JP2005098203A - Turbine blade and its flow loss reduction method - Google Patents

Turbine blade and its flow loss reduction method Download PDF

Info

Publication number
JP2005098203A
JP2005098203A JP2003332787A JP2003332787A JP2005098203A JP 2005098203 A JP2005098203 A JP 2005098203A JP 2003332787 A JP2003332787 A JP 2003332787A JP 2003332787 A JP2003332787 A JP 2003332787A JP 2005098203 A JP2005098203 A JP 2005098203A
Authority
JP
Japan
Prior art keywords
working fluid
turbine
turbine blade
back side
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003332787A
Other languages
Japanese (ja)
Inventor
Koji Kawai
浩二 河合
So Chiyouka
創 潮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003332787A priority Critical patent/JP2005098203A/en
Publication of JP2005098203A publication Critical patent/JP2005098203A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce flow loss by reducing secondary flow or the like. <P>SOLUTION: In this turbine blades 1 and 2 arranged to respective stages, bypass passages 4 and 5 respectively passing through from sides 1c and 2c to back sides 1d and 2d while being close to a support wall surface 3 and a support wall surface not shown are arranged near a maximum thickness part. Accordingly, a part of a working fluid is bypassed from the belly sides 1c and 2c to the back sides 1d and 2d near the maximum thickness part of the respective turbine blades 1 and 2, at a position close to the support wall surface 3 and the support wall surface not shown, and pressure differences between the belly side 1c and the back side 1d and between the side 2c and the back side 2d of the respective turbine blades 1 and 2 near the support wall surface 3 and the support wall surface not shown are reduced, to decrease the secondary flow 8 thereby reducing the flow loss. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、タービン各段に設けられたタービン翼及びその流れ損失低減方法に関する。   The present invention relates to a turbine blade provided in each stage of a turbine and a flow loss reducing method thereof.

タービンにおける作動流体の圧力損失を増大させる要因として、例えば二次流れ損失や剥離損失、或いは混合損失等といった流れ損失があり、これら要因により設計通りのタービン性能が発揮されないことがある。例えば、二次流れ損失を例に挙げると、二次流れとは主流に対する垂直面方向の成分を持つ流れを言い、一般にタービン翼間では、静翼であれば静翼内輪や静翼外輪、動翼であればタービンホイール外周部等といったタービン翼を支持する支持壁面付近の境界層の影響等で後縁に向かって大きな渦となって成長する。その結果、二次流れが生じると、作動流体の保有するエネルギが渦を形成するために一部消費され、圧力損失増大の要因となる。   Factors that increase the pressure loss of the working fluid in the turbine include, for example, flow loss such as secondary flow loss, separation loss, or mixing loss, and the designed turbine performance may not be exhibited due to these factors. For example, taking secondary flow loss as an example, the secondary flow is a flow having a component in the vertical plane direction with respect to the main flow. Generally, between turbine blades, if a stationary blade, a stationary blade inner ring, a stationary blade outer ring, If it is a blade, it grows as a large vortex toward the trailing edge due to the influence of the boundary layer near the supporting wall surface supporting the turbine blade, such as the outer periphery of the turbine wheel. As a result, when a secondary flow occurs, a part of the energy held by the working fluid is consumed to form a vortex, which causes an increase in pressure loss.

この種の流れ損失を低減する技術としては、従来から、二次流れ損失増大の防止を目的に、静翼内輪又は外輪付近にてタービン静翼の前縁部と背側後縁部近傍とをバイパスさせたものや(例えば、特許文献1等参照)、空洞の静翼に対し先端部分腹側と根元部分背側にスリットを設けたもの等がある(例えば、特許文献2等参照)。   As a technique for reducing this type of flow loss, conventionally, for the purpose of preventing an increase in secondary flow loss, the front edge portion of the turbine stationary blade and the vicinity of the rear rear edge portion are arranged in the vicinity of the inner ring or outer ring of the stationary blade. Some have been bypassed (see, for example, Patent Document 1), and others have slits on the tip side and the back of the root portion with respect to a hollow stationary blade (see, for example, Patent Document 2).

特開平1−163404号公報JP-A-1-163404

特開平2−196107号公報JP-A-2-196107

一般に、タービン翼においては、中央が窪んだ腹側が正圧面、中央が膨らんだ背側が負圧面となる。タービン翼間で転向する作動流体は、転向時に遠心力とタービン翼の腹側及び背側の圧力勾配とがバランスしている。しかし、翼高さを制限する端面壁(支持壁面)の境界層では、壁面損失により作動流体が減速するために遠心力が小さくなる。その結果、タービン翼の腹側及び背側の圧力勾配とのバランスが崩れ、正圧の腹側から隣接するタービン翼の背側への流れ、すなわち二次流れが生じ渦が発生する。よって、作動流体が保有するエネルギは二次流れ渦を形成するために一部が消費され損失となる。   In general, in a turbine blade, the ventral side with a depressed center is a pressure surface, and the back side with the center swollen is a suction surface. The working fluid turning between the turbine blades balances the centrifugal force and the pressure gradient on the ventral and back sides of the turbine blade during turning. However, in the boundary layer of the end wall (support wall surface) that limits the blade height, the working fluid is decelerated due to wall surface loss, and therefore the centrifugal force is reduced. As a result, the balance between the pressure gradients on the ventral side and the back side of the turbine blade is lost, and a flow from the positive pressure abdominal side to the back side of the adjacent turbine blade, that is, a secondary flow is generated, and a vortex is generated. Therefore, a part of the energy held by the working fluid is consumed to form a secondary flow vortex and is lost.

しかしながら、上記特許文献1の記載技術においては、前縁部から背側後縁部に作動流体をバイパスさせているため、翼の最大肉厚部付近で腹側及び背側の圧力差が最も大きくなることを考えると、タービン翼の腹側及び背側の圧力差は効果的に軽減されない。また、特許文献2の記載技術は、腹側、背側のスリットがそれぞれ翼の先端部、根元部に設けられており、導入された作動流体は先端部から根元部に翼長方向に流れるため、先端部又は根元部付近における腹側及び背側の圧力差はやはり軽減されない。   However, in the technique described in Patent Document 1, since the working fluid is bypassed from the front edge portion to the back side rear edge portion, the pressure difference between the ventral side and the back side is the largest in the vicinity of the maximum thickness portion of the wing. Therefore, the pressure difference between the ventral side and the back side of the turbine blade is not effectively reduced. In the technique described in Patent Document 2, the ventral and dorsal slits are provided at the tip and root of the blade, respectively, and the introduced working fluid flows from the tip to the root in the blade length direction. The pressure difference between the ventral side and the dorsal side in the vicinity of the tip portion or the root portion is still not reduced.

本発明の目的は、上記に鑑みてなされたものであり、二次流れ等を低減し流れ損失を効果的に低減することができるタービン翼及びその流れ損失低減方法を提供することにある。   An object of the present invention is to provide a turbine blade and a method for reducing the flow loss that can reduce a secondary flow or the like and effectively reduce a flow loss.

(1)上記目的を達成するために、本発明は、タービン各段に設けられたタービン翼において、最大肉厚部付近に、支持壁面に近接して腹側から背側に貫通したバイパス流路を設けた。   (1) In order to achieve the above object, according to the present invention, in the turbine blade provided in each stage of the turbine, a bypass flow path penetrating from the ventral side to the back side near the support wall surface in the vicinity of the maximum thickness portion. Was established.

前述したように、一般にタービン翼においては、腹側が正圧面、背側が負圧面となり、その圧力差はプロフィル(翼)の最大肉厚部付近で最大となる。そして、壁面損失によって作動流体の主流が減速する支持壁面付近においては、腹側及び背側の圧力差に起因して二次流れが生じ易い。したがって、二次流れ損失を低減するためには、翼高さを制限する支持壁面(端面壁)に沿い、その近傍位置にある先端部(Tip)或いは根元部(Root)の背側と腹側との圧力差を低減することで二次流れを低減できる。   As described above, in general, in the turbine blade, the abdomen side is the pressure surface and the back side is the suction surface, and the pressure difference becomes maximum near the maximum thickness portion of the profile (blade). In the vicinity of the support wall surface where the main flow of the working fluid is decelerated due to the wall loss, a secondary flow is likely to occur due to the pressure difference between the ventral side and the back side. Therefore, in order to reduce the secondary flow loss, the back side and the ventral side of the tip part (Tip) or the root part (Root) in the vicinity of the supporting wall (end face wall) that limits the height of the blades. The secondary flow can be reduced by reducing the pressure difference.

そこで、本発明においては、腹側及び背側の圧力差が最大となる最大肉厚部付近に、腹側から背側に作動流体をバイパスさせるバイパス流路を支持壁面に近接して設けている。これにより、タービン翼の腹側及び背側の圧力差を効果的に軽減することができる。また、腹側からの作動流体をバイパスさせることで、背側側面の境界層にエネルギを与えることができる。したがって、設計段階でタービンロータの回転動力を得るのに要する翼の腹側及び背側の圧力差を考慮し、所要量の作動流体がバイパスされるようにバイパス流路の径を設定することにより、タービン翼の腹側及び背側の支持壁面近傍における圧力差を最適化することができるので、二次流れを低減することができ、よって流れ損失を効果的に低減することができる。   Therefore, in the present invention, a bypass channel for bypassing the working fluid from the abdominal side to the back side is provided close to the support wall surface in the vicinity of the maximum thickness portion where the pressure difference between the abdominal side and the back side is maximized. . Thereby, the pressure difference between the ventral side and the back side of the turbine blade can be effectively reduced. Moreover, energy can be given to the boundary layer on the back side surface by bypassing the working fluid from the ventral side. Therefore, by setting the diameter of the bypass flow path so that the required amount of working fluid is bypassed in consideration of the pressure difference between the ventral side and the back side of the blade required to obtain the rotational power of the turbine rotor at the design stage. Since the pressure difference in the vicinity of the support wall on the ventral side and the back side of the turbine blade can be optimized, the secondary flow can be reduced, and the flow loss can be effectively reduced.

(2)上記(1)において、好ましくは、前記バイパス流路は、前記最大肉厚部よりもやや後縁寄りに設けられている。   (2) In the above (1), preferably, the bypass flow path is provided slightly closer to the rear edge than the maximum thickness portion.

(3)上記(1)又は(2)において、好ましくは、前記バイパス流路から分岐して背側後縁部近傍に貫通する噴出孔を設ける。   (3) In the above (1) or (2), preferably, an ejection hole that branches off from the bypass flow path and penetrates in the vicinity of the back side rear edge portion is provided.

翼側面における壁面損失により、作動流体のエネルギーは後縁に向かって低下する。したがって、背側後縁部においては、境界層内の圧力上昇に対し作動流体の運動エネルギーが不十分となるため、作動流体の逆流が生じることがある。流れ損失の一つである剥離は、その作動流体の逆流により、背側に沿った作動流体が背側側面から離れることを言い、やはり圧力損失増大の一因となる。   Due to wall loss at the blade side, the energy of the working fluid decreases toward the trailing edge. Therefore, at the back side rear edge, the kinetic energy of the working fluid becomes insufficient with respect to the pressure increase in the boundary layer, and thus the back flow of the working fluid may occur. Separation, which is one of the flow losses, means that the working fluid along the back side moves away from the back side surface due to the back flow of the working fluid, which also contributes to an increase in pressure loss.

そこで、本発明においては、上記噴出孔により、バイパス流路を流れる作動流体の一部を分岐させ、剥離点に近い背側後縁部近傍に連通させた噴出孔から作動流体を噴出させることにより、この噴出した作動流体を背側側面に沿って流れる作動流体に合流させる。これにより、背側後縁部近傍を流れる運動エネルギーの低下した作動流体を付勢することができるので、剥離の発生を抑制することができ、効果的に流れ損失を低減することができる。   Therefore, in the present invention, a part of the working fluid flowing through the bypass channel is branched by the ejection holes, and the working fluid is ejected from the ejection holes communicated in the vicinity of the back side rear edge near the separation point. The ejected working fluid is merged with the working fluid flowing along the back side surface. Thereby, since the working fluid with reduced kinetic energy flowing in the vicinity of the back side rear edge can be urged, the occurrence of separation can be suppressed and the flow loss can be effectively reduced.

また、翼出口(タービン翼後縁部)においては、タービン翼腹側に沿った作動流体と、タービン翼背側に沿った作動流体とがタービン翼の後流で合流することになるが、両者の圧力、流速の差が大きいと混合損失が増大し、乱流が促進されやはり圧力損失増大の一因となる。それに対し、本発明によれば、上記噴出孔によって背側後縁部近傍に腹側からの作動流体を一部バイパスさせることにより、腹側に沿った作動流体とこれに合流する背側に沿った作動流体との圧力差を軽減し、腹側からの作動流体に合流する背側に沿った作動流体にエネルギを与えることができる。したがって、混合損失を低減することができ、これによっても流れ損失低減の効果が期待できる。   In addition, at the blade outlet (turbine blade trailing edge), the working fluid along the turbine blade abdomen and the working fluid along the turbine blade back merge together in the wake of the turbine blade. If the difference in pressure and flow velocity is large, the mixing loss increases, turbulence is promoted, and this also contributes to an increase in pressure loss. On the other hand, according to the present invention, by partially bypassing the working fluid from the ventral side in the vicinity of the back side rear edge portion by the ejection hole, the working fluid along the ventral side and the back side joining to the working fluid are aligned The pressure difference from the working fluid can be reduced, and energy can be given to the working fluid along the back side that joins the working fluid from the ventral side. Therefore, the mixing loss can be reduced, and the effect of reducing the flow loss can also be expected.

(4)上記(3)において、また好ましくは、前記噴出孔は、翼長方向に複数離散して配置されている。   (4) In the above (3), preferably, a plurality of the ejection holes are discretely arranged in the blade length direction.

剥離損失は上記のように背側後縁部における負圧状態によって生じるものであり、混合損失は腹側及び背側の圧力差により生じるものであるため、二次流れと異なり支持壁面近傍のみでなく、翼長方向各所で生じる可能性がある。したがって、複数の噴出孔を翼長方向に離散配置することにより、翼長方向各所における剥離及び混合損失の発生を抑制することができ、より効果的に流れ損失を低減することができる。   As described above, the separation loss is caused by the negative pressure state at the back side rear edge, and the mixing loss is caused by the pressure difference between the ventral side and the back side. However, it may occur at various points in the wing length direction. Therefore, by disposing a plurality of ejection holes in the blade length direction in a discrete manner, it is possible to suppress separation and mixing loss at various locations in the blade length direction, and to more effectively reduce flow loss.

(5)上記(3)又は(4)において、更に好ましくは、前記噴出孔は、噴出した作動流体が背側に沿った作動流体に緩やかな傾斜角で合流するように設けられている。   (5) In the above (3) or (4), more preferably, the ejection hole is provided so that the ejected working fluid joins the working fluid along the back side at a gentle inclination angle.

(6)上記目的を達成するために、また本発明は、タービン各段に設けられたタービン翼の流れ損失低減方法において、支持壁面の近接位置で、前記タービン翼の最大肉厚部付近の腹側から背側に作動流体の一部をバイパスさせ、前記支持壁面付近における前記タービン翼の腹側及び背側の圧力差を軽減することにより、二次流れを低減する。   (6) In order to achieve the above object, the present invention also provides a method for reducing the flow loss of turbine blades provided at each stage of the turbine, in the vicinity of the maximum wall thickness portion of the turbine blades at a position close to the support wall surface. The secondary flow is reduced by bypassing a part of the working fluid from the side to the back side and reducing the pressure difference between the ventral side and the back side of the turbine blade near the support wall surface.

(7)上記目的を達成するために、また本発明は、タービン各段に設けられたタービン翼の流れ損失低減方法において、前記タービン翼の腹側から取り込んだ作動流体を、前記タービン翼の背側後縁部近傍に対し翼長方向にほぼ全体的に噴出させ、この噴出した作動流体を前記タービン翼の背側に沿った作動流体に合流させ付勢することにより、剥離の発生を抑制する。   (7) In order to achieve the above object, the present invention also provides a method for reducing a flow loss of a turbine blade provided in each stage of a turbine, wherein a working fluid taken from a ventral side of the turbine blade is supplied to the back of the turbine blade. The occurrence of delamination is suppressed by ejecting the entire working fluid in the blade length direction to the vicinity of the side rear edge, and merging and energizing the ejected working fluid along the working fluid along the back side of the turbine blade. .

(8)上記目的を達成するために、また本発明は、タービン各段に設けられたタービン翼の流れ損失低減方法において、前記タービン翼の腹側から取り込んだ作動流体を、前記タービン翼の背側後縁部近傍に対し翼長方向にほぼ全体的に噴出させ、背側に沿った作動流体と腹側に沿った作動流体との合流時の圧力差を軽減することにより、混合損失を軽減する。   (8) In order to achieve the above object, the present invention also provides a method for reducing a flow loss of a turbine blade provided in each stage of a turbine, wherein working fluid taken from the ventral side of the turbine blade is supplied to the back of the turbine blade. Mixing loss is reduced by jetting almost entirely in the blade length direction to the vicinity of the side rear edge, and reducing the pressure difference when the working fluid along the back side and the working fluid along the ventral side merge. .

本発明によれば、以上のように、二次流れ等を低減することにより、効果的に流れ損失を低減することができる。したがって、タービン効率を向上させ、例えばガスタービン設備等の高出力化や小型化に貢献することができる。   According to the present invention, as described above, the flow loss can be effectively reduced by reducing the secondary flow and the like. Therefore, it is possible to improve turbine efficiency and contribute to, for example, high output and miniaturization of gas turbine equipment and the like.

以下、本発明のタービン翼及びその流れ損失低減方法の実施の形態を図面を用いて説明する。
図1は、本発明のタービン翼の一実施形態の外観構成を表す斜視図である。
この図1において、タービン翼1,2は、その根元(Root)部1a,2aが支持壁面3に支持されている。タービン翼1,2は、タービン静翼であってもタービン動翼であっても構わないが、本実施形態においては、タービン静翼の場合を例に挙げ、それぞれ根元部1a,2aが静翼内輪すなわち支持壁面3に、先端(Tip)部1b,2bが静翼外輪(図示せず)に固定されているものとする。仮にタービン翼1,2が動翼である場合、支持壁面3は、例えばタービンホイールの外周部、或いはタービンホイールに取付けたダイヤフラム等となる。また、本実施形態においては、タービン翼1,2のみしか図示していないが、実際には、タービン各段において、更に同様ものが還状流路の周方向に列をなして配設されている。
Hereinafter, embodiments of a turbine blade and a flow loss reducing method of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view illustrating an external configuration of an embodiment of a turbine blade of the present invention.
In FIG. 1, turbine blades 1 and 2 have root portions 1 a and 2 a supported by a support wall 3. The turbine blades 1 and 2 may be turbine stationary blades or turbine rotor blades, but in the present embodiment, the case of turbine stationary blades is taken as an example, and the root portions 1a and 2a are respectively stationary blades. It is assumed that the tip (Tip) portions 1b and 2b are fixed to the inner ring, that is, the support wall surface 3, to the stationary blade outer ring (not shown). If the turbine blades 1 and 2 are moving blades, the support wall surface 3 is, for example, an outer peripheral portion of the turbine wheel or a diaphragm attached to the turbine wheel. Further, in the present embodiment, only the turbine blades 1 and 2 are shown, but actually, in the respective stages of the turbine, more similar ones are arranged in a row in the circumferential direction of the return flow path. Yes.

図2は、図1に示した本発明のタービン翼の一実施形態の断面図であり、この図2において、図1と同様の部分には同符号を付し説明を省略する。
図1及び図2に示すように、本実施形態において、タービン翼1,2には、中央が窪んだ腹側側面(腹面)1c,2cから、中央が膨らんだ背側側面(背面)1d,2dにバイパス流路4,5が貫通している。これらバイパス流路4,5は、それぞれタービン翼1,2のプロフィル最大肉厚部付近を貫通していれば構わないが、本実施形態においては、図2に示すように、特にその最大肉厚部よりもやや後縁1e,2e寄りの部分を貫通させている。また、図1に示すように、バイパス流路4,5は、静翼内輪(支持壁面3)及び静翼外輪(図示せず)の近傍位置に、静翼内輪及び静翼外輪にほぼ平行に設けられており、流路径は要求される作動流体のバイパス量を考慮して設定されている。
2 is a cross-sectional view of an embodiment of the turbine blade of the present invention shown in FIG. 1. In FIG. 2, the same parts as those in FIG.
As shown in FIGS. 1 and 2, in the present embodiment, the turbine blades 1 and 2 include a dorsal side surface (back surface) 1 d, in which the center swells from a vent side surface (abdominal surface) 1 c, 2 c with a depressed center. Bypass channels 4 and 5 pass through 2d. These bypass passages 4 and 5 may penetrate the vicinity of the profile maximum thickness portion of the turbine blades 1 and 2, respectively, but in the present embodiment, as shown in FIG. A portion closer to the rear edges 1e and 2e than the portion is penetrated. Further, as shown in FIG. 1, the bypass flow paths 4 and 5 are substantially parallel to the stationary blade inner ring and the stationary blade outer ring in the vicinity of the stationary blade inner ring (support wall surface 3) and the stationary blade outer ring (not shown). The flow path diameter is set in consideration of the required bypass amount of the working fluid.

タービン翼1,2の内部には、翼長方向にバイパス流路4,5を接続する分岐流路6がそれぞれ設けられている。この分岐流路6からは、背面1d,2dの後縁部近傍の表面部まで貫通した噴出孔7が更に分岐している。噴出孔7は、翼長方向に複数離散配置されており、翼全長に亘ってほぼ均等に配置されている。また、本実施形態においては、噴出孔7を支持壁面3にほぼ平行かつ直線的に設けた場合を図示しているが、必ずしもこの限りでなく、若干傾斜させても良いし、例えば背面1d,2dに沿って曲がった流路としても良い。但し、噴出する作動流体が、背面1d,2dに沿って流れる作動流体に緩やかな傾斜角で合流するように、背面1d,2dとの間の角度はなるべく小さくすることが望ましい。また、噴出孔7の流路径及び設置数は、噴出する作動流体の要求量を考慮して設定する。   Inside the turbine blades 1 and 2, branch passages 6 that connect the bypass passages 4 and 5 in the blade length direction are provided, respectively. From this branch flow path 6, an ejection hole 7 penetrating to the surface portion in the vicinity of the rear edge portions of the rear surfaces 1 d and 2 d is further branched. A plurality of the ejection holes 7 are arranged discretely in the blade length direction, and are arranged substantially evenly over the entire length of the blade. Further, in the present embodiment, the case where the ejection holes 7 are provided substantially parallel and linearly to the support wall surface 3 is illustrated. However, the present invention is not limited to this and may be slightly inclined, for example, the back surface 1d, It is good also as a flow path bent along 2d. However, it is desirable that the angle between the back surfaces 1d and 2d be as small as possible so that the working fluid that spouts joins the working fluid flowing along the back surfaces 1d and 2d with a gentle inclination angle. Moreover, the flow path diameter and the number of installation of the ejection hole 7 are set in consideration of the required amount of the working fluid to be ejected.

図3は、タービン翼の腹側及び背側の境界層における軸方向距離と圧力との相関関係を表したグラフである。
この図3に示すように、上記構成のタービン翼1,2を作動流体の流れの中に配置すると、腹側1c,2cが正圧面、背側1d,2dが負圧面となり、その圧力差はタービン翼1,2の最大肉厚部付近で最大となる。壁面損失によって作動流体の主流が減速する支持壁面(静翼内輪)3や静翼外輪(図示せず)付近においては、腹側1c,2c及び背側1d,2dの圧力差に起因して二次流れ8が生じ易い。したがって、二次流れ損失を低減するためには、翼高さを制限する端面壁(支持壁面3及び静翼外輪)に沿い、その近傍位置にある先端部1b,2b或いは根元部1a,2aの背側と腹側との圧力差を低減することで二次流れ8を低減できる。
FIG. 3 is a graph showing the correlation between the axial distance and the pressure in the boundary layer on the ventral side and the back side of the turbine blade.
As shown in FIG. 3, when the turbine blades 1 and 2 having the above-described configuration are arranged in the flow of the working fluid, the ventral sides 1c and 2c become positive pressure surfaces, the back sides 1d and 2d become negative pressure surfaces, and the pressure difference is It becomes the maximum near the maximum thickness part of the turbine blades 1 and 2. In the vicinity of the support wall surface (static blade inner ring) 3 and the stationary blade outer ring (not shown) where the main flow of the working fluid is decelerated due to the wall loss, two pressures are caused by the pressure difference between the ventral side 1c, 2c and the back side 1d, 2d. The next flow 8 is likely to occur. Therefore, in order to reduce the secondary flow loss, the end portions 1b and 2b or the root portions 1a and 2a in the vicinity of the end walls (the supporting wall surface 3 and the stationary blade outer ring) that limit the blade height are located in the vicinity thereof. The secondary flow 8 can be reduced by reducing the pressure difference between the dorsal side and the ventral side.

そこで、本実施形態においては、上記の如く、腹側1c,2c及び背側1d,2dの圧力差が最大となる最大肉厚部付近に、腹側から背側に作動流体をバイパスさせるバイパス流路4,5を支持壁面(支持壁面3及び静翼外輪)に近接して設けている。これにより、図3に矢印で模したように、圧力の高い腹側1c,2cの作動流体を圧力の低い背側1d,2dにバイパスさせることで、タービン翼1,2の腹側1c,2c及び背側1d,2dの圧力差を効果的に軽減することができる。また、腹側1c,2cからの作動流体をバイパスさせることで、背側側面1d,2dの境界層にエネルギを与えることができる。したがって、設計段階でタービンロータの回転動力を得るのに要するタービン翼1,2の腹側1c,2c及び背側1d,2dの圧力差を考慮し、所要量の作動流体がバイパスされるようにバイパス流路4,5の流路径を設定することにより、タービン翼1,2の腹側1c,2c及び背側1d,2dの支持壁面近傍における圧力差を最適化することができるので、二次流れ8を低減することができ、よって流れ損失を効果的に低減することができる。   Therefore, in the present embodiment, as described above, the bypass flow that bypasses the working fluid from the ventral side to the dorsal side near the maximum thickness portion where the pressure difference between the ventral sides 1c and 2c and the dorsal side 1d and 2d is maximum. The roads 4 and 5 are provided close to the supporting wall surface (the supporting wall surface 3 and the stationary blade outer ring). Accordingly, as illustrated by arrows in FIG. 3, the working fluid on the abdominal side 1c, 2c having a high pressure is bypassed to the back side 1d, 2d having a low pressure, so that the abdominal sides 1c, 2c of the turbine blades 1, 2 are bypassed. In addition, the pressure difference between the back sides 1d and 2d can be effectively reduced. Moreover, energy can be given to the boundary layer of the back side surfaces 1d and 2d by bypassing the working fluid from the ventral sides 1c and 2c. Therefore, a required amount of working fluid is bypassed in consideration of the pressure difference between the ventral sides 1c and 2c and the back sides 1d and 2d of the turbine blades 1 and 2 required to obtain the rotational power of the turbine rotor at the design stage. By setting the flow path diameters of the bypass flow paths 4 and 5, the pressure difference in the vicinity of the support wall surfaces of the abdominal sides 1c and 2c and the back sides 1d and 2d of the turbine blades 1 and 2 can be optimized. The flow 8 can be reduced, and thus the flow loss can be effectively reduced.

また、タービン翼1,2の側面、すなわち腹面1c,2c及び背面1d,2dにおける壁面損失により、その境界層を流れる作動流体のエネルギーは後縁1e,2eに向かって低下する。したがって、背側1d,2dの後縁部1e,2e近傍においては、境界層内の圧力上昇に対し作動流体の運動エネルギーが不十分となるため、作動流体の逆流が生じることがある。流れ損失の一つである剥離9は、その作動流体の逆流により、背側に沿った作動流体が背側側面から離れることを言い、やはり圧力損失増大の一因となる。   Moreover, the energy of the working fluid which flows through the boundary layer falls toward the trailing edges 1e and 2e due to the wall surface loss on the side surfaces of the turbine blades 1 and 2, that is, the abdominal surfaces 1c and 2c and the back surfaces 1d and 2d. Therefore, in the vicinity of the rear edge portions 1e and 2e of the back sides 1d and 2d, the kinetic energy of the working fluid becomes insufficient with respect to the pressure increase in the boundary layer, so that the working fluid may flow backward. Separation 9, which is one of the flow losses, means that the working fluid along the back side moves away from the back side surface due to the back flow of the working fluid, which also contributes to an increase in pressure loss.

そこで、本実施形態においては、上記噴出孔7を設けている。バイパス流路4,5を流れる作動流体の一部は、バイパス流路4,5から分岐した分岐流路6に流入し、更に各噴出孔7に分岐して流入し、噴出孔7を介して剥離点に近い背側1d,2dの後縁部1e,2e近傍に噴出する。これにより、この噴出した作動流体を背側側面1d,2dに沿って流れる作動流体に合流させ、背側1d,2dの後縁部1e,2e近傍を流れる運動エネルギーの低下した作動流体を付勢することができるので、剥離9の発生を抑制することができ、効果的に流れ損失を低減することができる。   Therefore, in the present embodiment, the ejection hole 7 is provided. A part of the working fluid flowing through the bypass flow paths 4 and 5 flows into the branch flow path 6 branched from the bypass flow paths 4 and 5, further flows into the respective ejection holes 7 and flows through the ejection holes 7. It ejects in the vicinity of the rear edges 1e and 2e of the back sides 1d and 2d close to the separation point. As a result, the ejected working fluid is merged with the working fluid flowing along the back side surfaces 1d and 2d, and the working fluid with reduced kinetic energy flowing in the vicinity of the rear edges 1e and 2e of the back sides 1d and 2d is energized. Therefore, the generation of the separation 9 can be suppressed, and the flow loss can be effectively reduced.

また、タービン翼1,2の出口(後縁部1e,2e)においては、図1に示すように、タービン翼1,2の腹側1c,2cに沿った作動流体10と、背側1d,2dに沿った作動流体11とがタービン翼1,2の後流で合流することになるが、両作動流体10,11の圧力、流速の差が大きいと混合損失が増大し、圧力損失増大の一因となる。   Further, at the outlets (rear edges 1e and 2e) of the turbine blades 1 and 2, as shown in FIG. 1, the working fluid 10 along the ventral sides 1c and 2c of the turbine blades 1 and 2 and the back side 1d, The working fluid 11 along 2d merges in the wake of the turbine blades 1 and 2, but if the difference in pressure and flow velocity between the working fluids 10 and 11 is large, the mixing loss increases and the pressure loss increases. It contributes.

それに対し、本実施形態によれば、上記噴出孔7によって背側1d,2dの後縁部1e,2e近傍に、腹側1c,2cからの作動流体10を一部バイパスさせることにより、腹側1c,2cに沿った作動流体10とこれに合流する背側1d,2dに沿った作動流体11との合流時の圧力差を軽減し、腹側1c,2cからの作動流体10に合流する背側1d,2dに沿った作動流体11にエネルギを与えることができる。したがって、混合損失を低減することができ、これによっても流れ損失低減の効果が期待できる。   On the other hand, according to the present embodiment, by partially bypassing the working fluid 10 from the ventral side 1c, 2c in the vicinity of the rear edge portions 1e, 2e of the dorsal side 1d, 2d by the ejection hole 7, the ventral side The pressure difference at the time of merging between the working fluid 10 along 1c and 2c and the working fluid 11 along the back sides 1d and 2d that merges with the working fluid 10 is reduced, and the back that merges with the working fluid 10 from the ventral sides 1c and 2c. Energy can be applied to the working fluid 11 along the sides 1d, 2d. Therefore, the mixing loss can be reduced, and the effect of reducing the flow loss can also be expected.

更に、剥離9や作動流体10,11の混合は、二次流れ8と異なり支持壁面近傍のみでなく、翼長方向各所で生じる可能性がある。したがって、図1に示したように、複数の噴出孔7を翼長方向に離散配置することにより、翼長方向各所における剥離9及び混合損失を抑制することができ、より効果的に流れ損失を低減することができる。   Further, unlike the secondary flow 8, the separation 9 and the mixing of the working fluids 10 and 11 may occur not only in the vicinity of the supporting wall surface but also in various parts in the blade length direction. Therefore, as shown in FIG. 1, by disposing a plurality of ejection holes 7 in the blade length direction, it is possible to suppress separation 9 and mixing loss at various locations in the blade length direction, and more effectively reduce the flow loss. Can be reduced.

また、図2に示したように、噴出孔7は、噴出した作動流体が背側に沿った作動流体に緩やかな傾斜角で合流するよう、背面1d,2dとの間の角度を小さくして設けているので、背側1d,2dに沿って流れる作動流体11に、異なる方向成分を与えないよう配慮されている。このことも剥離9や混合損失の低減に寄与している。   Further, as shown in FIG. 2, the ejection hole 7 has a small angle between the back surface 1d and 2d so that the ejected working fluid joins the working fluid along the back side at a gentle inclination angle. Since it is provided, consideration is given so as not to give different direction components to the working fluid 11 flowing along the back sides 1d and 2d. This also contributes to reduction of peeling 9 and mixing loss.

以上のように、本実施形態によれば、二次流れ8や剥離9、混合損失を低減することにより、効果的に流れ損失を低減することができる。したがって、タービン効率を向上させ、例えばガスタービン設備等の高出力化や小型化に貢献することができる。   As described above, according to the present embodiment, the flow loss can be effectively reduced by reducing the secondary flow 8, the separation 9, and the mixing loss. Therefore, it is possible to improve turbine efficiency and contribute to, for example, high output and miniaturization of gas turbine equipment and the like.

なお、以上において、タービン翼1,2の根元部1a,2a及び先端部1b,2bの両側にバイパス流路4,5を設けたが、上記のように、例えば端壁が根元部1a,2a側にしかない場合等は、先端部1b,2b側のバイパス流路5は省略可能である。この場合も同様の効果を得る。また、バイパス流路4,5と噴出孔7とを兼ね備えた実施形態を説明したが、バイパス流路4,5は主に二次流れ8の低減に、噴出孔7は主に剥離9や作動流体10,11の混合損失の低減に効果を奏するものであり、それぞれ独立して設けても相応の効果を奏する。   In the above description, the bypass passages 4 and 5 are provided on both sides of the root portions 1a and 2a and the tip portions 1b and 2b of the turbine blades 1 and 2, but as described above, for example, the end walls have the root portions 1a and 2a. In the case where only the side is provided, the bypass flow path 5 on the tip end portions 1b, 2b side can be omitted. In this case, the same effect is obtained. Moreover, although embodiment which has the bypass flow paths 4 and 5 and the ejection hole 7 was demonstrated, the bypass flow paths 4 and 5 are mainly used for reduction of the secondary flow 8, and the ejection hole 7 is mainly used for separation 9 and operation. This is effective in reducing the mixing loss of the fluids 10 and 11, and even if they are provided independently, the corresponding effects can be obtained.

また、以上において、バイパス流路4,5をタービン翼1,2の最大肉厚部よりもやや後縁1e,2e側に設けた例を説明したが、必ずしもこれに限られず、前述した通り、バイパス流路4,5は、最も腹側1c,2cと背側1d,2dとの圧力差が大きくなる最大肉厚部の近傍に設けてあれば良い。また、その流路形状も必ずしも直線的でなくとも、例えば流入する作動流体の流れを考慮して湾曲させる等、適宜設計変更可能である。更に、端壁(支持壁面3等)から僅かに離間して端壁にほぼ平行にバイパス流路4,5を設けた例を図示したが、これにも限られず、例えば根元部1a,2a又は先端部1b,2bの端壁との対向端面を、腹側1c,2cから背側1d,2dに貫通するように切り欠き(つまり溝を設け)端壁との間に近接するバイパス流路を形成しても良い。これらの場合も上記と同様の効果を得る。   Further, in the above, the example in which the bypass flow paths 4 and 5 are provided on the rear edges 1e and 2e side slightly from the maximum thickness portion of the turbine blades 1 and 2 is described, but the present invention is not necessarily limited thereto. The bypass flow paths 4 and 5 may be provided in the vicinity of the maximum thickness portion where the pressure difference between the most ventral sides 1c and 2c and the back sides 1d and 2d becomes large. Further, even if the shape of the flow path is not necessarily linear, the design can be changed as appropriate, for example, by bending the flow path in consideration of the flow of the working fluid. Furthermore, although the example which provided the bypass flow paths 4 and 5 slightly spaced apart from end walls (support wall surface 3 etc.) and substantially parallel to an end wall was shown, it is not restricted to this, For example, root part 1a, 2a or A bypass flow path that is notched (that is, provided with a groove) between the end walls facing the end walls of the front end portions 1b and 2b so as to penetrate from the ventral sides 1c and 2c to the dorsal sides 1d and 2d. It may be formed. In these cases, the same effect as described above can be obtained.

更に、以上において、複数の噴出孔7を翼長方向にほぼ均等に配置した例を図示したが、これに限られず、各噴出孔7間のピッチは必要に応じて変更しても構わない。また、噴出孔7を複数設けたが、例えば翼長によって設計段階で1つで足りる場合等には、必ずしも複数設ける必要はない。更に、円筒状の噴出孔7を図示したが、これにも限られず、作動流体の噴出量を考慮して開口面積に配慮すれば、例えば翼長方向に幅を持った帯状の流路としても良い。これらの場合も上記と同様の効果を得る。   Further, in the above, an example in which the plurality of ejection holes 7 are arranged substantially evenly in the blade length direction is illustrated, but the present invention is not limited to this, and the pitch between the ejection holes 7 may be changed as necessary. In addition, although a plurality of ejection holes 7 are provided, for example, when one is sufficient in the design stage depending on the blade length, it is not always necessary to provide a plurality. Furthermore, although the cylindrical ejection hole 7 is illustrated, the present invention is not limited to this. For example, if the opening area is taken into consideration in consideration of the ejection amount of the working fluid, a band-shaped flow path having a width in the blade length direction may be used. good. In these cases, the same effect as described above can be obtained.

本発明のタービン翼の一実施形態の外観構成を表す斜視図である。It is a perspective view showing the external appearance structure of one Embodiment of the turbine blade of this invention. 図1に示した本発明のタービン翼の一実施形態の断面図である。It is sectional drawing of one Embodiment of the turbine blade of this invention shown in FIG. タービン翼の腹側及び背側の境界層における軸方向距離と圧力との相関関係を表したグラフである。It is a graph showing the correlation between the axial direction distance and the pressure in the boundary layer on the ventral side and the back side of the turbine blade.

符号の説明Explanation of symbols

1 タービン翼
1c 腹側
1d 背側
1e 後縁
2 タービン翼
2c 腹側
2d 背側
2e 後縁
3 支持壁面
4 バイパス流路
5 バイパス流路
7 噴出孔
DESCRIPTION OF SYMBOLS 1 Turbine blade 1c Abdominal side 1d Back side 1e Rear edge 2 Turbine blade 2c Abdominal side 2d Back side 2e Rear edge 3 Support wall surface 4 Bypass flow path 5 Bypass flow path 7 Ejection hole

Claims (8)

タービン各段に設けられたタービン翼において、
最大肉厚部付近に、支持壁面に近接して腹側から背側に貫通したバイパス流路を設けたことを特徴とするタービン翼。
In turbine blades provided at each stage of the turbine,
A turbine blade, characterized in that a bypass flow path is provided in the vicinity of a maximum wall thickness portion, penetrating from the ventral side to the back side in the vicinity of the support wall surface.
請求項1記載のタービン翼において、前記バイパス流路は、前記最大肉厚部よりもやや後縁寄りに設けられていることを特徴とするタービン翼。   The turbine blade according to claim 1, wherein the bypass flow path is provided slightly closer to the rear edge than the maximum thickness portion. 請求項1又は2記載のタービン翼において、前記バイパス流路から分岐して背側後縁部近傍に貫通する噴出孔を設けたことを特徴とするタービン翼。   3. The turbine blade according to claim 1, wherein an ejection hole that branches from the bypass flow path and penetrates in the vicinity of a back side rear edge portion is provided. 請求項3記載のタービン翼において、前記噴出孔は、翼長方向に複数離散して配置されていることを特徴とするタービン翼。   The turbine blade according to claim 3, wherein a plurality of the ejection holes are discretely arranged in the blade length direction. 請求項3又は4記載のタービン翼において、前記噴出孔は、噴出した作動流体が背側に沿った作動流体に緩やかな傾斜角で合流するように設けられていることを特徴とするタービン翼。   5. The turbine blade according to claim 3, wherein the ejection hole is provided such that the ejected working fluid joins the working fluid along the back side at a gentle inclination angle. 6. タービン各段に設けられたタービン翼の流れ損失低減方法において、
支持壁面の近接位置で、前記タービン翼の最大肉厚部付近の腹側から背側に作動流体の一部をバイパスさせ、前記支持壁面付近における前記タービン翼の腹側及び背側の圧力差を軽減することにより、二次流れを低減することを特徴とするタービン翼の流れ損失低減方法。
In the method for reducing the flow loss of turbine blades provided in each stage of the turbine,
A portion of the working fluid is bypassed from the ventral side near the maximum wall thickness of the turbine blade to the back side at a position close to the support wall surface, and the pressure difference between the ventral side and the back side of the turbine blade near the support wall surface is reduced. A method for reducing a flow loss of a turbine blade, wherein the secondary flow is reduced by reducing the secondary flow.
タービン各段に設けられたタービン翼の流れ損失低減方法において、
前記タービン翼の腹側から取り込んだ作動流体を、前記タービン翼の背側後縁部近傍に対し翼長方向にほぼ全体的に噴出させ、この噴出した作動流体を前記タービン翼の背側に沿った作動流体に合流させ付勢することにより、剥離の発生を抑制することを特徴とするタービン翼の流れ損失低減方法。
In the method for reducing the flow loss of turbine blades provided in each stage of the turbine,
The working fluid taken in from the ventral side of the turbine blade is ejected almost entirely in the blade length direction toward the vicinity of the back side rear edge of the turbine blade, and the ejected working fluid is run along the back side of the turbine blade. A method for reducing flow loss of a turbine blade, characterized in that generation of separation is suppressed by joining and energizing the working fluid.
タービン各段に設けられたタービン翼の流れ損失低減方法において、
前記タービン翼の腹側から取り込んだ作動流体を、前記タービン翼の背側後縁部近傍に対し翼長方向にほぼ全体的に噴出させ、背側に沿った作動流体と腹側に沿った作動流体との合流時の圧力差を軽減することにより、混合損失を軽減することを特徴とするタービン翼の流れ損失低減方法。
In the method for reducing the flow loss of turbine blades provided in each stage of the turbine,
The working fluid taken in from the ventral side of the turbine blade is ejected almost entirely in the blade length direction toward the vicinity of the back side rear edge of the turbine blade, and the working fluid along the back side and the working fluid along the ventral side A method for reducing a flow loss of a turbine blade, characterized by reducing a mixing loss by reducing a pressure difference at the time of merging with the turbine blade.
JP2003332787A 2003-09-25 2003-09-25 Turbine blade and its flow loss reduction method Pending JP2005098203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332787A JP2005098203A (en) 2003-09-25 2003-09-25 Turbine blade and its flow loss reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332787A JP2005098203A (en) 2003-09-25 2003-09-25 Turbine blade and its flow loss reduction method

Publications (1)

Publication Number Publication Date
JP2005098203A true JP2005098203A (en) 2005-04-14

Family

ID=34460987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332787A Pending JP2005098203A (en) 2003-09-25 2003-09-25 Turbine blade and its flow loss reduction method

Country Status (1)

Country Link
JP (1) JP2005098203A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174689A (en) * 2009-01-28 2010-08-12 Ihi Corp Turbine blade
JP2011021506A (en) * 2009-07-14 2011-02-03 Ihi Corp Gas turbine engine
JP2013032779A (en) * 2012-11-05 2013-02-14 Ihi Corp Turbine blade
JP2020133602A (en) * 2019-02-26 2020-08-31 三菱重工業株式会社 Blade and machine with the same
JP2020132111A (en) * 2019-02-26 2020-08-31 三菱重工業株式会社 Wing and machine having the same
JP2020139421A (en) * 2019-02-27 2020-09-03 三菱重工業株式会社 Blade and rotating machine comprising the same
DE102019008248B4 (en) 2019-02-26 2024-03-14 Mitsubishi Heavy Industries, Ltd. FLOW PROFILE AND MECHANICAL MACHINE EQUIPPED THEREFROM

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174689A (en) * 2009-01-28 2010-08-12 Ihi Corp Turbine blade
JP2011021506A (en) * 2009-07-14 2011-02-03 Ihi Corp Gas turbine engine
JP2013032779A (en) * 2012-11-05 2013-02-14 Ihi Corp Turbine blade
JP7213103B2 (en) 2019-02-26 2023-01-26 三菱重工業株式会社 wings and machines equipped with them
JP2020132111A (en) * 2019-02-26 2020-08-31 三菱重工業株式会社 Wing and machine having the same
CN111608736A (en) * 2019-02-26 2020-09-01 三菱重工业株式会社 Blade and machine provided with same
US11326457B2 (en) 2019-02-26 2022-05-10 Mitsubishi Heavy Industries, Ltd. Blade and machine having the same
JP7206129B2 (en) 2019-02-26 2023-01-17 三菱重工業株式会社 wings and machines equipped with them
JP2020133602A (en) * 2019-02-26 2020-08-31 三菱重工業株式会社 Blade and machine with the same
US11597494B2 (en) 2019-02-26 2023-03-07 Mitsubishi Heavy Industries, Ltd. Airfoil and mechanical machine having the same
DE102019008248B4 (en) 2019-02-26 2024-03-14 Mitsubishi Heavy Industries, Ltd. FLOW PROFILE AND MECHANICAL MACHINE EQUIPPED THEREFROM
JP2020139421A (en) * 2019-02-27 2020-09-03 三菱重工業株式会社 Blade and rotating machine comprising the same
JP7221078B2 (en) 2019-02-27 2023-02-13 三菱重工業株式会社 Wings and rotating machines equipped with them [2006.01]

Similar Documents

Publication Publication Date Title
CN111677556B (en) Fillet optimization for turbine airfoils
US8647066B2 (en) Blade with non-axisymmetric platform: recess and boss on the extrados
JP4794317B2 (en) Turbine airfoil
US7845907B2 (en) Blade cooling passage for a turbine engine
EP3074606B1 (en) Gas turbine engine airfoil with leading edge trench and impingement cooling
CA2548712A1 (en) Coverplate deflectors for redirecting a fluid flow
JP2005201270A (en) Sector-shaped rear edge teardrop arrangement
JP2006170198A (en) Turbine step
JP2007077986A (en) Turbine aerofoil curved squealer tip with tip ledge
JP2006283762A (en) Turbine aerofoil having tapered trailing edge land
JP2011137463A (en) System and apparatus relating to compressor stator blade and diffuser of turbine engine
EP2574728A1 (en) Clearance flow control assembly having rail member and corresponding turbine
GB1602235A (en) Crossover duct
EP2796666B1 (en) Turbine blade airfoils including a film cooling system, and method for forming an improved film cooled airfoil of a turbine blade
JP2009133267A (en) Impeller of compressor
JP2005098203A (en) Turbine blade and its flow loss reduction method
KR100822070B1 (en) Centrifugal type turbo machine
US20060177305A1 (en) Centrifugal volute pump with discontinuous vane-island diffuser
JP2010025041A (en) Centrifugal fluid machine
JP5319958B2 (en) Transonic two-stage centrifugal compressor
US9151172B2 (en) Stator and torque converter containing the same
JP2012202260A (en) Impeller and turbo machine including the same
CN111373121A (en) Turbine blade with tip groove
JP2005155566A (en) Impeller for mixed flow compressor
JP2007051551A (en) Double suction volute pump