JP2005098733A - Biosensor, measuring method by biosensor, and biosensor device - Google Patents

Biosensor, measuring method by biosensor, and biosensor device Download PDF

Info

Publication number
JP2005098733A
JP2005098733A JP2003330023A JP2003330023A JP2005098733A JP 2005098733 A JP2005098733 A JP 2005098733A JP 2003330023 A JP2003330023 A JP 2003330023A JP 2003330023 A JP2003330023 A JP 2003330023A JP 2005098733 A JP2005098733 A JP 2005098733A
Authority
JP
Japan
Prior art keywords
biosensor
membrane
lipid
membrane protein
receptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003330023A
Other languages
Japanese (ja)
Inventor
Akira Naito
晶 内藤
Atsushi Kira
敦史 吉良
Akira Tsuji
暁 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003330023A priority Critical patent/JP2005098733A/en
Publication of JP2005098733A publication Critical patent/JP2005098733A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biosensor, a measuring method by the biosensor, and a biosensor device dispensing with a process for manifestation/refining of the whole membrane protein receptor, and furthermore a process for reformation into a lipid membrane, dispensing with providing a label on a ligand molecule, and resultantly capable of omitting many operation processes for measurement, and performing measurement with a small quantity of sample. <P>SOLUTION: Membrane lipid, where an extracellular active domain of the membrane protein receptor is integrated into the surface, is immobilized on the surface of a piezoelectric element or a surface plasmon resonance sensor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、膜タンパク質とそれに結合する分子との生体分子間相互作用を測定するためのバイオセンサー、バイオセンサーによる測定方法及びバイオセンサー装置に関するものである。更に、詳細には、圧電素子や表面プラズモン共鳴(SPR)等の液中センサー及びプレートリーダー等のようなセンサー上への脂質膜の固定化が必要とされる測定系において、レセプター(受容体)が膜タンパク質で、それに対するリガンド分子の相互作用を測定するためのバイオセンサー、バイオセンサーによる測定方法及びバイオセンサー装置に関するものである。   The present invention relates to a biosensor, a measurement method using a biosensor, and a biosensor device for measuring an interaction between biomolecules between a membrane protein and a molecule that binds to the membrane protein. More specifically, in a measurement system that requires immobilization of a lipid membrane on a sensor such as a submerged sensor such as a piezoelectric element or surface plasmon resonance (SPR) and a plate reader, a receptor (receptor) Relates to a biosensor, a measurement method using a biosensor, and a biosensor device for measuring the interaction of a ligand molecule with a membrane protein.

従来、膜タンパク質のレセプターとそのリガンドとの結合の測定は、リポソーム化した膜タンパク質に放射性ラベルや蛍光ラベルを施したリガンドを結合させ、それらからの信号を測定するという方法がとられてきた。
しかしながら、これらの方法では多量のサンプルが必要であるため、その大量発現系を構築しなければならず、リガンドに放射性ラベルや蛍光ラベルも必要となる。
また、膜タンパク質レセプターを脂質膜に再構成するには、通常、膜分画で得られた膜タンパク質の可溶化を行い、それを溶液中でリポソーム化するという過程が必要であり非常に手間の掛かるものであった。
Conventionally, the measurement of the binding between a receptor for a membrane protein and its ligand has been performed by binding a ligand with a radioactive label or a fluorescent label to a liposome membrane protein and measuring the signal from the ligand.
However, since these methods require a large amount of sample, a large-scale expression system must be constructed, and a radioactive label and a fluorescent label are also required for the ligand.
In addition, reconstitution of membrane protein receptors into lipid membranes usually requires a process of solubilizing membrane proteins obtained by membrane fractionation and making them liposomes in solution, which is very laborious. It took.

そこで、本発明は、膜タンパク質レセプター全体の発現・精製の過程、リガンド分子にラベルを設ける過程及び脂質膜のリポソーム化過程を不要とすることにより、測定のために多くの操作工程を省略でき、少量の試料での測定が可能なバイオセンサー、バイオセンサーによる測定方法及びバイオセンサー装置を提供することを目的とする。   Therefore, the present invention eliminates many steps for measurement by eliminating the process of expression and purification of the entire membrane protein receptor, the process of labeling the ligand molecule and the process of liposome formation of the lipid membrane, It is an object of the present invention to provide a biosensor capable of measuring a small amount of sample, a measurement method using a biosensor, and a biosensor device.

上記課題を解決すべく本発明者等は鋭意検討の結果、膜タンパク質のレセプターの細胞外活性ドメインを脂質膜の表面に組み込んでリガンドとの生体分子間の相互作用が測定できるという知見に基づき、以下の通り解決手段を見出した。
即ち、本発明のバイオセンサーは、請求項1に記載の通り、表面に膜タンパク質レセプターの細胞外活性ドメインを組み込んだ膜脂質を圧電素子又は表面プラズモン共鳴センサーの表面に固定したことを特徴とする。
また、請求項2に記載のバイオセンサーは、請求項1に記載のバイオセンサーにおいて、前記脂質膜を、脂質二重層とすることを特徴とする。
また、本発明のバイオセンサーによる測定方法は、請求項3に記載の通り、請求項1又は2に記載のバイオセンサーを使用して生体分子間の相互作用を測定することを特徴とする。
また、本発明のバイオセンサー装置は、請求項4に記載の通り、請求項1又は2に記載のバイオセンサーを備えることを特徴とする。
As a result of diligent investigations, the present inventors have conducted extensive studies to incorporate the extracellular active domain of a membrane protein receptor into the surface of a lipid membrane and measure the interaction between biomolecules and a ligand. The solution was found as follows.
That is, the biosensor of the present invention is characterized in that, as described in claim 1, a membrane lipid incorporating an extracellular active domain of a membrane protein receptor on its surface is immobilized on the surface of a piezoelectric element or a surface plasmon resonance sensor. .
The biosensor according to claim 2 is characterized in that, in the biosensor according to claim 1, the lipid membrane is a lipid bilayer.
Moreover, the measuring method by the biosensor of this invention is characterized by measuring the interaction between biomolecules using the biosensor of Claim 1 or 2 as described in Claim 3.
In addition, a biosensor device according to the present invention includes the biosensor according to claim 1 or 2 as described in claim 4.

本発明によれば、大量発現系を有しない膜タンパク質リセプターであっても、細胞外活性ドメインを脂質膜に組み込むだけで、そのリガンドとの生体分子間の相互作用が測定可能となる。従って、膜タンパク質レセプター全体の発現・精製過程が不要となる。また、リガンド分子にラベル等の処理を必要としないので、膜タンパク質レセプターとそのリガンドとの生体分子間の相互作用の測定時間を短くすることが可能となる。また、更に、細胞外活性ドメインのみを用いることにより、リポソーム懸濁液への細胞外活性ドメインの添加のみによって、膜タンパク質を脂質膜に再構成することができるので、脂質膜への再構成過程を大幅に縮小できる。
また、更に、脂質二重層によって脂質膜を構成することにより、細胞外活性ドメインをより高密度で脂質膜に固定することができる。
According to the present invention, even a membrane protein receptor that does not have a mass expression system can measure the interaction between biomolecules with its ligand only by incorporating an extracellular active domain into the lipid membrane. Therefore, the expression / purification process of the entire membrane protein receptor is unnecessary. Further, since the ligand molecule does not need to be treated with a label or the like, it is possible to shorten the measurement time of the interaction between the biomolecules of the membrane protein receptor and the ligand. Furthermore, by using only the extracellular active domain, the membrane protein can be reconstituted into a lipid membrane only by adding the extracellular active domain to the liposome suspension. Can be greatly reduced.
Furthermore, by forming a lipid membrane with a lipid bilayer, the extracellular active domain can be fixed to the lipid membrane at a higher density.

本発明において使用される圧電素子とは、例えば、水晶振動子(Quartz Crystal Microbalance sensor)、APM(Acoustic Plate Mode Sensor)、FPW(Flexural Plate- Wave Sensor)、SAW(Surface Acoustic-Wave Sensor)などが挙げられる。
本発明では、上記圧電素子の電極表面又は表面プラズモン共鳴センサー(SPR)の表面を化学的又は物理的に親水性又は疎水性に改質し、その表面に膜タンパク質のレセプターの細胞外活性ドメイン(リガンド結合部位)を組み込んだ脂質膜を圧電素子又は表面プラズモン共鳴センサーの表面に固定化するものである。これにより、大量発現系が確立されていないレセプターについても、脂質膜に、このレセプターのリガンド結合部位だけを組み込んで測定することが可能となる。
尚、本発明において膜タンパク質レセプターの細胞外活性ドメインを膜脂質に組み込むとは、膜タンパク質レセプターの結合活性ドメインのみを再構成することをいう。この場合の膜タンパク質レセプターの細胞外活性ドメインは、有機合成等の化学的手法並びに大腸菌発現、酵母菌発現、昆虫細胞発現等の生物学的手法により合成されるものである。また、組み込む為の具体的な方法としては、脂質単ラメラ小胞(unilamellar vesicle)の懸濁液に粉末状の膜外活性ドメインを加えること等が挙げられる。
Examples of the piezoelectric element used in the present invention include a quartz resonator (Quartz Crystal Microbalance sensor), APM (Acoustic Plate Mode Sensor), FPW (Flexural Plate-Wave Sensor), and SAW (Surface Acoustic-Wave Sensor). Can be mentioned.
In the present invention, the surface of the electrode of the piezoelectric element or the surface of the surface plasmon resonance sensor (SPR) is chemically or physically modified to be hydrophilic or hydrophobic, and an extracellular active domain (receptor for membrane protein receptor ( A lipid membrane incorporating a ligand binding site) is immobilized on the surface of a piezoelectric element or surface plasmon resonance sensor. As a result, even a receptor for which a mass expression system has not been established can be measured by incorporating only the ligand binding site of this receptor into the lipid membrane.
In the present invention, incorporating an extracellular active domain of a membrane protein receptor into a membrane lipid means reconstituting only the binding active domain of the membrane protein receptor. In this case, the extracellular domain of the membrane protein receptor is synthesized by a chemical method such as organic synthesis and a biological method such as E. coli expression, yeast expression, or insect cell expression. In addition, as a specific method for incorporation, a powdery extramembranous active domain is added to a suspension of unilamellar vesicles.

また、本発明に使用される脂質膜は、生体膜又は脂質、界面活性剤及び両親媒性分子によって構成される人工生体膜(生体膜モデル)を使用することができ、膜タンパク質のレセプターの細胞外活性ドメインを高密度で前記脂質膜表面に形成するためには、脂質二重層とすることが好ましい。
尚、前記脂質二重層として、圧電素子の電極表面又は表面プラズモン共鳴センサー(SPR)の表面に固定するためには、圧電素子の電極表面又は表面プラズモン共鳴センサー(SPR)の表面を親水性となるように処理しておくことが好ましい。
The lipid membrane used in the present invention can be a biological membrane or an artificial biological membrane (biological membrane model) composed of lipids, surfactants and amphiphilic molecules, and is a receptor for membrane protein receptors. In order to form the outer active domain at a high density on the surface of the lipid membrane, a lipid bilayer is preferable.
In order to fix the lipid bilayer to the electrode surface of the piezoelectric element or the surface of the surface plasmon resonance sensor (SPR), the electrode surface of the piezoelectric element or the surface of the surface plasmon resonance sensor (SPR) becomes hydrophilic. It is preferable to process in this way.

前記バイオセンサーによるリガンドと、膜タンパク質のレセプターの細胞外活性ドメインの相互作用の測定方法の具体的な例としては、試料溶液をバイオセンサーに接触させた状態で、バイオセンサーを所定の周波数で発振させ、試料溶液中のリガンドが細胞外活性ドメインに結合することによりバイオセンサーに生じる周波数変化や位相変化に基づいて、重量及び/又は膜厚変化等を測定する方法が挙げられる。
尚、前記リガンドとしては、具体的には、生体物質(タンパク質、ペプチド、DNA、RNA、糖鎖)やその他の化学物質等を使用することができる。
A specific example of a method for measuring the interaction between a ligand of the biosensor and an extracellular active domain of a receptor for a membrane protein is as follows. The sample sensor is in contact with the biosensor and the biosensor is oscillated at a predetermined frequency. And a method of measuring a change in weight and / or film thickness based on a change in frequency or phase generated in a biosensor by binding of a ligand in a sample solution to an extracellular active domain.
As the ligand, specifically, biological substances (proteins, peptides, DNA, RNA, sugar chains) and other chemical substances can be used.

また、本発明によるバイオセンサー装置は、前記したような試料溶液中のリガンドと、膜タンパク質のレセプターの細胞外活性化ドメインとの相互作用を測定できるものであれば特に制限されるものではないが、一般的に、バイオセンサー、バイオセンサーを所定の周波数で発振させる発振装置及びバイオセンサーの周波数変化を測定するインピーダンスアナライザ等から構成される。   The biosensor device according to the present invention is not particularly limited as long as it can measure the interaction between the ligand in the sample solution as described above and the extracellular activation domain of the receptor of the membrane protein. Generally, it is composed of a biosensor, an oscillation device that oscillates the biosensor at a predetermined frequency, an impedance analyzer that measures a frequency change of the biosensor, and the like.

以下、本発明のバイオセンサーの一実施例について図面を参照して説明する。
まず、リン脂質を適度に有機溶媒に溶解し、十分に凍結乾燥してフィルム状にする。これを純水により100mMになるように水和させると多重ラメラ小胞(maltilamellar vesicle)懸濁液となる。これに超音波処理を施して脂質単ラメラ小胞(unilamellar vesicle)懸濁液とする。
次に、前記100mMの脂質単ラメラ小胞(unilamellar vesicle)懸濁液数mlに対して、κレセプター(7本膜貫通へリックスのGタンパク質共役型受容体の一種)のリガンド結合部位とされるExtra Cellular Loop II(ECL-II)をモル比で1/100程度、細胞外活性ドメインとして加えて懸濁して、図1に示されるようにリン脂質単ラメラ小胞1の表面に膜タンパク質レセプターの細胞外活性ドメイン2を組み込んだ。
一方で、図2に示されるように、水晶振動子(Quartz Crystal Microbalance sensor)3の金属電極3a表面に、1-Octanethiol(又は1-Octadecanethiolでもよい。)を自己組織化膜(SAM:Self-assembly Monolayer)4として修飾することにより、電極表面3aを疎水性に改質しておいて、この電極表面3aに膜タンパク質レセプターの細胞外活性ドメイン2を組み込まれた脂質単ラメラ小胞1を滴下し、1時間程度放置することにより、電極表面3a上に膜タンパク質レセプターの細胞外活性ドメイン2が組み込まれた単層膜1'が形成され、本実施例のバイオセンサー6が得られることになる。
Hereinafter, an embodiment of the biosensor of the present invention will be described with reference to the drawings.
First, phospholipids are appropriately dissolved in an organic solvent and sufficiently lyophilized to form a film. When this is hydrated to 100 mM with pure water, it becomes a multilamellar vesicle suspension. This is sonicated to give a lipid unilamellar vesicle suspension.
Next, with respect to several milliliters of the 100 mM unilamellar vesicle suspension, it is used as a ligand binding site of κ receptor (a kind of G protein-coupled receptor of seven transmembrane helices). Extra Cellular Loop II (ECL-II) was added and suspended as an extracellular active domain at a molar ratio of about 1/100, and the membrane protein receptor was deposited on the surface of phospholipid unilamellar vesicle 1 as shown in FIG. Extracellular active domain 2 was incorporated.
On the other hand, as shown in FIG. 2, 1-Octanethiol (or 1-Octadecanethiol may be used) is formed on the surface of the metal electrode 3a of the quartz crystal (Quartz Crystal Microbalance sensor) 3 as a self-assembled film (SAM: Self- assembly monolayer) 4 is modified to make the electrode surface 3a hydrophobic, and lipid monolamellar vesicles 1 in which the extracellular domain 2 of the membrane protein receptor is incorporated are dropped onto the electrode surface 3a. When left for about 1 hour, a monolayer film 1 ′ in which the extracellular domain 2 of the membrane protein receptor is incorporated is formed on the electrode surface 3a, and the biosensor 6 of this example is obtained. .

次に、本発明の他の実施例について図面を参照して説明する。尚、脂質、膜タンパク質レセプターの細胞外活性ドメイン及び水晶振動子は、実施例1と同じものを使用した。
図3に示されるように、水晶振動子3の電極3a表面にSiO2皮膜7を100nmの厚さで蒸着して電極3a表面を親水性へと改質し、この電極3aに膜タンパク質レセプターの細胞外活性ドメイン2を組み込まれた脂質単ラメラ小胞懸濁液を滴下し、1時間程度放置することにより、電極3a上に膜タンパク質レセプター細胞外活性ドメイン2が組み込まれた脂質二重膜1''が形成され、本実施例のバイオセンサー9が得られることになる。
Next, another embodiment of the present invention will be described with reference to the drawings. The extracellular active domains of the lipid and membrane protein receptor and the crystal resonator were the same as those used in Example 1.
As shown in FIG. 3, a SiO 2 film 7 is deposited on the surface of the electrode 3a of the crystal resonator 3 to a thickness of 100 nm to modify the surface of the electrode 3a to be hydrophilic. Lipid bilayer membrane 1 in which membrane protein receptor extracellular domain 2 is incorporated on electrode 3a by dropping a suspension of lipid lamellar vesicles in which extracellular domain 2 is incorporated and allowing to stand for about 1 hour. '' Is formed, and the biosensor 9 of this embodiment is obtained.

上記実施例1及び2で説明したバイオセンサーを発振させた状態で、リガンド分子を添加すると、脂質膜5、8上の膜タンパク質のレセプターの細胞外活性ドメイン2とリガンドが結合し、水晶振動子3の周波数が減少する。この結果、レセプターである膜タンパク質のレセプター2とそのリガンド分子との結合(解離)定数を計測することで、その活性を測定することができた。
このように、実施例1、2では、大量発現系が確立されていないκレセプターであっても、そのリガンド分子との相互作用を容易に測定することができることがわかった。
When a ligand molecule is added while the biosensor described in Examples 1 and 2 is oscillated, the extracellular active domain 2 of the receptor of the membrane protein on the lipid membranes 5 and 8 is bound to the ligand, and the crystal oscillator The frequency of 3 decreases. As a result, the activity could be measured by measuring the binding (dissociation) constant between the receptor 2 of the membrane protein as a receptor and its ligand molecule.
Thus, in Examples 1 and 2, it was found that even a kappa receptor for which a large-scale expression system has not been established can easily measure the interaction with its ligand molecule.

実施例1に使用される脂質単ラメラ小胞の説明図Explanatory drawing of the lipid simple lamellar vesicle used for Example 1 実施例1の説明図Explanatory drawing of Example 1 実施例2の説明図Explanatory drawing of Example 2.

符号の説明Explanation of symbols

1 脂質単ラメラ小胞
1' 単層膜(脂質膜)
1'' 脂質二重層(脂質膜)
2 膜タンパク質のレセプターの膜外活性ドメイン
3 水晶振動子
3a 電極
3b 石英板
4 自己組織化膜
6 実施例1のバイオセンサー
7 SiO2皮膜
9 実施例2のバイオセンサー
1 Lipid single lamellar vesicle 1 'Monolayer membrane (lipid membrane)
1 '' lipid bilayer (lipid membrane)
2 Extramembrane domain of receptor for membrane protein 3 Quartz crystal 3a Electrode 3b Quartz plate 4 Self-assembled membrane 6 Biosensor of Example 1 7 SiO 2 coating 9 Biosensor of Example 2

Claims (4)

表面に膜タンパク質レセプターの細胞外活性ドメインを組み込んだ膜脂質を圧電素子又は表面プラズモン共鳴センサーの表面に固定したことを特徴とするバイオセンサー。   A biosensor characterized in that a membrane lipid incorporating an extracellular active domain of a membrane protein receptor on its surface is immobilized on the surface of a piezoelectric element or a surface plasmon resonance sensor. 前記脂質膜を、脂質二重層とすることを特徴とする請求項1に記載のバイオセンサー。   The biosensor according to claim 1, wherein the lipid membrane is a lipid bilayer. 請求項1又は2に記載のバイオセンサーを使用して生体分子間の相互作用を測定することを特徴とする測定方法。   A method for measuring an interaction between biomolecules using the biosensor according to claim 1. 請求項1又は2に記載のバイオセンサーを備えることを特徴とするバイオセンサー装置。   A biosensor device comprising the biosensor according to claim 1.
JP2003330023A 2003-09-22 2003-09-22 Biosensor, measuring method by biosensor, and biosensor device Pending JP2005098733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330023A JP2005098733A (en) 2003-09-22 2003-09-22 Biosensor, measuring method by biosensor, and biosensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330023A JP2005098733A (en) 2003-09-22 2003-09-22 Biosensor, measuring method by biosensor, and biosensor device

Publications (1)

Publication Number Publication Date
JP2005098733A true JP2005098733A (en) 2005-04-14

Family

ID=34459118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330023A Pending JP2005098733A (en) 2003-09-22 2003-09-22 Biosensor, measuring method by biosensor, and biosensor device

Country Status (1)

Country Link
JP (1) JP2005098733A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064720A (en) * 2005-08-30 2007-03-15 Matsushita Electric Ind Co Ltd Specimen reactor
JP2007178305A (en) * 2005-12-28 2007-07-12 Ulvac Japan Ltd Piezoelectric element and stabilization method of immobilization layer
JP2008002961A (en) * 2006-06-22 2008-01-10 Ulvac Japan Ltd Biological material detecting/recovering method, device therefor, recognizing element, and biological material analytical method
JP2008111713A (en) * 2006-10-30 2008-05-15 Ulvac Japan Ltd Binding element and measuring method of interaction between biosensor and physiological substance
JP2008122236A (en) * 2006-11-13 2008-05-29 Ulvac Japan Ltd Fixing method of lipid to solid phase surface of sensor, measuring method by sensor, and lipid film fixing sensor
WO2009096304A1 (en) * 2008-01-31 2009-08-06 Murata Manufacturing Co., Ltd. Chemical sensor having sensitive membrane imitating olfactory receptor
JP2012505076A (en) * 2008-10-14 2012-03-01 カンヌン‐ウォンジュ ナショナル ユニバーシティ インダストリー アカデミー コーオペレイション グループ Method for introducing functional groups onto the surface of a substance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064720A (en) * 2005-08-30 2007-03-15 Matsushita Electric Ind Co Ltd Specimen reactor
JP4706396B2 (en) * 2005-08-30 2011-06-22 パナソニック株式会社 Sample reaction device
JP2007178305A (en) * 2005-12-28 2007-07-12 Ulvac Japan Ltd Piezoelectric element and stabilization method of immobilization layer
JP2008002961A (en) * 2006-06-22 2008-01-10 Ulvac Japan Ltd Biological material detecting/recovering method, device therefor, recognizing element, and biological material analytical method
JP4660431B2 (en) * 2006-06-22 2011-03-30 株式会社アルバック Biological material detection / recovery method and apparatus, and biological material analysis method
JP2008111713A (en) * 2006-10-30 2008-05-15 Ulvac Japan Ltd Binding element and measuring method of interaction between biosensor and physiological substance
JP4583356B2 (en) * 2006-10-30 2010-11-17 株式会社アルバック Method for measuring interaction between coupling element, biosensor and biological material
JP2008122236A (en) * 2006-11-13 2008-05-29 Ulvac Japan Ltd Fixing method of lipid to solid phase surface of sensor, measuring method by sensor, and lipid film fixing sensor
WO2009096304A1 (en) * 2008-01-31 2009-08-06 Murata Manufacturing Co., Ltd. Chemical sensor having sensitive membrane imitating olfactory receptor
JP2012505076A (en) * 2008-10-14 2012-03-01 カンヌン‐ウォンジュ ナショナル ユニバーシティ インダストリー アカデミー コーオペレイション グループ Method for introducing functional groups onto the surface of a substance

Similar Documents

Publication Publication Date Title
Keller et al. Formation of supported membranes from vesicles
TWI285267B (en) Biosensor utilizing a resonator having a functionalized surface
Keller Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion
Larsson et al. Characterization of DNA immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2
Li et al. A small synthetic molecule forms chloride channels to mediate chloride transport across cell membranes
Fruh et al. How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications
Gizeli et al. Single-step formation of a biorecognition layer for assaying histidine-tagged proteins
Vikholm et al. Oriented immobilization of antibodies for immunosensing
Terrettaz et al. Stable self‐assembly of a protein engineering scaffold on gold surfaces
US10812045B2 (en) BAW sensor with enhanced surface area active region
WO2002063280A1 (en) Ligand sensor devices and uses thereof
Ekeroth et al. Bivalent-ion-mediated vesicle adsorption and controlled supported phospholipid bilayer formation on molecular phosphate and sulfate layers on gold
US20170122936A1 (en) Fluidic device including baw resonators along opposing channel surfaces
US20230036296A1 (en) Fluidic Device With Fluid Port Orthogonal to Functionalized Active Region
JP2005098733A (en) Biosensor, measuring method by biosensor, and biosensor device
Renken et al. Multifrequency evaluation of different immunosorbents on acoustic plate mode sensors
Minic et al. Immobilization of native membrane-bound rhodopsin on biosensor surfaces
Larsson et al. Gravimetric antigen detection utilizing antibody-modified lipid bilayers
JP2012505076A (en) Method for introducing functional groups onto the surface of a substance
Patel et al. Antibody binding to a tethered vesicle assembly using QCM-D
Fortunelli et al. Simulations of lipid adsorption on TiO2 surfaces in solution
JP4248246B2 (en) Process for the production of supported lipid film membranes and their use
Tassew et al. Kinetic characterization of TAR RNA–Tat peptide and neomycin interactions by acoustic wave biosensor
JP5116388B2 (en) Method and apparatus for evaluating optical isomer resolution of chiral stationary phase for chromatography
JP4583356B2 (en) Method for measuring interaction between coupling element, biosensor and biological material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A131 Notification of reasons for refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090402

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512