JP2005101569A - Manufacturing method of piezoelectric thin film and piezo-resonator - Google Patents

Manufacturing method of piezoelectric thin film and piezo-resonator Download PDF

Info

Publication number
JP2005101569A
JP2005101569A JP2004242886A JP2004242886A JP2005101569A JP 2005101569 A JP2005101569 A JP 2005101569A JP 2004242886 A JP2004242886 A JP 2004242886A JP 2004242886 A JP2004242886 A JP 2004242886A JP 2005101569 A JP2005101569 A JP 2005101569A
Authority
JP
Japan
Prior art keywords
piezoelectric
thin film
piezoelectric thin
film
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004242886A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ushimi
義光 牛見
Hajime Yamada
一 山田
Hideki Kawamura
秀樹 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004242886A priority Critical patent/JP2005101569A/en
Publication of JP2005101569A publication Critical patent/JP2005101569A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a piezoelectric thin film having excellent piezoelectric properties, and also to provide a piezo-resonator using the thin film, which has excellent piezoelectric properties and is suitable for high frequency. <P>SOLUTION: The piezo-resonator 50 comprises a substrate 1 and a vacuum film-forming device 3b. A piezoelectric thin film 2 and excitation electrodes 3a, 3b constitute a piezoelectric element. The substrate 1 is provided with a cavity portion 4 at its rear, and its upper surface is provided with a thin-film support 5 constituted of a portion of the substrate. The piezoelectric thin film 2 is formed with the moisture pressure of the vacuum film-forming device being 2×10<SP>-5</SP>Pa or more during film formation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高周波領域で用いるダイヤフラム型圧電共振子に関し、特に圧電共振子に用いる圧電薄膜の製造方法に関する。   The present invention relates to a diaphragm type piezoelectric resonator used in a high frequency region, and more particularly to a method for manufacturing a piezoelectric thin film used for a piezoelectric resonator.

圧電基板の厚み縦振動を利用した圧電共振子の共振周波数は、圧電基板の厚さに反比例する。このため、高周波領域で用いる時には、その周波数に対応させ、圧電基板をきわめて薄く加工する必要がある。しかしながら、圧電基板自身の厚みを薄くすることは、その機械的強度の問題から、基本モードでは、数100MHzが実用上の高周波領域の限界とされてきた。   The resonance frequency of the piezoelectric resonator utilizing the longitudinal vibration of the piezoelectric substrate is inversely proportional to the thickness of the piezoelectric substrate. For this reason, when used in a high frequency region, it is necessary to process the piezoelectric substrate very thinly in correspondence with the frequency. However, to reduce the thickness of the piezoelectric substrate itself, due to the problem of mechanical strength, in the basic mode, several hundred MHz has been the limit of the practical high frequency region.

そこで、このような課題を解決するために、次のような圧電共振子が提案されている。この方法によれば、絶縁材料からなる基板の一部を裏面側からエッチングすることによって、基板の表面の一部に薄膜支持部を形成する。薄膜支持部上に一層もしくは複数の圧電薄膜層と電極層を形成してなる圧電共振子である。   Therefore, in order to solve such problems, the following piezoelectric resonator has been proposed. According to this method, a thin film supporting portion is formed on a part of the surface of the substrate by etching a part of the substrate made of an insulating material from the back side. It is a piezoelectric resonator formed by forming a single layer or a plurality of piezoelectric thin film layers and an electrode layer on a thin film support.

薄膜支持部は、微細加工技術を用いて薄くすることができる。また、圧電薄膜層も真空成膜装置を用いて薄く形成することができるので、数100MHz〜数1000MHzまで高周波特性を延ばし得る圧電共振子である(例えば特許文献1参照)。
特開昭58−121817号公報
The thin film support can be thinned using a microfabrication technique. In addition, since the piezoelectric thin film layer can also be thinly formed using a vacuum film forming apparatus, the piezoelectric thin film layer is a piezoelectric resonator capable of extending high frequency characteristics from several hundred MHz to several thousand MHz (for example, see Patent Document 1).
JP 58-121817 A

しかしながら、上記に説明した従来技術による圧電共振子には、以下の問題が存在する。   However, the piezoelectric resonator according to the related art described above has the following problems.

特許文献1においては、圧電薄膜としては、スパッタリング法、イオンプレーティング法またはCVD法等の真空薄膜形成方法により、ZnO膜が形成される。   In Patent Document 1, a ZnO film is formed as a piezoelectric thin film by a vacuum thin film forming method such as sputtering, ion plating, or CVD.

この圧電薄膜における圧電特性は、その形成された圧電薄膜の配向性や結晶性等により顕著な影響を受ける。真空薄膜形成法においては、形成する膜の配向性や結晶性等を精度良くコントロールすることが困難であり、そのため、形成された圧電薄膜の圧電特性がばらつくとの課題を有していた。   The piezoelectric characteristics of the piezoelectric thin film are significantly affected by the orientation and crystallinity of the formed piezoelectric thin film. In the vacuum thin film forming method, it is difficult to accurately control the orientation and crystallinity of the film to be formed, and therefore, there is a problem that the piezoelectric characteristics of the formed piezoelectric thin film vary.

上記問題を解決すべく本発明の圧電薄膜の製造方法および圧電共振子は、真空成膜装置を用い、圧電酸化物を主成分とする圧電薄膜の製造方法において、圧電薄膜は、真空成膜装置の成膜中の水分圧が2×10-5Pa以上で形成されることを特徴とする圧電薄膜の製造方法である。また、成膜中の水分圧が3×10-5Paより大きく3×10-3Paより小さいことを特徴とする。また、成膜中の窒素分圧が1×10-4Paより小さいことを特徴とする。また、圧電薄膜は、ZnOを主成分とすることを特徴とする。 In order to solve the above problems, the piezoelectric thin film manufacturing method and the piezoelectric resonator of the present invention use a vacuum film forming apparatus, and in the piezoelectric thin film manufacturing method mainly comprising a piezoelectric oxide, the piezoelectric thin film is a vacuum film forming apparatus. The method of manufacturing a piezoelectric thin film is characterized in that the moisture pressure during film formation is 2 × 10 −5 Pa or more. Further, the moisture pressure during film formation is larger than 3 × 10 −5 Pa and smaller than 3 × 10 −3 Pa. Further, the nitrogen partial pressure during film formation is smaller than 1 × 10 −4 Pa. The piezoelectric thin film is characterized by containing ZnO as a main component.

更に、上記に記載の製造方法により形成された圧電薄膜を用いることを特徴とする圧電共振子である。また、該圧電共振子を少なくとも一つ用いることを特徴とする圧電フィルタである。また、該圧電フィルタを用いることを特徴とするデュプレクサである。   Furthermore, a piezoelectric resonator using the piezoelectric thin film formed by the manufacturing method described above. The piezoelectric filter is characterized by using at least one piezoelectric resonator. The duplexer is characterized by using the piezoelectric filter.

以上のような本発明の圧電薄膜の製造方法によれば、圧電薄膜の配向性および結晶性のばらつきが小さい圧電薄膜の形成ができ、圧電特性の向上した圧電特性ばらつきの小さい圧電薄膜の形成が可能となる。   According to the method for manufacturing a piezoelectric thin film of the present invention as described above, a piezoelectric thin film with small variations in orientation and crystallinity of the piezoelectric thin film can be formed, and a piezoelectric thin film with improved piezoelectric characteristics and small variations in piezoelectric characteristics can be formed. It becomes possible.

また、本発明の圧電薄膜の製造方法で形成された圧電薄膜を圧電共振子に、またこの圧電共振子を圧電フィルタに、更にこの圧電フィルタをデュプレクサに用いることで、高周波に対応した圧電特性が優れ、圧電特性ばらつきの小さい圧電共振子、圧電フィルタおよびデュプレクサを提供することが可能となる。   In addition, by using the piezoelectric thin film formed by the piezoelectric thin film manufacturing method of the present invention as a piezoelectric resonator, using this piezoelectric resonator as a piezoelectric filter, and further using this piezoelectric filter as a duplexer, piezoelectric characteristics corresponding to high frequencies can be obtained. It is possible to provide a piezoelectric resonator, a piezoelectric filter, and a duplexer that are excellent and have small variations in piezoelectric characteristics.

以下、本発明の実施例について添付図に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の圧電共振子の一実施例における概略断面図を示す。   FIG. 1 is a schematic cross-sectional view of an embodiment of a piezoelectric resonator according to the present invention.

図1において、圧電共振子50は、基板1と、圧電薄膜2と、圧電薄膜2の一方主面側に励振用電極3aと、圧電薄膜2の他方主面に励振用電極3bとを備える。圧電薄膜2と励振用電極3a、3bにより圧電素子を構成する。基板1は、裏面側に空洞部4を有し、その上面に基板の一部から構成される薄膜支持部5を備える。   In FIG. 1, a piezoelectric resonator 50 includes a substrate 1, a piezoelectric thin film 2, an excitation electrode 3 a on one main surface side of the piezoelectric thin film 2, and an excitation electrode 3 b on the other main surface of the piezoelectric thin film 2. The piezoelectric thin film 2 and the excitation electrodes 3a and 3b constitute a piezoelectric element. The substrate 1 has a hollow portion 4 on the back surface side, and includes a thin film support portion 5 formed of a part of the substrate on the upper surface.

上記した本発明の圧電共振子の製造方法の詳細を図2に示す概略プロセスフローを用いて説明する。   Details of the method for manufacturing the piezoelectric resonator of the present invention will be described with reference to a schematic process flow shown in FIG.

先ず、図2(a)に示すように基板1、例えばSi基板の上面にフォトリソ技術を用いて、レジストパターン6を形成する。具体的には、レジストをスピンコーター等により、所定の膜厚に塗布する。次に、所望するパターンが形成されたフォトリソマスクを介して、レジストを露光し、現像処理することによりレジストパターン6が形成される。   First, as shown in FIG. 2A, a resist pattern 6 is formed on the upper surface of a substrate 1, for example, a Si substrate, using a photolithography technique. Specifically, the resist is applied to a predetermined film thickness using a spin coater or the like. Next, a resist pattern 6 is formed by exposing and developing the resist through a photolithography mask on which a desired pattern is formed.

次に、図2(b)に示すように基板1上に励振用電極3aを形成する。具体的には、レジストパターン6が形成された基板1上に電極用金属膜を蒸着法等により形成する。次に、レジストパターン6およびレジストパターン6上の不要な金属膜を同時に剥離するリフトオフ法により、励振用電極3aが形成される。   Next, an excitation electrode 3a is formed on the substrate 1 as shown in FIG. Specifically, an electrode metal film is formed on the substrate 1 on which the resist pattern 6 is formed by a vapor deposition method or the like. Next, the excitation electrode 3a is formed by a lift-off method in which the resist pattern 6 and an unnecessary metal film on the resist pattern 6 are simultaneously peeled off.

次に、図2(c)に示すように励振用電極3aが形成された基板1上に、所望する周波数に対応した所定の膜厚の圧電薄膜2を形成する。圧電薄膜2は、例えばZnOを用いる。圧電薄膜2は、所望する圧電特性に対応し、BaTiO3、BaTiO3−SrTiO3、PbTiO3−PbZrO3、Ta25等を用いることもある。 Next, as shown in FIG. 2C, a piezoelectric thin film 2 having a predetermined film thickness corresponding to a desired frequency is formed on the substrate 1 on which the excitation electrode 3a is formed. For example, ZnO is used for the piezoelectric thin film 2. The piezoelectric thin film 2 corresponds to the desired piezoelectric characteristics, and BaTiO 3 , BaTiO 3 —SrTiO 3 , PbTiO 3 —PbZrO 3 , Ta 2 O 5 or the like may be used.

また、圧電薄膜2は、メタルマスク等を用い、スパッタリング法やCVD法等の真空薄膜形成法により形成される。この際、圧電薄膜2は、成膜中の真空成膜装置内の水分圧が2×10-5Pa以上で形成される。すなわち水分圧が3×10-5Pa以上の場合には圧電特性K2(電気機械結合係数)が2%以上確保できるので、広帯域フィルタを作製することができる。また水分圧が3×10-3Pa以上の場合には、ZnO膜にクラックがはいり、ZnO膜の不良率が高くなる。このため水分圧は、3×10-5より大きく3×10-3Paより小さいことが好ましい。また、成膜中の真空成膜装置内の水分圧は、背圧の水分圧による制御でも構わないが、より好ましくは成膜中の真空成膜装置内の水分圧を制御することである。成膜中における真空成膜装置内の水分圧を分圧計、質量分析計等でモニターし、上記した所望する水分圧になるように、所定の経路から水成分を導入することで制御される。さらに、成膜中の真空装置内の窒素分圧は、圧電特性の劣化を防ぐために、1×10-4Paより小さいことが好ましい。 The piezoelectric thin film 2 is formed by a vacuum thin film forming method such as a sputtering method or a CVD method using a metal mask or the like. At this time, the piezoelectric thin film 2 is formed at a moisture pressure of 2 × 10 −5 Pa or more in the vacuum film forming apparatus during film formation. That is, when the moisture pressure is 3 × 10 −5 Pa or more, the piezoelectric characteristic K 2 (electromechanical coupling coefficient) can be secured by 2% or more, and thus a wide band filter can be manufactured. On the other hand, when the water pressure is 3 × 10 −3 Pa or more, the ZnO film is cracked and the defect rate of the ZnO film is increased. For this reason, the water pressure is preferably larger than 3 × 10 −5 and smaller than 3 × 10 −3 Pa. Further, the water pressure in the vacuum film forming apparatus during film formation may be controlled by the water pressure of the back pressure, but more preferably, the water pressure in the vacuum film forming apparatus during film formation is controlled. The water pressure in the vacuum film-forming apparatus during film formation is monitored by a partial pressure meter, a mass spectrometer, or the like, and controlled by introducing a water component from a predetermined path so as to achieve the above-described desired water pressure. Furthermore, the nitrogen partial pressure in the vacuum apparatus during film formation is preferably less than 1 × 10 −4 Pa in order to prevent deterioration of piezoelectric characteristics.

次に、図2(d)に示すように圧電薄膜2上に励振用電極3bを形成する。励振用電極3bは、励振電極3aと同様の方法により形成されることから詳細な説明は省略する。   Next, an excitation electrode 3b is formed on the piezoelectric thin film 2 as shown in FIG. Since the excitation electrode 3b is formed by the same method as the excitation electrode 3a, detailed description thereof is omitted.

次に、基板1に、空洞部4を形成することで図1に示す圧電共振子50が形成される。空洞部4は、マスク等を用いてウェットエッチング、またはリアクティブイオンエッチング(RIE)により、基板1の裏面側から部分的にエッチングすることにより形成される。それにより、圧電基板1の一部に薄膜支持部5が形成される。   Next, the piezoelectric resonator 50 shown in FIG. 1 is formed by forming the cavity 4 in the substrate 1. The cavity 4 is formed by partially etching from the back side of the substrate 1 by wet etching or reactive ion etching (RIE) using a mask or the like. Thereby, the thin film support 5 is formed on a part of the piezoelectric substrate 1.

ここで図3に、成膜中の真空成膜装置内の水分圧と形成された圧電薄膜2の圧電特性K2との関係を示す。図3より、真空成膜装置内の水分圧が上昇することにより圧電特性K2の良好になる傾向が明確に確認できる。真空成膜装置内の水分圧が2×10-5Paで圧電特性K2は、1%以上の値を示す。また、真空成膜装置内の水分圧が3×10-3Paより大きくなると、圧電特性K2は、2%以上の値を示す。また、図3には図示しないが、その再現性も確認されおり、圧電特性のばらつきが低減されている。さらに、真空成膜装置内の水分圧が2×10-3Paのとき、窒素分圧が2.8×10-7Paでは圧電特性K2は4.5%と大きい値を示す。しかし同じ水分圧において、窒素分圧を1×10-4Paにすると、圧電特性K2は0.4%と小さくなる。このように真空成膜装置内の窒素分圧を低くすることにより、圧電特性の劣化を防ぐことができる。この圧電特性K2の値は、通信システム用の高い周波数帯にも対応が可能な圧電特性の値である。 FIG. 3 shows the relationship between the water pressure in the vacuum film forming apparatus during film formation and the piezoelectric characteristic K 2 of the formed piezoelectric thin film 2. From FIG. 3, it can be clearly confirmed that the piezoelectric characteristic K 2 tends to be improved as the water pressure in the vacuum film forming apparatus increases. The moisture pressure in the vacuum film forming apparatus is 2 × 10 −5 Pa, and the piezoelectric characteristic K 2 shows a value of 1% or more. Further, when the water pressure in the vacuum film forming apparatus becomes larger than 3 × 10 −3 Pa, the piezoelectric characteristic K 2 shows a value of 2% or more. Although not shown in FIG. 3, the reproducibility is also confirmed, and variations in piezoelectric characteristics are reduced. Further, when the moisture pressure in the vacuum film forming apparatus is 2 × 10 −3 Pa, the piezoelectric characteristic K 2 shows a large value of 4.5% when the nitrogen partial pressure is 2.8 × 10 −7 Pa. However, if the nitrogen partial pressure is 1 × 10 −4 Pa at the same moisture pressure, the piezoelectric characteristic K 2 becomes as small as 0.4%. Thus, by lowering the nitrogen partial pressure in the vacuum film forming apparatus, it is possible to prevent deterioration of piezoelectric characteristics. The value of the piezoelectric characteristic K 2 is a value of the piezoelectric characteristic that can be applied to a high frequency band for a communication system.

また、圧電酸化物を主成分とする圧電薄膜における成膜中の水分圧による効果は、例えば、成膜中の水分圧が1×10-5Paでは認められず、本発明の条件により認められる膜中のOH基の存在であることからも確認されている。 In addition, the effect of moisture pressure during film formation on a piezoelectric thin film containing piezoelectric oxide as a main component is not recognized when the water pressure during film formation is 1 × 10 −5 Pa, for example, and is recognized according to the conditions of the present invention. It has also been confirmed from the presence of OH groups in the film.

以上のような本発明の圧電薄膜の製造方法によれば、圧電薄膜の配向性および結晶性のばらつきが小さい圧電薄膜の形成ができ、圧電特性の向上したばらつきの小さい圧電薄膜の形成が可能となる。   According to the method for manufacturing a piezoelectric thin film of the present invention as described above, a piezoelectric thin film with small variations in orientation and crystallinity of the piezoelectric thin film can be formed, and a piezoelectric thin film with improved variations in piezoelectric characteristics can be formed. Become.

また、本発明の圧電薄膜の製造方法で形成された圧電薄膜を圧電共振子に用いることで、高周波に対応した圧電特性が優れ、圧電特性ばらつきの小さい圧電共振子を提供すること可能となる。   In addition, by using the piezoelectric thin film formed by the method for manufacturing a piezoelectric thin film of the present invention as a piezoelectric resonator, it is possible to provide a piezoelectric resonator that has excellent piezoelectric characteristics corresponding to a high frequency and has small variations in piezoelectric characteristics.

図4は、本発明の圧電共振子の別の実施例における概略断面図を示す。   FIG. 4 shows a schematic cross-sectional view of another embodiment of the piezoelectric resonator of the present invention.

図4において、圧電共振子60は、基板1と、絶縁性薄膜7と、圧電薄膜2と、圧電薄膜2の一方主面側に励振用電極3aと、圧電薄膜2の他方主面に励振用電極3bとを備える。圧電薄膜2と励振用電極3a、3bにより圧電素子を構成する。基板1は、裏面側に空洞部4を備え、その上面に絶縁性薄膜7の一部から構成される薄膜支持部8を有する。   In FIG. 4, the piezoelectric resonator 60 includes a substrate 1, an insulating thin film 7, a piezoelectric thin film 2, an excitation electrode 3 a on one main surface side of the piezoelectric thin film 2, and an excitation on the other main surface of the piezoelectric thin film 2. And an electrode 3b. The piezoelectric thin film 2 and the excitation electrodes 3a and 3b constitute a piezoelectric element. The substrate 1 has a hollow portion 4 on the back surface side, and has a thin film support portion 8 constituted by a part of the insulating thin film 7 on the upper surface thereof.

上記した本発明の圧電共振子の製造方法の詳細を図5に示す概略プロセスフローを用いて説明する。   Details of the method for manufacturing the piezoelectric resonator of the present invention will be described with reference to a schematic process flow shown in FIG.

先ず、図5(a)に示すように基板1、例えばSi基板の上面に絶縁性薄膜7を形成する。絶縁性薄膜7は、例えばスパッタリング法や熱酸化法等を用いてSiO2薄膜を形成すればよい。絶縁性薄膜7は、SiO2薄膜に限定するものではなく、電子ビーム法やスパッタリング法で形成された酸化アルミニウム薄膜または窒化アルミニウム薄膜を用いても構わない。また、絶縁性薄膜7は、単層に限定するものではなく、SiO2薄膜、酸化アルミニウム薄膜および窒化アルミニウム薄膜のうち、少なくとも2つ以上で、その順序を任意とした積層構造としても構わない。 First, as shown in FIG. 5A, an insulating thin film 7 is formed on the upper surface of a substrate 1, for example, a Si substrate. The insulating thin film 7 may be a SiO 2 thin film formed using, for example, a sputtering method or a thermal oxidation method. The insulating thin film 7 is not limited to the SiO 2 thin film, and an aluminum oxide thin film or an aluminum nitride thin film formed by an electron beam method or a sputtering method may be used. The insulating thin film 7 is not limited to a single layer, and may be a laminated structure in which at least two of the SiO 2 thin film, the aluminum oxide thin film, and the aluminum nitride thin film are in any order.

次に図5(b)に示すように、絶縁性薄膜7上に、励振用電極3b、圧電薄膜2、励振用電極3bを形成する。これは、図2(a)〜(d)に示した内容でと同様であることから詳細の記載を省略する。次に、基板1に空洞部4を形成することで、図4に示す圧電共振子60が形成される。空洞部4は、マスク等を用いてウェットエッチング、またはリアクティブイオンエッチング(RIE)により、基板1の裏面側から部分的にエッチングすることにより形成される。それにより、絶縁性薄膜7の一部に薄膜支持部8が形成される。   Next, as shown in FIG. 5B, the excitation electrode 3 b, the piezoelectric thin film 2, and the excitation electrode 3 b are formed on the insulating thin film 7. Since this is the same as that shown in FIGS. 2A to 2D, detailed description thereof is omitted. Next, by forming the cavity 4 in the substrate 1, the piezoelectric resonator 60 shown in FIG. 4 is formed. The cavity 4 is formed by partially etching from the back side of the substrate 1 by wet etching or reactive ion etching (RIE) using a mask or the like. Thereby, the thin film support portion 8 is formed on a part of the insulating thin film 7.

圧電薄膜2は、成膜中の真空成膜装置内の水分圧を2×10-5Pa以上で形成される。すなわち水分圧が3×10-5Pa以上の場合には圧電特性K2が2%以上確保できるので、広帯域フィルタを作製することができる。また水分圧が3×10-3Pa以上の場合には、ZnO膜にクラックがはいり、ZnO膜の不良率が高くなる。このため水分圧は、3×10-5より大きく3×10-3Paより小さいことが好ましい。成膜中の真空成膜装置内の水分圧は、背圧の水分圧による制御でも構わないが、より好ましくは成膜中の真空成膜装置内の水分圧を制御することである。成膜中における真空成膜装置内の水分圧を分圧計、質量分析計等でモニターし、上記した所望する水分圧になるように、所定の経路から水成分を導入することで制御される。さらに、成膜中の真空装置内の窒素分圧は、圧電特性の劣化をなくすために1×10-4Paより小さいことが好ましい。 The piezoelectric thin film 2 is formed at a moisture pressure of 2 × 10 −5 Pa or more in a vacuum film forming apparatus during film formation. That is, when the water pressure is 3 × 10 −5 Pa or more, the piezoelectric characteristic K 2 can be secured by 2% or more, and thus a wide band filter can be manufactured. On the other hand, when the water pressure is 3 × 10 −3 Pa or more, the ZnO film is cracked and the defect rate of the ZnO film is increased. For this reason, the water pressure is preferably larger than 3 × 10 −5 and smaller than 3 × 10 −3 Pa. The water pressure in the vacuum film forming apparatus during film formation may be controlled by the water pressure of the back pressure, but more preferably, the water pressure in the vacuum film forming apparatus during film formation is controlled. The water pressure in the vacuum film forming apparatus during film formation is monitored by a partial pressure meter, a mass spectrometer, or the like, and controlled by introducing a water component from a predetermined path so as to achieve the above-described desired water pressure. Further, the nitrogen partial pressure in the vacuum apparatus during film formation is preferably smaller than 1 × 10 −4 Pa in order to eliminate deterioration of piezoelectric characteristics.

よって、圧電薄膜2の圧電特性が向上した、圧電特性ばらつきの小さい圧電薄膜の形成される。   Therefore, a piezoelectric thin film with improved piezoelectric characteristics of the piezoelectric thin film 2 and small variations in piezoelectric characteristics is formed.

本発明の圧電薄膜の製造方法によれば、圧電薄膜の配向性および結晶性のばらつきが小さい圧電薄膜の形成ができ、圧電特性の向上したばらつきの小さい圧電薄膜の形成が可能となる。また、本発明の圧電薄膜の製造方法で形成された圧電薄膜を圧電共振子に用いることで、高周波に対応した圧電特性が優れ、圧電特性ばらつきの小さい圧電共振子を提供すること可能となる。   According to the method for manufacturing a piezoelectric thin film of the present invention, a piezoelectric thin film with small variations in orientation and crystallinity of the piezoelectric thin film can be formed, and a piezoelectric thin film with improved variations in piezoelectric characteristics can be formed. In addition, by using the piezoelectric thin film formed by the method for manufacturing a piezoelectric thin film of the present invention as a piezoelectric resonator, it is possible to provide a piezoelectric resonator that has excellent piezoelectric characteristics corresponding to a high frequency and has small variations in piezoelectric characteristics.

また、本発明の圧電共振子を用いて圧電フィルタを構成してもよい。   Moreover, you may comprise a piezoelectric filter using the piezoelectric resonator of this invention.

図6は、本発明の圧電共振子をラダー接続した圧電フィルタの概略等価回路図を示す。   FIG. 6 shows a schematic equivalent circuit diagram of a piezoelectric filter in which the piezoelectric resonators of the present invention are ladder-connected.

図6(a)にT型ラダーフィルタ、図6(b)、図6(c)にL型ラダーフィルタの等価回路図を示す。   FIG. 6A shows an equivalent circuit diagram of the T-type ladder filter, and FIGS. 6B and 6C show an equivalent circuit diagram of the L-type ladder filter.

図6(a)に示すように、T型ラダーフィルタは、3つの圧電共振子8を含む。3つの圧電共振子8は、それらの一端が互いに接続される。また、そのうち1つの圧電共振子8の他端が入力端子INに接続され、他の1つの圧電共振子8の他端は接地され、残りの1つの圧電共振子8の他端が出力端子OUTに接続される。また、π型ラダーフィルタを構成しても構わない。   As shown in FIG. 6A, the T-type ladder filter includes three piezoelectric resonators 8. One end of each of the three piezoelectric resonators 8 is connected to each other. The other end of one piezoelectric resonator 8 is connected to the input terminal IN, the other end of the other piezoelectric resonator 8 is grounded, and the other end of the remaining one piezoelectric resonator 8 is connected to the output terminal OUT. Connected to. Further, a π-type ladder filter may be configured.

次に、図6(b)に示すように、L型ラダーフィルタは、4つの圧電共振子8を含む。2つの直列側の圧電共振子8と、2つの圧電共振子8の並列接続から構成されている。また、図6(c)に示すように、2つの圧電共振子8で構成されることもある。よって、本発明の圧電特性が優れ、圧電特性ばらつきの小さい圧電共振子をラダー型フィルタに用いることで、フィルタ特性に優れ、フィルタ特性ばらつきの小さいラダーフィルタを提供すること可能となる。   Next, as shown in FIG. 6B, the L-type ladder filter includes four piezoelectric resonators 8. Two piezoelectric resonators 8 on the series side and two piezoelectric resonators 8 are connected in parallel. Moreover, as shown in FIG.6 (c), it may be comprised with the two piezoelectric resonators 8. FIG. Therefore, a ladder filter having excellent filter characteristics and small variations in filter characteristics can be provided by using a piezoelectric resonator having excellent piezoelectric characteristics and small variations in piezoelectric characteristics for the ladder type filter.

また、本発明の圧電フィルタを用いてデュプレクサを構成してもよい。
図7は、本発明の圧電フィルタを用いたデュプレクサの一実施例における概略ブロック図を示す。図7に示すように、デュプレクサ80は、送信機用フィルタおよび受信用フィルタを含む。送信側フィルタには、圧電フィルタとして、図6(a)で示したT型ラダーフィルタ70が用いられる。また、同様に受信側フィルタにのもT型ラダーフィルタ70が用いられる。よって、本発明のフィルタ特性に優れ、フィルタ特性ばらつきの小さいラダーフィルタをデュプレクサに用いることで、デュプレクサ特性に優れ、デュプレクサ特性ばらつきの小さいデュプレクサを提供すること可能となる。
Further, a duplexer may be configured using the piezoelectric filter of the present invention.
FIG. 7 shows a schematic block diagram of an embodiment of a duplexer using the piezoelectric filter of the present invention. As shown in FIG. 7, the duplexer 80 includes a transmitter filter and a reception filter. For the transmission side filter, a T-type ladder filter 70 shown in FIG. 6A is used as a piezoelectric filter. Similarly, a T-type ladder filter 70 is used for the reception side filter. Therefore, it is possible to provide a duplexer that has excellent duplexer characteristics and small variations in duplexer characteristics by using a ladder filter having excellent filter characteristics and small variations in filter characteristics for the duplexer.

本発明の圧電共振子の一実施例における概略断面図である。(実施例1)It is a schematic sectional drawing in one Example of the piezoelectric resonator of this invention. (Example 1) 本発明の圧電共振子の製造方法の一実施例における概略製造プロセスフローである。(実施例1)It is a general | schematic manufacturing process flow in one Example of the manufacturing method of the piezoelectric resonator of this invention. (Example 1) 本発明の効果を示すグラフである。(実施例1)It is a graph which shows the effect of the present invention. (Example 1) 本発明の圧電共振子の別の実施例における概略断面図である。(実施例2)It is a schematic sectional drawing in another Example of the piezoelectric resonator of this invention. (Example 2) 本発明の圧電共振子の製造方法の別の実施例における概略製造プロセスフローである。(実施例2)It is a general | schematic manufacturing process flow in another Example of the manufacturing method of the piezoelectric resonator of this invention. (Example 2) 本発明の圧電共振子を用いた圧電フィルタの一実施例における概略回路図である。(実施例3)It is a schematic circuit diagram in one Example of the piezoelectric filter using the piezoelectric resonator of this invention. Example 3 本発明の圧電フィルタを用いたデュプレクサの一実施例における概略ブロック図である。(実施例4)It is a schematic block diagram in one Example of the duplexer using the piezoelectric filter of this invention. (Example 4)

符号の説明Explanation of symbols

1 基板
2 圧電薄膜
3a、3b 励振用電極
4 空洞部
5、8 圧電薄膜支持部
6 レジストパターン
7 絶縁性薄膜
8、50、60 圧電共振子
70 T型ラダーフィルタ
80 デュプレクサ
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Piezoelectric thin film 3a, 3b Excitation electrode 4 Cavity part 5, 8 Piezoelectric thin film support part 6 Resist pattern 7 Insulating thin film 8, 50, 60 Piezoelectric resonator 70 T-type ladder filter 80 Duplexer

Claims (7)

真空成膜装置を用い、圧電酸化物を主成分とする圧電薄膜の製造方法において、前記圧電薄膜は、前記真空成膜装置の成膜中の水分圧が2×10-5Pa以上で形成されることを特徴とする圧電薄膜の製造方法。 In the method for manufacturing a piezoelectric thin film mainly composed of piezoelectric oxide using a vacuum film forming apparatus, the piezoelectric thin film is formed at a moisture pressure of 2 × 10 −5 Pa or more during film formation of the vacuum film forming apparatus. A method for producing a piezoelectric thin film, comprising: 前記成膜中の水分圧が3×10-5Paより大きく3×10-3Paより小さいことを特徴とする、請求項1に記載の圧電薄膜の製造方法。 2. The method of manufacturing a piezoelectric thin film according to claim 1, wherein a moisture pressure during the film formation is greater than 3 × 10 −5 Pa and less than 3 × 10 −3 Pa. 3 . 真空成膜装置を用い、圧電酸化物を主成分とする圧電薄膜の製造方法において、前記圧電薄膜は、前記真空成膜装置の成膜中の窒素分圧が1×10-4Paより小さい範囲で形成されることを特徴とする、請求項2に記載の圧電薄膜の製造方法。 In the method of manufacturing a piezoelectric thin film mainly composed of piezoelectric oxide using a vacuum film forming apparatus, the piezoelectric thin film has a nitrogen partial pressure during film formation of the vacuum film forming apparatus in a range smaller than 1 × 10 −4 Pa. The method for manufacturing a piezoelectric thin film according to claim 2, wherein the piezoelectric thin film is formed by: 前記圧電薄膜は、ZnOを主成分とすることを特徴とする、前記請求項1乃至3に記載の圧電薄膜の製造方法。   The method for manufacturing a piezoelectric thin film according to any one of claims 1 to 3, wherein the piezoelectric thin film contains ZnO as a main component. 前記請求項1乃至4のいずれか一項により形成された圧電薄膜を用いることを特徴とする圧電共振子。   A piezoelectric resonator using the piezoelectric thin film formed according to any one of claims 1 to 4. 請求項5に記載の圧電共振子を少なくとも一つ用いることを特徴とする圧電フィルタ。   A piezoelectric filter using at least one piezoelectric resonator according to claim 5. 請求項6に記載の圧電フィルタを用いることを特徴とするデュプレクサ。   A duplexer using the piezoelectric filter according to claim 6.
JP2004242886A 2003-08-25 2004-08-23 Manufacturing method of piezoelectric thin film and piezo-resonator Pending JP2005101569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004242886A JP2005101569A (en) 2003-08-25 2004-08-23 Manufacturing method of piezoelectric thin film and piezo-resonator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003299897 2003-08-25
JP2004242886A JP2005101569A (en) 2003-08-25 2004-08-23 Manufacturing method of piezoelectric thin film and piezo-resonator

Publications (1)

Publication Number Publication Date
JP2005101569A true JP2005101569A (en) 2005-04-14

Family

ID=34467112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242886A Pending JP2005101569A (en) 2003-08-25 2004-08-23 Manufacturing method of piezoelectric thin film and piezo-resonator

Country Status (1)

Country Link
JP (1) JP2005101569A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102122A (en) * 1992-08-03 1994-04-15 Japan Energy Corp Pressure sensor and production thereof
JP2000192237A (en) * 1998-12-25 2000-07-11 Teijin Ltd Production of high transparent gas barrier film
JP2002343790A (en) * 2001-05-21 2002-11-29 Nec Corp Vapor-phase deposition method of metallic compound thin film and method for manufacturing semiconductor device
JP2002371355A (en) * 2001-06-14 2002-12-26 Nitto Denko Corp Method for manufacturing transparent thin film
JP2003087085A (en) * 2001-07-03 2003-03-20 Murata Mfg Co Ltd Piezoelectric resonator, filter and electronic communications equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102122A (en) * 1992-08-03 1994-04-15 Japan Energy Corp Pressure sensor and production thereof
JP2000192237A (en) * 1998-12-25 2000-07-11 Teijin Ltd Production of high transparent gas barrier film
JP2002343790A (en) * 2001-05-21 2002-11-29 Nec Corp Vapor-phase deposition method of metallic compound thin film and method for manufacturing semiconductor device
JP2002371355A (en) * 2001-06-14 2002-12-26 Nitto Denko Corp Method for manufacturing transparent thin film
JP2003087085A (en) * 2001-07-03 2003-03-20 Murata Mfg Co Ltd Piezoelectric resonator, filter and electronic communications equipment

Similar Documents

Publication Publication Date Title
US6842089B2 (en) Film bulk acoustic resonator (FBAR) device
JP4455817B2 (en) Piezoelectric thin-layer resonator device with detuning layer arrangement
US7212082B2 (en) Method of manufacturing piezoelectric thin film device and piezoelectric thin film device
US6774746B2 (en) Thin film bulk acoustic resonator filters with a piezoelectric layer of lead scandium tantalum oxide
JP3535474B2 (en) Method for manufacturing FBAR (Film Bulk Acoustic Resonator) element
US7737806B2 (en) Piezoelectric thin-film resonator and filter
KR100771345B1 (en) Piezoelectric thin-film resonator and filter
KR100662865B1 (en) Film bulk acoustic resonator and the method for manufacturing the same
US20020166218A1 (en) Method for self alignment of patterned layers in thin film acoustic devices
KR20160086552A (en) Acoustic resonator and manufacturing method thereof
JP2005006304A (en) Apparatus manufactured by controlling piezoelectric coupling factor in thin film bulk acoustic resonator
JP2002359534A (en) Method of manufacturing resonator
JP2005223479A (en) Thin film bulk resonator, thin film bulk resonator filter, and manufacturing method of thin film bulk resonator
US20060006965A1 (en) RF filter and method for fabricating the same
US6388544B1 (en) Method for adjusting the center frequency of a balanced filter and a plurality of balanced filters
US20060202769A1 (en) Piezoelectric thin film device and method of producing the same
US7658858B2 (en) Band filter using film bulk acoustic resonator and method of fabricating the same
KR20040091407A (en) Film bulk acoustic resonator having air gap floating from substrate and method for manufacturing the same
JP2005303573A (en) Thin film piezoelectric resonator and its manufacturing method
JP5202252B2 (en) Acoustic wave resonator
JP2005101569A (en) Manufacturing method of piezoelectric thin film and piezo-resonator
JP2006174148A (en) Piezoelectric thin film resonator and its manufacturing method
JP2009290591A (en) Baw filter
KR100485701B1 (en) FBAR fabrication method using LOCOS and fabricated FBAR by the same
JP2003060478A (en) Piezoelectric thin-film resonator, manufacturing method thereof, and filter and electronic device using the piezoelectric thin-film resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823