JP2005098922A - Quality control method for steel sheet having oxide film on surface, and manufacturing method therefor - Google Patents

Quality control method for steel sheet having oxide film on surface, and manufacturing method therefor Download PDF

Info

Publication number
JP2005098922A
JP2005098922A JP2003335127A JP2003335127A JP2005098922A JP 2005098922 A JP2005098922 A JP 2005098922A JP 2003335127 A JP2003335127 A JP 2003335127A JP 2003335127 A JP2003335127 A JP 2003335127A JP 2005098922 A JP2005098922 A JP 2005098922A
Authority
JP
Japan
Prior art keywords
steel sheet
oxide film
galvanized steel
dip galvanized
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003335127A
Other languages
Japanese (ja)
Other versions
JP4411918B2 (en
Inventor
Masayasu Nagoshi
正泰 名越
Kaoru Sato
馨 佐藤
Takashi Kono
崇史 河野
Etsuo Hamada
悦男 濱田
Shoichiro Taira
章一郎 平
Yoshiharu Sugimoto
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003335127A priority Critical patent/JP4411918B2/en
Publication of JP2005098922A publication Critical patent/JP2005098922A/en
Application granted granted Critical
Publication of JP4411918B2 publication Critical patent/JP4411918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quality control method, capable of evaluating easily, quickly and accurately a thickness of an oxide film on a surface by an existing method, regarding a hot-dip galvanized plated steel sheet, an electro-zinc-plated steel sheet and a cold-rolled steel sheet having the oxide film on the surface, and to provide a manufacturing method for the steel sheets. <P>SOLUTION: This quality control method for the hot-dip galvanized steel sheet having the oxide film on the surface has a digitizing step for emitting an electron beam accelerated by an acceleration voltage selected out of a range of 0.1-5 kV toward the surface of the hot-dip galvanized steel sheet, and for measuring a signal intensity corresponding to a secondary electron amount generated in the surface to be digitized as a signal intensity value, and a determination step for determining the presence of the oxide film of a prescribed shape on the surface of the hot-dip galvanized steel sheet, based on whether the obtained signal intensity value is brought within a prescribed range. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表面に酸化膜を有する溶融亜鉛系めっき鋼板、電気亜鉛系めっき鋼板及び冷延鋼板の品質管理方法及び製造方法に関する。   The present invention relates to a quality control method and a manufacturing method for a hot-dip galvanized steel sheet, an electrogalvanized steel sheet, and a cold-rolled steel sheet having an oxide film on the surface.

鉄鋼製品においては表面に付与する皮膜が性能に大きな影響を及ぼす場合がある。鉄鋼製品において表面の皮膜が重要な役割を果たす一つの具体例は、鋼板のプレス成形時における摺動性である。合金化溶融亜鉛めっき鋼板のプレス成形性を例に挙げて説明する。   In steel products, the coating applied to the surface may have a significant effect on performance. One specific example in which the surface film plays an important role in steel products is the slidability during press forming of steel sheets. The press formability of the galvannealed steel sheet will be described as an example.

家電製品や自動車に使用される鋼板は、近年高耐食性の観点から亜鉛を主体としためっきが施されることが多い。亜鉛を主体とするめっきには、電気めっきと溶融めっきがある。高耐食性を得る観点から、厚めっき化の容易な溶融亜鉛系めっき鋼板が有利である。しかしながら、溶融亜鉛系めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これは溶融亜鉛系めっき鋼板とプレス金型との摺動抵抗が、冷延鋼板の場合に比較して大きいことが原因である。即ち、ビードと亜鉛系めっき鋼板との摺動抵抗が著しく大きい部分で、溶融亜鉛系めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。   In recent years, steel plates used for home appliances and automobiles are often plated mainly with zinc from the viewpoint of high corrosion resistance. The plating mainly composed of zinc includes electroplating and hot dip plating. From the viewpoint of obtaining high corrosion resistance, a hot-dip galvanized steel sheet that is easily thickened is advantageous. However, the hot dip galvanized steel sheet has the disadvantage that the press formability is inferior to that of the cold rolled steel sheet. This is because the sliding resistance between the hot-dip galvanized steel sheet and the press die is larger than that of the cold-rolled steel sheet. That is, at a portion where the sliding resistance between the bead and the galvanized steel sheet is remarkably large, the hot dip galvanized steel sheet becomes difficult to flow into the press die, and the steel sheet is likely to break.

亜鉛系めっき鋼板のプレス成形性を向上させる方法としては、一般に高粘度の潤滑油を塗布する方法が広く用いられている。しかしこの方法では、潤滑油の高粘性のために、塗装工程で脱脂不良による塗装欠陥が発生したり、またプレス時の油切れにより、プレス性能が不安定になる等の問題がある。前記問題を解決するには、潤滑油の塗布量を極力低減できることが必要であり、そのためには、溶融亜鉛系めっき鋼板自体のプレス成形性を改善することが必要となる。   As a method for improving the press formability of a galvanized steel sheet, a method of applying a high viscosity lubricating oil is widely used. However, this method has problems such as a coating defect due to poor degreasing in the coating process due to the high viscosity of the lubricating oil, and unstable press performance due to oil shortage during pressing. In order to solve the above problem, it is necessary to reduce the amount of the lubricating oil applied as much as possible. For this purpose, it is necessary to improve the press formability of the hot dip galvanized steel sheet itself.

溶融亜鉛系めっき鋼板には、鋼板に亜鉛めっきを施した溶融亜鉛めっき鋼板、およびその後、加熱処理を行い、鋼板中のFeとめっき層中のZnが拡散する合金化反応が生じることにより、Fe−Zn合金相を形成させた合金化溶融亜鉛めっき鋼板がある。前者のめっきは主として亜鉛のη相から、後者のFe−Zn合金相は、通常、Γ相、δ1相、ζ相からなる皮膜であり、Fe濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相→η相の順で、硬度ならびに融点が低下する傾向がある。このため、摺動性の観点からは、高硬度で、融点が高く凝着の起こりにくい高Fe濃度の合金化皮膜が有効であり、プレス成形性を重視する場合は、皮膜中の平均Fe濃度を高めに製造された合金化溶融亜鉛めっき鋼板が用いられる。 In the hot dip galvanized steel sheet, a hot dip galvanized steel sheet obtained by galvanizing the steel sheet, and then heat treatment, and an alloying reaction in which Fe in the steel sheet and Zn in the plating layer are diffused occurs. There is an alloyed hot-dip galvanized steel sheet with a Zn alloy phase formed. The former plating is mainly a η phase of zinc, and the latter Fe—Zn alloy phase is usually a film consisting of a Γ phase, a δ 1 phase, and a ζ phase, and as the Fe concentration decreases, that is, a Γ phase → δ Hardness and melting point tend to decrease in the order of 1 phase → ζ phase → η phase. Therefore, from the viewpoint of slidability, an alloyed film having a high hardness, a high melting point, and a high Fe concentration is effective, and when emphasizing press formability, the average Fe concentration in the film is effective. An alloyed hot-dip galvanized steel sheet manufactured to a higher height is used.

しかしながら、高Fe濃度の皮膜では、めっき−鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に界面から剥離する現象、いわゆるパウダリングが生じ易い問題を有している。このため、特許文献1では、摺動性と耐パウダリング性を両立するために、上層に第二層として硬質のFe系合金を電気めっきなどの手法により付与する方法がとられている。しかしながら、めっき皮膜を二層とすることは製造コストが余計にかかるという問題を有している。   However, a film with a high Fe concentration has a problem that a hard and brittle Γ phase is likely to be formed at the plating-steel interface, and a phenomenon of peeling from the interface during processing, that is, so-called powdering is likely to occur. For this reason, in Patent Document 1, in order to achieve both slidability and powdering resistance, a method of applying a hard Fe-based alloy as a second layer to the upper layer by a technique such as electroplating is employed. However, having two plating films has a problem that the manufacturing cost is excessive.

この問題を解決する方法として、ZnOを主体とする酸化膜を形成させる方法(特許文献2及び特許文献3参照)、P酸化物を主体とした酸化膜を形成させる方法(特許文献4参照)、あるいは、Ni酸化物を生成させる方法(特許文献5参照)が開示されている。   As a method for solving this problem, a method of forming an oxide film mainly composed of ZnO (see Patent Document 2 and Patent Document 3), a method of forming an oxide film mainly composed of P oxide (see Patent Document 4), Or the method (refer patent document 5) of producing | generating Ni oxide is disclosed.

しかしながら、上述した特許文献2〜5を合金化溶融亜鉛めっき鋼板に適用した場合、プレス成形性の改善効果を安定して得ることはできない。発明者らは、この原因について詳細な検討を行った。その結果、合金化溶融めっき鋼板はAl酸化物が不均一に存在することにより表面の反応性が不均一であること、及びめっき表面の粗さが大きいことが原因であることを見出した。即ち、上述した特許文献2〜5を合金化溶融めっき鋼板に適用した場合、表面の反応性が不均一であるため、電解処理、浸漬処理、塗布酸化処理及び加熱処理等を行っても所定の皮膜を表面に均一に形成することは困難である。また、めっき表面は合金化反応の不均一性およびFe−Zn合金相の形状により数μm以上のマクロな凹凸が形成されている。プレス成型時にプレス金型と直接接触するのは表面の凸部となるが、凸部のうち膜厚の薄い部分と金型との接触部での摺動抵抗が大きくなり、プレス成形性の改善効果が十分には得られない。また、特許文献3、4、5のなかの製法例として記述されている電解処理は、余計にコストがかかるという問題を有している。   However, when Patent Documents 2 to 5 described above are applied to an alloyed hot-dip galvanized steel sheet, the effect of improving the press formability cannot be stably obtained. The inventors conducted a detailed study on this cause. As a result, it was found that the galvannealed steel sheet was caused by non-uniformity of surface reactivity due to non-uniform presence of Al oxide and large roughness of the plating surface. That is, when the above-described Patent Documents 2 to 5 are applied to an alloyed hot-dip steel sheet, the surface reactivity is non-uniform, so that even if electrolytic treatment, immersion treatment, coating oxidation treatment, heat treatment, etc. It is difficult to form a film uniformly on the surface. The plating surface has macro unevenness of several μm or more due to non-uniformity of the alloying reaction and the shape of the Fe—Zn alloy phase. The direct contact with the press mold during press molding is a convex part on the surface, but the sliding resistance at the contact part between the thin part of the convex part and the mold is increased, improving the press moldability. The effect cannot be obtained sufficiently. In addition, the electrolytic treatment described as a manufacturing method in Patent Documents 3, 4, and 5 has a problem that it is costly.

本発明者らは、上述した目的を達成すべく、鋭意研究を重ねた結果、合金化溶融亜鉛めっき鋼板のめっき表面に平坦部を設け、その平坦部表面にZnを含む酸化物および/または水酸化物皮膜を形成させることにより高いプレス加工性を低コストで達成できることを見出した(特許文献6参照)。   As a result of intensive studies to achieve the above-described object, the present inventors have provided a flat portion on the plated surface of the alloyed hot-dip galvanized steel sheet, and an oxide and / or water containing Zn on the flat portion surface. It has been found that high press workability can be achieved at low cost by forming an oxide film (see Patent Document 6).

合金化溶融亜鉛めっき鋼板は、合金化処理時の鋼板−めっき界面の反応性の差およびFe−Zn合金の角張った形状により、めっき表面にマクロな粗さが存在している。このような合金化溶融亜鉛めっき鋼板に平坦部を設ける。平坦部な凸部を設けることによって、めっき表面の凹凸を緩和し表面を平滑にすると同時にめっき表面の凸部を平坦にする。また、平坦部に加工することにより、この表面における後述するような処理皮膜の付着を効率的、かつ均一にすることができる。このような合金化溶融亜鉛めっき鋼板の断面模式図と、平坦部の存在を示す表面から観察した二次電子像を、各々図1(a)及び(b)に示す。図1(b)において、暗い部分が平坦部、明るい部分が凹部である。   The alloyed hot-dip galvanized steel sheet has macro roughness on the plating surface due to the difference in reactivity at the steel sheet-plating interface during the alloying treatment and the angular shape of the Fe-Zn alloy. A flat part is provided in such an alloyed hot-dip galvanized steel sheet. By providing a flat convex part, the unevenness | corrugation of the plating surface is relieve | moderated, the surface is smoothed, and the convex part of the plating surface is made flat. Further, by processing the flat portion, it is possible to make the adhesion of the treatment film as described later on the surface efficient and uniform. FIGS. 1A and 1B show a schematic cross-sectional view of such an alloyed hot-dip galvanized steel sheet and secondary electron images observed from the surface indicating the presence of a flat portion, respectively. In FIG. 1B, the dark part is a flat part and the bright part is a concave part.

平坦部の形成方法は特に限定されないが、調質圧延と兼ねることが有効である。平坦部にZnを主体とした酸化物および/または水酸化物皮膜を形成させる方法として、酸性溶液に接触し一定時間放置することが有効であることをが見出されている(特許文献7参照)。
特開平1−319661号公報 特開昭53−60332号公報 特開平2−190483号公報 特開平4−88196号公報 特開平3−191093号公報 特開2001−323358号公報 特開2002−256448号公報
Although the formation method of a flat part is not specifically limited, It is effective to serve as temper rolling. As a method for forming an oxide and / or hydroxide film mainly composed of Zn on a flat portion, it has been found that it is effective to contact an acidic solution and leave it for a certain period of time (see Patent Document 7). ).
Japanese Unexamined Patent Publication No. 1-319661 JP-A-53-60332 Japanese Patent Laid-Open No. 2-190483 JP-A-4-88196 Japanese Patent Laid-Open No. 3-191093 JP 2001-323358 A JP 2002-256448 A

合金化溶融亜鉛めっき鋼板の表面の特定部分に所要の酸化物層を形成することは、プレス加工性に大きな恩恵をもたらすが、顧客の満足を充分に満たすためには、安定して高性能の鋼板を製造する必要がある。一旦、安定的に酸化物形成できる操業条件を見出したとしても、浸漬処理液の変化、その他の製造条件の変動により、プレス加工性が変動する可能性がある。従って、製品管理が必要である。プレス加工性は前述のとおり摺動性によるところが大きいので、その指標として摩擦係数を測定することが有効である。しかしながら、摩擦係数測定は、図11に示すような摩擦係数測定装置を用いて行う必要があり、そのための供試材の切断・供試材への塗油・押付荷重と摺動抵抗力の測定・摩擦係数を算出するデータ処理の工程を含み、短時間での測定を実施するには適していない。   Forming the required oxide layer on a specific part of the surface of an alloyed hot-dip galvanized steel sheet has great benefits for press workability, but in order to fully satisfy customer satisfaction, stable and high-performance It is necessary to manufacture a steel plate. Even if the operating conditions that allow stable oxide formation are found, press workability may vary due to changes in the immersion treatment liquid and other manufacturing conditions. Therefore, product management is necessary. As described above, the press workability largely depends on the slidability. Therefore, it is effective to measure the friction coefficient as an index. However, the friction coefficient measurement needs to be performed using a friction coefficient measuring apparatus as shown in FIG. 11, and for that purpose, cutting of the test material, application of oil to the test material, pressing load, and measurement of sliding resistance force. -It is not suitable for performing measurements in a short time, including a data processing step for calculating the friction coefficient.

発明者らは、高プレス加工性合金化溶融亜鉛めっき鋼板を開発するにあたり、平坦部の性状、特に酸化物厚さと摩擦係数は密接な関係があることを知見している。このときの知見から平坦部の酸化物厚さを測定することでプレス加工性を評価することができる。しかし、製品管理に耐えるべく酸化物厚さを迅速に測定する方法は既存手法では充分でない。すなわち、特定部位の酸化物厚さを測定する方法は、AESよりはEPMAの方が測定時間は短いが時間的にまだ充分でない。AESやEPMAで精度良く酸化物厚さを評価するためには、平坦部1箇所ではなく最低でも10箇所の平坦部について酸化物厚さを評価することが望ましいので、これらの手法は余計に時間がかかってしまう。   The inventors have found that in developing a high press workability alloyed hot-dip galvanized steel sheet, the properties of the flat portion, particularly the oxide thickness and the friction coefficient, are closely related. From this knowledge, the press workability can be evaluated by measuring the oxide thickness of the flat portion. However, existing methods are not sufficient to quickly measure oxide thickness to withstand product management. That is, as for the method of measuring the oxide thickness at a specific site, EPMA has a shorter measurement time than AES, but is not yet sufficient in time. In order to accurately evaluate the oxide thickness by AES or EPMA, it is desirable to evaluate the oxide thickness at least 10 flat portions instead of one flat portion. It will take.

さらに、AESやEPMAでは、装置のオペレーターが測定場所(平坦部)を選定するが、選んだ平坦部に酸化膜が形成されているかどうかは、実際に測定して見なければわからない。平坦部であっても酸化物が形成されていないところや何かとこすれて酸化物が欠損している可能性もあるが、そのことをAESやEPMAで判定することは困難である。また、EPMAでは入射電子線が試料内で広がる効果で、ビーム照射領域よりも測定領域が広がる傾向にあり、平坦部の面積が狭い場合、測定精度の点で若干不利である。また、特にAESでは、超高真空を必要とするため装置操作に熟練を有し、装置が高価であるというマイナス点もある。   Furthermore, in AES and EPMA, the operator of the apparatus selects a measurement location (flat portion), but it is not known unless an oxide film is formed on the selected flat portion by actually measuring. Even in the flat portion, the oxide is not formed or there is a possibility that the oxide is lost by rubbing with something, but it is difficult to determine this by AES or EPMA. In EPMA, the measurement region tends to be wider than the beam irradiation region due to the effect that the incident electron beam spreads in the sample. If the area of the flat portion is small, the measurement accuracy is slightly disadvantageous. In particular, AES has the disadvantage that it requires skill in the operation of the apparatus because it requires an ultra-high vacuum, and the apparatus is expensive.

本発明は以上のような事情を考慮してなされたものであり、表面に酸化膜を有する溶融亜鉛系めっき鋼板、電気亜鉛系めっき鋼板及び冷延鋼板について、表面の酸化物厚さを、既存手法より簡便・迅速、かつ正確に評価できる品質管理方法及び前記鋼板の製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and the surface oxide thickness of the existing hot dip galvanized steel sheet, electrogalvanized steel sheet and cold rolled steel sheet having an oxide film on the surface is determined. It is an object of the present invention to provide a quality control method and a method for producing the steel sheet, which can be evaluated more simply, quickly and accurately than the method.

上記課題を解決する本発明の特徴は次のとおりである。
(1)溶融亜鉛系めっき鋼板の表面に0.1〜5kVのなかから選ばれる加速電圧で加速された電子ビームを照射し、表面から発生する2次電子量に対応した信号強度を測定して信号強度数値として数値化する数値化ステップと、得られた信号強度数値が所定範囲に入るか否かにより、前記溶融亜鉛系めっき鋼板がその表面に所定性状の酸化膜を有しているか否かを判定する判定ステップとを有することを特徴とする、表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。
The features of the present invention that solve the above problems are as follows.
(1) The surface of the hot dip galvanized steel sheet is irradiated with an electron beam accelerated with an acceleration voltage selected from 0.1 to 5 kV, and the signal intensity corresponding to the amount of secondary electrons generated from the surface is measured. Whether or not the hot-dip galvanized steel sheet has an oxide film having a predetermined property on its surface, depending on a quantification step for quantifying as a signal intensity value and whether or not the obtained signal intensity value falls within a predetermined range. A quality control method for a hot-dip galvanized steel sheet having an oxide film on its surface.

(2)溶融亜鉛系めっき鋼板の表面に0.1〜5kVのなかから選ばれる加速電圧で加速された電子ビームを照射し、その2次電子像を得る観察ステップと、2次電子量を2次電子像の明るさを明るさ数値として数値化する数値化ステップと、得られた明るさ数値が所定範囲に入るか否かにより、前記溶融亜鉛系めっき鋼板がその表面に所定性状の酸化膜を有しているか否かを判定する判定ステップとを有することを特徴とする、表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。   (2) The surface of the hot dip galvanized steel sheet is irradiated with an electron beam accelerated at an acceleration voltage selected from 0.1 to 5 kV, and an observation step for obtaining a secondary electron image thereof, and the amount of secondary electrons is 2 A quantification step for quantifying the brightness of the secondary electron image as a brightness value, and whether or not the obtained brightness value falls within a predetermined range, the hot dip galvanized steel sheet has an oxide film having a predetermined property on its surface. A quality control method for hot-dip galvanized steel sheet having an oxide film on its surface.

(3)予め、溶融亜鉛系めっき鋼板の表面の酸化膜厚さと明るさ数値との関係を求めて、その結果から、酸化膜厚が所定範囲となる明るさ数値範囲を求め、又は溶融亜鉛系めっき鋼板の表面の酸化膜厚と信号強度数値との対応関係を求めて、その結果から、酸化膜厚が所定範囲となる信号強度数値範囲を求め、前記判定ステップは、得られた明るさ数値が前記所定の明るさ数値範囲内に有るか否か又は得られた信号強度数値が前記所定の信号強度範囲内にあるか否かにより、前記溶融亜鉛系めっき鋼板がその表面に所定性状の酸化膜を有しているか否かを判定することを特徴とする、(1)又は(2)に記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。   (3) The relationship between the oxide film thickness on the surface of the hot dip galvanized steel sheet and the brightness numerical value is obtained in advance, and the brightness numerical value range in which the oxide film thickness is within a predetermined range is obtained from the result, or the hot dip zinc based A correspondence relationship between the oxide film thickness on the surface of the plated steel sheet and the signal intensity value is obtained, and from the result, a signal intensity value range in which the oxide film thickness is within a predetermined range is obtained, and the determination step includes the obtained brightness value. Whether or not the obtained galvanized steel sheet has a predetermined property on the surface depending on whether or not the obtained signal intensity value is within the predetermined signal intensity range. It is determined whether it has a film, The quality control method of the hot dip galvanized steel plate which has an oxide film on the surface as described in (1) or (2) characterized by the above-mentioned.

(4)前記酸化膜厚が所定範囲となる明るさ数値範囲は酸化膜厚さが20nm以上となる明るさ数値範囲とし、又は前記酸化膜が所定範囲となる信号強度数値は酸化膜厚さが20nm以上となる信号強度数値範囲とすることを特徴とする、(1)乃至(3)のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。   (4) The brightness numerical value range in which the oxide film thickness is in a predetermined range is a brightness numerical value range in which the oxide film thickness is 20 nm or more, or the signal intensity value in which the oxide film is in a predetermined range is the oxide film thickness. The quality control method for a hot-dip galvanized steel sheet having an oxide film on the surface thereof according to any one of (1) to (3), wherein the signal intensity value range is 20 nm or more.

(5)前記酸化膜厚が所定範囲となる明るさ数値範囲は酸化膜厚さが30nm以上となる明るさ数値範囲とし、又は前記酸化膜が所定範囲となる信号強度数値は酸化膜厚さが30nm以上となる信号強度数値範囲とすることを特徴とする、(1)乃至(3)のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。   (5) The brightness numerical value range in which the oxide film thickness is in a predetermined range is a brightness numerical value range in which the oxide film thickness is 30 nm or more, or the signal intensity value in which the oxide film is in a predetermined range is the oxide film thickness. The quality control method for a hot-dip galvanized steel sheet having an oxide film on the surface thereof according to any one of (1) to (3), wherein the signal intensity is in a numerical value range of 30 nm or more.

(6)予め、溶融亜鉛系めっき鋼板の表面の摩擦係数と明るさ数値との関係を求めて、その結果から、摩擦係数が所定範囲となる明るさ数値範囲を求め、又は溶融亜鉛系めっき鋼板の表面の摩擦係数と信号強度数値との対応関係を求めて、その結果から、摩擦係数が所定範囲となる信号強度数値範囲を求め、前記判定ステップは、得られた明るさ数値が前記所定の明るさ数値範囲内に有るか否か又は得られた信号強度数値が前記所定の信号強度範囲内にあるか否かにより、前記溶融亜鉛系めっき鋼板がその表面に所定性状の酸化膜を有しているか否かを判定することを特徴とする、(1)又は(2)に記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。   (6) The relationship between the friction coefficient of the surface of the hot dip galvanized steel sheet and the brightness value is obtained in advance, and the brightness value range in which the friction coefficient falls within a predetermined range is obtained from the result, or the hot dip galvanized steel sheet. A correspondence relationship between the surface friction coefficient and the signal strength value is obtained, and from the result, a signal strength value range in which the friction coefficient falls within a predetermined range is obtained, and in the determination step, the obtained brightness value is the predetermined value. The hot-dip galvanized steel sheet has an oxide film with a predetermined property on its surface, depending on whether it is within the brightness numerical range or whether the obtained signal strength numerical value is within the predetermined signal intensity range. The quality control method of the hot dip galvanized steel sheet which has an oxide film on the surface as described in (1) or (2) characterized by determining whether or not.

(7)前記摩擦係数が所定範囲となる明るさ数値範囲は摩擦係数が0.160以下となるとなる明るさ数値範囲とし、又は前記摩擦係数が所定範囲となる信号強度数値範囲は摩擦係数が0.160以下となるとなる信号強度数値範囲とすることを特徴とする、(1)、(2)、(6)のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。   (7) The brightness value range in which the friction coefficient is in a predetermined range is a brightness value range in which the friction coefficient is 0.160 or less, or the signal strength value range in which the friction coefficient is in a predetermined range is 0. The quality of the hot-dip galvanized steel sheet having an oxide film on the surface according to any one of (1), (2), and (6) Management method.

(8)前記摩擦係数が所定範囲となる明るさ数値範囲は摩擦係数が0.140以下となるとなる明るさ数値範囲とし、又は前記摩擦係数が所定範囲となる信号強度数値範囲は摩擦係数が0.140以下となるとなる信号強度数値範囲とすることを特徴とする、(1)、(2)、(6)のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。   (8) The brightness numerical value range in which the friction coefficient is within a predetermined range is a brightness numerical range in which the friction coefficient is 0.140 or less, or the signal intensity numerical range in which the friction coefficient is within the predetermined range is 0 in the friction coefficient. The quality of the hot dip galvanized steel sheet having an oxide film on the surface thereof according to any one of (1), (2), and (6), characterized in that the signal intensity value range is 140 or less. Management method.

(9)前記(1)記載の数値化ステップはめっき表面の平坦部から発生する2次電子量に対応した強度信号を数値化し、又は前記(2)記載の数値化ステップはめっき表面の平坦部の2次電子像の明るさを数値化することを特徴とする、(1)乃至(8)のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。   (9) The numerical value step described in (1) is a numerical value of an intensity signal corresponding to the amount of secondary electrons generated from the flat portion of the plating surface, or the numerical value step described in (2) is a flat portion of the plating surface. The quality control method for a hot-dip galvanized steel sheet having an oxide film on the surface thereof according to any one of (1) to (8), wherein the brightness of the secondary electron image is numerically expressed.

(10)前記(1)記載の数値化ステップはめっき表面の平坦部と非平坦部の両方を含む領域から発生する2次電子量に対応した強度信号を数値化し、又は前記(2)記載の数値化ステップはめっき表面の平坦部と非平坦部の両方を含む領域の2次電子像の明るさを数値化することを特徴とする、(1)乃至(8)のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。   (10) The quantification step described in (1) quantifies an intensity signal corresponding to the amount of secondary electrons generated from a region including both a flat portion and a non-flat portion of the plating surface, or the above (2) In any one of (1) to (8), the digitizing step digitizes the brightness of the secondary electron image of the region including both the flat portion and the non-flat portion of the plating surface. Quality control method for hot-dip galvanized steel sheet having an oxide film on its surface.

(11)鋼板を、溶融亜鉛めっきした後調質圧延を行い、又は溶融めっきした後合金化処理、調質圧延を行い、さらに酸化物形成処理を施してその表面に酸化膜を形成して溶融亜鉛系めっき鋼板を製造する製造ステップと、前記製造ステップで製造された溶融亜鉛系めっき鋼板に対して(1)乃至(10)のうちの何れかに記載の方法で品質管理を行う評価ステップとを有することを特徴とする、表面に酸化膜を有する溶融亜鉛系めっき鋼板の製造方法。   (11) The steel sheet is hot-dip galvanized and then temper-rolled, or hot-dip galvanized, then alloyed and temper-rolled, and further subjected to oxide formation to form an oxide film on the surface and melt. A manufacturing step for manufacturing a zinc-based plated steel sheet, and an evaluation step for performing quality control on the hot-dip galvanized steel sheet manufactured in the manufacturing step by the method according to any one of (1) to (10); The manufacturing method of the hot dip galvanized steel plate which has an oxide film on the surface characterized by having.

(12)前記評価ステップで、溶融亜鉛系めっき鋼板が所定性状の酸化物を有すると判定したときは、該溶融亜鉛系めっき鋼板を所定の出荷対象とすることを特徴とする、(11)に記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の製造方法。   (12) When it is determined in the evaluation step that the hot dip galvanized steel sheet has an oxide having a predetermined property, the hot dip galvanized steel sheet is used as a predetermined shipping object. The manufacturing method of the hot dip galvanized steel plate which has an oxide film on the surface of description.

(13)前記評価ステップで、溶融亜鉛系めっき鋼板が所定性状の酸化物を有しないと判定したときは、前記製造ステップの酸化物形成処理の処理条件を、明るさ数値が所定範囲に入るように又は信号強度数値が所定範囲に入るように調整することを特徴とする、(11)又は(12)に記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の製造方法。   (13) In the evaluation step, when it is determined that the hot dip galvanized steel sheet does not have an oxide having a predetermined property, the brightness value falls within a predetermined range as a processing condition of the oxide forming process in the manufacturing step. Or the method for producing a hot-dip galvanized steel sheet having an oxide film on the surface thereof according to (11) or (12), wherein the signal intensity value is adjusted to fall within a predetermined range.

(14)表面に酸化物を有する溶融亜鉛系めっき鋼板に代えて、表面に酸化物を有する電気亜鉛系めっき鋼板について、(1)乃至(10)のうちのいずれかに記載の方法で電気亜鉛系めっき鋼板の品質管理を行うことを特徴とする、電気亜鉛系めっき鋼板の品質管理方法。   (14) Instead of hot dip galvanized steel sheet having oxide on the surface, electrogalvanized zinc galvanized steel sheet having oxide on the surface by the method according to any one of (1) to (10) Quality control method for electrogalvanized steel sheet, characterized in that quality control is performed on the electroplated steel sheet.

(15)表面に酸化物を有する溶融亜鉛系めっき鋼板に代えて、表面に酸化物を有する鋼板について、(1)乃至(10)のうちのいずれかに記載の方法で鋼板の品質管理を行うことを特徴とする、鋼板の品質管理方法。   (15) In place of the hot dip galvanized steel sheet having oxide on the surface, the steel sheet having oxide on the surface is subjected to quality control by the method according to any one of (1) to (10). A quality control method for a steel sheet, characterized in that

本発明によれば、鋼板の特性の多くを左右する表面の酸化物厚さを、既存手法より簡便・迅速、かつ正確に評価でき、製品管理、出荷管理、さらには製造条件調整へのフィードバックが可能となる。製造条件調整へのフィードバックを迅速に行えることで、製品品質の安定化が可能になる。   According to the present invention, it is possible to evaluate the oxide thickness of the surface that determines many of the characteristics of the steel sheet more easily, quickly and accurately than existing methods, and feedback to product management, shipping management, and manufacturing condition adjustment. It becomes possible. Product quality can be stabilized by providing quick feedback to adjustment of manufacturing conditions.

以下、発明に至った経緯と共に、本発明を詳しく説明する。   Hereinafter, the present invention will be described in detail along with the background to the invention.

本発明の特徴は、(i)電子線照射に対して皮膜物質と下地物質の2次電子放出率の違いに着目し、(ii)皮膜厚さによって調整された加速電圧を用いることにより、(iii)皮膜厚さの違いを2次電子放出率の違いとして検出することにある。   The features of the present invention are as follows: (i) Focusing on the difference in secondary electron emission rate between the film material and the base material with respect to electron beam irradiation, and (ii) using an acceleration voltage adjusted by the film thickness, iii) Detecting a difference in film thickness as a difference in secondary electron emission rate.

発明者らは極低加速SEM技術を利用し種々の物理解析手段で鉄鋼材料サンプルを調べるうち、加速電圧1kV以下の極低加速SEMを用いた場合、単なる形状のコントラストのみならず物質の違いにより生じる物質コントラスト像を得られることに気が付いた。この物質コントラストは、金属上に酸化物層が存在する場合にも生じることがわかった。図2は、このことを模式的に示している。   The inventors investigated the steel material sample by various physical analysis means using the ultra-low acceleration SEM technology, and when using the ultra-low acceleration SEM with an acceleration voltage of 1 kV or less, not only the contrast of the shape but also the difference in the materials. I noticed that the resulting material contrast image could be obtained. This material contrast has been found to occur even when an oxide layer is present on the metal. FIG. 2 schematically illustrates this.

すなわち、図2(a)に示すように、通常加速電圧では、膜物質がある部分、膜物質がない部分のいずれでも、下地物質からの2次電子放出が支配的である。そのため、膜物質がある部分と膜物質がない部分とで2次電子放出量の差は小さい。これに対して、入射電子の加速電圧を、入射後の電子の拡散が皮膜物質内に収まるような条件で選択された場合、図2(b)に示されるように、膜物質がある部分における2次電子放出は膜物質そのもので決定され、膜物質が無い部分における2次電子放出量は下地物質そのもので決定される。このとき、膜物質と下地との2次電子放出量に差が生じる。そのために、膜物質がある部分と無い部分とで物質の違いにより生じる物質コントラストが生じるのである。   That is, as shown in FIG. 2A, at the normal acceleration voltage, secondary electron emission from the base material is dominant in both the portion with the film material and the portion without the film material. Therefore, the difference in the amount of secondary electron emission between the portion with the film material and the portion without the film material is small. On the other hand, when the acceleration voltage of the incident electrons is selected under such a condition that the diffusion of the electrons after the incidence is within the film material, as shown in FIG. The secondary electron emission is determined by the film material itself, and the amount of secondary electron emission in the portion without the film material is determined by the base material itself. At this time, a difference occurs in the amount of secondary electron emission between the film material and the base. For this reason, a material contrast is generated due to a difference in material between the portion with and without the film material.

入射後の電子の拡散が皮膜物質内に収まるような入射電子の加速電圧の選定は、モンテカルロシミュレーションなどを利用し膜物質・膜厚に対して指針を得ることができる。プレス加工性の観点等から、鋼板として重要な皮膜厚さが数〜数百ナノメートルの酸化膜の場合、加速電圧は5kV以下、望ましくは2kV程度以下を採用すべきである。厚さが数十ナノメートルの酸化膜に対しては、0.5kV前後の加速電圧が有効であった。高い加速電圧を用いると導電性の低い皮膜(酸化物も含む)での帯電が顕著になり帯電によるコントラストの変化が物質コントラストに重畳する。この意味でも、加速電圧は5kV以下、望ましくは2kV以下が有効である。   Selection of the accelerating voltage of incident electrons so that the diffusion of electrons after incidence can be accommodated in the film material can provide a guideline for the film material and film thickness using Monte Carlo simulation or the like. In the case of an oxide film having a thickness of several to several hundred nanometers, which is important as a steel sheet, from the viewpoint of press workability, the acceleration voltage should be 5 kV or less, preferably about 2 kV or less. An acceleration voltage of around 0.5 kV was effective for an oxide film having a thickness of several tens of nanometers. When a high accelerating voltage is used, charging at a film with low conductivity (including oxide) becomes remarkable, and a change in contrast due to charging is superimposed on the material contrast. In this sense, the acceleration voltage is 5 kV or less, preferably 2 kV or less.

さらに検討を行った結果、適切な加速電圧を選択した場合、組成が類似した同系統の試料において、酸化膜の厚さに対応して2次電子放出率が変化することを2次電子像のコントラストの変化として評価できることを見出した。亜鉛上の酸化物の場合、0.5kV程度の低加速電子を照射した場合、金属面に比べて酸化膜面の2次電子像の明るさが暗いことがわかった。   As a result of further investigation, when an appropriate acceleration voltage is selected, the secondary electron emission rate changes according to the thickness of the oxide film in a sample of the same system having a similar composition. It was found that it can be evaluated as a change in contrast. In the case of an oxide on zinc, it was found that the brightness of the secondary electron image on the oxide film surface was darker than that on the metal surface when irradiated with low acceleration electrons of about 0.5 kV.

図3は、酸化膜厚の異なる合金化溶融亜鉛めっき鋼板に低加速電圧(加速電圧:0.5kV)で電子を照射したときの2次電子像の明るさの違いを説明する2次電子像の例である。図3において、(a)は酸化物の平均膜厚が25nm、(b)は酸化物の平均膜厚が10nmの場合で、各々上段は平坦部を高倍率で観察したもの、下段は低倍率で観察したものである。図3(a)、(b)の対比からわかるように、SEM画像は、膜厚が厚いと暗く、薄いと明るい。なお、図3の下段は平坦部と非平坦部を含む広い領域から得られた像で、酸化物の分布を明瞭に見ることができる。すなわち、図3下段の二次電子像のなかで相対的に暗いところは酸化物が相対的に多く形成されているところ、明るいところは酸化物が相対的に少なく形成されているところに対応している。二次電子像を詳しく見ることにより、平坦部に相対的に多くの酸化物が形成されていることがわかっている。このように広い視野で二次電子像を観察しておくと、酸化物が確実に形成されている領域の酸化物厚さの評価ができる。   FIG. 3 is a secondary electron image illustrating the difference in brightness of the secondary electron image when electrons are irradiated to the alloyed hot-dip galvanized steel sheets having different oxide thicknesses at a low acceleration voltage (acceleration voltage: 0.5 kV). It is an example. In FIG. 3, (a) shows the case where the average film thickness of the oxide is 25 nm, (b) shows the case where the average film thickness of the oxide is 10 nm. It is what was observed in. As can be seen from the comparison between FIGS. 3A and 3B, the SEM image is dark when the film thickness is thick and bright when it is thin. Note that the lower part of FIG. 3 is an image obtained from a wide area including a flat part and a non-flat part, and the distribution of oxides can be clearly seen. That is, in the secondary electron image in the lower part of FIG. 3, a relatively dark area corresponds to a relatively large amount of oxide, and a bright area corresponds to a relatively small amount of oxide. ing. By examining the secondary electron image in detail, it is known that a relatively large amount of oxide is formed on the flat portion. By observing the secondary electron image in such a wide field of view, the oxide thickness in the region where the oxide is reliably formed can be evaluated.

そこで、SEM画像の明るさを数値化(以下、明るさ数値と呼ぶ)するとともに、EPMAを用いて種々のサンプルの酸化物付着量を調べてそのときの明るさ数値との関係を調べた。明るさは、取込んだ画像を、市販のソフトウエアAdobe製Photoshopを用いて画像の明るさを、256階調で数値化し、その平均値を求め、これを明るさ数値とした。酸化物付着量は酸素の2次電子強度で評価した。その結果を図4に示す。図4から、酸化物付着量(酸素強度)と明るさに対応関係があることを見出した。なお、金属との関係で酸化物の明るさ数値が低い理由は、酸化皮膜部分では導電性が低く正電荷が表面に蓄積するために2次電子発生量が抑制され2次電子像が暗くなるメカニズムを考えられる。なお、図4中、横軸に記載の[Max256]は、画像の明るさを256階調で数値化したことを意味してある。   Therefore, the brightness of the SEM image was digitized (hereinafter referred to as the brightness value), and the oxide adhesion amount of various samples was examined using EPMA, and the relationship with the brightness value at that time was examined. As for the brightness, the brightness of the captured image was converted into a numerical value of 256 gradations using a commercially available software Photoshop, and an average value thereof was obtained. The oxide adhesion amount was evaluated by the secondary electron intensity of oxygen. The result is shown in FIG. From FIG. 4, it has been found that there is a corresponding relationship between the oxide deposition amount (oxygen intensity) and the brightness. The reason why the oxide brightness value is low in relation to the metal is that the oxide film portion has low conductivity and positive charges accumulate on the surface, so the amount of secondary electrons generated is suppressed and the secondary electron image becomes dark. Possible mechanism. In FIG. 4, [Max256] on the horizontal axis means that the brightness of the image is digitized in 256 gradations.

このことにより、観察される2次電子像の明るさの程度に着目して酸化膜性状(厚さ又は付着量)を判定することが可能となる。   This makes it possible to determine the oxide film properties (thickness or adhesion amount) by paying attention to the degree of brightness of the observed secondary electron image.

さらに電子線の加速電圧を順次変化させて、2次電子像の明るさを調査したところ、ある加速電圧以下で明るさが変化することを知見した。図2の説明に従うと、これは、電子線の加速電圧が入射電子の試料中における拡散が皮膜中に収まるようになる加速電圧付近で2次電子の発生量が変化したため、と考えることができる。このように加速電圧を連続的に変化させて、2次電子発生量の変化あるいは2次電子像の明るさの変化をモニターすることで、皮膜の厚さを評価することができる。   Furthermore, when the brightness of the secondary electron image was investigated by sequentially changing the acceleration voltage of the electron beam, it was found that the brightness changed below a certain acceleration voltage. According to the explanation of FIG. 2, this can be considered because the amount of generation of secondary electrons changes near the acceleration voltage at which the acceleration voltage of the electron beam becomes such that the diffusion of incident electrons in the sample is contained in the film. . Thus, the thickness of the film can be evaluated by continuously changing the acceleration voltage and monitoring the change in the amount of secondary electrons generated or the change in the brightness of the secondary electron image.

上記の手法において、本質は2次電子の放出量であるが、SEMを用いて2次電子像の明るさ数値として、2次電子の放出量の相対的な違い、すなわち皮膜の厚さの違いを検知する場合、以下の利点がある。第一に、試料の形状や凹凸を同時に観察できることである。このことは、皮膜厚さの分布を評価することに利用できる。また、表面形態を観察することにより、汚染された場所等、適切でない部分を避けて評価することで皮膜厚さの適切な評価が可能になる。前述の合金化溶融亜鉛めっき鋼板の平坦部のように、特定部分の皮膜厚さを評価する場合には最適である。第二に、測定時間が短いことである。2次電子像の取り込み時間として1秒以下の観察も可能である。これは、EPMAやAESによる測定時間と比較して10〜100分の1の測定時間である。   In the above method, the essence is the emission amount of secondary electrons, but the relative difference in the emission amount of secondary electrons, that is, the difference in the thickness of the film is obtained by using the SEM as the brightness value of the secondary electron image. The following advantages can be obtained. First, the shape and irregularities of the sample can be observed simultaneously. This can be used to evaluate the film thickness distribution. In addition, by observing the surface form, it is possible to appropriately evaluate the film thickness by performing evaluation while avoiding an unsuitable part such as a contaminated place. It is optimal when evaluating the film thickness of a specific part like the flat part of the above-mentioned alloyed hot-dip galvanized steel sheet. Second, the measurement time is short. Observation of a second electron image capturing time of 1 second or less is also possible. This is a measurement time of 1 to 1/100 compared with the measurement time by EPMA or AES.

本発明に基づいて皮膜厚さを評価するには、極低加速SEMが適しているが、皮膜の平均的な厚さ情報を得る目的には、真空ポンプで引かれた真空容器の中に、電子線を発生・照射する機能、2次電子を検出・量を測定する機能、および試料を保持する機能を有する単純な装置を用いることができる。   In order to evaluate the film thickness according to the present invention, a very low acceleration SEM is suitable, but for the purpose of obtaining average film thickness information, in a vacuum vessel drawn with a vacuum pump, A simple apparatus having a function of generating and irradiating an electron beam, a function of detecting and measuring the amount of secondary electrons, and a function of holding a sample can be used.

前記のような皮膜測定手法を、溶融亜鉛めっきのプレス加工性の評価に適用できる。表面に酸化物を異なる量で付与した合金化溶融亜鉛めっき鋼板のめっき表面の平坦部での明るさ数値と摩擦係数の関係を調査した。摩擦係数は図11の摩擦係数測定装置を用いて、図12のビードを使用して測定したときの摩擦係数である。具体的な摩擦係数の測定方法は、後記する実施例1に記載の方法と同じである。明るさ数値は図4の場合と同様にして得られたものである。調査結果を図5に示す。図5から、この明るさ数値は摩擦係数とも対応し、ひいてはプレス加工性の指標となり得ることがわかった。   The film measurement method as described above can be applied to the evaluation of press workability of hot dip galvanizing. The relationship between the brightness value and the friction coefficient at the flat part of the plated surface of the alloyed hot-dip galvanized steel sheet with different amounts of oxide applied to the surface was investigated. The coefficient of friction is the coefficient of friction when measured using the bead of FIG. 12 using the coefficient of friction measuring device of FIG. A specific method for measuring the friction coefficient is the same as the method described in Example 1 described later. The brightness values were obtained in the same manner as in FIG. The survey results are shown in FIG. From FIG. 5, it was found that this brightness value also corresponds to the friction coefficient, and as a result can be an index of press workability.

発明が解決する課題で記載したように、高プレス加工性合金化溶融亜鉛めっき鋼板では、平坦部の酸化膜厚は摩擦係数と密接な関係があるので、酸化膜厚は平坦部における酸化膜厚を測定する必要があると考えていた。本手法で、平坦部と平坦部以外の部分を含む広い領域(全体)における明るさ数値と摩擦係数の関係を調査した。調査結果を図6に示す。図6から、広い視野からでも摩擦係数に対応する明るさ数値が得られることがわかった。その理由として、(i)平坦部が数十%の面積率で存在するため全体で見ても一定の関係がある、(ii)平坦部以外の部分(非平坦部)の酸化物厚さは平坦部ほど厚くないが平坦部と同じ傾向で増減する、ことによると思われる。そのため、平坦部と平坦部以外の部分を含む広い面積で明るさ数値を測定しても、この明るさ数値と摩擦係数には一定の関係が得られたものと考えられる。   As described in the problem to be solved by the invention, in a high press workability galvannealed steel sheet, the oxide film thickness of the flat part is closely related to the friction coefficient, so the oxide film thickness is the oxide film thickness in the flat part. Thought that it was necessary to measure. In this method, the relationship between the brightness value and the friction coefficient in a wide area (entire) including a flat portion and a portion other than the flat portion was investigated. The survey results are shown in FIG. From FIG. 6, it was found that the brightness value corresponding to the friction coefficient can be obtained even from a wide field of view. The reason for this is that (i) the flat portion exists at an area ratio of several tens of percent, and therefore there is a certain relationship as a whole. (Ii) The oxide thickness of the portion other than the flat portion (non-flat portion) is It seems that it is not as thick as the flat part but increases or decreases in the same tendency as the flat part. Therefore, even if the brightness value is measured over a wide area including a flat portion and a portion other than the flat portion, it is considered that a certain relationship is obtained between the brightness value and the friction coefficient.

このことから、SEMを用いて低倍率で広い視野(例えば1mm×1mm)の平均の明るさ数値を求めることでも、摩擦係数を評価できることになる。平坦部における明るさ数値の測定に比べて、少ない測定(視野数)で平均化された情報が得られるため、測定時間の短縮に有効である。   From this, the coefficient of friction can also be evaluated by obtaining an average brightness value of a wide field of view (for example, 1 mm × 1 mm) at a low magnification using SEM. Compared to the measurement of the brightness value in the flat part, information averaged with a small number of measurements (number of fields of view) is obtained, which is effective in shortening the measurement time.

本発明は、このような知見に基づきなされたものである。以下、本発明の実施形態について、高プレス加工性合金化溶融亜鉛めっき鋼板を例に挙げて図7〜図10を参照してさらに説明する。
(1)高プレス加工性合金化溶融亜鉛めっき鋼板の製造方法及び品質(出荷)管理の全体説明
高プレス加工性を付与する合金化溶融亜鉛めっき鋼板は、通常、以下の工程で製造される。すなわち、合金化加熱炉を備えた連続溶融亜鉛めっき装置(CGL)を用いて、常法により鋼板を溶融亜鉛浴に浸漬させて溶融亜鉛めっきを施した後亜鉛浴から引き上げてめっき付着量を調整する(溶融めっき工程)、合金化加熱炉で合金化処理を行い、鋼板表面へFe−Zn合金層を形成させる(合金化処理工程)。次いで、調質圧延を施した(調質圧延工程)後、酸化物形成処理を施して表面に酸化膜を形成した(酸化物形成処理工程;図7〜図10中のS1)後、巻取り装置でコイルに巻取り、合金化溶融亜鉛めっき鋼板を製造する。
The present invention has been made based on such findings. Hereinafter, an embodiment of the present invention will be further described with reference to FIGS. 7 to 10 by taking a high press workability galvannealed steel sheet as an example.
(1) Overall description of manufacturing method and quality (shipment) management of high press workability alloyed hot dip galvanized steel sheet An alloyed hot dip galvanized steel sheet imparting high press workability is usually manufactured by the following steps. That is, using a continuous hot dip galvanizing equipment (CGL) equipped with an alloying heating furnace, the steel sheet is immersed in a hot dip galvanizing bath by a conventional method, then hot dip galvanizing is performed, and then it is pulled up from the galvanizing bath to adjust the coating amount. (Melting plating process), alloying treatment is performed in an alloying heating furnace, and an Fe—Zn alloy layer is formed on the steel sheet surface (alloying treatment process). Next, after temper rolling (temper rolling process), an oxide formation treatment was performed to form an oxide film on the surface (oxide formation treatment process; S1 in FIGS. 7 to 10), and then wound The coil is wound up with an apparatus to produce an alloyed hot-dip galvanized steel sheet.

本発明では、前記工程で製造された合金化溶融亜鉛めっき鋼板に対して、品質検査、判定、および出荷方法の決定、あるいは製造条件制御へのフィードバックを行う。   In the present invention, quality inspection, determination, determination of a shipping method, or feedback to manufacturing condition control is performed on the alloyed hot-dip galvanized steel sheet manufactured in the above process.

具体的には、まず前記で製造された合金化溶融亜鉛めっき鋼板のコイルから検査用の試料を切出す。その個所や頻度は、製品性能のばらつきや製造の安定性に応じて、適宜に決定することができる。例えば、1コイルのトップ、ボトムの2箇所から切出す。製品の性能が安定して得られている場合には、例えば5コイルに1本の割合でサンプリングしてもよい。次いで、切出した試料を洗浄した後、極低加速SEMによりその表面を観察し、画像を取込んだ後、明るさを数値化する(図7〜図10中のS2)。得られた明るさ数値に基いて、当該合金化溶融亜鉛めっき鋼板の性能を判断し(図7〜図10中のS3)、その結果に基づいて、出荷先を適正に振り分け(図7、図8)、又は製造条件を変更する(図9、図10)。   Specifically, first, a test sample is cut out from the coil of the galvannealed steel sheet produced as described above. The location and frequency can be appropriately determined according to variations in product performance and manufacturing stability. For example, it cuts out from the top and bottom of one coil. When the performance of the product is obtained stably, for example, sampling may be performed at a rate of one for every five coils. Next, after the cut sample is washed, its surface is observed with a very low acceleration SEM, and after taking an image, the brightness is digitized (S2 in FIGS. 7 to 10). Based on the obtained brightness value, the performance of the alloyed hot-dip galvanized steel sheet is judged (S3 in FIGS. 7 to 10), and based on the results, the shipping destinations are appropriately distributed (FIG. 7, FIG. 8) or change manufacturing conditions (FIGS. 9 and 10).

(2)評価工程の説明
(2−1)使用装置(極低加速SEM)の説明
加速電圧0.1kV以上2kV以下の電子線を常時安定して照射できるSEMを用いる。この加速電圧の範囲で、5nmより良い空間分解能を損なわずに自由に加速電圧を変化させることができるもので、電子線の安定性の観点からショットキー電界放出電子銃を有すること望ましい。2次電子検出器としては、低エネルギーの2次電子を、できれば選択的に、多く検出できるものが望ましい。また、迅速に測定までのセットアップができることから試料準備室を有することが望ましい。一例をあげるとすると、LEO1500シリーズ(LEO社)は、上記の目的に適している。
(2) Description of Evaluation Step (2-1) Description of Device Used (Ultra Low Acceleration SEM) An SEM that can constantly irradiate an electron beam with an acceleration voltage of 0.1 kV to 2 kV is used. In this acceleration voltage range, the acceleration voltage can be freely changed without losing the spatial resolution better than 5 nm, and it is desirable to have a Schottky field emission electron gun from the viewpoint of electron beam stability. As the secondary electron detector, one capable of selectively detecting many low energy secondary electrons, if possible, is desirable. In addition, it is desirable to have a sample preparation room because it can set up up to measurement quickly. As an example, the LEO 1500 series (LEO) is suitable for the above purpose.

(2−2)測定対象の説明
めっき・合金化、調質圧延された後酸化処理を受けた合金化溶融亜鉛めっき鋼板が検査対象となる。高いプレス成形性を得るために、酸化物付着物を一定厚さ以上厚くつけることが必要である。発明者らは、オージェ電子分光法により測定した酸化膜厚と摩擦係数の関係を精査した結果、酸化膜の厚さとして15nm以上が望ましく、さらには25nm以上が望ましいことを見出している。このような酸化膜が得られれば、それぞれ、0.160以下、0.140以下の摩擦係数の合金化溶融亜鉛めっき鋼板を安定して供給することができる。もちろん目的により基準を設定することが可能であるが、合金化溶融亜鉛めっき鋼板上の酸化物の厚さとしては、製品管理上の安全を鑑みて20nm以上、望ましくは30nm以上の厚さの酸化物が付与されているかどうかが一つの判定基準となる。
(2-2) Description of measurement object An alloyed hot-dip galvanized steel sheet that has been plated, alloyed, temper-rolled and then subjected to oxidation treatment is an inspection object. In order to obtain high press formability, it is necessary to deposit the oxide deposit thicker than a certain thickness. The inventors have scrutinized the relationship between the oxide film thickness measured by Auger electron spectroscopy and the friction coefficient, and as a result, found that the thickness of the oxide film is preferably 15 nm or more, and more preferably 25 nm or more. If such an oxide film is obtained, alloyed hot-dip galvanized steel sheets having friction coefficients of 0.160 or less and 0.140 or less can be stably supplied. Of course, it is possible to set a standard depending on the purpose, but the oxide thickness on the galvannealed steel sheet is 20 nm or more, preferably 30 nm or more in view of safety in product management. One criterion is whether or not an object is given.

(2−3)明るさ数値の定量化、考え方等
極低加速で観察した2次電子像の明るさと酸化膜量、ひいては摩擦係数との間に良好な関係があることはすでに述べた。得られた明るさから、酸化膜厚・性能を定量的に評価するためには、観察・画像取り込み、および数値化の条件を同一にして得た明るさ数値と、酸化膜厚、酸化物量ないしは摩擦係数との関係を求めておき、検査対象試料に対して同一条件で観察、数値化して得た結果を比較する必要がある。しかし、すべての条件を常に一定にしておくことは容易ではないので、検査対象試料と同時に参照試料について、同じ条件で観察・画像数値化を行い、検査対象試料で得られた数値と参照材料の数値とを参照し、検査対象試料の性能を判定することが現実的である。参照試料としては、表面が変化しにくい安定な物質(例えばSiO2膜付きのSiウエハ)や酸化膜厚、摩擦係数が既知の実材料を用いることができる。酸化膜厚、摩擦係数が既知の実材料を用いる場合、良否判断の境界にある材料を用いることで判定が容易になる。
(2-3) Quantification of brightness value, concept, etc. It has already been described that there is a good relationship between the brightness of the secondary electron image observed at extremely low acceleration, the amount of oxide film, and the coefficient of friction. In order to quantitatively evaluate the oxide film thickness and performance from the obtained brightness, the brightness value obtained with the same observation / image capture and digitization conditions, and the oxide film thickness, oxide amount or It is necessary to determine the relationship with the friction coefficient and compare the results obtained by observing and digitizing the sample to be inspected under the same conditions. However, since it is not easy to keep all the conditions constant, observation and image digitization are performed on the reference sample at the same time as the inspection target sample under the same conditions, and the numerical value obtained from the inspection target sample and the reference material It is realistic to determine the performance of the sample to be inspected with reference to numerical values. As the reference sample, a stable substance whose surface does not easily change (for example, a Si wafer with a SiO 2 film) or an actual material whose oxide film thickness and friction coefficient are known can be used. When an actual material having a known oxide film thickness and friction coefficient is used, the determination is facilitated by using a material at the boundary of the quality determination.

(2−4)測定手順の説明
(i)試料採取
製造後にコイルから切出された試料片を観察・評価対象とする。その方法および大きさは例えば、10mmφの打ち抜き機を用いることが容易である。切出し場所は、任意に設定可能である。製造されたコイルには、防錆油が塗布されているため、洗浄する。たとえば、アセトンなどの有機溶媒を用い5〜10分間浸漬するか、超音波洗浄することを採用することができる。方法は限定されないが、試料間で統一する。
(2-4) Description of measurement procedure (i) Sampling Sample pieces cut out from the coil after production are to be observed and evaluated. For example, it is easy to use a punching machine having a diameter of 10 mm. The cutout location can be arbitrarily set. Since the manufactured coil is coated with anti-rust oil, it is cleaned. For example, it is possible to employ immersion in an organic solvent such as acetone for 5 to 10 minutes or ultrasonic cleaning. Although the method is not limited, it is unified between samples.

(ii)極低加速SEM観察(観察ステップ)
前記試料を、参照試料と共に極低加速SEM内に導入する。SEMは安定化のため、可動状態にした後数時間経過していることがのぞましい。例えば、ショットキー電子銃の電圧をかけた状態で保持しておくことが有効である。SEM観察により酸化物付着の均一性をチェックした後、画像を取込む領域を決定する。
(Ii) Ultra-low acceleration SEM observation (observation step)
The sample is introduced into a very low acceleration SEM along with a reference sample. It is desirable that several hours have passed since the SEM was made movable for stabilization. For example, it is effective to hold the voltage with a Schottky electron gun applied. After checking the uniformity of oxide adhesion by SEM observation, an area for capturing an image is determined.

(iii)画像取り込み
測定対象試料と参照試料とを、同一観察条件にて観察し、同一条件で画像をデジタルデータとして取込む。その際に同一にする観察条件は以下のとおりである。
・加速電圧:対象とする膜厚により変更可能である。例えば、ここで対象としている合金化溶融亜鉛めっき鋼板上の数〜数十nmの酸化膜では、0.5kV程度の加速電圧が有効である。
・入射電子条件:加速電圧、アパーチャ−、ビーム径(通常最小)、電子の走査範囲(倍率)、走査スピード、走査方法
・検出条件:検出器の条件(印可電圧など)、明るさ、コントラスト、ゲイン、オフセット
・画像取込み条件:取込み点数、取込み時間、明るさ、コントラスト、ゲイン、オフセット
・取込み視野:平坦部のみの像を取込む場合は、例えば3〜5μm□の範囲で、取込み視野数は、2視野以上とする。酸化物付着が均一の場合は、2視野で充分である。不均一性が高い場合は、視野数を増やす。例えば5視野とする。広い面積で観察する場合は、不均一が顕著でなければ、2視野で充分である。
(Iii) Image capture The sample to be measured and the reference sample are observed under the same observation conditions, and the image is captured as digital data under the same conditions. In this case, the same observation conditions are as follows.
Acceleration voltage: can be changed depending on the target film thickness. For example, an acceleration voltage of about 0.5 kV is effective for an oxide film of several to several tens of nm on the alloyed hot-dip galvanized steel sheet.
-Incident electron conditions: acceleration voltage, aperture, beam diameter (normally minimum), electron scanning range (magnification), scanning speed, scanning method-Detection conditions: detector conditions (applied voltage, etc.), brightness, contrast, Gain, offset / image capture conditions: number of capture points, capture time, brightness, contrast, gain, offset, capture field: When capturing only flat areas, the number of capture fields is, for example, in the range of 3-5 μm. 2 fields of view or more. In the case of uniform oxide deposition, two fields of view are sufficient. If the non-uniformity is high, increase the number of fields of view. For example, 5 fields of view are assumed. When observing in a wide area, two fields of view are sufficient if non-uniformity is not remarkable.

(iv)明るさの定量化(数値化ステップ)
取込んだ画像を、画像処理ソフトウエアで読み込む。このソフトウエアは自作、市販品を問わない。後者の一例は、Adobe製Photoshopである。前記ソフトウエア上で、付着物など異常部を除いた画像範囲の明るさを数値化する。数値化方法は問わないが、例えば明るさを256階調に分け、前記範囲内の画像データ点数で平均化する方法を採用できる。検査対象試料と参照試料の両方について、同様の方法で画像を数値化する。
(Iv) Quantification of brightness (numericalization step)
The captured image is read by image processing software. This software can be self-made or commercially available. An example of the latter is Adobe Photoshop. On the software, the brightness of the image range excluding abnormal parts such as adhering matter is digitized. There is no limitation on the numerical conversion method. For example, it is possible to employ a method in which the brightness is divided into 256 gradations and averaged with the number of image data points within the above range. The image is digitized by the same method for both the inspection target sample and the reference sample.

(v)性能の判定(判定ステップ)
あらかじめ2次電子像の明るさと酸化膜厚あるいは酸化物量、又は2次電子像の明るさと摩擦係数との対応関係を求めておく。具体的には、前記酸化物形成処理で形成された膜厚の異なる酸化膜を有する合金化溶融亜鉛めっき鋼板の表面に、0.1〜5kVのなかから選ばれる加速電圧で加速された電子ビームを照射し、表面から発生する2次電子像の明るさを明るさ数値化し、酸化膜厚(酸化膜付着量であってもよい。以下同じ)と明るさ数値との対応関係を予め求めておく。又は2次電子像の明るさ数値と摩擦係数との対応関係を予め求めておく。
(V) Judgment of performance (judgment step)
The correspondence relationship between the brightness of the secondary electron image and the oxide film thickness or oxide amount, or the brightness of the secondary electron image and the friction coefficient is obtained in advance. Specifically, an electron beam accelerated at an acceleration voltage selected from 0.1 to 5 kV on the surface of an alloyed hot-dip galvanized steel sheet having oxide films with different film thicknesses formed by the oxide formation process. The brightness of the secondary electron image generated from the surface is converted into a numerical value, and the correspondence between the oxide film thickness (which may be the amount of deposited oxide film; the same applies hereinafter) and the numerical value of brightness is obtained in advance. deep. Alternatively, the correspondence between the brightness value of the secondary electron image and the friction coefficient is obtained in advance.

前記したように、前述の対応関係は、平坦部のみ、平坦部と非平坦部を含む部分(広い面積部分)について求めることができる。評価精度をより良好にする面からは平坦部における対応関係を求めることが好ましい。簡易に評価する面からは、平坦部と非平坦部を含む部分における対応関係を求めて、その結果を利用するようにしてもよい。   As described above, the above-described correspondence can be obtained for only a flat portion, a portion including a flat portion and a non-flat portion (a wide area portion). From the viewpoint of improving the evaluation accuracy, it is preferable to obtain the correspondence in the flat portion. From the surface to be simply evaluated, a correspondence relationship in a portion including the flat portion and the non-flat portion may be obtained and the result may be used.

前記の対応関係は、実施例1の図13に示すように、合金化溶融亜鉛めっき鋼板の平坦部について、酸化膜厚と明るさ数値との関係を示す特性曲線として求めてもよい。図13から、例えば、酸化膜の膜厚が20nm以上となる明るさ数値の閾値がわかる。同様に、膜厚が30nm以上となる明るさ数値の閾値が分かる。   As shown in FIG. 13 of Example 1, the correspondence relationship may be obtained as a characteristic curve indicating the relationship between the oxide film thickness and the brightness value for the flat portion of the galvannealed steel sheet. From FIG. 13, for example, the threshold value of the brightness value at which the thickness of the oxide film is 20 nm or more can be seen. Similarly, the threshold value of the brightness value at which the film thickness is 30 nm or more is known.

また、実施例1の図14に示すように、合金化溶融亜鉛めっき鋼板の平坦部と非平坦部を含む領域について、酸化膜厚と明るさ数値との関係を示す特性曲線として求めてもよい。図14から、例えば、酸化膜の膜厚が20nm以上となる明るさ数値の閾値がわかる。同様に、膜厚が30nm以上となる明るさ数値の閾値が分かる。   Moreover, as shown in FIG. 14 of Example 1, it may obtain | require as a characteristic curve which shows the relationship between an oxide film thickness and a numerical value of brightness about the area | region containing the flat part and non-flat part of an galvannealed steel plate. . From FIG. 14, for example, the threshold value of the brightness value at which the thickness of the oxide film is 20 nm or more can be seen. Similarly, the threshold value of the brightness value at which the film thickness is 30 nm or more is known.

また、実施例2の図15に示すように、合金化溶融亜鉛めっき鋼板の摩擦係数と、平坦部の明るさ数値との関係を示す特性曲線として得てもよい。図15から、例えば摩擦係数が0.160以下となる明るさ数値の閾値がわかる。同様に、摩擦係数が0.140以下となる明るさ数値の閾値が分かる。   Moreover, as shown in FIG. 15 of Example 2, you may obtain as a characteristic curve which shows the relationship between the friction coefficient of an galvannealed steel plate, and the brightness value of a flat part. From FIG. 15, for example, the threshold value of the brightness value at which the friction coefficient is 0.160 or less is known. Similarly, the threshold value of the brightness value at which the friction coefficient is 0.140 or less is known.

また、前述の各図に示されるように、酸化膜厚と明るさ数値、摩擦係数と明るさ数値は、正相関、又は負相関があるので、前記した特性曲線を得ないで、膜厚判定の際の膜厚の閾値に対応する明るさ数値の値を求め、これを明るさ数値の閾値として用いてもよい。同様に、摩擦係数判定の際の摩擦係数の閾値に対応する明るさ数値を求め、これを明るさ数値の閾値として用いてもよい。   In addition, as shown in the respective drawings, the oxide film thickness and the brightness value, and the friction coefficient and the brightness value have a positive correlation or a negative correlation. Therefore, the film thickness determination is performed without obtaining the above-described characteristic curve. The value of the brightness value corresponding to the threshold value of the film thickness at the time may be obtained and used as the threshold value of the brightness value. Similarly, a brightness value corresponding to a friction coefficient threshold value in the friction coefficient determination may be obtained and used as the brightness value threshold value.

なお、酸化物種(酸化物形成処理)が異なると、特性曲線は異なるようになるので、酸化物種(酸化物形成処理)毎に前記した関係を求めることが好ましい。   Note that since the characteristic curves are different when the oxide species (oxide formation treatment) are different, it is preferable to obtain the relationship described above for each oxide species (oxide formation treatment).

検査対象試料について得られた明るさ数値を、参照試料の明るさ数値で補正し、補正後の明るさ数値に基き、検査対象試料の性能を判定する。補正の一例は、2次電子像の明るさ数値と酸化膜厚あるいは摩擦係数との関係を求めた際の参照試料の数値と、検査時の参照試料の数値との比を、検査対象試料の明るさ数値に乗ずる。前記明るさ数値と酸化膜厚・摩擦係数との関係より、補正された検査対象試料の明るさ数値が、性能良否の判断基準(例えば、酸化膜厚20nm以上、又は摩擦係数0.160以下)の範囲内に有るか否かを判定する。   The brightness value obtained for the sample to be inspected is corrected with the brightness value of the reference sample, and the performance of the sample to be inspected is determined based on the corrected brightness value. An example of the correction is the ratio of the numerical value of the reference sample when the relationship between the brightness value of the secondary electron image and the oxide film thickness or the friction coefficient is calculated to the numerical value of the reference sample at the time of the inspection. Multiply the brightness value. Based on the relationship between the brightness value and the oxide film thickness / friction coefficient, the corrected brightness value of the sample to be inspected is a criterion for determining whether the performance is good (for example, an oxide film thickness of 20 nm or more, or a friction coefficient of 0.160 or less). It is determined whether it is within the range.

なお、参照試料の数値が、2次電子像の明るさ数値と酸化膜厚あるいは摩擦係数との関係を求めた際の参照試料の数値と一致するように、装置を調整しておけば、前記の補正を行うことなく、検査対象試料の数値から直接性能の判定を行うことができる。   If the apparatus is adjusted so that the numerical value of the reference sample matches the numerical value of the reference sample when the relationship between the brightness value of the secondary electron image and the oxide film thickness or the friction coefficient is obtained, Without performing this correction, it is possible to determine the performance directly from the numerical value of the sample to be inspected.

(3)出荷判定工程(判定ステップ)
出荷判定工程では、検査対象試料の明るさ数値(補正後の明るさ数値)と、合金化溶融亜鉛めっき鋼板の性能等を考慮して決定される明るさ数値の閾値とに基き、検査対象試料の性能を判定する。
(3) Shipping judgment process (judgment step)
In the shipment judgment process, the sample to be inspected based on the brightness value (corrected brightness value) of the sample to be inspected and the threshold value of the brightness value determined in consideration of the performance of the galvannealed steel sheet. Judge the performance.

判定ステップ(S3)における判定方法の一例は、予め酸化膜厚又は摩擦係数に基いて製品のグレード分けを行っておき、それに対応する明るさ数値を判定基準に採用し、検査対象試料の明るさ数値に基いて、当該試料を採取したコイルをグレード分けする方法である。例えば、図7のフローにおいて、判定ステップ(S3)の判定基準として、酸化膜厚20nm以上又は摩擦係数0.16以下を満たすものを高グレード品、前記を満たさないものを通常グレードとして判定し、判定結果に基き出荷先を振り分けることができる。たとえば、プレス加工条件の厳しい客先に前者を、ゆるいプレス加工条件の客先に後者を納入することで、常に適切な製品出荷を行うことができる。判定基準を酸化膜厚30nm以上(又は摩擦係数0.140以下)とすることで、該検査基準をパスした製品は、特に加工条件の厳しい客先でも満足される商品として安定して供給することが可能である。このように、判定基準は複数設定することができる。基準は、前述の2つでもよいし、それ以上設定してもよい。   As an example of the determination method in the determination step (S3), the grade of the product is previously classified based on the oxide film thickness or the friction coefficient, the brightness value corresponding to the grade is adopted as the determination criterion, and the brightness of the sample to be inspected. This is a method of classifying the coil from which the sample is collected based on the numerical value. For example, in the flow of FIG. 7, as a determination criterion in the determination step (S3), a material that satisfies the oxide film thickness of 20 nm or more or a friction coefficient of 0.16 or less is determined as a high grade product, and a material that does not satisfy the above is determined as a normal grade. Shipment destinations can be sorted based on the determination result. For example, it is possible to always carry out appropriate product shipment by delivering the former to a customer with severe press working conditions and the latter to a customer with loose press working conditions. By setting the judgment standard to an oxide film thickness of 30 nm or more (or friction coefficient 0.140 or less), products that pass the inspection standard can be stably supplied as products that are satisfied even by customers with severe processing conditions. Is possible. In this way, a plurality of determination criteria can be set. The above two references may be set, or more.

前記は下地材質が軟質鋼の場合であるが、同一加工条件であっても、下地材質が異なることにより基準値を変更することも可能である。例えば高強度鋼など難加工性の鋼板では、より高い摺動性が必要されることから、判定基準を厳しくすることもできる。   The above is the case where the base material is soft steel, but the reference value can be changed by changing the base material even under the same processing conditions. For example, a difficult-to-process steel plate such as high-strength steel requires higher slidability, and therefore, the criteria can be tightened.

判定ステップ(S3)における判定方法の別の例は、図8のフローに示すように、オーダー条件(プレス条件、品質基準、下地鋼板材質指定等)から決定される性能目標に基き、あらかじめ酸化膜厚又は摩擦係数の基準値(閾値)を設定し、判定ステップ(S3)で、それに対応する明るさ数値を判定基準に採用する方法である。判定ステップ(S3)は、前記基準値を満足するコイルを当該オーダーへの出荷対象材と判定し、前記基準値を満足しないコイルを当該オーダーへの出荷対象外と判定する。このようにすることで、適切な出荷管理が行える。また、顧客との連携して、本発明で評価されたコイルごとの酸化物厚または摩擦係数に連動して顧客のプレス成形条件(押さえ圧、プレス速度、プレス油の種類や塗布量)を適切に変更することにより、不良品の少ないプレス加工を実現することが可能となる。   Another example of the determination method in the determination step (S3) is an oxide film in advance based on performance targets determined from order conditions (press conditions, quality standards, base steel plate material designation, etc.) as shown in the flow of FIG. In this method, a reference value (threshold value) for thickness or friction coefficient is set, and a brightness value corresponding to the reference value is adopted as a determination criterion in the determination step (S3). In the determination step (S3), a coil that satisfies the reference value is determined as a material to be shipped to the order, and a coil that does not satisfy the reference value is determined not to be shipped to the order. In this way, appropriate shipment management can be performed. In addition, in cooperation with the customer, the customer's press molding conditions (pressing pressure, press speed, type and amount of press oil) are appropriately linked with the oxide thickness or friction coefficient of each coil evaluated in the present invention. By changing to, it becomes possible to realize press working with few defective products.

(4)操業条件へのフィードバック工程の説明
本発明の性能判定結果は、出荷先振り分け判定のみならず、高プレス加工性合金化溶融亜鉛めっき鋼板の製造条件の調整に使用することが有効である。例えば、図9のフローに示すように、判定ステップ(S3)で、検査対象試料の明るさ数値が、予め設定した明るさ数値の閾値内にあるときは、酸化処理工程の処理条件は変更せず、検査対象試料の明るさ数値が、予め設定した明るさ数値の閾値を外れたときは、酸化処理工程(S1)の処理条件を明るさ数値が閾値内に入る条件に調整する。これによって、製品の安定製造に大きく寄与する。本発明に要する検査時間は、採取より10分程度で判定できるため、酸化処理工程の条件調整に充分反映することができる。フィードバックにより変更する製造条件としては、酸化処理液の組成、pH、温度、および処理液の付着量、あるいは処理時間などである。予め、これらの条件と膜厚との関係を求めておくことで、処理条件を容易に調整できる。例えば、酸化膜厚が規定値よりも薄い場合はラインスピードを遅くして酸化処理の時間を長くすることにより、酸化膜厚を増加させることができる。酸化膜厚が厚すぎる場合は、ラインスピードを早くすることにより対応できる。
(4) Description of the feedback process to the operating conditions The performance judgment result of the present invention is effective not only for the shipping destination allocation judgment but also for adjusting the manufacturing conditions of the high press workability galvannealed steel sheet. . For example, as shown in the flow of FIG. 9, when the brightness value of the sample to be inspected is within the threshold value of the brightness value set in advance in the determination step (S3), the processing condition of the oxidation process is changed. First, when the brightness value of the sample to be inspected deviates from a preset brightness value threshold value, the processing condition of the oxidation treatment step (S1) is adjusted to a condition that the brightness value falls within the threshold value. This greatly contributes to stable production of products. Since the inspection time required for the present invention can be determined in about 10 minutes after sampling, it can be sufficiently reflected in adjusting the conditions of the oxidation treatment process. Manufacturing conditions to be changed by feedback include the composition of the oxidation treatment liquid, pH, temperature, the amount of treatment liquid deposited, or the treatment time. By obtaining the relationship between these conditions and the film thickness in advance, the processing conditions can be easily adjusted. For example, when the oxide film thickness is thinner than a specified value, the oxide film thickness can be increased by slowing the line speed and lengthening the oxidation treatment time. If the oxide film is too thick, it can be dealt with by increasing the line speed.

また、図10のフローに示すように、本発明を実施する際に、オーダー条件(プレス条件、品質基準、下地鋼板材質指定等)から決定される性能目標に基き、あらかじめ酸化膜厚又は摩擦係数の基準値(閾値)を設定し、判定ステップ(S3)で、それに対応する明るさ数値を判定基準に採用し、判定ステップ(S3)では、明るさ数値が基準値をクリアしていれば製造した製品を当該オーダーに引き当て可能と判定し、明るさ数値が基準値をクリアしていない場合は、製造した製品を当該オーダーへの引き当て対象外と判定し、酸化処理工程(S1)の製造条件を、明るさ数値が所定範囲に入るように変更するフィードバック制御を行う。基準値を2種類設定してもよい。すなわち、オーダーへの引き当て可否の判定を行う第1の基準値と、前記第1の基準値とは別に、それより厳しい第2の基準値を設け、第2の基準値をクリアしないときに製造条件を変更するフィードバック制御を行うようにしてもよい。このようにすることにより、無駄のない製造とともに適切な出荷管理を行うことができる。   Also, as shown in the flow of FIG. 10, when implementing the present invention, based on performance targets determined from order conditions (press conditions, quality standards, base steel plate material designation, etc.), the oxide film thickness or the friction coefficient in advance. In the determination step (S3), the brightness value corresponding to the reference value (threshold value) is adopted as the determination reference. In the determination step (S3), if the brightness value clears the reference value, the manufacturing is performed. When it is determined that the ordered product can be assigned to the order and the brightness value does not satisfy the reference value, the manufactured product is determined not to be assigned to the order, and the manufacturing conditions of the oxidation treatment step (S1) Is controlled so as to change the numerical value of brightness so as to fall within a predetermined range. Two types of reference values may be set. That is, the first reference value for determining whether to assign to an order and the first reference value are provided separately from the first reference value, and the second reference value that is stricter than the first reference value is provided. You may make it perform feedback control which changes conditions. By doing so, it is possible to perform appropriate shipment management as well as manufacturing without waste.

なお、前述の実施の形態では、極低加速SEMの2次電子像を一旦取込んで明るさ数値として数値化する方法について述べたが、本質は対象材料表面から発生する2次電子量である。従って、2次電子放出量に依存する信号(例えば2次電子検出器の出力)を直接測定し数値化し、前述の明るさ数値に代えて、前記信号(信号強度信号)を使用して酸化膜性状の判定に使用することもできる。   In the above-described embodiment, the method of once taking the secondary electron image of the ultra-low acceleration SEM and digitizing it as the numerical value of brightness has been described, but the essence is the amount of secondary electrons generated from the surface of the target material. . Therefore, a signal that depends on the amount of secondary electron emission (for example, the output of the secondary electron detector) is directly measured and digitized, and the signal (signal intensity signal) is used instead of the above-described brightness value, and the oxide film It can also be used for property determination.

(5)他品種への適用
前述の実施の形態では、プレス加工性を高める観点から、表面に酸化物を付与する合金化溶融亜鉛めっき鋼板を例に挙げて述べた。本発明は、対象とする酸化物は水酸化物を含んでいてもよく、またプレス加工性以外の目的で酸化物を付与する場合にも適用できる。
(5) Application to other varieties In the above-described embodiments, from the viewpoint of improving press workability, an alloyed hot-dip galvanized steel sheet that imparts an oxide to the surface has been described as an example. The present invention may be applied to a case where the target oxide may contain a hydroxide, and the oxide is provided for purposes other than press workability.

また対象とする鋼板は、合金化溶融亜鉛めっき鋼板に限定されず、プレス成形性を高める等の目的で表面に酸化物(水酸化物を含む)を付与した溶融亜鉛めっき鋼板についても適用可能である。   The target steel sheet is not limited to the alloyed hot-dip galvanized steel sheet, but can also be applied to hot-dip galvanized steel sheets with oxides (including hydroxides) added to the surface for the purpose of improving press formability. is there.

溶融亜鉛めっき鋼板は、前記した合金化溶融亜鉛めっき鋼板の製造工程において、合金化処理工程が行われないで製造される。なお、本明細書では、合金化溶融亜鉛めっき鋼板と、溶融亜鉛めっき鋼板を総称して溶融亜鉛系めっき鋼板と記載する。   The hot dip galvanized steel sheet is manufactured without performing the alloying process in the manufacturing process of the galvannealed steel sheet. In the present specification, the alloyed hot dip galvanized steel sheet and the hot dip galvanized steel sheet are collectively referred to as a hot dip galvanized steel sheet.

また、本発明は、表面に酸化物を有する電気亜鉛系めっき鋼板および表面に酸化物を有する冷延鋼板等の鋼板の品質検査、管理、および製造条件(酸化物付与処理条件)へのフィードバックを行う製造方法への適用が可能である。   In addition, the present invention provides feedback to quality inspection, management, and production conditions (oxide addition treatment conditions) of steel sheets such as electrogalvanized steel sheets having oxides on the surface and cold rolled steel sheets having oxides on the surfaces. Application to the manufacturing method to be performed is possible.

表面に酸化物を有する電気亜鉛系めっき鋼板は、焼鈍、調質圧延された鋼板に電系亜鉛系めっきを行い、その表面に亜鉛系めっき層を形成し、次いで酸化物形成処理を行って製造する。   Electro-galvanized steel sheet with oxide on the surface is manufactured by performing electro-galvanizing on an annealed and temper-rolled steel sheet, forming a zinc-based plating layer on the surface, and then performing oxide formation treatment To do.

表面に酸化物を有する冷延鋼板は、冷間圧延された鋼板を焼鈍、調質圧延した後酸化物形成処理を行って製造する。調質圧延後に酸化物形成処理を行うことと併用して、または調質圧延後に酸化物形成処理を行うことに代えて、焼鈍工程で酸化物を付与してもよい。本発明は、冷延鋼板と同様に、熱延鋼板の表面についても適用可能である。   A cold-rolled steel sheet having oxide on the surface is manufactured by annealing and temper-rolling a cold-rolled steel sheet and then performing an oxide formation treatment. In combination with performing an oxide formation treatment after temper rolling, or instead of performing an oxide formation treatment after temper rolling, an oxide may be applied in the annealing step. The present invention can be applied to the surface of a hot-rolled steel sheet as well as the cold-rolled steel sheet.

なお、以上の説明では、プレス成形性について述べたが、酸化物の厚さが関与する特性であれば、プレス成形性以外にも適応できる。具体的な適用先として例えば、耐食性、導電性、溶接性、接着性や化成処理性の品質管理・製造方法へのフィードバックがある。   In the above description, the press formability has been described. However, the present invention can be applied to other than the press formability as long as the oxide thickness is involved. Specific application destinations include, for example, feedback to quality control / manufacturing methods of corrosion resistance, conductivity, weldability, adhesion, and chemical conversion treatment.

次に、本発明を実施例により説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき法によりFe濃度が9.5重量%〜10.5重量%のめっき皮膜を片面あたり目標50〜60g/m2で形成した。この合金化溶融亜鉛めっき鋼板を、調質圧延により表面の平坦部を、平坦部の面積率として40%〜60%で形成させた後に、硫酸第一鉄(約40g/リットル)および酢酸ソーダ(約40g/リットル)を含む酸性溶液(pH:2、温度:20℃±5℃)に浸漬し、4〜8秒大気中を空走させた後、水洗し乾燥することによる酸化処理を行い、表面にZnを主体とする酸化物を付与した。この方法で製造した計40コイルより7コイルを任意に抜き出しオモテ面について下記のの評価を行った。
Next, an example explains the present invention.
On a cold-rolled steel sheet having a thickness of 0.8 mm, a plating film having an Fe concentration of 9.5 wt% to 10.5 wt% by a conventional alloying hot dip galvanizing method with a target of 50 to 60 g / m 2 per side. Formed. This alloyed hot-dip galvanized steel sheet was subjected to temper rolling to form a flat portion of the surface with an area ratio of the flat portion of 40% to 60%, and then ferrous sulfate (about 40 g / liter) and sodium acetate ( It is immersed in an acidic solution (about 40 g / liter) (pH: 2, temperature: 20 ° C. ± 5 ° C.), allowed to run in the air for 4 to 8 seconds, and then subjected to an oxidation treatment by washing with water and drying. An oxide mainly composed of Zn was applied to the surface. Seven coils were arbitrarily extracted from a total of 40 coils manufactured by this method, and the following evaluation was performed on the front side.

(1)処理層の厚さ:めっき表面の平坦部における処理膜の厚さは、Ar+イオンスパッタリングと組み合わせた走査オージェ電子顕微鏡法(SAM)により評価した。用いた装置は、PHI社製のSAM660である。2次電子像により、めっき表面の平坦部を確認し、電子ビームを走査し、平坦部表面で約3μm×3μmの領域を測定した。加速電圧3kVのAr+イオンスパッタリングにより酸素の濃度がほぼ一定となる深さまでスパッタと測定を繰返し、検出されたの元素のピーク強度から相対感度因子補正により、各々の深さでの組成を求めた。処理層の厚さは、Oの含有率が、最大値より深い位置で、最大値と内部での一定となった値との和の1/2となるスパッタリング時間を、膜厚既知のSiO2膜で求めたスパッタレートをもとに深さに換算して求めた。なお、測定は1試料あたり最低3箇所の平坦部について実施し、その平均値とした。 (1) Thickness of treatment layer: The thickness of the treatment film in the flat part of the plating surface was evaluated by scanning Auger electron microscopy (SAM) combined with Ar + ion sputtering. The apparatus used is a SAM660 manufactured by PHI. The flat part of the plating surface was confirmed by the secondary electron image, the electron beam was scanned, and a region of about 3 μm × 3 μm was measured on the flat part surface. Sputtering and measurement were repeated to a depth at which the oxygen concentration was almost constant by Ar + ion sputtering with an acceleration voltage of 3 kV, and the composition at each depth was determined by correcting the relative sensitivity factor from the detected peak intensity of the element. . The thickness of the treated layer, the content of O is at the position deeper than the maximum value, 1/2 become sputtering time of the sum of a constant and is a value of the maximum value and the internal thickness known SiO 2 It calculated | required by converting into the depth based on the sputtering rate calculated | required with the film | membrane. The measurement was performed on at least three flat portions per sample, and the average value was used.

(2)プレス成形性評価試験「摩擦係数測定試験」
プレス成形性を評価するために、各供試体の摩擦係数を、以下のようにして測定した。
(2) Press formability evaluation test "Friction coefficient measurement test"
In order to evaluate press formability, the friction coefficient of each specimen was measured as follows.

図11は、摩擦係数測定装置を示す概略正面図である。図11に示すように、供試体から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押付力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油として、日本パーカライジング社製ノックスラスト550HNを試料1の表面に塗布して試験を行った。   FIG. 11 is a schematic front view showing a friction coefficient measuring apparatus. As shown in FIG. 11, a friction coefficient measurement sample 1 collected from a specimen is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a horizontally movable slide table 3. A slide table support 5 having a roller 4 in contact with the slide table 3 is provided on the lower surface of the slide table 3, and when this is pushed up, a pressing load N applied to the friction coefficient measurement sample 1 by the bead 6. A first load cell 7 is attached to the slide table support 5. A second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 3. In addition, the test was performed by applying NOXLAST 550HN manufactured by Nippon Parkerizing Co., Ltd. to the surface of Sample 1 as a lubricating oil.

図12は、使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押しつけられた状態で摺動する。ビード6の形状は、幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。摩擦係数測定試験は、以下に示す条件で行った。図12に示すビードを用い、押付荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。供試体とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。   FIG. 12 is a schematic perspective view showing the shape and dimensions of the used beads. The bead 6 slides with the lower surface pressed against the surface of the sample 1. The bead 6 has a width of 10 mm, a length of 12 mm in the sliding direction of the sample, and a lower portion at both ends of the sliding direction is formed by a curved surface with a curvature of 4.5 mmR. It has a 3 mm plane. The friction coefficient measurement test was performed under the following conditions. The bead shown in FIG. 12 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 3) was 100 cm / min. The coefficient of friction μ between the specimen and the bead was calculated by the formula: μ = F / N.

(3)2次電子像の明るさ評価
各コイルの長さの中央部付近、板厚の中央付近から12mmφに打ち抜いた試料を評価対象とした。アセトン中で超音波洗浄を5分間行い、脱脂した。SEMとして、LEO1530(LEO社製)を用い、測定対象試料と参照試料とを、同一観察条件にて観察し、同一条件で画像をデジタルデータとして取込む。その際に同一にする観察条件は以下のとおりである。
(3) Brightness Evaluation of Secondary Electron Image A sample punched to 12 mmφ from the vicinity of the center of the length of each coil and from the vicinity of the center of the plate thickness was used as an evaluation object. Ultrasonic cleaning was carried out in acetone for 5 minutes for degreasing. As the SEM, LEO1530 (manufactured by LEO) is used, the sample to be measured and the reference sample are observed under the same observation conditions, and an image is captured as digital data under the same conditions. In this case, the same observation conditions are as follows.

加速電圧:0.5kV、アパーチャ−:30μm、ビーム径(最小)、倍率:500倍、走査スピード:25.7μ秒/点、データ点数:1024×768、とし、検出器の明るさ、コントラストを一定にして、1試料あたり2視野の画像データを取込んだ。   Acceleration voltage: 0.5 kV, aperture: 30 μm, beam diameter (minimum), magnification: 500 times, scanning speed: 25.7 μs / point, number of data points: 1024 × 768, detector brightness and contrast The image data of 2 fields per sample was taken in constant.

取込んだ画像を、市販のソフトウエアAdobe製Photoshopを用いて画像の明るさを、256階調で数値化し、その平均値を求めた。なお、画像の明るさの平均値を求めるのは、(a)視野の平坦部のみ、および(b)視野全体、の二種類を実施した。   The brightness of the captured image was digitized with 256 gradations using a commercially available software Photoshop, and an average value was obtained. The average value of the brightness of the image was obtained in two types: (a) only the flat part of the visual field, and (b) the entire visual field.

図13は、平坦部のみの2次電子像の明るさと、オージェ電子分光法で評価した酸化膜厚との関係を示す。図14は、視野全体で評価した2次電子像の明るさと、オージェ電子分光法で評価した酸化膜厚との関係を示す。   FIG. 13 shows the relationship between the brightness of the secondary electron image of only the flat portion and the oxide film thickness evaluated by Auger electron spectroscopy. FIG. 14 shows the relationship between the brightness of the secondary electron image evaluated over the entire field of view and the oxide film thickness evaluated by Auger electron spectroscopy.

図13を見ると、平坦部の2次電子像の明るさと酸化膜厚には良い逆相関があることがわかる。すなわち、2次電子像の明るさが低下する試料ほど、酸化膜厚が厚くなっている。観察視野全体で評価した図14でも、相関はやや悪くなるが、同様の傾向がある。摩擦係数は、酸化膜厚が20nm以下の3試料で、0.160を越える値を示し、それ以外は0.160以下であった。この結果より、例えば図13では、2次電子像の明るさ数値147を基準とすると、摩擦係数0.160を基準とする摺動性能の判定を行うことができる。   It can be seen from FIG. 13 that there is a good inverse correlation between the brightness of the secondary electron image of the flat portion and the oxide film thickness. That is, the oxide film thickness becomes thicker as the sample with lower brightness of the secondary electron image. In FIG. 14 evaluated over the entire observation field, the correlation is slightly worse, but there is a similar tendency. The friction coefficient of three samples having an oxide film thickness of 20 nm or less showed a value exceeding 0.160, and other than that was 0.160 or less. From this result, for example, in FIG. 13, when the brightness value 147 of the secondary electron image is used as a reference, the sliding performance can be determined based on the friction coefficient 0.160.

板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき法によりFe濃度が9.5重量%〜10.5重量%のめっき皮膜を片面あたり目標45g/m2で形成した。この合金化溶融亜鉛めっき鋼板を、CGLライン上で、調質圧延により表面の平坦部を形成させた後に、あらかじめ調整しておいた硫酸Zn(20g/リットル)、硫酸第一鉄(30g/リットル)および酢酸ソーダ(40g/リットル)を含む酸性溶液(pH:1.5、温度:20℃−35℃)に浸漬し、5〜7秒大気中を空走させ、次いで水酸化ナトリウム溶液(50g/リットル)に3秒間浸漬した後、水洗し乾燥することによる、酸化処理を行った。ここで、製造した計80コイルから5コイルおきに16コイルを抜き出し評価対象とした。 On a cold rolled steel sheet having a thickness of 0.8 mm, a plating film having an Fe concentration of 9.5 wt% to 10.5 wt% was formed at a target of 45 g / m 2 per side by a conventional alloying hot dip galvanizing method. . The alloyed hot-dip galvanized steel sheet was subjected to temper rolling on the CGL line to form a flat surface portion, and then prepared in advance with Zn sulfate (20 g / liter) and ferrous sulfate (30 g / liter). ) And sodium acetate (40 g / liter), soaked in an acidic solution (pH: 1.5, temperature: 20 ° C.-35 ° C.), allowed to run in the air for 5-7 seconds, and then sodium hydroxide solution (50 g / Liquid) for 3 seconds, followed by an oxidation treatment by washing with water and drying. Here, 16 coils were extracted every 5 coils from the manufactured 80 coils, and were used as evaluation targets.

得られた試料について実施例1と同様の評価を行った。その際、摩擦係数より、プレス加工性の判定を以下の二種類で実施した。
判定(1) 合格:0.160未満、不合格:0.160以上
判定(2) グレード1:0.140未満、グレード2:0.140以上0.160未満、グレード3:0.160以上
なお、2次電子像の観察・画像取り込みは、実施例1と異なるチャンスで行っており、像取り込み時の明るさ/コントラストの値も異なり、標準試料による補正は行っていないため、明るさ数値の実施例1との直接的な比較はできない。得られた結果を表1および図15に示す。なお、試料番号は製造順とは関係がない。
Evaluation similar to Example 1 was performed about the obtained sample. At that time, the press workability was judged from the following two types based on the friction coefficient.
Judgment (1) Pass: Less than 0.160, Fail: 0.160 or more Judgment (2) Grade 1: Less than 0.140, Grade 2: 0.140 or more and less than 0.160, Grade 3: 0.160 or more The observation and image capture of the secondary electron image are performed at a different chance from those in Example 1, the brightness / contrast value at the time of image capture is also different, and correction with a standard sample is not performed. A direct comparison with Example 1 is not possible. The obtained results are shown in Table 1 and FIG. The sample number is not related to the production order.

Figure 2005098922
Figure 2005098922

判定(1)では、2次電子像の明るさ数値165を基準とし、それ以下を良好、それ以上を不良とすることにすることにより、摩擦係数が良好、不良の判定ができている。また、判定(2)では、グレード1とグレード2の閾値を140、グレード2とグレード3との明るさ数値の閾値を165とすることにより摩擦係数のグレードの識別を行えることがわかる。以上の結果より、明るさ数値に基いてプレス加工性に関する適正な品質管理、客先のニーズに合わせや適正な出荷コイルの選定を行うことができる。   In the determination (1), the brightness coefficient 165 of the secondary electron image is used as a reference, and a value less than that is determined to be good and a value higher than that is determined to be poor, thereby determining whether the friction coefficient is good or not. Further, in the determination (2), it can be seen that the grade of the friction coefficient can be identified by setting the threshold values of the grades 1 and 2 to 140 and the brightness numerical value threshold values of the grades 2 and 3 to 165. From the above results, it is possible to perform appropriate quality control related to press workability based on the brightness value, and to select an appropriate shipping coil in accordance with customer needs.

実施例2の製造を行うにあたり、2次電子像の明るさ数値に基づいて、処理液の組成を変更する製造条件の適正化を行った。製造条件を一定にしようとしても、処理液組成の経時変化などにより、製品の性能は変化することがあるため、製造条件の制御が必要となる。   In the manufacture of Example 2, the manufacturing conditions for changing the composition of the treatment liquid were optimized based on the brightness value of the secondary electron image. Even if the manufacturing conditions are made constant, the performance of the product may change due to a change in the composition of the treatment solution over time, and thus the manufacturing conditions must be controlled.

2次電子像の明るさをコイルの製造順に示したものが図16である。図16中、製造条件(処理液の組成)の変更を行った個所を、「↑」で示してある。2次電子像の明るさを指標とし、製造条件へフィードバックすることにより、高いプレス加工性を有する合金化溶融亜鉛めっき鋼板を安定して製造することが可能となった。   FIG. 16 shows the brightness of the secondary electron image in the order of coil manufacture. In FIG. 16, the part where the manufacturing conditions (composition of the treatment liquid) were changed is indicated by “↑”. By using the brightness of the secondary electron image as an index and feeding back to the production conditions, it became possible to stably produce an alloyed hot-dip galvanized steel sheet having high press workability.

本発明は、特に、鉄鋼材料、なかでも薄鋼板の表面物性には有効である。合金化溶融亜鉛めっき鋼板では、プレス加工性の判定に基づく、製品管理、適正な出荷管理、そして安定した性能を提供する製造に大きく貢献する。   The present invention is particularly effective for the surface properties of steel materials, especially thin steel plates. The alloyed hot-dip galvanized steel sheet greatly contributes to manufacturing that provides product management, proper shipping management, and stable performance based on judgment of press workability.

高プレス加工性を有する合金化溶融亜鉛めっき鋼板を説明する図で(a)は合金化溶融亜鉛めっき鋼板の断面模式図、(b)は平坦部の存在を示す表面から観察した2次電子像である。It is a figure explaining the galvannealed steel plate which has high press workability, (a) is a cross-sectional schematic diagram of an galvannealed steel plate, (b) is the secondary electron image observed from the surface which shows the presence of a flat part It is. 本発明において、薄い酸化膜層の存在部分を可視化できる機構を示す模式図で、(a)は通常加速電圧における2次電子放出を説明し、(b)は入射電子の加速電圧を、入射後の電子の拡散が皮膜物質内に収まるような低加速電圧に選択されたときの2次電子放出を説明する。In this invention, it is a schematic diagram which shows the mechanism which can visualize the existence part of a thin oxide film layer, (a) explains the secondary electron emission in normal acceleration voltage, (b) shows the acceleration voltage of incident electrons after incidence. Secondary electron emission when a low accelerating voltage is selected so that the diffusion of electrons in the film material is contained. 酸化膜厚の異なる合金化溶融亜鉛めっき鋼板に低加速電圧(加速電圧:0.5kV)で電子を照射したときの2次電子像の明るさの違いを説明する2次電子像の例で、(a)は酸化物の平均膜厚が25nm、(b)は酸化物の平均膜厚が10nmで、各々上段は平坦部を高倍率で観察したもの、下段は低倍率で観察したものである。In the example of the secondary electron image explaining the difference in the brightness of the secondary electron image when electrons are irradiated to the alloyed hot-dip galvanized steel sheets having different oxide thicknesses with a low acceleration voltage (acceleration voltage: 0.5 kV), (A) The average film thickness of the oxide is 25 nm, (b) the average film thickness of the oxide is 10 nm, each of the upper stage is observed at a high magnification, and the lower stage is at a low magnification. . 極低加速電圧による2次電子像の明るさ数値とEPMAで測定した表面酸素量との関係を示す図である。It is a figure which shows the relationship between the brightness numerical value of the secondary electron image by an ultra-low acceleration voltage, and the surface oxygen amount measured by EPMA. 平坦部の極低加速電圧による2次電子像の明るさ数値と摩擦係数との関係を示す図である。It is a figure which shows the relationship between the brightness numerical value of the secondary electron image by the ultra-low acceleration voltage of a flat part, and a friction coefficient. 平坦部、非平坦部を含む広い面積から得られた極低加速電圧による2次電子像の明るさ数値と摩擦係数との関係を示す図である。It is a figure which shows the relationship between the brightness numerical value of the secondary electron image by the ultra-low acceleration voltage obtained from the wide area including a flat part and a non-flat part, and a friction coefficient. 本発明において、判定ステップの判定結果に基いて、合金化溶融亜鉛めっき鋼板の振り向け先を判定するフローを説明する図である。In this invention, based on the determination result of a determination step, it is a figure explaining the flow which determines the destination of a galvannealed steel plate. 本発明において、オーダーに基づき設定した判定基準に基いて、合金化溶融亜鉛めっき鋼板の振り向け先を判定するフローを説明する図である。In this invention, based on the determination criteria set based on the order, it is a figure explaining the flow which determines the destination of a galvannealed steel plate. 本発明において、判定ステップの判定結果に基いて、合金化溶融亜鉛めっき鋼板製造工程の酸化処理工程の処理条件をフィードバック制御するフローを説明する図である。In this invention, based on the determination result of a determination step, it is a figure explaining the flow which feedback-controls the process conditions of the oxidation treatment process of an galvannealed steel plate manufacturing process. 本発明において、オーダーに基づき設定した判定基準に基いて、合金化溶融亜鉛めっき鋼板の振り向け先の判定と合金化溶融亜鉛めっき鋼板製造工程の酸化処理工程の処理条件をフィードバック制御するフローを説明する図である。In the present invention, the flow for feedback control of the determination destination of the alloyed hot-dip galvanized steel sheet and the oxidation treatment process of the alloyed hot-dip galvanized steel sheet manufacturing process will be described based on the criteria set based on the order. FIG. 摩擦係数測定装置を示す概略正面図である。It is a schematic front view which shows a friction coefficient measuring apparatus. 図11中のビード形状・寸法を示す概略斜視図である。It is a schematic perspective view which shows the bead shape and dimension in FIG. 実施例1において、平坦部の2次電子像明るさ数値と酸化膜厚との関係を示す図である。In Example 1, it is a figure which shows the relationship between the secondary electron image brightness numerical value of a flat part, and an oxide film thickness. 実施例1において、平坦部と非平坦部を含む広い面積から得られた2次電子像明るさ数値と酸化膜厚との関係を示す図である。In Example 1, it is a figure which shows the relationship between the secondary electron image brightness numerical value obtained from the wide area including a flat part and a non-flat part, and an oxide film thickness. 実施例2において、平坦部の2次電子像明るさ数値と摩擦係数との関係を示す図である。In Example 2, it is a figure which shows the relationship between the secondary electron image brightness numerical value of a flat part, and a friction coefficient. 実施例3において、製造順に評価したコイルの摩擦係数の変化を示す図である。In Example 3, it is a figure which shows the change of the friction coefficient of the coil evaluated in order of manufacture.

符号の説明Explanation of symbols

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
P 引張荷重
DESCRIPTION OF SYMBOLS 1 Sample for friction coefficient measurement 2 Sample stand 3 Slide table 4 Roller 5 Slide table support stand 6 Bead 7 1st load cell 8 2nd load cell 9 Rail N Push load F Sliding resistance force P Tensile load

Claims (15)

溶融亜鉛系めっき鋼板の表面に0.1〜5kVのなかから選ばれる加速電圧で加速された電子ビームを照射し、表面から発生する2次電子量に対応した信号強度を測定して信号強度数値として数値化する数値化ステップと、得られた信号強度数値が所定範囲に入るか否かにより、前記溶融亜鉛系めっき鋼板がその表面に所定性状の酸化膜を有しているか否かを判定する判定ステップとを有することを特徴とする、表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 The surface of the hot dip galvanized steel sheet is irradiated with an electron beam accelerated with an acceleration voltage selected from 0.1 to 5 kV, and the signal intensity corresponding to the amount of secondary electrons generated from the surface is measured to obtain a numerical value of signal intensity. It is determined whether or not the hot-dip galvanized steel sheet has an oxide film having a predetermined property on its surface, depending on whether the obtained signal strength numerical value falls within a predetermined range. A quality control method for a hot-dip galvanized steel sheet having an oxide film on its surface. 溶融亜鉛系めっき鋼板の表面に0.1〜5kVのなかから選ばれる加速電圧で加速された電子ビームを照射し、その2次電子像を得る観察ステップと、2次電子量を2次電子像の明るさを明るさ数値として数値化する数値化ステップと、得られた明るさ数値が所定範囲に入るか否かにより、前記溶融亜鉛系めっき鋼板がその表面に所定性状の酸化膜を有しているか否かを判定する判定ステップとを有することを特徴とする、表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 The surface of the hot dip galvanized steel sheet is irradiated with an electron beam accelerated at an accelerating voltage selected from 0.1 to 5 kV, and an observation step for obtaining a secondary electron image thereof is obtained. The galvanized steel sheet has an oxide film having a predetermined property on its surface depending on whether the brightness value is a numerical value, and whether the obtained brightness value is within a predetermined range. A quality control method for a hot-dip galvanized steel sheet having an oxide film on its surface. 予め、溶融亜鉛系めっき鋼板の表面の酸化膜厚さと明るさ数値との関係を求めて、その結果から、酸化膜厚が所定範囲となる明るさ数値範囲を求め、又は溶融亜鉛系めっき鋼板の表面の酸化膜厚と信号強度数値との対応関係を求めて、その結果から、酸化膜厚が所定範囲となる信号強度数値範囲を求め、前記判定ステップは、得られた明るさ数値が前記所定の明るさ数値範囲内に有るか否か又は得られた信号強度数値が前記所定の信号強度範囲内にあるか否かにより、前記溶融亜鉛系めっき鋼板がその表面に所定性状の酸化膜を有しているか否かを判定することを特徴とする、請求項1又は2に記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 Obtain the relationship between the oxide film thickness on the surface of the hot dip galvanized steel sheet and the brightness value in advance, and from that result, obtain the brightness numerical range where the oxide film thickness is within the predetermined range, or the hot dip galvanized steel sheet A correspondence relationship between the surface oxide film thickness and the signal intensity value is obtained, and from the result, a signal intensity value range in which the oxide film thickness falls within a predetermined range is obtained, and in the determination step, the obtained brightness value is the predetermined value. The galvanized steel sheet has an oxide film with a predetermined property on its surface, depending on whether it is within the brightness numerical value range or whether the obtained signal strength numerical value is within the predetermined signal strength range. The quality control method of the hot dip galvanized steel sheet having an oxide film on the surface according to claim 1 or 2, characterized in that it is determined whether or not. 前記酸化膜厚が所定範囲となる明るさ数値範囲は酸化膜厚さが20nm以上となる明るさ数値範囲とし、又は前記酸化膜が所定範囲となる信号強度数値は酸化膜厚さが20nm以上となる信号強度数値範囲とすることを特徴とする、請求項1乃至3のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 The brightness numerical value range in which the oxide film thickness is in a predetermined range is a brightness numerical value range in which the oxide film thickness is 20 nm or more, or the signal intensity value in which the oxide film is in a predetermined range is oxide film thickness is 20 nm or more. The quality control method for a hot-dip galvanized steel sheet having an oxide film on the surface according to any one of claims 1 to 3, wherein the signal intensity is in a numerical value range. 前記酸化膜厚が所定範囲となる明るさ数値範囲は酸化膜厚さが30nm以上となる明るさ数値範囲とし、又は前記酸化膜が所定範囲となる信号強度数値は酸化膜厚さが30nm以上となる信号強度数値範囲とすることを特徴とする、請求項1乃至3のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 The brightness numerical value range in which the oxide film thickness is in a predetermined range is a brightness numerical value range in which the oxide film thickness is 30 nm or more, or the signal intensity value in which the oxide film is in a predetermined range is oxide film thickness is 30 nm or more. The quality control method for a hot-dip galvanized steel sheet having an oxide film on the surface according to any one of claims 1 to 3, wherein the signal intensity is in a numerical value range. 予め、溶融亜鉛系めっき鋼板の表面の摩擦係数と明るさ数値との関係を求めて、その結果から、摩擦係数が所定範囲となる明るさ数値範囲を求め、又は溶融亜鉛系めっき鋼板の表面の摩擦係数と信号強度数値との対応関係を求めて、その結果から、摩擦係数が所定範囲となる信号強度数値範囲を求め、前記判定ステップは、得られた明るさ数値が前記所定の明るさ数値範囲内に有るか否か又は得られた信号強度数値が前記所定の信号強度範囲内にあるか否かにより、前記溶融亜鉛系めっき鋼板がその表面に所定性状の酸化膜を有しているか否かを判定することを特徴とする、請求項1又は2に記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 Obtain the relationship between the friction coefficient of the surface of the hot dip galvanized steel sheet and the brightness value in advance, and from that result, obtain the brightness value range where the friction coefficient is within the predetermined range, or the surface of the hot dip galvanized steel sheet A correspondence relationship between the friction coefficient and the signal strength value is obtained, and from the result, a signal strength value range in which the friction coefficient falls within a predetermined range is obtained. In the determination step, the obtained brightness value is the predetermined brightness value. Whether or not the hot-dip galvanized steel sheet has an oxide film having a predetermined property on its surface, depending on whether or not the obtained signal intensity value is within the predetermined signal intensity range. The quality control method for a hot-dip galvanized steel sheet having an oxide film on the surface according to claim 1 or 2, wherein the quality is determined. 前記摩擦係数が所定範囲となる明るさ数値範囲は摩擦係数が0.160以下となるとなる明るさ数値範囲とし、又は前記摩擦係数が所定範囲となる信号強度数値範囲は摩擦係数が0.160以下となるとなる信号強度数値範囲とすることを特徴とする、請求項1、2、6のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 The brightness numerical range where the friction coefficient is within a predetermined range is the brightness numerical range where the friction coefficient is 0.160 or less, or the signal strength numerical range where the friction coefficient is within the predetermined range is a friction coefficient of 0.160 or less. The quality control method of the hot dip galvanized steel sheet having an oxide film on the surface according to any one of claims 1, 2, and 6, characterized in that the signal intensity numerical value range is as follows. 前記摩擦係数が所定範囲となる明るさ数値範囲は摩擦係数が0.140以下となるとなる明るさ数値範囲とし、又は前記摩擦係数が所定範囲となる信号強度数値範囲は摩擦係数が0.140以下となるとなる信号強度数値範囲とすることを特徴とする、請求項1、2、6のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 The brightness numerical range where the friction coefficient is within a predetermined range is the brightness numerical range where the friction coefficient is 0.140 or less, or the signal intensity numerical range where the friction coefficient is within the predetermined range is a friction coefficient of 0.140 or less. The quality control method of the hot dip galvanized steel sheet having an oxide film on the surface according to any one of claims 1, 2, and 6, characterized in that the signal intensity numerical value range is as follows. 請求項1記載の数値化ステップはめっき表面の平坦部から発生する2次電子量に対応した強度信号を数値化し、又は請求項2記載の数値化ステップはめっき表面の平坦部の2次電子像の明るさを数値化することを特徴とする、請求項1乃至8のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 The digitizing step according to claim 1 digitizes an intensity signal corresponding to the amount of secondary electrons generated from the flat portion of the plating surface, or the numerical step according to claim 2 includes a secondary electron image of the flat portion of the plating surface. The quality control method of the hot dip galvanized steel sheet which has an oxide film on the surface in any one of the Claims 1 thru | or 8 characterized by quantifying the brightness of this. 請求項1記載の数値化ステップはめっき表面の平坦部と非平坦部の両方を含む領域から発生する2次電子量に対応した強度信号を数値化し、又は請求項2記載の数値化ステップはめっき表面の平坦部と非平坦部の両方を含む領域の2次電子像の明るさを数値化することを特徴とする、請求項1乃至8のうちの何れかに記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の品質管理方法。 The quantification step according to claim 1 quantifies an intensity signal corresponding to the amount of secondary electrons generated from a region including both a flat portion and a non-flat portion of the plating surface, or the quantification step according to claim 2 includes plating. The surface of any one of claims 1 to 8, characterized in that the brightness of a secondary electron image in a region including both a flat portion and a non-flat portion of the surface is quantified. Quality control method for hot dip galvanized steel sheet. 鋼板を、溶融亜鉛めっきした後調質圧延を行い、又は溶融めっきした後合金化処理、調質圧延を行い、さらに酸化物形成処理を施してその表面に酸化膜を形成して溶融亜鉛系めっき鋼板を製造する製造ステップと、前記製造ステップで製造された溶融亜鉛系めっき鋼板に対して請求項1乃至10のうちの何れかに記載の方法で品質管理を行う評価ステップとを有することを特徴とする、表面に酸化膜を有する溶融亜鉛系めっき鋼板の製造方法。 Hot-dip galvanized steel sheet is hot-dip galvanized and then temper-rolled, or hot-dip galvanized, then alloyed and temper-rolled, and further subjected to oxide formation treatment to form an oxide film on the surface, thereby hot-dip galvanizing It has the manufacturing step which manufactures a steel plate, and the evaluation step which performs quality control by the method in any one of Claims 1 thru | or 10 with respect to the hot dip galvanized steel plate manufactured at the said manufacturing step. The manufacturing method of the hot dip galvanized steel plate which has an oxide film on the surface. 前記評価ステップで、溶融亜鉛系めっき鋼板が所定性状の酸化物を有すると判定したときは、該溶融亜鉛系めっき鋼板を所定の出荷対象とすることを特徴とする、請求項11に記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の製造方法。 The surface according to claim 11, wherein, in the evaluation step, when it is determined that the hot dip galvanized steel sheet has an oxide having a predetermined property, the hot dip galvanized steel sheet is a predetermined shipping object. Of a hot-dip galvanized steel sheet having an oxide film on the surface. 前記評価ステップで、溶融亜鉛系めっき鋼板が所定性状の酸化物を有しないと判定したときは、前記製造ステップの酸化物形成処理の処理条件を、明るさ数値が所定範囲に入るように又は信号強度数値が所定範囲に入るように調整することを特徴とする、請求項11又は12に記載の表面に酸化膜を有する溶融亜鉛系めっき鋼板の製造方法。 When it is determined in the evaluation step that the hot dip galvanized steel sheet does not have an oxide having a predetermined property, the processing conditions of the oxide formation process in the manufacturing step are set so that the brightness value falls within a predetermined range or a signal. The method for producing a hot dip galvanized steel sheet having an oxide film on the surface according to claim 11 or 12, wherein the strength value is adjusted to fall within a predetermined range. 表面に酸化物を有する溶融亜鉛系めっき鋼板に代えて、表面に酸化物を有する電気亜鉛系めっき鋼板について、請求項1乃至10のうちのいずれかの項に記載の方法で電気亜鉛系めっき鋼板の品質管理を行うことを特徴とする、電気亜鉛系めっき鋼板の品質管理方法。 It replaces with the hot dip galvanized steel plate which has an oxide on the surface, About the electro galvanized steel plate which has an oxide on the surface, it is an electro galvanized steel plate by the method in any one of Claims 1 thru | or 10. Quality control method for electrogalvanized steel sheet, characterized by performing quality control of 表面に酸化物を有する溶融亜鉛系めっき鋼板に代えて、表面に酸化物を有する鋼板について、請求項1乃至10のうちのいずれかの項に記載の方法で冷延鋼板の品質管理を行うことを特徴とする、鋼板の品質管理方法。 It replaces with the hot dip galvanized steel plate which has an oxide on the surface, and performs the quality control of the cold-rolled steel plate by the method of any one of Claims 1 thru | or 10 about the steel plate which has an oxide on the surface. A quality control method for steel sheets.
JP2003335127A 2003-09-26 2003-09-26 Quality control method and manufacturing method of steel sheet having oxide film on surface Expired - Fee Related JP4411918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003335127A JP4411918B2 (en) 2003-09-26 2003-09-26 Quality control method and manufacturing method of steel sheet having oxide film on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335127A JP4411918B2 (en) 2003-09-26 2003-09-26 Quality control method and manufacturing method of steel sheet having oxide film on surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009198198A Division JP2010014721A (en) 2009-08-28 2009-08-28 Quality control method and manufacturing method of steel plate with oxide film on surface

Publications (2)

Publication Number Publication Date
JP2005098922A true JP2005098922A (en) 2005-04-14
JP4411918B2 JP4411918B2 (en) 2010-02-10

Family

ID=34462594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335127A Expired - Fee Related JP4411918B2 (en) 2003-09-26 2003-09-26 Quality control method and manufacturing method of steel sheet having oxide film on surface

Country Status (1)

Country Link
JP (1) JP4411918B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345163A (en) * 2004-06-01 2005-12-15 Jfe Steel Kk Film thickness measurement method for surface layer oxide film of zinc base plated sheet iron
WO2007034572A1 (en) * 2005-09-26 2007-03-29 Jfe Steel Corporation Method of measuring film thickness of surface oxide film of zinc-based plated steel sheet
CN105203731A (en) * 2015-09-10 2015-12-30 北京首钢股份有限公司 Band steel cross section profile defect local high point quantification method and device
CN107470375A (en) * 2017-07-13 2017-12-15 北京科技大学 A kind of ONLINE RECOGNITION method of the local high concave point in strip cross section

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549783B1 (en) * 2021-06-22 2023-06-30 한국생산기술연구원 Method for Calculating Friction Coefficient for Each Process through Quantitative Evaluation of Phosphate Coat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345163A (en) * 2004-06-01 2005-12-15 Jfe Steel Kk Film thickness measurement method for surface layer oxide film of zinc base plated sheet iron
WO2007034572A1 (en) * 2005-09-26 2007-03-29 Jfe Steel Corporation Method of measuring film thickness of surface oxide film of zinc-based plated steel sheet
CN105203731A (en) * 2015-09-10 2015-12-30 北京首钢股份有限公司 Band steel cross section profile defect local high point quantification method and device
CN107470375A (en) * 2017-07-13 2017-12-15 北京科技大学 A kind of ONLINE RECOGNITION method of the local high concave point in strip cross section

Also Published As

Publication number Publication date
JP4411918B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
RU2621501C1 (en) Product moulded by hot forming and manufacturing method for product moulded by hot forming
US11001918B2 (en) High-strength hot-dip galvanized steel sheet having excellent plating surface quality and adhesion, and method of manufacturing the same
RU2509827C9 (en) Hot formed element and method of its production
WO2007034572A1 (en) Method of measuring film thickness of surface oxide film of zinc-based plated steel sheet
US20080149228A1 (en) Methods for producing a hot-dip galvanized steel sheet having excellent press formability
TWI502099B (en) Alloyed molten galvanized steel sheet and manufacturing method thereof
JP4329387B2 (en) Hot-dip galvanized steel sheet with excellent press formability and manufacturing method thereof
MX2014010409A (en) METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET.
Chakraborty et al. Investigation of a surface defect and its elimination in automotive grade galvannealed steels
JP4411918B2 (en) Quality control method and manufacturing method of steel sheet having oxide film on surface
JP2010014721A (en) Quality control method and manufacturing method of steel plate with oxide film on surface
JP5540459B2 (en) Alloy hot-dip galvanized steel sheet
WO2020250759A1 (en) Molten zinc plating treatment method, production method for alloyed molten zinc plating steel sheet using said molten zinc plating treatment method, and production method for molten zinc plating steel sheet using said molten zinc plating treatment method
JP2005248262A (en) Electrogalvanized steel sheet, and method and apparatus for producing the same
Long et al. Characterisation of galvanneal coatings on strip steel
JP6919723B2 (en) A hot-dip galvanizing method, a method for producing an alloyed hot-dip galvanized steel sheet using the hot-dip galvanizing method, and a method for producing a hot-dip galvanized steel sheet using the hot-dip galvanizing method.
JP5842848B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2001247951A (en) Hot dip galvanized steel sheet excellent in adhesion for plating and weldability and producing method therefor
Shankar et al. Failure analysis of pin prick defects in galvannealed sheet–A case study
Oliveira et al. Corrosion Resistance of Unlacquered Chromium-Plated Steel Sheets–Study on the Influence of Pickling and Chemical Treatment Steps of the Production Process
JPWO2020009170A1 (en) Method for manufacturing hot press-formed product, press-formed product, die mold, and mold set
JP2672929B2 (en) Quantitative analysis method for upper layer plating of double-layered alloyed hot dip galvanized steel sheet by glow discharge emission spectrometry
JP2004256838A (en) Hot-dip galvannealed steel sheet of excellent press formability
JP4826078B2 (en) Alloy hot-dip galvanized steel sheet
JP2745427B2 (en) Method for evaluating drawability of alloyed zinc-coated steel sheet by X-ray diffraction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4411918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees