nitride powder coated with carbonaceous film
CN110872492A (en) Thermally conductive material, method for producing same, and thermally conductive composition
JP4399580B2 (en) Water resistant aluminum nitride powder and method for producing the same
JPH07315813A (en) Aluminum nitride powder
WO2023188491A1 (en) Thermally conductive silicone composition, thermally conductive silicone sheet, and method for manufacturing said sheet