JP2005103559A - Welding method of full face wheel - Google Patents

Welding method of full face wheel Download PDF

Info

Publication number
JP2005103559A
JP2005103559A JP2003336961A JP2003336961A JP2005103559A JP 2005103559 A JP2005103559 A JP 2005103559A JP 2003336961 A JP2003336961 A JP 2003336961A JP 2003336961 A JP2003336961 A JP 2003336961A JP 2005103559 A JP2005103559 A JP 2005103559A
Authority
JP
Japan
Prior art keywords
welding
conditions
heat input
main
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003336961A
Other languages
Japanese (ja)
Inventor
Yoshiichi Nishi
芳一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Original Assignee
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co Ltd filed Critical Central Motor Wheel Co Ltd
Priority to JP2003336961A priority Critical patent/JP2005103559A/en
Publication of JP2005103559A publication Critical patent/JP2005103559A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a full face wheel welding method that needs no grinding and that can simplify the manufacturing process. <P>SOLUTION: In this welding method, the welding starting end is welded under starting conditions having a low heat input, and then the front part of regular welding immediately after the starting end is welded under pre-regular welding conditions having a heat input higher than in the starting conditions and lower than in the regular welding conditions. Then, the main weld zone which is nearly over the entire circumference is welded under the regular welding conditions having high heat input. Thereafter, the welding terminating end which is superposed on the welding starting end is welded under pre-crater conditions having a heat input lower than in the regular welding conditions, with the tip end (completing point of welding) of the welding terminating end welded under the crater conditions. As a result, weld beads 21b' are contracted in the lap part where the starting end and the terminating end are overlapped as well as in the front part of the regular welding, thereby nearly uniformizing the dimension of the weld beads 21 over the entire circumference of the weld joint 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ホイールリムとホイールディスクとを溶接接合してなる自動車用2ピースホイールの溶接方法に関するものであり、詳しくは、ディスクの外周部に外端リムフランジ部が形成されたフルフェイスホイールの溶接方法に関する。   The present invention relates to a welding method for a two-piece wheel for automobiles formed by welding a wheel rim and a wheel disc. Specifically, the present invention relates to a full face wheel in which an outer end rim flange portion is formed on an outer peripheral portion of a disc. It relates to a welding method.

ホイールリムとホイールディスクとを溶接接合してなる自動車用2ピースホイールの中で、ホイール外側面(意匠面)に、ホイールリムとホイールディスクの境界が形成されないフルフェイスホイールが知られている。   2. Description of the Related Art A full face wheel in which a boundary between a wheel rim and a wheel disk is not formed on a wheel outer surface (design surface) is known among automotive two-piece wheels formed by welding a wheel rim and a wheel disk.

一般的なスチール製のフルフェイスホイールAの断面図を図1に示す。フルフェイスホイールAは、外端に外側ビードシート部6が形成されたホイールリム1と、ハブ孔16や放熱孔14等が形成されるディスク主板部12の外周縁に外端リムフランジ部11が形成されたホイールディスク10とからなる。このホイールリム1とホイールディスク10とは、ホイールリム1の外側ビードシート部6の外側縁を、外端リムフランジ部11の内側面に当接させた状態で、外周側から全周に亘ってアーク溶接による隅肉溶接が行われ、一体的に接合される(例えば特許文献1)。このように、フルフェイスホイールAでは、溶接継手部20が意匠面の裏側に形成されるため、フルフェイスホイールAの外側面全体を意匠部分とすることが可能となっている。   A cross-sectional view of a general steel full-face wheel A is shown in FIG. The full-face wheel A has a wheel rim 1 having an outer bead seat portion 6 formed at the outer end and an outer end rim flange portion 11 at the outer peripheral edge of a disk main plate portion 12 in which a hub hole 16 and a heat radiating hole 14 are formed. The wheel disc 10 is formed. The wheel rim 1 and the wheel disc 10 extend from the outer peripheral side to the entire periphery in a state where the outer edge of the outer bead seat portion 6 of the wheel rim 1 is in contact with the inner surface of the outer end rim flange portion 11. Fillet welding by arc welding is performed and integrally joined (for example, Patent Document 1). Thus, in the full face wheel A, since the weld joint 20 is formed on the back side of the design surface, the entire outer surface of the full face wheel A can be used as the design portion.

ここで、ホイールリムとホイールディスクとをアーク溶接する従来の溶接工程にあっては、溶接始点の直後の部分(溶接始端部)と、溶接終点の直前の部分(溶接終端部)とを重複させて、溶接ビード21が上下に重なったラップ部を形成する(図2参照)。すなわち、溶接工程にあっては、溶接始点からフルフェイスホイールの周方向に沿って溶接していき、全周に亘って溶接した後、溶接始端部に形成された溶接ビード21aの上に、溶接ビード21dを重ねて形成してから溶接を終了する。かかるラップ部を形成することにより、溶接始端部と溶接終端部との間のエア漏れを防止できる。   Here, in the conventional welding process in which the wheel rim and the wheel disk are arc-welded, the portion immediately after the welding start point (welding start end portion) and the portion immediately before the welding end point (welding end portion) are overlapped. Thus, a lap portion in which the weld beads 21 overlap in the vertical direction is formed (see FIG. 2). That is, in the welding process, welding is performed along the circumferential direction of the full-face wheel from the welding start point, and after welding over the entire circumference, welding is performed on the weld bead 21a formed at the welding start end portion. Welding is completed after forming the bead 21d in an overlapping manner. By forming such a lap portion, air leakage between the welding start end portion and the welding end portion can be prevented.

また、従来の溶接工程では、溶接始端部と、溶接終端部の末端の溶接終点で、本溶接条件よりも低い入熱量となる溶接条件で行う。すなわち、図3に示すように、上記溶接工程にあっては、まず溶接始端部を低い入熱量となる溶接条件(スタート条件)で溶接し、次いで高い入熱量となる本溶接条件で、溶接終点まで略全周にわたり溶接し、溶接終端部にラップ部を形成する。そして、溶接終点では、溶着金属の急冷防止や、溶接ビードの肉厚を確保するため、溶接速度ゼロの状態で、低い入熱量となる溶接条件(クレータ条件)で短時間溶接を行い、溶接工程を終了する。ここで、入熱量とは、溶接時に単位溶接距離あたりに加わる電気エネルギー量を指すものである。   Moreover, in the conventional welding process, it carries out on the welding conditions used as a heat input amount lower than this welding conditions in the welding start end part and the welding end point of the terminal of a welding terminal part. That is, as shown in FIG. 3, in the above welding process, the welding start end is first welded under a welding condition (starting condition) with a low heat input, and then the welding end point under a main welding condition with a high heat input. Welding over the entire circumference until a lap portion is formed at the welding end portion. At the welding end point, the welding process is performed for a short time under welding conditions (crater conditions) with a low heat input at a welding speed of zero in order to prevent the weld metal from rapidly cooling and to secure the weld bead thickness. Exit. Here, the amount of heat input refers to the amount of electrical energy applied per unit welding distance during welding.

特開平9−192829号公報JP-A-9-192829

ところで、図2に示すように、前記ラップ部においては、溶接始端部の溶接ビード21a上に溶接ビード21dを重ねるために主溶接部よりも溶接ビード21が大きくなる。また、溶接始端部直後の部分にあっても、母材23が温まりきっていないため、母材23への溶け込みが若干浅くなり、溶接ビード21bが盛り上がり易くなっている。   Incidentally, as shown in FIG. 2, in the lap portion, the weld bead 21 is larger than the main weld portion in order to overlap the weld bead 21d on the weld bead 21a at the welding start end portion. Further, even in the portion immediately after the welding start end portion, the base material 23 is not warmed up, so the penetration into the base material 23 is slightly shallow, and the weld bead 21b is easily raised.

フルフェイスホイールAの溶接工程において、全周に亘って隙間なく溶接が行われるのは、上述のようにエア漏れ防止のためであり、局所的に溶接ビード21が盛り上がったり、母材23への溶け込みが若干浅くなっても、ホイールリム1とホイールディスク10との溶接強度に支障が生じることはない。ところが、上記のフルフェイスホイールAの溶接継手部20は、自動車用ホイールの外周部のタイヤを装着する部位に位置している。かかる部位は、タイヤがリムと適正に嵌合するように、規格によりその形状を厳密に定められており、特に、溶接継手部20を形成する、外側ビードシート部6と外端リムフランジ部11との境界部に関しては、図4に示すように、その外周面(溶接表面)22の断面形状がR6.5(mm)以下となるように規定されている。従来の溶接工程にあっては、凹み隅肉溶接を行うことで、溶接後の溶接継手部20の溶接表面22が大部分で規格形状を満足するようにしているが、上述したラップ部と、溶接始端部直後の部分は、溶接ビード21が大きいため、溶接表面22が上述の規格形状を満足し難く、溶接後に切削加工の手間を要していた。 In the welding process of the full-face wheel A, welding is performed over the entire circumference without any gap as described above to prevent air leakage, and the weld bead 21 rises locally, Even if the penetration is slightly shallow, there is no problem in the welding strength between the wheel rim 1 and the wheel disc 10. However, the welded joint portion 20 of the full-face wheel A is located at a portion where the tire on the outer peripheral portion of the automobile wheel is mounted. The shape of the portion is strictly determined by the standard so that the tire fits properly with the rim, and in particular, the outer bead seat portion 6 and the outer end rim flange portion 11 that form the welded joint portion 20. 4 is defined such that the outer peripheral surface (weld surface) 22 has a cross-sectional shape of R6.5 (mm) or less, as shown in FIG. In the conventional welding process, the weld surface 22 of the welded joint portion 20 after welding is mostly satisfied with the standard shape by performing the dent fillet welding. Since the weld bead 21 is large in the portion immediately after the welding start end portion, the welding surface 22 is difficult to satisfy the above-mentioned standard shape, and the work of cutting is required after welding.

本発明は、上記の二箇所の溶接ビードが小さく、溶接後の切削加工が不要となるフルフェイスホイールの溶接方法を提案するものである。   The present invention proposes a welding method for a full-face wheel in which the above-described two weld beads are small and cutting after welding is unnecessary.

本発明は、外周部に外端リムフランジ部が形成されたホイールディスクと、外端に外側ビードシート部が形成されたホイールリムとを、全周にわたってアーク溶接するフルフェイスホイールの溶接方法において、溶接始端部を、低い入熱量となるスタート条件で溶接し、溶接始端部の直後の本溶接前部を、スタート条件より高く、本溶接条件よりも低い入熱量となる本溶接前条件で溶接した後、ほぼ全周に亘る主溶接部を、高い入熱量となる本溶接条件で溶接し、溶接始端部上に重なる溶接終端部を、本溶接条件よりも低い入熱量となるクレータ前条件で溶接し、溶接終端部の末端をクレータ条件で溶接するようにしたことを特徴とするフルフェイスホイールの溶接方法である。   The present invention provides a full face wheel welding method in which arc welding is performed over the entire circumference of a wheel disk having an outer end rim flange portion formed on the outer periphery and a wheel rim having an outer bead seat portion formed on the outer end. The welding start end was welded under a start condition with a low heat input, and the main welding front immediately after the welding start end was welded with a pre-welding precondition that was higher than the start condition and lower than the main welding condition. After that, the main welded part covering almost the entire circumference is welded under the main welding conditions that give a high heat input, and the welding end part that overlaps the welding start end is welded under the pre-crater conditions that give a lower heat input than the main welding conditions. And a welding method for a full-face wheel, wherein the end of the welding end is welded under crater conditions.

上述のように、入熱量は単位溶接距離に加わる電気エネルギー量であるから、一般的に、入熱量が大きいほど、母材に溶着する金属量は多くなり、溶接ビードは大きくなる。すなわち、かかる方法では、溶接始端部直後の部分を主溶接部とは別の本溶接前部として、本溶接前条件で溶接するため、当該本溶接前部に溶着する金属量が減少し、溶接ビードの盛り上がりを従来よりも小さくすることができる。また、溶接ビードが重なるラップ部を形成する溶接終端部にあっても、本溶接条件より小さい入熱量となるクレータ前条件で溶接するため、溶接ビードは従来より縮小される。従って、本発明の溶接方法によって形成された溶接継手部は、その溶接表面が全周部に亘って規格形状を満足し得るため、溶接後に溶接継手部の切削加工を省略することが可能となる。   As described above, since the heat input is the amount of electric energy applied to the unit welding distance, generally, the larger the heat input, the more metal is deposited on the base material and the larger the weld bead. That is, in this method, since the part immediately after the welding start end is used as a main welding front part different from the main welding part, welding is performed under the conditions before the main welding, the amount of metal deposited on the main welding front part is reduced, and welding is performed. The rise of the bead can be made smaller than before. Further, even in the welding end portion forming the lap portion where the weld beads overlap, the welding bead is reduced as compared with the prior art because the welding is performed under the pre-crater condition where the heat input is smaller than the main welding condition. Therefore, the welded joint portion formed by the welding method of the present invention can satisfy the standard shape over the entire circumference of the welded surface, so that it is possible to omit cutting of the welded joint portion after welding. .

ここで、入熱量は、アーク溶接の電流量、電圧量、溶接速度等のパラメータにより調整できる。すなわち、溶接条件ごとの入熱量の高低は、かかるパラメータ値により決定されるものである。ただし、溶接中に電流量や電圧量を変更すると、溶接ビードの形状が不均一になり易いため、溶接ビードをなるべく均一にするためには、本溶接前条件及びクレータ前条件では、本溶接条件より溶接速度を速くして、本溶接条件よりも入熱量を低くすることが望ましい。   Here, the amount of heat input can be adjusted by parameters such as the amount of arc welding current, the amount of voltage, and the welding speed. That is, the level of heat input for each welding condition is determined by the parameter value. However, if the amount of current or voltage is changed during welding, the shape of the weld bead tends to be non-uniform. Therefore, in order to make the weld bead as uniform as possible, the main welding condition It is desirable to make the welding rate faster and lower the heat input than the main welding conditions.

ここで、本発明の溶接方法で用いる好適な溶接条件は、ホイールの材質、溶接装置の構造、溶接方式等により変化するものであるが、スタート条件、本溶接条件、クレータ条件については、従来の溶接方法の設定値を好適に用いることができる。また、本溶接前条件、クレータ前条件については、溶接ビードの大きさと、必要とする溶接ビードの大きさとの比較により、おおよその入熱量は推定可能であり、好適な条件は容易に決定される。本発明者らは、本発明の溶接方法により、全周の溶接表面が上述の規格(R6.5以下)を満足するフルフェイスホイールを作製している。   Here, suitable welding conditions used in the welding method of the present invention vary depending on the material of the wheel, the structure of the welding apparatus, the welding method, and the like, but the start conditions, the main welding conditions, and the crater conditions are the conventional ones. The set value of the welding method can be suitably used. As for the pre-welding precondition and the pre-crater precondition, the approximate heat input can be estimated by comparing the size of the weld bead with the required size of the weld bead, and suitable conditions are easily determined. . The inventors of the present invention have produced a full-face wheel in which the welding surface of the entire circumference satisfies the above-mentioned standard (R6.5 or less) by the welding method of the present invention.

なお、本発明の主旨は、本溶接前条件およびクレータ前条件は、本溶接条件より低い入熱量として、本溶接条件よりも溶着金属量を少なくすることにある。従って、本溶接前条件やクレータ前条件では、本溶接条件より入熱量が少ない状態が維持されていれば、溶接中に入熱量を変化させることも可能であり、本発明に含めるものとする。   The gist of the present invention is that the pre-welding condition and the crater pre-condition are a heat input lower than the main welding condition, and the amount of deposited metal is less than the main welding condition. Therefore, the heat input amount can be changed during welding as long as the heat input amount is less than the main welding condition in the pre-welding condition and the crater pre-condition, and this is included in the present invention.

本発明のフルフェイスホイールの溶接方法を用いることにより、溶接始端部直後の部分(本溶接前部)、及びラップ部の溶接ビードが従来方法よりも縮小するため、溶接表面の形状を規格範囲内とすることができ、溶接後の切削加工が省略可能となる。このため、製造工程を簡略化し、製造コストを削減することで、安価なフルフェイスホイールを提供できる。   By using the welding method of the full face wheel of the present invention, the weld bead at the welding start end portion (the main welding front portion) and the weld bead at the lap portion are reduced as compared with the conventional method. And cutting after welding can be omitted. For this reason, an inexpensive full face wheel can be provided by simplifying a manufacturing process and reducing manufacturing cost.

また、本溶接前条件及びクレータ前条件では、本溶接条件より溶接速度を増すようにすれば、容易かつ円滑に入熱量を加減できるため、本溶接前部と本溶接部の境界部分、および本溶接部から溶接終端部の境界部分といった溶接条件の変更点において、溶接ビード形状のムラを少なくすることができる。   In addition, in the pre-welding precondition and the pre-crater precondition, if the welding speed is increased from the main welding condition, the amount of heat input can be adjusted easily and smoothly. It is possible to reduce unevenness of the weld bead shape at the change point of the welding condition such as the boundary portion between the welded portion and the welding end portion.

本発明の実施形態を添付図面に従って説明する。
図5は、本発明の溶接方法を行うための組付溶接機40の概略図である。かかる組付溶接機40では、図1に示したスチール製のフルフェイスホイールAのホイールリム1とホイールディスク10とをアーク溶接する。この組付溶接機40はホイールディスク10を固定するための治具41を備え、その上方にはホイールリム1を固定するクランプ42が配設される。そして、成形されたホイールディスク10とホイールリム1とを、かかる組付溶接機40に取り付けると、図示しない位置決め機構により、ホイールリム1とホイールディスク10との中心位置を一致させて、上方に装着された回転エアシリンダー49によりホイールリム1がホイールディスク10に圧接される。
Embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 5 is a schematic view of an assembly welding machine 40 for performing the welding method of the present invention. In the assembly welding machine 40, the wheel rim 1 and the wheel disc 10 of the steel full-face wheel A shown in FIG. 1 are arc-welded. The assembly welding machine 40 includes a jig 41 for fixing the wheel disc 10, and a clamp 42 for fixing the wheel rim 1 is disposed above the jig 41. Then, when the molded wheel disc 10 and the wheel rim 1 are attached to the assembly welding machine 40, the center position of the wheel rim 1 and the wheel disc 10 are matched by a positioning mechanism (not shown) and mounted on the upper side. The wheel rim 1 is pressed against the wheel disc 10 by the rotating air cylinder 49 thus made.

そして、治具41の外方には、アーク溶接用の溶接トーチ43が設けられる。この溶接トーチ43は溶接電源装置51と接続されており、該溶接電源装置51から電流、ワイヤー、ガス等の供給を受ける。そして、この溶接トーチ43はマニピュレータ50に固定されており、溶接時には溶接トーチ43の先端が、ホイールリム1とホイールディスク10との圧接部に近接し、該圧接部を溶接する。   A welding torch 43 for arc welding is provided outside the jig 41. The welding torch 43 is connected to a welding power supply device 51 and receives supply of current, wire, gas, and the like from the welding power supply device 51. The welding torch 43 is fixed to the manipulator 50, and at the time of welding, the tip of the welding torch 43 comes close to the pressure contact portion between the wheel rim 1 and the wheel disk 10, and the pressure contact portion is welded.

また、治具41は、下方に設けられた回転モータ44の回転軸に固定される。この回転モータ44は、制御基板を備えるドライブユニット53に接続されており、該ドライブユニット53から電気の供給を受けると共に、その回転速度を制御される。そして、溶接時には、この回転モータ44が、治具41を回転させることにより、圧接したホイールリム1とホイールディスク10を一体的に回転させ、ホイールリム1とホイールディスク10の圧接部を、上記溶接トーチ43の先端に順次臨ませることにより、該圧接部が全周にわたって溶接される。   The jig 41 is fixed to the rotating shaft of the rotary motor 44 provided below. The rotation motor 44 is connected to a drive unit 53 provided with a control board, and is supplied with electricity from the drive unit 53 and its rotation speed is controlled. At the time of welding, the rotary motor 44 rotates the jig 41 to integrally rotate the wheel rim 1 and the wheel disc 10 that are in pressure contact with each other, and the pressure contact portion between the wheel rim 1 and the wheel disc 10 is welded to the weld. By sequentially facing the tip of the torch 43, the press contact portion is welded over the entire circumference.

さらに、組付溶接機40には、溶接工程を制御するためのコンピュータ45が備えられている。このコンピュータ45には、溶接工程の制御プログラムが記憶される。そしてコンピュータ45は、上述の回転モータ44、溶接電源装置51等の各装置に接続されており、溶接工程の進行に応じて制御信号が適宜出力され各装置を作動させる。また、このコンピュータ45はCRT等の表示装置、キーボード等の入力装置を具備し、操作者が溶接工程で行う各種の溶接条件を設定可能となっている。   Furthermore, the assembly welding machine 40 is provided with a computer 45 for controlling the welding process. The computer 45 stores a control program for the welding process. The computer 45 is connected to each device such as the rotary motor 44 and the welding power source device 51 described above, and a control signal is appropriately output according to the progress of the welding process to operate each device. The computer 45 includes a display device such as a CRT and an input device such as a keyboard, and allows an operator to set various welding conditions performed in the welding process.

かかる組付溶接機40における入熱量の制御機構について説明する。上記コンピュータ45にあっては、スタート条件、本溶接前条件、本溶接条件、クレータ前条件、クレータ条件の、5つの溶接条件が設定可能となっている。スタート条件、本溶接前条件、本溶接条件、クレータ前条件にあっては、夫々に溶接トーチ43の電流量、電圧量、および回転モータ44の回転速度、回転角度を設定可能となっており、一方、クレータ条件にあっては、一点の溶接であるため電流量、電圧量、そして溶接時間を設定可能となっている。すなわち、電流量、電圧量、回転速度(溶接速度)又は溶接時間により入熱量が調節され、回転モータ44の回転角度により、溶接始端部、本溶接前部、主溶接部、溶接終端部の溶接距離が決定される。そして、溶接開始前に操作者が、コンピュータ45を介して各溶接条件について設定を行うと、溶接開始後にコンピュータ45から溶接電源装置51、ドライブユニット53に制御信号が出力され、溶接トーチ43の電流量、電圧量、および回転モータ44の回転速度を調節し、各溶接条件に従った溶接が順番に実行される。なお、本発明は溶接中の入熱量の制御方法に特徴があり、かかる組付溶接機40の溶接トーチ43や回転モータ44等は従来構成と同様であるため詳細な説明は省略する。   The control mechanism of the heat input amount in the assembly welding machine 40 will be described. In the computer 45, five welding conditions can be set: a start condition, a pre-welding condition, a main welding condition, a crater pre-condition, and a crater condition. In the start condition, the pre-welding condition, the main welding condition, and the crater pre-condition, the current amount and voltage amount of the welding torch 43 and the rotation speed and rotation angle of the rotary motor 44 can be set respectively. On the other hand, in the crater condition, since the welding is performed at one point, the current amount, the voltage amount, and the welding time can be set. That is, the amount of heat input is adjusted by the amount of current, the amount of voltage, the rotational speed (welding speed) or the welding time, and the welding start end, main welding front, main welding, and welding end are welded according to the rotation angle of the rotary motor 44. The distance is determined. If the operator sets each welding condition via the computer 45 before starting welding, a control signal is output from the computer 45 to the welding power source device 51 and the drive unit 53 after starting welding, and the current amount of the welding torch 43 is determined. The voltage amount and the rotation speed of the rotary motor 44 are adjusted, and welding according to each welding condition is executed in order. The present invention is characterized by a method for controlling the amount of heat input during welding. Since the welding torch 43 and the rotary motor 44 of the assembly welding machine 40 are the same as those in the conventional configuration, detailed description thereof is omitted.

以下にかかる組付溶接機40を用いて、スチール製のフルフェイスホイールAを溶接した一実施例について説明する。本実施例においては、図6,7に示すように、溶接始端部を低い入熱量となるスタート条件で溶接し、溶接始端部の直後の本溶接前部をスタート条件より高く、本溶接条件よりも低い入熱量となる本溶接前条件で溶接した後、ほぼ全周に亘る主溶接部を高い入熱量となる本溶接条件で溶接し、溶接始端部上に重なる溶接終端部を本溶接条件よりも低い入熱量となるクレータ前条件で溶接し、溶接終点をクレータ条件で溶接する。   An embodiment in which a steel full-face wheel A is welded using the assembly welding machine 40 according to the following will be described. In this example, as shown in FIGS. 6 and 7, the welding start end is welded under a start condition with a low heat input, and the main welding front immediately after the welding start end is higher than the start condition and is higher than the main welding condition. After welding under the pre-welding conditions that result in a low heat input, the main welded part over the entire circumference is welded under the main welding conditions that provide a high heat input, and the welding end that overlaps the welding start end is Welding is performed under the pre-crater conditions where the heat input is low, and the welding end point is welded under crater conditions.

また、図8は、本実施例の各溶接条件を示したものである。なお、本図では電流値、電圧値、回転速度については、本溶接条件での電流値i、電圧値v、回転速度wとの相対量として示してある。この図8から明らかなように、本実施例では、スタート条件で、本溶接条件よりも小さい電流量、電圧量でアーク溶接を行うことにより、低い入熱量を実現させる。一方、本溶接前条件およびクレータ前条件は、本溶接条件の回転速度より回転モータ44の回転速度を速くすることにより、本溶接条件よりも低い入熱量を実現している。ここで、本溶接前条件の回転速度は、スタート条件よりも速くなっているが、スタート条件の電流量、電圧量が本溶接前条件よりも低いため、トータルでは入熱量(電流量×電圧量/溶接速度に比例)はスタート条件の方が低くなる。なお、スタート条件、本溶接条件、クレータ条件の各パラメータ(電流量、電圧量、溶接速度、溶接時間)は、従来の溶接条件の値を好適に用いることができる。また、本溶接前条件で溶接する本溶接前部、およびクレータ前条件で溶接する溶接終端部は、従来の溶接方法において溶接ビード21が大きくなっていた範囲と一致するように、それぞれ回転モータ44の回転角度を設定している。   Moreover, FIG. 8 shows each welding condition of a present Example. In this figure, the current value, voltage value, and rotation speed are shown as relative amounts of the current value i, voltage value v, and rotation speed w under the main welding conditions. As is apparent from FIG. 8, in this embodiment, a low heat input is realized by performing arc welding with a current amount and a voltage amount smaller than the main welding conditions in the start condition. On the other hand, the pre-welding precondition and the pre-crater precondition realize a lower heat input than the main welding condition by making the rotational speed of the rotary motor 44 faster than the rotational speed of the main welding condition. Here, the rotational speed of the pre-welding conditions is faster than the starting conditions, but the current amount and voltage of the starting conditions are lower than the pre-welding conditions, so the total heat input (current amount x voltage amount) (Proportional to welding speed) is lower under the start condition. In addition, the value of the conventional welding conditions can be used suitably for each parameter (current amount, voltage amount, welding speed, welding time) of the start condition, the main welding condition, and the crater condition. Further, the main welding front part to be welded under the pre-welding condition and the welding terminal part to be welded under the crater pre-condition are respectively matched with the range in which the weld bead 21 has been enlarged in the conventional welding method, respectively. The rotation angle is set.

この溶接工程について図7を参照して順番に説明すると、まず、溶接開始後、低い入熱量となるスタート条件で溶接が開始され、溶接始端部に小さい溶接ビード21aを形成する。スタート条件で溶接始端部を溶接すると、コンピュータ45から溶接電源装置51とドライブユニット53へ信号が送られ、溶接トーチ43の電流量、電圧量を上昇させると共に、回転モータ44の回転速度を上昇させ、本溶接前条件での溶接を行う。かかる段階では、母材23が完全に温まりきっていないため、本溶接条件よりも溶接速度(回転速度)を速くして入熱量を低くすることにより、溶着金属量を抑え、溶接ビード21b’を小さくする。   This welding process will be described in order with reference to FIG. 7. First, after starting welding, welding is started under a start condition that results in a low heat input, and a small weld bead 21 a is formed at the welding start end. When the welding start end is welded under the start condition, a signal is sent from the computer 45 to the welding power source device 51 and the drive unit 53, and the current amount and voltage amount of the welding torch 43 are increased, and the rotation speed of the rotary motor 44 is increased. Welding under pre-welding conditions. At this stage, since the base material 23 is not completely warmed up, the welding rate (rotational speed) is made faster than the main welding conditions to reduce the heat input, thereby suppressing the amount of deposited metal and the weld bead 21b ′. Make it smaller.

次いで、本溶接前条件よりも高い入熱量となる本溶接条件で、略全周にわたって溶接を行う。かかる段階では、従来の本溶接条件同様の溶接が行われ、母材23も完全に温まっているため、充分な溶け込み量が確保された状態で安定した溶接ビード21cが形成される。   Next, welding is performed over substantially the entire circumference under the main welding conditions where the heat input is higher than the pre-welding condition. At this stage, welding similar to the conventional main welding conditions is performed, and the base material 23 is also completely warmed, so that a stable weld bead 21c is formed in a state where a sufficient amount of penetration is ensured.

そして、本溶接条件で略全周にわたる主溶接部を溶接すると、コンピュータ45からドライブユニット53へ制御信号が送られ、回転モータ44の回転速度を上昇させる。そして、本溶接条件より低い入熱量となるクレータ前条件で溶接終端部を溶接し、溶接始端部に形成された溶接ビード21a上に溶接ビード21d’を重ねてラップ部を形成する。かかる段階では、溶接終端部をクレータ前条件で溶接することにより、従来よりも溶着金属量が少なくなり、ラップ部の溶接ビード21が縮小される。   Then, when the main welded portion over substantially the entire circumference is welded under the main welding conditions, a control signal is sent from the computer 45 to the drive unit 53, and the rotational speed of the rotary motor 44 is increased. Then, the welding end portion is welded under a pre-crater condition where the heat input is lower than the main welding condition, and the welding bead 21d 'is overlapped on the welding bead 21a formed at the welding start end portion to form a lap portion. In such a stage, the welding end portion is welded under the pre-crater condition, so that the amount of deposited metal is reduced as compared with the conventional case, and the weld bead 21 at the lap portion is reduced.

さらに、クレータ前条件での溶接が終了すると、クレータ条件での溶接が行われる。すなわちコンピュータ45からドライブユニット53に停止信号が出力し、回転モータ44の回転を停止させると共に、溶接電源装置51へ制御信号を出力し、設定された電流量、電圧量で溶接終点を所定時間(0.5秒)溶接する。その後、コンピュータ45からの制御信号によりマニピュレータ50が溶接トーチ43を後退させて溶接工程を終了する。   Further, when the welding under the crater precondition is completed, the welding under the crater condition is performed. That is, a stop signal is output from the computer 45 to the drive unit 53 to stop the rotation of the rotary motor 44 and a control signal is output to the welding power source 51 to set the welding end point for a predetermined time (0) with the set current amount and voltage amount. .5 seconds) Weld. Thereafter, the manipulator 50 retracts the welding torch 43 by the control signal from the computer 45, and the welding process is completed.

このようにして溶接されたフルフェイスホイールAは、図7に示すように、従来よりもラップ部付近の溶接ビード21が従来の溶接ビード(図7二点鎖線部)よりも小さく、全周にわたり略均一な溶接ビード21が形成される。そして、本実施例の溶接方法により形成された溶接継手部20の溶接ビード21は、ラップ部においても規格形状(R6.5以下)を満足するものであり、溶接後の切削加工をする必要がなくなった。また、溶接継手部20は、かかる規格形状だけでなくホイールに必要とされる溶接強度も有するものである。   As shown in FIG. 7, the welded full-face wheel A has a weld bead 21 in the vicinity of the lap portion smaller than the conventional weld bead (the two-dot chain line portion in FIG. 7), and extends over the entire circumference. A substantially uniform weld bead 21 is formed. And the weld bead 21 of the welded joint part 20 formed by the welding method of the present embodiment satisfies the standard shape (R6.5 or less) even in the lap part, and it is necessary to perform cutting after welding. lost. In addition, the welded joint portion 20 has not only such a standard shape but also a welding strength required for the wheel.

このように、本実施例のフルフェイスホイールの溶接方法では、溶接後に溶接継手部20の切削加工を必要としないから、フルフェイスホイールの製造工程が簡略化され、フルフェイスホイールAを低廉に作製することができる。   Thus, in the welding method of the full face wheel of the present embodiment, since the cutting of the welded joint portion 20 is not required after welding, the manufacturing process of the full face wheel is simplified and the full face wheel A is manufactured at a low cost. can do.

なお、本発明は、上記実施例の方法に限定したものではなく、本発明の主旨の範囲内で適宜変更可能である。例えば、実施例では、本溶接前条件やクレータ前条件を、一定の電流量、電圧量、回転速度に設定することにより、入熱量が一定となるような制御を行っているが、本溶接前条件やクレータ前条件は、常に一定の入熱量を設定する必要はなく、本溶接条件より低い入熱量であれば、入熱量を段階的に変化させるように設定することも可能である。さらには、本発明のフルフェイスホイールの溶接方法は、主にスチール製のフルフェイスホイールの溶接に用いるものであるが、アルミ製のフルフェイスホイールの溶接にも適用可能である。   In addition, this invention is not limited to the method of the said Example, In the range of the main point of this invention, it can change suitably. For example, in the embodiment, by setting the pre-welding precondition and the pre-crater precondition to a constant current amount, voltage amount, and rotation speed, the heat input is controlled to be constant. The condition and the pre-crater condition do not always need to be set to a constant heat input, and can be set to change the heat input stepwise as long as the heat input is lower than the main welding conditions. Furthermore, the full face wheel welding method of the present invention is mainly used for welding steel full face wheels, but can also be applied to aluminum full face wheels.

フルフェイスホイールAの縦断面図である。2 is a longitudinal sectional view of a full face wheel A. FIG. 従来の溶接方法による溶接ビード21の大きさを示す説明図である。It is explanatory drawing which shows the magnitude | size of the welding bead 21 by the conventional welding method. 従来の溶接方法における溶接条件を示す説明図である。It is explanatory drawing which shows the welding conditions in the conventional welding method. 図1の溶接継手部20の拡大図である。It is an enlarged view of the welded joint part 20 of FIG. 組付溶接機40の概略図である。1 is a schematic view of an assembly welding machine 40. FIG. 本実施例の溶接条件を示す説明図である。It is explanatory drawing which shows the welding conditions of a present Example. 本実施例の溶接方法による溶接ビード21の大きさを示す説明図である。It is explanatory drawing which shows the magnitude | size of the weld bead 21 by the welding method of a present Example. 本実施例の溶接条件を示す図表である。It is a chart which shows the welding conditions of a present Example.

符号の説明Explanation of symbols

1 ホイールリム
2 内端リムフランジ部
3 内側ビードシート部
5 ドロップ部
6 外側ビードシート部
10 ホイールディスク
11 外端リムフランジ部
12 ディスク主板部
14 放熱孔
16 ハブ孔
20 溶接継手部
21,21a〜d,21b’,21d’ 溶接ビード
22 溶接表面
23 母材
40 組付溶接機
41 治具
42 クランプ
43 溶接トーチ
44 回転モータ
45 コンピュータ
49 回転エアシリンダー
50 マニピュレータ
51 溶接電源装置
53 ドライブユニット
A フルフェイスホイール
DESCRIPTION OF SYMBOLS 1 Wheel rim 2 Inner end rim flange part 3 Inner bead seat part 5 Drop part 6 Outer bead seat part 10 Wheel disk 11 Outer end rim flange part 12 Disc main plate part 14 Heat radiation hole 16 Hub hole 20 Welded joint part 21, 21a-d , 21b ', 21d' Weld beads 22 Welded surface 23 Base material 40 Assembly welding machine 41 Jig 42 Clamp 43 Welding torch 44 Rotating motor 45 Computer 49 Rotating air cylinder 50 Manipulator 51 Welding power supply device 53 Drive unit A Full face wheel

Claims (2)

外周部に外端リムフランジ部が形成されたホイールディスクと、外端に外側ビードシート部が形成されたホイールリムとを、全周にわたってアーク溶接するフルフェイスホイールの溶接方法において、
溶接始端部を、低い入熱量となるスタート条件で溶接し、
溶接始端部の直後の本溶接前部を、スタート条件より高く、本溶接条件よりも低い入熱量となる本溶接前条件で溶接した後、
ほぼ全周に亘る主溶接部を、高い入熱量となる本溶接条件で溶接し、
溶接始端部上に重なる溶接終端部を、本溶接条件よりも低い入熱量となるクレータ前条件で溶接し、
溶接終端部の末端をクレータ条件で溶接するようにした
ことを特徴とするフルフェイスホイールの溶接方法。
In the welding method of the full face wheel, in which the wheel disk in which the outer end rim flange portion is formed in the outer peripheral portion and the wheel rim in which the outer bead seat portion is formed in the outer end are arc-welded over the entire circumference.
Weld the welding start end under the start condition that results in a low heat input,
After welding the front part of the main welding immediately after the welding start part at the pre-welding condition that is higher than the starting condition and lower than the main welding condition,
Weld the main welded part over almost the whole circumference under the main welding conditions that give a high heat input,
Welding the weld end overlapping the weld start end at the pre-crater conditions where the heat input is lower than the main welding conditions,
A welding method for a full face wheel, characterized in that the end of the welding end is welded under crater conditions.
本溶接前条件及びクレータ前条件では、本溶接条件より溶接速度を速くしたことを特徴とする請求項1記載のフルフェイスホイールの溶接方法。   The full face wheel welding method according to claim 1, wherein the welding speed is faster than the main welding conditions in the main welding precondition and the crater precondition.
JP2003336961A 2003-09-29 2003-09-29 Welding method of full face wheel Pending JP2005103559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336961A JP2005103559A (en) 2003-09-29 2003-09-29 Welding method of full face wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336961A JP2005103559A (en) 2003-09-29 2003-09-29 Welding method of full face wheel

Publications (1)

Publication Number Publication Date
JP2005103559A true JP2005103559A (en) 2005-04-21

Family

ID=34532921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336961A Pending JP2005103559A (en) 2003-09-29 2003-09-29 Welding method of full face wheel

Country Status (1)

Country Link
JP (1) JP2005103559A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144863A (en) * 1980-04-10 1981-11-11 Mitsubishi Heavy Ind Ltd Welding method
JPS5939471A (en) * 1982-08-30 1984-03-03 Ishikawajima Harima Heavy Ind Co Ltd Tig welding method
JPH09192829A (en) * 1996-01-09 1997-07-29 Chuo Seiki Kk Weld zone cooling in full face plate disk wheel welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144863A (en) * 1980-04-10 1981-11-11 Mitsubishi Heavy Ind Ltd Welding method
JPS5939471A (en) * 1982-08-30 1984-03-03 Ishikawajima Harima Heavy Ind Co Ltd Tig welding method
JPH09192829A (en) * 1996-01-09 1997-07-29 Chuo Seiki Kk Weld zone cooling in full face plate disk wheel welding

Similar Documents

Publication Publication Date Title
JP4079180B2 (en) 3 piece wheel plating remover
JP4314985B2 (en) Spot welding method for metal parts
JP2010005632A (en) Gap control device for laser beam welding and laser beam welding method
JP2004098122A (en) Laser welding method
JP2010264503A (en) Lap welding method for steel sheet, and lap-welded joint of steel sheet
JP2009068380A (en) Turbine rotor and method for manufacturing rotor
JP4107335B2 (en) Wheel manufacturing method
US20160184930A1 (en) Method of welding shaft and wheel in turbine shaft, turbine shaft, and welding device
JP4893906B2 (en) Electrode tip shaping device and electrode tip shaping tool
JP2003245385A (en) Welding method between golf club head and hitting plate
JP2005103559A (en) Welding method of full face wheel
JP4854986B2 (en) TIG welding method
JP6748017B2 (en) Axle manufacturing method
JP3083130B2 (en) Seam welding method
JP2013018040A (en) Method and structure for circumferential welding, and closed type compressor
JP2002292480A (en) Bonding method and apparatus using friction and agitation
JP4730374B2 (en) 3 piece wheel plating remover
JP4589845B2 (en) Wheel for automobile and manufacturing method thereof
US8881404B1 (en) Method of manufacturing a seamless metal clad polystyrene door
JP2006000869A (en) Automatic circumferential welding method
JP2008055430A (en) Friction point welding device
JPH11192566A (en) Laser beam welding method of automobile wheel and its equipment
CN115945787B (en) Welding method for cabin overlap joint structure
KR102602613B1 (en) Cutter for dressing electrode tip and cutter assembly including the same
JP2004167525A (en) Outer hem friction stir welding method, and welding device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Effective date: 20081117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426