JP2005101418A - Chip type solid electrolytic capacitor and its manufacturing method, and lead frame used therefor - Google Patents

Chip type solid electrolytic capacitor and its manufacturing method, and lead frame used therefor Download PDF

Info

Publication number
JP2005101418A
JP2005101418A JP2003334961A JP2003334961A JP2005101418A JP 2005101418 A JP2005101418 A JP 2005101418A JP 2003334961 A JP2003334961 A JP 2003334961A JP 2003334961 A JP2003334961 A JP 2003334961A JP 2005101418 A JP2005101418 A JP 2005101418A
Authority
JP
Japan
Prior art keywords
solid electrolytic
type solid
anode
electrolytic capacitor
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003334961A
Other languages
Japanese (ja)
Other versions
JP3806818B2 (en
Inventor
Mitsunori Sano
光範 佐野
Masaya Ishijima
正弥 石嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Toyama Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Toyama Ltd, NEC Tokin Corp filed Critical NEC Tokin Toyama Ltd
Priority to JP2003334961A priority Critical patent/JP3806818B2/en
Publication of JP2005101418A publication Critical patent/JP2005101418A/en
Application granted granted Critical
Publication of JP3806818B2 publication Critical patent/JP3806818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip type solid electrolytic capacitor which is superior in productivity and reliability and has a plated fillet surface, and to provide its manufacturing method, and a lead frame used therefor. <P>SOLUTION: The chip type solid electrolytic capacitor which is faced with exterior resin 19 and equipped with an anode terminal 13 and a cathode terminal 14 having their exposure surfaces on a substrate mount surface and an external flank nearly perpendicular to the substrate mount surface is characterized in that the exposure surface of the anode terminal 13 on the external flank is composed of a cut surface and a plated fillet surface 15a. Further, an anode terminal cutting surface 16 is arranged adjacently to the periphery of the plated fillet surface 15a, whose plated surface is isolated from the exterior resin 19. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体電解コンデンサに係り、特にチップ型固体電解コンデンサおよびその製造方法ならびにそれに用いるリードフレームに関する。   The present invention relates to a solid electrolytic capacitor, and more particularly to a chip-type solid electrolytic capacitor, a manufacturing method thereof, and a lead frame used therefor.

従来から弁作用金属として、タンタル、ニオブなどを用いた固体電解コンデンサは、小型で静電容量が大きく、周波数特性に優れ、CPUの電源回路などに広く使用されている。また、携帯型電子機器の発展に伴い、特にチップ型固体電解コンデンサの小型化および薄型化が進行している。   Conventionally, solid electrolytic capacitors using tantalum, niobium or the like as a valve action metal are small, have a large capacitance, are excellent in frequency characteristics, and are widely used in power supply circuits for CPUs. In addition, with the development of portable electronic devices, chip-type solid electrolytic capacitors are becoming smaller and thinner.

このようなチップ型固体電解コンデンサを基板に実装するとき、製品の基板実装面での端子部分とともに、製品側面においてフィレットが形成される端子部分が重要になる。その理由の一つは、はんだ付けの後に、フィレットにおける、はんだの状況を観察して、基板実装面を含めた、はんだ付けの状況を検査するためであり、他の理由は、フィレット面へ融けた、はんだが濡れ上がるときに、陽極側と陰極側で均等に濡れ上がらないと、製品が傾いて実装されるからであり、さらに他の理由はフィレット面へのはんだの濡れ上がりが十分でないと、はんだが基板実装面である底面にのみ留まり、製品が浮き上がってしまうからである。   When such a chip-type solid electrolytic capacitor is mounted on a substrate, a terminal portion where a fillet is formed on the side surface of the product is important together with a terminal portion on the substrate mounting surface of the product. One of the reasons is to observe the soldering condition in the fillet after soldering and inspect the soldering condition including the board mounting surface, and the other reason is to melt to the fillet surface. In addition, when the solder wets up, the product will be tilted if it does not wet up evenly on the anode side and the cathode side, and yet another reason is that the solder does not rise enough on the fillet surface. This is because the solder stays only on the bottom surface, which is the substrate mounting surface, and the product floats.

そこで、はんだの濡れ上がりを良好にするために、フィレット面には、めっきが施される。この状況を下面電極型と呼ばれる端子を有するチップ型固体電解コンデンサに関してさらに説明する。この下面電極型の技術は、製品の小型化および薄型化に適した技術であり、リードフレームの下面を電極(陽極端子および陰極端子)の下面として使用し、リードフレームの切断面をフィレット面として使用するチップ型固体電解コンデンサの技術である。   Therefore, in order to improve the solder wet-up, the fillet surface is plated. This situation will be further described with respect to a chip-type solid electrolytic capacitor having a terminal called a bottom electrode type. This bottom electrode type technology is suitable for miniaturization and thinning of products. The bottom surface of the lead frame is used as the bottom surface of the electrode (anode terminal and cathode terminal), and the cut surface of the lead frame is used as a fillet surface. This is the technology of the chip-type solid electrolytic capacitor used.

まず、公知の製造方法で作製したコンデンサ素子を、下面電極型用として作製したリードフレームに接続した後、外装樹脂をモールドして、切断により、リードフレームから分離し、次に、側面のフィレット面となる切断面にめっき処理を施してチップ型固体電解コンデンサを作製する。   First, a capacitor element manufactured by a known manufacturing method is connected to a lead frame manufactured for a bottom electrode type, and then an exterior resin is molded and separated from the lead frame by cutting, and then a side fillet surface A chip-type solid electrolytic capacitor is manufactured by plating the cut surface.

この状況を図面に基づいてさらに説明する。図9は、従来例のチップ型固体電解コンデンサを示す図であり、図9(a)は陽極側の側面図、図9(b)は正面からの内部透視図、図9(c)は陰極側の側面図である。この図9において、91はコンデンサ素子、92は陽極リード線、93は陽極端子、94は陰極端子、97は絶縁樹脂、99は外装樹脂、100は導電性接着剤、そして、96はめっき処理された陽極側のフィレット面で、98はめっき処理された陰極側のフィレット面である。また、図10は、コンデンサ素子をリードフレームに接合して、外装樹脂でモールド成形した状態を示す内部透視図である。101はリードフレームの陽極端子形成部であり、102は陰極端子形成部、そして、103aおよび103bは切断面であり、製品の側面となる面である。   This situation will be further described with reference to the drawings. 9A and 9B are diagrams showing a conventional chip-type solid electrolytic capacitor. FIG. 9A is a side view of the anode side, FIG. 9B is an internal perspective view from the front, and FIG. 9C is a cathode. It is a side view of a side. 9, 91 is a capacitor element, 92 is an anode lead wire, 93 is an anode terminal, 94 is a cathode terminal, 97 is an insulating resin, 99 is an exterior resin, 100 is a conductive adhesive, and 96 is plated. The anode side fillet surface 98 is a plated cathode side fillet surface. FIG. 10 is an internal perspective view showing a state in which the capacitor element is bonded to the lead frame and molded with an exterior resin. 101 is an anode terminal forming portion of the lead frame, 102 is a cathode terminal forming portion, and 103a and 103b are cut surfaces, which are the side surfaces of the product.

これまでの工程とその後の工程について、図11に基づいて説明する。図11は従来例の工程フロー図であり、S111はリードフレームの成形工程、S112はコンデンサ素子をリードフレームへ接合固定する工程、S113は外装樹脂によるモールド成形の工程であり、既に説明したとおりである。   The steps so far and the subsequent steps will be described with reference to FIG. FIG. 11 is a process flow diagram of a conventional example, S111 is a lead frame molding step, S112 is a step of bonding and fixing the capacitor element to the lead frame, and S113 is a molding step using an exterior resin, as already described. is there.

次に、S114は外装樹脂とリードフレームの切断工程であり、S115は切断によって表出した側面のフィレット面にめっき処理を施す工程、そして、S116はめっき工程において、向きがばらばらになった製品の整列工程である。   Next, S114 is a process for cutting the exterior resin and the lead frame, S115 is a process for plating the side fillet surface exposed by the cutting, and S116 is a process for separating products in the orientation in the plating process. This is an alignment process.

このように側面のリードフレーム切断面にめっきを施して端子の一部とする技術については、類似の技術として、次の特許文献1に開示された例がある。   As a technique for plating the side face lead frame cut surface and making it a part of the terminal as described above, there is an example disclosed in the following Patent Document 1 as a similar technique.

特開平9−298256号公報JP-A-9-298256

しかし、リードフレームからチップを切り離した後に、フィレット面となる切断面にめっき処理を施す場合には、次のような問題点がある。電子部品用の後めっきとして一般的に使用されるバレルめっきの場合、めっき後に製品の向きが、ばらばらになるので、製品の上下方向、縦方向、横方向、極性方向などの方向整列が必要になり、次のような問題が起きる。(1)製品整列機といった高価な設備を製作して使用しなければならず、製造コストが増加する。(2)製造日数が長くなる。(3)めっき液の製品内部の滲入による、製品特性の劣化が起こり得る。   However, when the chip is cut from the lead frame and then the cut surface to be the fillet surface is plated, there are the following problems. In the case of barrel plating, which is generally used as post-plating for electronic parts, the product orientations are scattered after plating, so the product must be aligned in the vertical, vertical, horizontal, and polar directions. Therefore, the following problems occur. (1) Expensive equipment such as a product aligner must be manufactured and used, which increases the manufacturing cost. (2) The number of manufacturing days becomes longer. (3) Deterioration of product characteristics may occur due to penetration of the plating solution into the product.

本発明のチップ型固体電解コンデンサは、陽極リード線が導出されたコンデンサ素子と、前記陽極リード線に接続された陽極端子と、前記コンデンサ素子の陰極に接続された陰極端子と、前記陽極端子の一部および前記陰極端子の一部を露出させて前記コンデンサ素子を被覆した絶縁性の外装樹脂とを備えるチップ型固体電解コンデンサにおいて、前記陽極端子は部品外形面のうち実装面および前記陽極リード線側の第1側面のそれぞれ一部分において露出するとともに、前記実装面と前記第1側面との境界を横切って連続する露出面を有し、前記外装樹脂の内部では、前記陽極端子はつぶし加工による2段の階段形状を有し、前記第1側面での厚さが、前記実装面の中心に向かう先端部の厚さよりも大であり、前記階段形状の1つの段差は前記陰極層の実装側の面と前記陽極リード線の外周面との最短距離よりも大であり、前記第1側面は切断面と陽極端子の一部に設けられた、めっき面とからなることを特徴とする。   The chip-type solid electrolytic capacitor of the present invention includes a capacitor element from which an anode lead wire is derived, an anode terminal connected to the anode lead wire, a cathode terminal connected to the cathode of the capacitor element, and the anode terminal A chip-type solid electrolytic capacitor comprising a part and a part of the cathode terminal exposed to cover the capacitor element and covering the capacitor element, wherein the anode terminal is a mounting surface of the component outer surface and the anode lead wire Each of the first side surfaces is exposed and has an exposed surface continuous across the boundary between the mounting surface and the first side surface. Inside the exterior resin, the anode terminal is crushed 2 Having a stepped staircase shape, wherein the thickness on the first side surface is larger than the thickness of the tip portion toward the center of the mounting surface, and one step of the staircase shape is It is larger than the shortest distance between the surface on the mounting side of the cathode layer and the outer peripheral surface of the anode lead wire, and the first side surface is composed of a cut surface and a plating surface provided at a part of the anode terminal. It is characterized by.

前記陰極端子は部品外形面のうち実装面および前記陽極リード線とは逆側の第2側面のそれぞれ一部分において露出するとともに、前記実装面と前記第2側面との境界を横切って連続する露出面を有し、前記外装樹脂内部では、前記陰極端子はつぶし加工による2段の階段形状を有し、前記第2側面での厚さが、前記実装面の中心側の先端部の厚さよりも大であり、前記階段形状の1つの段差は前記陰極層の実装側の面と前記陽極リード線の外周面との最短距離よりも大であり、前記第2側面は切断面と陰極端子の一部に設けられた、めっき面とからなるとよい。   The cathode terminal is exposed at a part of each of the second side surface opposite to the mounting surface and the anode lead wire of the component outer surface, and the exposed surface is continuous across the boundary between the mounting surface and the second side surface. In the exterior resin, the cathode terminal has a two-step staircase shape formed by crushing, and the thickness on the second side surface is larger than the thickness of the front end portion on the center side of the mounting surface. And one step of the step shape is larger than the shortest distance between the surface on the cathode layer mounting side and the outer peripheral surface of the anode lead wire, and the second side surface is a part of the cut surface and the cathode terminal. It is good to consist of a plating surface provided.

前記第1側面または第2側面のめっき面は実装面に隣接するとともに、前記外装樹脂と前記めっき面を隔離する前記陽極端子の切断面が略コ字形の帯状となって配設されるとよい。   The plating surface of the first side surface or the second side surface is adjacent to the mounting surface, and the cut surface of the anode terminal that separates the plating resin surface from the exterior resin may be disposed in a substantially U-shaped band shape. .

前記陽極端子と前記陰極端子の一部にはAg、Au、Cu、Pd、Snの少なくとも1つを含む膜が形成されるとよい。   A film containing at least one of Ag, Au, Cu, Pd, and Sn may be formed on part of the anode terminal and the cathode terminal.

前記陰極層と前記陰極端子の接続にはAgを含む導電性接着剤が用いられるとよい。   For the connection between the cathode layer and the cathode terminal, a conductive adhesive containing Ag may be used.

本発明のリードフレームは、チップ型固体電解コンデンサ用のリードフレームであって、めっき処理された凹部が形成された陽極端子形成部と、めっき処理された他の凹部が形成された陰極端子形成部とを備えるとよい。   The lead frame of the present invention is a lead frame for a chip-type solid electrolytic capacitor, and includes an anode terminal forming portion in which a plated recess is formed, and a cathode terminal forming portion in which another plated recess is formed It is good to have.

前記凹部は多角形状または少なくとも1辺が直線となる形状であるとよい。   The concave portion may be a polygonal shape or a shape in which at least one side is a straight line.

本発明のチップ型固体電解コンデンサの製造方法は、少なくとも一辺が直線状であり、めっき処理された、凹部を備えるリードフレーム上に、コンデンサ素子を接合する工程と、前記コンデンサ素子およびリードフレームを外装樹脂でモールド成形する工程と、前記凹部のめっき面にそって、前記めっき面を残しながら、リードフレームおよび外装樹脂を切断して、製品の側面となる外表面を形成する工程とを含むことを特徴とする。   The method for manufacturing a chip-type solid electrolytic capacitor of the present invention includes a step of bonding a capacitor element on a lead frame having a concave portion at least one side which is linear and plated, and the capacitor element and the lead frame are packaged. A step of molding with resin, and a step of cutting the lead frame and the exterior resin to form an outer surface to be a side surface of the product while leaving the plated surface along the plated surface of the recess. Features.

前記コンデンサ素子を接合する工程では、コンデンサ素子を接合する前に、前記陽極端子形成部の一部に絶縁性樹脂を塗布するとよい。   In the step of bonding the capacitor elements, an insulating resin may be applied to a part of the anode terminal forming portion before bonding the capacitor elements.

本発明によれば、切断によってチップを得た後で、めっき処理を施す必要がないので、めっき後の製品整列に伴うコストの増加を回避できる。さらに、めっき処理中のめっき液の製品への悪影響を避けることができる。また、本発明のリードフレームは、めっき処理された、凹部を有するので、切断後のチップのめっき処理を不要とすることができる。   According to the present invention, since it is not necessary to perform a plating process after a chip is obtained by cutting, an increase in cost associated with product alignment after plating can be avoided. Furthermore, adverse effects on the product of the plating solution during the plating process can be avoided. In addition, since the lead frame of the present invention has a concave portion that has been plated, it is possible to eliminate the need for plating the chip after cutting.

すなわち、本発明によれば、生産性および信頼性に優れ、めっき処理されたフィレット面を有するチップ型固体電解コンデンサ、およびその製造方法、ならびにそれに用いるリードフレームを提供することができる。   That is, according to the present invention, it is possible to provide a chip-type solid electrolytic capacitor having excellent productivity and reliability and having a plated fillet surface, a manufacturing method thereof, and a lead frame used therefor.

次に、発明を実施するための最良の形態を図面に基づいて説明する。図1は、本発明のチップ型固体電解コンデンサを示し、図1(a)は陽極側の側面図、図1(b)は正面からの内部透視図、図1(c)は陰極側の側面図である。11はコンデンサ素子、12は陽極リード線、13は下面電極型の陽極端子、14は下面電極型の陰極端子、15aは陽極側のめっき処理されたフィレット面であり、15bは陰極側のめっき処理されたフィレット面であり、16は略コ字形の陽極端子切断面、17は絶縁樹脂、18は陰極端子切断面、19は外装樹脂、20は導電性接着剤である。   Next, the best mode for carrying out the invention will be described with reference to the drawings. 1 shows a chip-type solid electrolytic capacitor of the present invention, FIG. 1 (a) is a side view on the anode side, FIG. 1 (b) is an internal perspective view from the front, and FIG. 1 (c) is a side view on the cathode side. FIG. 11 is a capacitor element, 12 is an anode lead wire, 13 is a bottom electrode type anode terminal, 14 is a bottom electrode type cathode terminal, 15a is an anode side plated fillet surface, and 15b is a cathode side plating treatment. 16 is a substantially U-shaped anode terminal cutting surface, 17 is an insulating resin, 18 is a cathode terminal cutting surface, 19 is an exterior resin, and 20 is a conductive adhesive.

図3は、本発明のチップ型固体電解コンデンサを示す、下方からの斜視図である。陽極端子基板実装面31、陰極端子基板実装面32、および陽極側のフィレット面15aには、めっきが施されている。なお、図示はしないが、陰極側のフィレット面にもめっきが施されている。この構造によって、チップを基板に実装するときの姿勢が安定に保たれる。   FIG. 3 is a perspective view from below showing the chip-type solid electrolytic capacitor of the present invention. The anode terminal substrate mounting surface 31, the cathode terminal substrate mounting surface 32, and the anode-side fillet surface 15a are plated. Although not shown, the fillet surface on the cathode side is also plated. With this structure, the posture when the chip is mounted on the substrate is kept stable.

次に、本発明のチップ型固体電解コンデンサを製造工程に沿って説明する。まず、公知の技術によってコンデンサ素子を作製する。並行して、本発明のチップ型固体電解コンデンサの製造工程で用いるリードフレームを作製する。図4は、本発明のリードフレームの一部を示す平面図であり、41は陽極端子形成部、42は陰極端子形成部、43aおよび43bは凹部の形成部である。図5は、陽極端子形成部51と陰極端子形成部52を成形加工した状態を示す斜視図である。53aおよび53bは直方体状の空間部である凹部である。その凹部について、図6に基づいて説明する。図6(a)は第1型の凹部を示す断面図である。図6(a)においては、61aは凹部であり、金型を用いた、プレスによるエンボス加工と同様に形成される。そして、リードフレーム全面もしくは凹部を含む陽極端子形成部と陰極端子形成部にめっき処理を施す。このめっき膜には、Ag、Au、Cu、Pd、Snの少なくとも1つを金属膜を用いる。また、図6(b)に第2型の凹部として断面図で示すように凹部61bは端子の先端部に近い側を深くして、一方の遠い側を浅くしてもよい。   Next, the chip-type solid electrolytic capacitor of the present invention will be described along the manufacturing process. First, a capacitor element is manufactured by a known technique. In parallel, a lead frame used in the manufacturing process of the chip-type solid electrolytic capacitor of the present invention is manufactured. FIG. 4 is a plan view showing a part of the lead frame of the present invention, wherein 41 is an anode terminal forming portion, 42 is a cathode terminal forming portion, and 43a and 43b are recess forming portions. FIG. 5 is a perspective view showing a state where the anode terminal forming portion 51 and the cathode terminal forming portion 52 are molded. 53a and 53b are concave portions which are rectangular parallelepiped spaces. The recess will be described with reference to FIG. FIG. 6A is a cross-sectional view showing the first mold recess. In FIG. 6 (a), 61a is a recess, which is formed in the same manner as embossing by pressing using a mold. Then, plating processing is performed on the entire surface of the lead frame or the anode terminal forming portion including the concave portion and the cathode terminal forming portion. A metal film of at least one of Ag, Au, Cu, Pd, and Sn is used for this plating film. Further, as shown in a sectional view as a second-type recess in FIG. 6B, the recess 61b may be deeper on the side closer to the tip of the terminal and shallower on one far side.

このように作製したリードフレームにコンデンサ素子を接合して、外装樹脂でモールド成形した状態を図2に内部透視図で示す。21はリードフレームの陽極端子形成部、22はリードフレームの陰極端子形成部を示す。また、外装樹脂19とリードフレームを切断面23aおよび23bにおいて切断するとき、凹部24a、24bは分離されてフィレット面15a、15bとなる。   FIG. 2 is an internal perspective view showing a state in which a capacitor element is bonded to the lead frame thus manufactured and molded with an exterior resin. Reference numeral 21 denotes an anode terminal forming portion of the lead frame, and 22 denotes a cathode terminal forming portion of the lead frame. Further, when the exterior resin 19 and the lead frame are cut at the cut surfaces 23a and 23b, the recesses 24a and 24b are separated to become fillet surfaces 15a and 15b.

ここで、本発明のチップ型固体電解コンデンサの製造方法について、図8を参照して、整理する。S81は平面状のリードフレームに陽極溶接部のつぶし加工および凹部を形成する加工工程であり、S82は、めっき処理工程であり、S83はコンデンサ素子の接合固定の工程、S84は外装樹脂モールド成形の工程、S85はリードフレームと外装樹脂の切断工程である。このような工程を経て、本発明のチップ型固体電解コンデンサが得られる。   Here, the manufacturing method of the chip-type solid electrolytic capacitor of the present invention will be organized with reference to FIG. S81 is a process for crushing the anode welded portion and forming a recess in the flat lead frame, S82 is a plating process, S83 is a process for bonding and fixing the capacitor element, and S84 is an exterior resin molding process. Step S85 is a step of cutting the lead frame and the exterior resin. Through such steps, the chip-type solid electrolytic capacitor of the present invention is obtained.

次に、本発明の実施例を挙げて、さらに説明する。弁作用金属としてタンタルを用いた場合を記す。タンタル線のまわりに、タンタル粉末をプレス機で成型し、高真空・高温度で焼結する。次に、タンタル金属粉末の表面にTaの酸化被膜を形成する。さらに、硝酸マンガンに浸漬した後、熱分解して、MnOを形成し、引き続き、グラファイトおよびAgによる陰極層を形成して、コンデンサ素子を得る。なお、陰極層のMnOに換えて、ポリチオフェンあるいはポリピロールなどの導電性高分子を用いると、低ESRを得るのが容易になる。また、弁作用金属として、タンタルの他に、ニオブ、アルミニウム、チタンなどを用いることができる。 Next, examples of the present invention will be given and further described. The case where tantalum is used as the valve metal is described. Around the tantalum wire, tantalum powder is molded with a press and sintered at high vacuum and high temperature. Next, an oxide film of Ta 2 O 5 is formed on the surface of the tantalum metal powder. Further, after being immersed in manganese nitrate, it is thermally decomposed to form MnO 2 , and subsequently a cathode layer made of graphite and Ag is formed to obtain a capacitor element. If a conductive polymer such as polythiophene or polypyrrole is used instead of MnO 2 in the cathode layer, low ESR can be easily obtained. In addition to tantalum, niobium, aluminum, titanium, or the like can be used as the valve metal.

次に、リードフレームの作製について説明する。本発明のリードフレームとしては、図4に示すような平板状のリードフレームを作製する。次に、凹部の形成部43aおよび43bには、紙面の下方から凹部を作製する。さらに、コンデンサ素子の陽極リード線との接合部、およびコンデンサ素子の陰極層との接続部のつぶし加工を行い、図5のような、コンデンサ素子との接続部を形成する。なお、つぶし加工によって得られる形状は、2段の階段形状を有し、製品となったときの側面での厚さが、実装面の中心に向かう先端部の厚さよりも大であり、階段形状の1つの段差は前記陰極層の実装側の面と前記陽極リード線の外周面との最短距離よりも大となる形状である。   Next, production of a lead frame will be described. As the lead frame of the present invention, a flat lead frame as shown in FIG. 4 is produced. Next, in the recess forming portions 43a and 43b, recesses are formed from below the paper surface. Further, the connecting portion with the anode lead of the capacitor element and the connecting portion with the cathode layer of the capacitor element are crushed to form the connecting portion with the capacitor element as shown in FIG. In addition, the shape obtained by crushing has a two-step staircase shape, and the thickness at the side when it becomes a product is larger than the thickness of the tip toward the center of the mounting surface. The one step is a shape that is larger than the shortest distance between the mounting side surface of the cathode layer and the outer peripheral surface of the anode lead wire.

ここで、本発明のリードフレームに特徴的な凹部について、さらに説明する。本実施例1の凹部の形状は図7(a)のとおり直方体であり、その断面形状は図6(a)のとおり四角形状である。なお、図7(a)〜図7(d)においては、基板実装面を上に向けて斜視図で描いた。リードフレームの材質には、42合金(42%Ni−58%Fe合金)を用い、平板状のリードフレームに金型切断加工を行い、図6(a)または図7(a)のような凹部61aまたは凹部71を形成した。また、リードフレームへのコンデンサ素子の接合について、陽極側については、コンデンサ素子の陰極層と接近する陽極端子部分には絶縁性樹脂17を塗布した後、陽極リード線とレーザ溶接により接続して、陰極側については、Agを含む導電性接着剤20により接続した。次いで、外装樹脂をトランスファーモールドにより成形した後、ダイシングソーにより、製品側面となる二面を切断して、本実施例1のチップ型固体電解コンデンサを得た。   Here, the concave portion characteristic of the lead frame of the present invention will be further described. The shape of the recess in Example 1 is a rectangular parallelepiped as shown in FIG. 7A, and the cross-sectional shape thereof is a square as shown in FIG. 6A. In FIGS. 7A to 7D, the substrate mounting surface is drawn up in a perspective view. 42 alloy (42% Ni-58% Fe alloy) is used as the material of the lead frame, and a die cutting process is performed on the flat lead frame to form a recess as shown in FIG. 6 (a) or FIG. 7 (a). 61a or recess 71 was formed. In addition, for the bonding of the capacitor element to the lead frame, on the anode side, the insulating resin 17 is applied to the anode terminal portion approaching the cathode layer of the capacitor element, and then connected to the anode lead wire by laser welding. The cathode side was connected by a conductive adhesive 20 containing Ag. Next, after molding the exterior resin by transfer molding, the two surfaces which are the product side surfaces were cut by a dicing saw to obtain the chip-type solid electrolytic capacitor of Example 1.

次に、本発明の実施例2を説明する。本実施例2においては、凹部として、図6(b)の形状を用いた。他は実施例1と同様である。   Next, a second embodiment of the present invention will be described. In Example 2, the shape of FIG. 6B was used as the recess. Others are the same as in the first embodiment.

本実施例2の凹部は図6(b)に示すように、凹部61bの端子の先端部に近い側を深くして、一方の遠い側を浅くし、その部分がめっき処理されて、フィレット面となる。   As shown in FIG. 6 (b), the concave portion of the second embodiment is formed by deepening the side closer to the tip of the terminal of the concave portion 61b and shallowing one far side, and plating that portion to fillet surface. It becomes.

本実施例3においては、凹部として、図7(b)〜図7(d)の形状を用いた。他は実施例1と同様である。   In the present Example 3, the shape of FIG.7 (b)-FIG.7 (d) was used as a recessed part. Others are the same as in the first embodiment.

本実施例3の凹部の第1の形状は、図7(b)に凹部72として斜視図で示すように三角形の空間を有している。端子先端に近い断面がめっき後にフィレット面となる。   The first shape of the recess of the third embodiment has a triangular space as shown in a perspective view as the recess 72 in FIG. The cross section near the terminal tip becomes the fillet surface after plating.

また、本実施例3の凹部の第2の形状は、図7(c)に凹部73として斜視図で示すように台形状の空間を有している。端子先端に近い断面がめっき後にフィレット面となる。   Further, the second shape of the concave portion of the third embodiment has a trapezoidal space as shown in a perspective view as the concave portion 73 in FIG. The cross section near the terminal tip becomes the fillet surface after plating.

さらに、本実施例3の凹部の第3の形状は、図7(d)に凹部74として斜視図で示すように円または楕円の弧状の部分と直線部分とからなる形状の空間を有している。端子先端に近い断面がめっき後にフィレット面となる。   Further, the third shape of the concave portion of the third embodiment has a space formed by a circular or elliptical arc-shaped portion and a straight portion as shown in a perspective view as the concave portion 74 in FIG. Yes. The cross section near the terminal tip becomes the fillet surface after plating.

このように実施例2および3においては、凹部の形状が異なっているが、リードフレーム合金の弾性的および塑性的性質、リードフレームの厚さ、必要なフィレット面の寸法などによって適切なものを使用するのがよい。   Thus, in Examples 2 and 3, the shape of the recesses is different, but an appropriate one is used depending on the elastic and plastic properties of the lead frame alloy, the thickness of the lead frame, the dimensions of the required fillet surface, etc. It is good to do.

本発明のチップ型固体電解コンデンサを示す図。図1(a)は陽極側の側面図、図1(b)は正面からの内部透視図、図1(c)は陰極側の側面図。The figure which shows the chip-type solid electrolytic capacitor of this invention. 1A is a side view of the anode side, FIG. 1B is an internal perspective view from the front, and FIG. 1C is a side view of the cathode side. 本発明のリードフレームにコンデンサ素子を接合して、外装樹脂でモールド成形した状態を示す内部透視図。The internal perspective view which shows the state which joined the capacitor | condenser element to the lead frame of this invention, and was molded with exterior resin. 本発明のチップ型固体電解コンデンサの外形を示す、下方からの斜視図。The perspective view from the lower part which shows the external shape of the chip-type solid electrolytic capacitor of this invention. 本発明のリードフレームを示す平面図。The top view which shows the lead frame of this invention. 本発明のリードフレームの陽極端子形成部および陰極端子形成部を示す斜視図。The perspective view which shows the anode terminal formation part and cathode terminal formation part of the lead frame of this invention. 本発明のリードフレームにおける凹部を示す断面図。図6(a)は第1型の凹部を示す断面図、図6(b)は第2型の凹部を示す断面図。Sectional drawing which shows the recessed part in the lead frame of this invention. FIG. 6A is a cross-sectional view showing a first-type recess, and FIG. 6B is a cross-sectional view showing a second-type recess. 実施例の凹部を示す斜視図。図7(a)は四角形状の凹部に示す斜視図、図7(b)は三角形状の凹部を示す斜視図、図7(c)は台形状の凹部を示す斜視図、図7(d)は弧状部分と直線部分からなる形状の凹部を示す斜視図。The perspective view which shows the recessed part of an Example. 7A is a perspective view showing a quadrangular concave portion, FIG. 7B is a perspective view showing a triangular concave portion, FIG. 7C is a perspective view showing a trapezoidal concave portion, and FIG. 7D. FIG. 3 is a perspective view showing a concave portion formed of an arc-shaped portion and a straight portion. 本発明の工程フロー図。The process flowchart of this invention. 従来のチップ型固体電解コンデンサを示す図。図9(a)は陽極側の側面図、図9(b)は正面からの内部透視図、図9(c)は陰極側の側面図。The figure which shows the conventional chip-type solid electrolytic capacitor. 9A is a side view on the anode side, FIG. 9B is an internal perspective view from the front, and FIG. 9C is a side view on the cathode side. 従来のリードフレームにコンデンサ素子を接続して、外装樹脂によりモールド成形した状態を示す内部透視図。The internal perspective view which shows the state which connected the capacitor | condenser element to the conventional lead frame, and was molded by exterior resin. 従来の工程フロー図。Conventional process flow diagram.

符号の説明Explanation of symbols

11、91 コンデンサ素子
12、92 陽極リード線
13、93 陽極端子
14、94 陰極端子
15a、15b、96、98 フィレット面
16 陽極端子切断面
17、97 絶縁樹脂
18 陰極端子切断面
19、99 外装樹脂
20、100 導電性接着剤
21、41、51、101 陽極端子形成部
22、42、52、102 陰極端子形成部
23a、23b、103a、103b 切断面
24a、24b、53a、53b、61a、61b、71、72、73、74 凹部
31 陽極端子基板実装面
32 陰極端子基板実装面
43a、43b 凹部の形成部
11, 91 Capacitor element 12, 92 Anode lead wire 13, 93 Anode terminal 14, 94 Cathode terminal 15a, 15b, 96, 98 Fillet surface 16 Anode terminal cut surface 17, 97 Insulating resin 18 Cathode terminal cut surface 19, 99 Exterior resin 20, 100 Conductive adhesive 21, 41, 51, 101 Anode terminal forming portions 22, 42, 52, 102 Cathode terminal forming portions 23a, 23b, 103a, 103b Cut surfaces 24a, 24b, 53a, 53b, 61a, 61b, 71, 72, 73, 74 Recess 31 Anode terminal substrate mounting surface 32 Cathode terminal substrate mounting surface 43a, 43b Recessed portion formation portion

Claims (9)

陽極リード線が導出されたコンデンサ素子と、前記陽極リード線に接続された陽極端子と、前記コンデンサ素子の陰極に接続された陰極端子と、前記陽極端子の一部および前記陰極端子の一部を露出させて前記コンデンサ素子を被覆した絶縁性の外装樹脂とを備えるチップ型固体電解コンデンサにおいて、前記陽極端子は部品外形面のうち実装面および前記陽極リード線側の第1側面のそれぞれ一部分において露出するとともに、前記実装面と前記第1側面との境界を横切って連続する露出面を有し、前記外装樹脂の内部では、前記陽極端子はつぶし加工による2段の階段形状を有し、前記第1側面での厚さが、前記実装面の中心に向かう先端部の厚さよりも大であり、前記階段形状の1つの段差は前記陰極層の実装側の面と前記陽極リード線の外周面との最短距離よりも大であり、前記第1側面は切断面と陽極端子の一部に設けられた、めっき面とからなることを特徴とするチップ型固体電解コンデンサ。   A capacitor element from which an anode lead is derived, an anode terminal connected to the anode lead, a cathode terminal connected to the cathode of the capacitor element, a part of the anode terminal, and a part of the cathode terminal A chip-type solid electrolytic capacitor including an insulating exterior resin that is exposed and coated with the capacitor element, wherein the anode terminal is exposed on a part of each of a mounting surface and a first side surface on the anode lead wire side of a component outer surface. And having an exposed surface continuous across the boundary between the mounting surface and the first side surface, and inside the exterior resin, the anode terminal has a two-step staircase shape by crushing, The thickness on one side surface is larger than the thickness of the tip portion toward the center of the mounting surface, and one step of the step shape is formed on the mounting side surface of the cathode layer and the anode lead. Of a larger than the shortest distance between the outer peripheral surface, the first side surface is provided in a portion of the cut surface and the anode terminal, a chip type solid electrolytic capacitor characterized in that comprising the plated surface. 前記陰極端子は部品外形面のうち実装面および前記陽極リード線とは逆側の第2側面のそれぞれ一部分において露出するとともに、前記実装面と前記第2側面との境界を横切って連続する露出面を有し、前記外装樹脂内部では、前記陰極端子はつぶし加工による2段の階段形状を有し、前記第2側面での厚さが、前記実装面の中心側の先端部の厚さよりも大であり、前記階段形状の1つの段差は前記陰極層の実装側の面と前記陽極リード線の外周面との最短距離よりも大であり、前記第2側面は切断面と陰極端子の一部に設けられた、めっき面とからなることを特徴とする請求項1記載のチップ型固体電解コンデンサ。   The cathode terminal is exposed at a part of each of the second side surface opposite to the mounting surface and the anode lead wire of the component outer surface, and the exposed surface is continuous across the boundary between the mounting surface and the second side surface. In the exterior resin, the cathode terminal has a two-step staircase shape formed by crushing, and the thickness on the second side surface is larger than the thickness of the front end portion on the center side of the mounting surface. And one step of the step shape is larger than the shortest distance between the surface on the cathode layer mounting side and the outer peripheral surface of the anode lead wire, and the second side surface is a part of the cut surface and the cathode terminal. The chip type solid electrolytic capacitor according to claim 1, wherein the chip type solid electrolytic capacitor is provided with a plated surface. 前記第1側面または第2側面のめっき面は実装面に隣接するとともに、前記外装樹脂と前記めっき面を隔離する前記陽極端子の切断面が略コ字形の帯状となって配設されたことを特徴とする請求項2記載のチップ型固体電解コンデンサ。   The plating surface of the first side surface or the second side surface is adjacent to the mounting surface, and the cut surface of the anode terminal that separates the plating surface from the exterior resin is disposed in a substantially U-shaped band shape. 3. The chip-type solid electrolytic capacitor according to claim 2, wherein 前記陽極端子と前記陰極端子の一部にはAg、Au、Cu、Pd、Snの少なくとも1つを含む膜が形成されたことを特徴とする請求項3記載のチップ型固体電解コンデンサ。   4. The chip-type solid electrolytic capacitor according to claim 3, wherein a film containing at least one of Ag, Au, Cu, Pd, and Sn is formed on a part of the anode terminal and the cathode terminal. 前記陰極層と前記陰極端子の接続にはAgを含む導電性接着剤が用いられたことを特徴とする請求項3または4記載のチップ型固体電解コンデンサ。   5. The chip-type solid electrolytic capacitor according to claim 3, wherein a conductive adhesive containing Ag is used for connection between the cathode layer and the cathode terminal. チップ型固体電解コンデンサ用のリードフレームであって、めっき処理された凹部が形成された陽極端子形成部と、めっき処理された他の凹部が形成された陰極端子形成部とを備えることを特徴とするリードフレーム。   A lead frame for a chip-type solid electrolytic capacitor, comprising an anode terminal forming portion in which a plated recess is formed, and a cathode terminal forming portion in which another plated recess is formed Lead frame. 前記凹部は多角形状または少なくとも1辺が直線となる形状であることを特徴とする請求項6記載のリードフレーム。   The lead frame according to claim 6, wherein the recess has a polygonal shape or a shape in which at least one side is a straight line. 少なくとも一辺が直線状であり、めっき処理された、凹部を備えるリードフレーム上に、コンデンサ素子を接合する工程と、前記コンデンサ素子およびリードフレームを外装樹脂でモールド成形する工程と、前記凹部のめっき面にそって、前記めっき面を残しながら、リードフレームおよび外装樹脂を切断して、製品の側面となる外表面を形成する工程とを含むことを特徴とするチップ型固体電解コンデンサの製造方法。   A step of bonding a capacitor element on a lead frame having a recess, at least one side of which is linear and plated, a step of molding the capacitor element and the lead frame with an exterior resin, and a plating surface of the recess And a step of cutting the lead frame and the exterior resin while leaving the plated surface to form an outer surface to be a side surface of the product. 前記コンデンサ素子を接合する工程は、コンデンサ素子を接合する前に、前記陽極端子形成部の一部に絶縁性樹脂を塗布することを特徴とする請求項8記載のチップ型固体電解コンデンサの製造方法。   9. The method of manufacturing a chip-type solid electrolytic capacitor according to claim 8, wherein in the step of bonding the capacitor element, an insulating resin is applied to a part of the anode terminal forming portion before bonding the capacitor element. .
JP2003334961A 2003-09-26 2003-09-26 Chip type solid electrolytic capacitor Expired - Lifetime JP3806818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334961A JP3806818B2 (en) 2003-09-26 2003-09-26 Chip type solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334961A JP3806818B2 (en) 2003-09-26 2003-09-26 Chip type solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005101418A true JP2005101418A (en) 2005-04-14
JP3806818B2 JP3806818B2 (en) 2006-08-09

Family

ID=34462484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334961A Expired - Lifetime JP3806818B2 (en) 2003-09-26 2003-09-26 Chip type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3806818B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332403A (en) * 2005-05-27 2006-12-07 Nec Tokin Corp Lead frame, manufacturing method of solid electrolytic capacitor of lower-side electrode type employing the same, and solid electrolytic capacitor of lower-side electrode type manufactured by the same
US7149077B2 (en) 2004-12-10 2006-12-12 Nec Tokin Corporation Solid electrolytic capacitor with face-down terminals, manufacturing method of the same, and lead frame for use therein
JP2007103400A (en) * 2005-09-30 2007-04-19 Nec Tokin Corp Lower face electrode-type solid electrolytic capacitor
KR100826391B1 (en) 2006-07-18 2008-05-02 삼성전기주식회사 Chip type solid electrolytic capacitor
JP2008270317A (en) * 2007-04-17 2008-11-06 Nec Tokin Corp Underside-electrode solid electrolytic capacitor
US7835138B2 (en) 2007-03-09 2010-11-16 Nec Tokin Corporation Solid electrolytic capacitor and method of manufacturing same
JP2012009887A (en) * 2005-05-17 2012-01-12 Vishay Sprague Inc Surface-mounted capacitor and method of manufacturing the same
WO2014050498A1 (en) * 2012-09-28 2014-04-03 日本精機株式会社 Liquid level detection device, and manufacturing method of liquid level detection device
WO2023074376A1 (en) * 2021-10-28 2023-05-04 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7149077B2 (en) 2004-12-10 2006-12-12 Nec Tokin Corporation Solid electrolytic capacitor with face-down terminals, manufacturing method of the same, and lead frame for use therein
JP2012009887A (en) * 2005-05-17 2012-01-12 Vishay Sprague Inc Surface-mounted capacitor and method of manufacturing the same
JP2006332403A (en) * 2005-05-27 2006-12-07 Nec Tokin Corp Lead frame, manufacturing method of solid electrolytic capacitor of lower-side electrode type employing the same, and solid electrolytic capacitor of lower-side electrode type manufactured by the same
JP2007103400A (en) * 2005-09-30 2007-04-19 Nec Tokin Corp Lower face electrode-type solid electrolytic capacitor
KR100826391B1 (en) 2006-07-18 2008-05-02 삼성전기주식회사 Chip type solid electrolytic capacitor
US7835138B2 (en) 2007-03-09 2010-11-16 Nec Tokin Corporation Solid electrolytic capacitor and method of manufacturing same
JP2008270317A (en) * 2007-04-17 2008-11-06 Nec Tokin Corp Underside-electrode solid electrolytic capacitor
WO2014050498A1 (en) * 2012-09-28 2014-04-03 日本精機株式会社 Liquid level detection device, and manufacturing method of liquid level detection device
WO2023074376A1 (en) * 2021-10-28 2023-05-04 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP3806818B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP4878103B2 (en) Manufacturing method of chip-type solid electrolytic capacitor
JP4083091B2 (en) Chip-type solid electrolytic capacitor, manufacturing method thereof, and lead frame used therefor
JP4454916B2 (en) Solid electrolytic capacitor
US7835138B2 (en) Solid electrolytic capacitor and method of manufacturing same
JP4450378B2 (en) Surface mount capacitor and method of manufacturing the same
US7149077B2 (en) Solid electrolytic capacitor with face-down terminals, manufacturing method of the same, and lead frame for use therein
JP2005150674A (en) Solid electrolytic capacitor and its manufacturing method
KR20080007874A (en) Chip type solid electrolytic capacitor
JP2004228424A (en) Chip electrolytic capacitor, and manufacturing method thereof
JP2004103981A (en) Method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor manufactured by this method
JP4975946B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP4802550B2 (en) Solid electrolytic capacitor
JP3806818B2 (en) Chip type solid electrolytic capacitor
JP2007081069A (en) Chip type solid electrolytic capacitor, terminals, and method for manufacturing them
JP2007142161A (en) Underside-electrode solid electrolytic capacitor
JP2008117793A (en) Method for cutting lead terminal in package type electronic component
JP2007096021A (en) Chip type solid electrolytic capacitor and lead frame therefor
JP2005019923A (en) Chip-shape solid electrolytic capacitor
JP2006032880A (en) Solid electrolytic capacitor and manufacturing method for the same
JP5201684B2 (en) Chip type solid electrolytic capacitor
JP5095107B2 (en) Solid electrolytic capacitor
JP2005311216A (en) Solid electrolytic capacitor and its manufacturing method
JP2008109007A (en) Method of manufacturing bottom-surface electrode type solid-state electrolytic capacitor, and lead frame used for the same
JP4104803B2 (en) Manufacturing method for solid electrolytic capacitors
JP4307439B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050930

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent or registration of utility model

Ref document number: 3806818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term