JP2005097555A - Olefin modified polystyrene-based resin pre-expansion particle, method for producing the same and its foamed molding - Google Patents

Olefin modified polystyrene-based resin pre-expansion particle, method for producing the same and its foamed molding Download PDF

Info

Publication number
JP2005097555A
JP2005097555A JP2004231186A JP2004231186A JP2005097555A JP 2005097555 A JP2005097555 A JP 2005097555A JP 2004231186 A JP2004231186 A JP 2004231186A JP 2004231186 A JP2004231186 A JP 2004231186A JP 2005097555 A JP2005097555 A JP 2005097555A
Authority
JP
Japan
Prior art keywords
particles
weight
resin
styrene monomer
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004231186A
Other languages
Japanese (ja)
Other versions
JP4226530B2 (en
Inventor
Osakuni Inada
修邦 稲田
Hideo Matsumura
英保 松村
Yasutaka Tsutsui
恭孝 筒井
Ikuo Morioka
郁雄 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2004231186A priority Critical patent/JP4226530B2/en
Publication of JP2005097555A publication Critical patent/JP2005097555A/en
Application granted granted Critical
Publication of JP4226530B2 publication Critical patent/JP4226530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an olefin modified polystyrene-based pre-expansion particle which can be used to produce a foamed molding having an excellent rigidity, chemical resistance and impact resistance. <P>SOLUTION: The olefin modified polystyrene-based pre-expansion particle comprises a polystyrene-based pre-expansion particle modified by polyolefin-based resin, and a styrene-based monomer is used for forming the polystyrene-based resin in a range of 100-1,000 pts.wt. to a 100 pts.wt. polyolefin-based resin, and the particle has a bulk density of 0.012-0.20 g/cm<SP>3</SP>and an infrared absorption spectrum obtained by infrared spectroscopic analysis of a surface of the particle using ATR-method shows that a ratio of absorbance at 698 cm<SP>-1</SP>and 2,850 cm<SP>-1</SP>(D<SB>698</SB>/D<SB>2850</SB>) is within the range of 0.1-2.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、オレフィン改質ポリスチレン系樹脂予備発泡粒子、その製造方法及び発泡成形体に関する。本発明のオレフィン改質ポリスチレン系樹脂予備発泡粒子によれば、優れた剛性、耐薬品性及び耐衝撃性を有する発泡成形体を得ることができる。   The present invention relates to olefin-modified polystyrene resin pre-expanded particles, a method for producing the same, and a foam-molded article. According to the olefin-modified polystyrene resin pre-expanded particles of the present invention, it is possible to obtain a foamed molded article having excellent rigidity, chemical resistance and impact resistance.

従来から、ポリスチレン系樹脂予備発泡粒子を型内に充填して加熱、発泡させて得られるポリスチレン系樹脂発泡成形体は、剛性、断熱性、軽量性、耐水性及び発泡成形性に優れていることが知られている。そのためこの発泡成形体は、緩衝材や建材用断熱材として広く用いられている。しかし、この発泡成形体は、耐薬品性及び耐衝撃性に劣るといった問題点があった。   Conventionally, polystyrene resin foam molded products obtained by filling polystyrene resin pre-expanded particles in a mold and heating and foaming are excellent in rigidity, heat insulation, light weight, water resistance and foam moldability. It has been known. Therefore, this foaming molding is widely used as a buffer material or a heat insulating material for building materials. However, this foam molded article has a problem that it is inferior in chemical resistance and impact resistance.

一方、ポリエチレン系樹脂やポリプロピレン系樹脂等のポリオレフィン系樹脂からなる発泡成形体は、耐薬品性及び耐衝撃性に優れていることが知られている。そのためこの発泡成形体は、自動車関連部品に用いられている。しかし、ポリオレフィン系樹脂は発泡ガスの保持性に劣ることから、発泡成形条件を精密に制御する必要があるため、製造コストが高くつくという問題点がある。加えて、ポリスチレン系樹脂発泡成形体に比して剛性が劣る問題点もある。   On the other hand, it is known that a foam molded article made of a polyolefin resin such as a polyethylene resin or a polypropylene resin is excellent in chemical resistance and impact resistance. Therefore, this foaming molding is used for automobile-related parts. However, since the polyolefin-based resin is inferior in foaming gas retention, it is necessary to precisely control the foam molding conditions, resulting in a problem that the manufacturing cost is high. In addition, there is a problem that the rigidity is inferior to that of the polystyrene-based resin foam molding.

上記ポリスチレン系樹脂とポリオレフィン系樹脂の問題点を解決するために、剛性及び発泡成形性の良好なポリスチレン系樹脂と、耐薬品性及び耐衝撃性の良好なポリオレフィン系樹脂とを複合化した発泡成形体が報告されている。   In order to solve the problems of the above-mentioned polystyrene resin and polyolefin resin, foam molding in which a polystyrene resin having good rigidity and foam moldability and a polyolefin resin having good chemical resistance and impact resistance are combined. The body has been reported.

この複合化させた発泡成形体の性質は、ポリスチレン系樹脂とポリオレフィン系樹脂との比率に大きく影響を受ける。即ち、ポリオレフィン系樹脂の比率が高い程、発泡成形体の耐薬品性及び耐衝撃性は向上するが、剛性や発泡成形性は低下する。   The properties of the composite foamed molded product are greatly influenced by the ratio of the polystyrene resin and the polyolefin resin. That is, the higher the ratio of the polyolefin-based resin, the better the chemical resistance and impact resistance of the foam molded article, but the rigidity and foam moldability are lowered.

特に、発泡成形体を自動車関連部品に用いる場合には、ガソリン、灯油、ブレーキオイル、塩化ビニル可塑剤等の薬品に接触したり、強い衝撃を受けたりする可能性があることから、高い耐薬品性及び耐衝撃性が要求されている。この要求を満たす方法として、発泡成形体中のポリオレフィン系樹脂成分を50重量%以上とすることで、発泡成形体の耐薬品性及び耐衝撃性を向上させる方法が知られている。しかし、この方法では、ポリスチレン系樹脂成分の量が相対的に減少してしまうので、発泡成形体の剛性や発泡成形性が大きく低下してしまう。その結果、この発泡成形体は、自動車関連部品に広く使用できなかった。   In particular, when foamed molded products are used for automobile-related parts, there is a possibility of contact with chemicals such as gasoline, kerosene, brake oil, vinyl chloride plasticizer, etc. And impact resistance are required. As a method for satisfying this requirement, a method for improving the chemical resistance and impact resistance of a foamed molded article by making the polyolefin resin component in the foamed molded article 50% by weight or more is known. However, in this method, since the amount of the polystyrene-based resin component is relatively reduced, the rigidity and foam moldability of the foam-molded product are greatly reduced. As a result, this foamed molded product could not be widely used for automobile-related parts.

そこで、ポリスチレン系樹脂とポリオレフィン系樹脂の欠点を互いに補完して両者の特性を両立させることを目的として、表面層が発泡ポリオレフィン系樹脂からなり芯部が発泡ポリスチレン系樹脂からなる二次発泡可能な発泡樹脂粒子が提案されている(特許文献1参照)。   Therefore, for the purpose of complementing the disadvantages of polystyrene resin and polyolefin resin and making both properties compatible, secondary foaming is possible in which the surface layer is made of expanded polyolefin resin and the core is made of expanded polystyrene resin. Expanded resin particles have been proposed (see Patent Document 1).

この発泡樹脂粒子によれば、発泡剤が芯部の発泡ポリスチレン系樹脂に保持されているので、成形性が優れていると記載されている。更に、この発泡樹脂粒子から得られる発泡成形体は、剛性、柔軟性及び低温特性が優れていると記載されている。   According to this foamed resin particle, it is described that the foaming agent is held in the foamed polystyrene-based resin in the core, and therefore, the moldability is excellent. Furthermore, it is described that the foam molded body obtained from the foamed resin particles is excellent in rigidity, flexibility and low temperature characteristics.

しかしながら、本発明者らが上記公報を追試したところ、ポリスチレン系樹脂粒子がポリオレフィン系樹脂で被覆されてなる樹脂粒子に発泡剤を含浸させて予備発泡させると、内部のポリスチレン系樹脂のみが大きく発泡する一方、ポリオレフィン系樹脂は僅かに発泡するか又は発泡しなかった。その結果、ポリオレフィン系樹脂層とポリスチレン系樹脂層とが剥離し、目的とする発泡成形体を得ることができなかった。   However, when the present inventors reexamined the above publication, when the resin particles obtained by coating the polystyrene resin particles with the polyolefin resin are impregnated with a foaming agent and pre-foamed, only the polystyrene resin inside is greatly expanded. On the other hand, the polyolefin resin foamed slightly or did not foam. As a result, the polyolefin-based resin layer and the polystyrene-based resin layer were peeled off, and the intended foamed molded product could not be obtained.

上記方法以外に、水性媒体中、ポリエチレン系樹脂粒子にスチレン系モノマーを含浸させて重合させることで、ポリオレフィン系樹脂で、ポリスチレン系樹脂を改質した発泡樹脂粒子を得る方法が提案されている(例えば、特許文献2参照)。
しかしながら、上記方法でも、高い耐薬品性及び耐衝撃性と剛性や発泡成形性とを同時に実現する発泡成形体を提供しうるポリスチレン系樹脂予備発泡粒子を得ることができなかった。
In addition to the above method, a method has been proposed in which polyethylene resin particles are impregnated with a styrene monomer in an aqueous medium and polymerized to obtain expanded resin particles obtained by modifying the polystyrene resin with a polyolefin resin ( For example, see Patent Document 2).
However, even with the above method, polystyrene-based resin pre-expanded particles that can provide a foamed molded article that simultaneously achieves high chemical resistance and impact resistance, rigidity, and foam moldability cannot be obtained.

特開昭54−119563号公報JP 54-119563 A 特公昭59−3487号公報Japanese Patent Publication No.59-3487

かくして本発明によれば、ポリオレフィン系樹脂で改質されたポリスチレン系樹脂予備発泡粒子からなり、ポリスチレン系樹脂を形成するスチレン系モノマーが、ポリオレフィン系樹脂100重量部に対して、100〜1000重量部の範囲で使用され、該粒子の嵩密度が0.012〜0.20g/cm3 であると共に、ATR法赤外分光分析により測定された粒子表面の赤外線吸収スペクトルから得られる698cm-1及び2850cm-1での吸光度比(D698 /D2850)が0.1〜2.5の範囲であるオレフィン改質ポリスチレン系樹脂予備発泡粒子が提供される。 Thus, according to the present invention, polystyrene-based resin pre-expanded particles modified with a polyolefin-based resin, and the styrene-based monomer forming the polystyrene-based resin is 100 to 1000 parts by weight with respect to 100 parts by weight of the polyolefin-based resin. The particle has a bulk density of 0.012 to 0.20 g / cm 3 and is obtained from an infrared absorption spectrum of the particle surface measured by ATR infrared spectroscopy, and 698 cm −1 and 2850 cm. absorbance ratio at -1 (D 698 / D 2850) is an olefin-modified polystyrene-based resin pre-expanded particles is in the range of 0.1 to 2.5 is provided.

更に、本発明によれば、ポリオレフィン系樹脂粒子が分散されている水性媒体中、スチレン系モノマー(使用されるポリオレフィン系樹脂粒子100重量部に対して100〜1000重量部)を、ポリオレフィン系樹脂粒子中に含浸させながら重合開始剤の存在下にて重合させてオレフィン改質ポリスチレン系樹脂粒子を得る工程(a)、該樹脂粒子に発泡剤を含浸させる工程(b)、発泡剤含浸樹脂粒子を予備発泡させてオレフィン改質ポリスチレン系樹脂予備発泡粒子を得る工程(c)とからなり、
工程(a)において、水性媒体が、0.06〜0.8kw/m3 の攪拌所要動力で攪拌され、スチレン系モノマーの含浸及び重合が、ポリオレフィン系樹脂粒子中のスチレン系モノマー含有量が35重量%以下となる条件下で行われるオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法が提供される。
Furthermore, according to the present invention, a styrene monomer (100 to 1000 parts by weight with respect to 100 parts by weight of the polyolefin resin particles used) is added to the polyolefin resin particles in an aqueous medium in which the polyolefin resin particles are dispersed. A step (a) of obtaining olefin-modified polystyrene resin particles by polymerizing in the presence of a polymerization initiator while impregnated therein, a step (b) of impregnating the resin particles with a foaming agent, A step (c) of pre-expanding to obtain olefin-modified polystyrene resin pre-expanded particles,
In the step (a), the aqueous medium is stirred with a required power of stirring of 0.06 to 0.8 kw / m 3 , and the impregnation and polymerization of the styrenic monomer has a styrenic monomer content in the polyolefin resin particles of 35. Provided is a method for producing olefin-modified polystyrene-based resin pre-expanded particles, which is performed under the condition of not more than% by weight.

まず、用語「オレフィン改質ポリオレフィン系樹脂」とは、ポリスチレン系樹脂をポリオレフィン系樹脂で改質した樹脂を意味する。また、以下では、オレフィン改質ポリスチレン系樹脂予備発泡粒子を単に予備発泡粒子と称する。   First, the term “olefin-modified polyolefin resin” means a resin obtained by modifying a polystyrene resin with a polyolefin resin. Hereinafter, the olefin-modified polystyrene resin pre-expanded particles are simply referred to as pre-expanded particles.

ポリオレフィン系樹脂としては、特に限定されず、公知の重合方法で得られた樹脂が使用できる。また、ポリオレフィン系樹脂は、構造中にベンゼン環を含まない樹脂を使用することが好ましい。更に、ポリオレフィン系樹脂は、架橋していてもよい。例えば、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、これら重合体の架橋体等のポリエチレン系樹脂、プロピレン単独重合体、エチレン−プロピレンランダム共重合体、プロピレン−1−ブテン共重合体、エチレン−プロピレン−ブテンランダム共重合体等のポリプロピレン系樹脂が挙げられる。この内、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−酢酸ビニル共重合体が好ましい。これらの低密度ポリエチレンは、0.91〜0.94g/cm3 の密度を有することが好ましく、0.91〜0.93g/cm3 の密度を有することがより好ましい。 The polyolefin resin is not particularly limited, and a resin obtained by a known polymerization method can be used. Moreover, it is preferable to use resin which does not contain a benzene ring in a structure for polyolefin resin. Furthermore, the polyolefin resin may be cross-linked. For example, polyethylene resins such as branched low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and cross-linked products of these polymers And polypropylene resins such as propylene homopolymer, ethylene-propylene random copolymer, propylene-1-butene copolymer, and ethylene-propylene-butene random copolymer. Of these, branched low-density polyethylene, linear low-density polyethylene, and ethylene-vinyl acetate copolymer are preferable. These low-density polyethylene preferably has a density of 0.91~0.94g / cm 3, and more preferably has a density of 0.91~0.93g / cm 3.

ポリスチレン系樹脂としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、t−ブチルスチレン等のスチレン系モノマーに由来する樹脂が挙げられる。更に、ポリスチレン系樹脂は、スチレン系モノマーと、スチレン系モノマーと共重合可能な他のモノマーとの共重合体であってもよい。他のモノマーとしては、ジビニルベンゼンのような多官能性モノマーや、(メタ)アクリル酸ブチルのような構造中にベンゼン環を含まない(メタ)アクリル酸アルキルエステル等が例示される。これら他のモノマーは、実質的にポリスチレン系樹脂に対して5重量%を超えない範囲で使用してもよい。   Examples of the polystyrene resin include resins derived from styrene monomers such as styrene, α-methylstyrene, p-methylstyrene, and t-butylstyrene. Furthermore, the polystyrene resin may be a copolymer of a styrene monomer and another monomer copolymerizable with the styrene monomer. Examples of other monomers include polyfunctional monomers such as divinylbenzene, and (meth) acrylic acid alkyl esters that do not contain a benzene ring in the structure such as butyl (meth) acrylate. You may use these other monomers in the range which does not exceed 5 weight% substantially with respect to a polystyrene-type resin.

ポリスチレン系樹脂のGPC測定によるz平均分子量は、35万〜110万であることが好ましく、45万〜95万がより好ましい。z平均分子量が、35万より低いと、予備発泡粒子を発泡成形して得られる発泡成形体の強度が低下することがあるため好ましくない。一方、110万より高いと、予備発泡粒子の二次発泡性が低下し、予備発泡粒子同士の融着性が低下して発泡成形体の強度が低下することがあるので好ましくない。   The z-average molecular weight of the polystyrene-based resin as measured by GPC is preferably 350,000 to 1,100,000, and more preferably 450,000 to 950,000. If the z-average molecular weight is lower than 350,000, the strength of the foamed molded product obtained by foam-molding the pre-foamed particles may decrease, which is not preferable. On the other hand, if it is higher than 1,100,000, the secondary foamability of the pre-foamed particles is lowered, the fusion property between the pre-foamed particles is lowered, and the strength of the foamed molded product may be lowered.

ポリスチレン系樹脂は、ポリオレフィン系樹脂100重量部に対して100〜1000重量部の範囲のスチレン系モノマーから形成される。好ましいスチレン系モノマーの配合量は、120〜800重量部であり、130〜700重量部がより好ましい。   The polystyrene resin is formed from a styrene monomer in the range of 100 to 1000 parts by weight with respect to 100 parts by weight of the polyolefin resin. The compounding quantity of a preferable styrene-type monomer is 120-800 weight part, and 130-700 weight part is more preferable.

配合量が1000重量部より多いと、予備発泡粒子を二次発泡させて得られる発泡成形体の耐薬品性及び耐衝撃性が低下するため好ましくない。一方、配合量が100重量部より少ないと、予備発泡粒子を二次発泡させて得られる発泡成形体の剛性が低下するため好ましくない。   When the blending amount is more than 1000 parts by weight, the chemical resistance and impact resistance of the foamed molded article obtained by secondary foaming of the pre-foamed particles are unfavorable. On the other hand, when the blending amount is less than 100 parts by weight, the rigidity of the foamed molded product obtained by secondary foaming of the pre-foamed particles is unfavorable.

予備発泡粒子は、0.012〜0.20g/cm3 の嵩密度を有する。好ましい嵩密度は、0.014〜0.15g/cm3 である。
嵩密度が0.012g/cm3 より小さいと、発泡粒子の独立気泡率が低下して、予備発泡粒子を発泡させて得られる発泡成形体の強度が低下するため好ましくない。一方、0.20g/cm3 より大きいと、予備発泡粒子を発泡させて得られる発泡成形体の重量が増加するので好ましくない。なお、嵩密度の測定法は、実施例の欄で説明する。
The pre-expanded particles have a bulk density of 0.012 to 0.20 g / cm 3 . A preferred bulk density is 0.014 to 0.15 g / cm 3 .
If the bulk density is less than 0.012 g / cm 3 , the closed cell ratio of the expanded particles is decreased, and the strength of the expanded molded product obtained by foaming the pre-expanded particles is not preferable. On the other hand, if it is larger than 0.20 g / cm 3 , the weight of the foamed molded product obtained by foaming the pre-foamed particles increases, which is not preferable. In addition, the measuring method of a bulk density is demonstrated in the column of an Example.

更に、本発明の予備発泡粒子は、その表面を、ATR法赤外分光分析により測定して得られた赤外線吸収スペクトルから、0.1〜2.5の範囲の698cm-1及び2850cm-1の吸光度比(D698 /D2850)を有している。好ましい吸光度比は、0.2〜2.0であり、0.4〜2.0がより好ましい。なお、粒子表面は、表面から深さ数μmまでの領域を含む。 Additionally, pre-expanded particles of the present invention, the surface, from the infrared absorption spectrum obtained by measuring by ATR method infrared spectroscopy, the range of 698cm -1 and 2850 cm -1 of 0.1 to 2.5 It has an absorbance ratio (D 698 / D 2850 ). A preferable absorbance ratio is 0.2 to 2.0, and 0.4 to 2.0 is more preferable. The particle surface includes a region from the surface to a depth of several μm.

吸光度比が、2.5より高いと、予備発泡粒子の表面におけるポリオレフィン系樹脂の比率が低下する。その結果、予備発泡粒子を発泡成形して得られる発泡成形体の耐薬品性及び耐衝撃性が低下するので好ましくない。吸光度比が0.1より低いと、予備発泡粒子表面からの発泡剤の逸散が顕著になることにより、型内での成形において粒子同士の融着が悪くなって耐衝撃性が逆に低下したり、収縮等による発泡成形体の外観の仕上がり状態が悪くなったりする傾向があるので好ましくない。加えて、予備発泡粒子を製造する際に、スチレン系モノマーのポリオレフィン系樹脂粒子への含浸、重合に要する時間が長くなって製造効率が低下するので好ましくない。   When the absorbance ratio is higher than 2.5, the ratio of the polyolefin resin on the surface of the pre-foamed particles is lowered. As a result, the chemical resistance and impact resistance of the foamed molded product obtained by foaming the pre-expanded particles are unfavorable. When the absorbance ratio is lower than 0.1, the foaming agent dissipates significantly from the surface of the pre-foamed particles, resulting in poor fusion between the particles during molding in the mold, resulting in a decrease in impact resistance. Or the finished appearance of the foamed molded product tends to deteriorate due to shrinkage or the like. In addition, when the pre-expanded particles are produced, the time required for impregnation and polymerization of the styrene monomer into the polyolefin resin particles is increased, and the production efficiency is lowered, which is not preferable.

ここで、本発明におけるATR法赤外分光分析とは、全反射吸収(Attenuated Total Reflectance)を利用する一回反射型ATR法により赤外吸収スペクトルを測定する分析方法である。この分析方法は、高い屈折率を持つATRプリズムを試料に密着させ、ATRプリズムを通して赤外線を試料に照射し、ATRプリズムからの出射光を分光分析する方法である。   Here, the ATR method infrared spectroscopic analysis in the present invention is an analysis method in which an infrared absorption spectrum is measured by a single reflection type ATR method using total reflection absorption (Attenuated Total Reflectance). This analysis method is a method in which an ATR prism having a high refractive index is brought into close contact with a sample, infrared light is irradiated to the sample through the ATR prism, and light emitted from the ATR prism is spectrally analyzed.

ATR法赤外分光分析は、試料とATRプリズムとを密着させるだけでスペクトルを測定できるという簡便さ、深さ数μmまでの表面分析が可能である等の理由で高分子材料等の有機物をはじめ、種々の物質の表面分析に広く利用されている。   ATR infrared spectroscopic analysis includes organic materials such as polymer materials because of the simplicity of being able to measure the spectrum simply by bringing the sample and the ATR prism into close contact with each other, and the ability to perform surface analysis up to a depth of several μm. It is widely used for surface analysis of various substances.

なお、赤外吸収スペクトルから得られる698cm-1での吸光度D698 は、ポリスチレン系樹脂に主に含まれるベンゼン環の面外変角振動に由来する698cm-1付近に現われるピークの高さをいう。 The absorbance D 698 at 698 cm −1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 698 cm −1 derived from the out-of-plane deformation vibration of the benzene ring mainly contained in the polystyrene resin. .

また、赤外吸収スペクトルから得られる2850cm-1での吸光度D2850は、ポリオレフィン系樹脂とポリスチレン系樹脂の双方に含まれるメチレン基のC−H間伸縮振動に由来する2850cm-1付近に現われるピークの高さをいう。 Further, the absorbance D 2850 at 2850 cm −1 obtained from the infrared absorption spectrum is a peak appearing in the vicinity of 2850 cm −1 derived from the C—H stretching vibration of the methylene group contained in both the polyolefin resin and the polystyrene resin. The height of

吸光度比からポリスチレン系樹脂とポリオレフィン系樹脂の組成割合を求めることが可能である。即ち、ポリスチレン系樹脂とポリオレフィン系樹脂とを所定の組成割合に均一に混合してなる複数種類の標準試料を後述の要領で作製する。各標準試料についてATR法赤外分光分析により粒子表面分析を行なって赤外線吸収スペクトルを得る。測定した赤外吸収スペクトルのそれぞれから吸光度比を算出する。   It is possible to determine the composition ratio of the polystyrene resin and the polyolefin resin from the absorbance ratio. That is, a plurality of types of standard samples obtained by uniformly mixing a polystyrene resin and a polyolefin resin at a predetermined composition ratio are prepared as described below. Each standard sample is subjected to particle surface analysis by ATR infrared spectroscopy to obtain an infrared absorption spectrum. The absorbance ratio is calculated from each of the measured infrared absorption spectra.

そして、横軸に組成割合(標準試料中のポリスチレン系樹脂の重量比)を、縦軸に吸光度比をとることで、検量線を描く。この検量線に基づいて、本発明の予備発泡粒子の吸光度比から、ポリスチレン系樹脂とポリオレフィン系樹脂のおおよその組成割合を求めることができる。   A calibration curve is drawn by taking the composition ratio (weight ratio of polystyrene resin in the standard sample) on the horizontal axis and the absorbance ratio on the vertical axis. Based on this calibration curve, the approximate composition ratio of the polystyrene resin and the polyolefin resin can be determined from the absorbance ratio of the pre-expanded particles of the present invention.

例えば、ポリオレフィン系樹脂がエチレン−酢酸ビニル共重合体(日本ポリケム社製商品名「LV−121」)、ポリスチレン系樹脂がポリスチレン(積水化成工業社製商品名「MS142」)の場合、図9に示す検量線を用いることで、おおよその組成割合を知ることができる。例えば、吸光度比が1.0の場合には、ポリオレフィン系樹脂が約76〜82重量%、ポリスチレン系樹脂が約24〜18重量%、吸光度比が2.5の場合にはポリオレフィン系樹脂が約51〜57重量%、ポリスチレン系樹脂が約49〜43重量%であると算出できる。検量線の作成条件は、以下の方法による。   For example, when the polyolefin resin is an ethylene-vinyl acetate copolymer (trade name “LV-121” manufactured by Nippon Polychem) and the polystyrene resin is polystyrene (trade name “MS142” manufactured by Sekisui Chemical Co., Ltd.), FIG. By using the calibration curve shown, the approximate composition ratio can be known. For example, when the absorbance ratio is 1.0, the polyolefin resin is about 76 to 82% by weight, the polystyrene resin is about 24 to 18% by weight, and when the absorbance ratio is 2.5, the polyolefin resin is about It can be calculated that 51 to 57% by weight and polystyrene resin is about 49 to 43% by weight. The calibration curve is created by the following method.

上記標準試料は、次の方法により得られる。まず、組成割合(ポリスチレン系樹脂/ポリオレフィン系樹脂)が下記比率になるようにポリスチレン系樹脂及びポリオレフィン系樹脂を合計2g精秤する。これを小型射出成形機にて下記条件下に加熱混練して、直径が25mmでかつ高さが2mmの円柱状に成形することによって標準試料が得られる。なお、小型射出成形機としては、例えば、CSI社から商品名「CS−183」で販売されているものを用いることができる。   The standard sample is obtained by the following method. First, a total of 2 g of the polystyrene resin and the polyolefin resin are precisely weighed so that the composition ratio (polystyrene resin / polyolefin resin) becomes the following ratio. This is heated and kneaded in a small injection molding machine under the following conditions and molded into a cylindrical shape having a diameter of 25 mm and a height of 2 mm to obtain a standard sample. In addition, as a small-sized injection molding machine, what is sold with the brand name "CS-183" from CSI can be used, for example.

射出成形条件:加熱温度200〜250℃、混練時間10分
組成割合(ポリスチレン系樹脂/ポリオレフィン系樹脂;重量比):
0.5/9.5、1/9、2/8、3/7、4/6、5/5、6/4、7/3、9/1
上記比率の標準試料の吸光度比を測定し、ポリスチレン量と吸光度比の関係をグラフ化することで、図9の検量線が得られる。
Injection molding conditions: heating temperature 200 to 250 ° C., kneading time 10 minutes composition ratio (polystyrene resin / polyolefin resin; weight ratio):
0.5 / 9.5, 1/9, 2/8, 3/7, 4/6, 5/5, 6/4, 7/3, 9/1
The calibration curve in FIG. 9 is obtained by measuring the absorbance ratio of the standard sample having the above ratio and graphing the relationship between the polystyrene amount and the absorbance ratio.

本発明の予備発泡粒子は、0.1〜2.5の吸光度比を有している。よって、ポリオレフィン系樹脂とポリスチレン系樹脂の種類によっても異なるが、予備発泡粒子の表面近傍部におけるポリオレフィン系樹脂の割合は、約50重量%以上となる。予備発泡粒子全体では、ポリオレフィン系樹脂の配合量は、ポリスチレン系樹脂の配合量以下であることからすると、予備発泡粒子表面でポリオレフィン系樹脂がポリスチレン系樹脂よりも豊富な状態となっていることがわかる。なお、予備発泡粒子全体におけるポリオレフィン系樹脂とポリスチレン系樹脂の合計量に対するポリオレフィン系樹脂の重量%は、9〜50重量%である。また、吸光度比が0.1以上であることから、予備発泡粒子表面には、ポリスチレン樹脂が存在し、ポリオレフィン系樹脂が100重量%にはならない。   The pre-expanded particles of the present invention have an absorbance ratio of 0.1 to 2.5. Therefore, the ratio of the polyolefin resin in the vicinity of the surface of the pre-expanded particles is about 50% by weight or more, although it varies depending on the types of the polyolefin resin and the polystyrene resin. In the entire pre-expanded particles, the amount of polyolefin resin is less than or equal to the amount of polystyrene resin, indicating that the polyolefin resin is more abundant than polystyrene resin on the surface of the pre-expanded particles. Understand. In addition, the weight% of polyolefin resin with respect to the total amount of polyolefin resin and polystyrene resin in the whole pre-expanded particle is 9 to 50 wt%. Further, since the absorbance ratio is 0.1 or more, polystyrene resin is present on the surface of the pre-foamed particles, and the polyolefin resin does not reach 100% by weight.

上記のような全体的にはポリスチレン系樹脂の配合量が大きく、表面においては、ポリオレフィン系樹脂の配合量が大きい予備発泡粒子は、従来の方法では入手できない、特殊な構造である。   As described above, pre-expanded particles having a large blending amount of polystyrene-based resin and a large blending amount of polyolefin-based resin on the surface have a special structure that cannot be obtained by a conventional method.

予備発泡粒子の形態は、その後の二次発泡に影響を与えないものであれば、特に限定されない。例えば、真球状、楕円球状(卵状)、円柱状、角柱状等が挙げられる。この内、型内への充填が容易である真球状、楕円球状が好ましい。   The form of the pre-expanded particles is not particularly limited as long as it does not affect the subsequent secondary expansion. For example, a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, a prismatic shape and the like can be mentioned. Of these, true spheres and elliptical spheres that can be easily filled into the mold are preferred.

各予備発泡粒子の平均重量は、0.5〜5.0mgが好ましく、0.5〜3.0mgがより好ましい。0.5mgより軽いと、高発泡化が困難となることがあるため好ましくない。一方、5.0mgより重いと、予備発泡粒子が大きくなり過ぎて型内への充填性が低下して、得られる発泡成形体の外観性が低下することがあるので好ましくない。なお、各予備発泡粒子の重量とは、任意に選択した200個の予備発泡粒子の平均重量をいう。   The average weight of each pre-expanded particle is preferably 0.5 to 5.0 mg, more preferably 0.5 to 3.0 mg. If it is lighter than 0.5 mg, it may be difficult to achieve high foaming, which is not preferable. On the other hand, if it is heavier than 5.0 mg, the pre-expanded particles become too large, the filling property into the mold is lowered, and the appearance of the obtained foamed molded product may be lowered, which is not preferable. In addition, the weight of each pre-expanded particle means the average weight of 200 pre-expanded particles arbitrarily selected.

予備発泡粒子は、添加剤を含んでいてもよい。添加剤としては、タルク、珪酸カルシウム、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の発泡核剤、合成あるいは天然に産出される二酸化ケイ素等の充填剤、ヘキサブロモシクロドデカン、トリアリルイソシアヌレート6臭素化物等の難燃剤、ジイソブチルアジペート、流動パラフィン、グリセリンジアセトモノラウレート、やし油等の可塑剤、カーボンブラック、グラファイト等の着色剤、紫外線吸収剤、酸化防止剤等が挙げられる。   The pre-expanded particles may contain an additive. Additives include foaming nucleating agents such as talc, calcium silicate, ethylene bis-stearic acid amide, methacrylic acid ester copolymers, fillers such as synthetic or naturally produced silicon dioxide, hexabromocyclododecane, triallyl Examples include flame retardants such as isocyanurate hexabromide, diisobutyl adipate, liquid paraffin, glycerin diacetomonolaurate, plasticizers such as coconut oil, colorants such as carbon black and graphite, ultraviolet absorbers, antioxidants, and the like. .

次に、本発明の予備発泡粒子の製造方法について説明する。
まず、ポリオレフィン系樹脂粒子が分散されている水性媒体中、スチレン系モノマー(使用されるポリオレフィン系樹脂粒子100重量部に対して100〜1000重量部)を、ポリオレフィン系樹脂粒子中に含浸させながら重合開始剤の存在下にて重合させてオレフィン改質ポリスチレン系樹脂粒子(以下、改質樹脂粒子とも称する)を得る(工程(a))。
スチレン系モノマーは、ポリオレフィン系樹脂粒子に含浸させるために、水系媒体に、連続的にあるいは断続的に添加できる。スチレン系モノマーは、水性媒体中に徐々に添加していくのが好ましい。
水性媒体としては、水、水と水溶性溶媒(例えば、アルコール)との混合媒体が挙げられる。
Next, the manufacturing method of the pre-expanded particle | grains of this invention is demonstrated.
First, polymerization is performed while impregnating polyolefin resin particles with styrene monomer (100 to 1000 parts by weight with respect to 100 parts by weight of polyolefin resin particles used) in an aqueous medium in which polyolefin resin particles are dispersed. Polymerization is performed in the presence of an initiator to obtain olefin-modified polystyrene resin particles (hereinafter also referred to as modified resin particles) (step (a)).
The styrenic monomer can be continuously or intermittently added to the aqueous medium in order to impregnate the polyolefin resin particles. The styrenic monomer is preferably added gradually to the aqueous medium.
Examples of the aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, alcohol).

更に、各ポリオレフィン系樹脂粒子の平均重量は、製造される予備発泡粒子の成形時の型内への充填し易さを考慮すると、0.10〜1.5mgが好ましい。なお、ポリオレフィン系樹脂粒子の平均重量とは、任意に選択した100個のポリオレフィン系樹脂粒子の平均重量をいう。また、ポリオレフィン系樹脂粒子の形態は、特に限定されない。例えば、真球状、楕円球状(卵状)、円柱状、角柱状等が挙げられる。
スチレン系モノマーの配合量が1000重量部より多いと、ポリオレフィン系樹脂粒子に含浸されずに、ポリスチレン系樹脂単独の粒子が発生するため好ましくない。加えて、予備発泡粒子を二次発泡させて得られる発泡成形体の耐薬品性及び耐衝撃性が低下するため好ましくない。一方、スチレン系モノマーの配合量が100重量部より少ないと、ポリオレフィン系樹脂粒子への含浸、重合に要する時間が短くなるが、得られるオレフィン改質ポリスチレン系樹脂粒子の発泡剤を保持する能力が低下して、高発泡化できなくなるので好ましくない。加えて、予備発泡粒子を二次発泡させて得られる発泡成形体の剛性が低下するため好ましくない。
Further, the average weight of each polyolefin-based resin particle is preferably 0.10 to 1.5 mg in view of ease of filling into the mold at the time of molding the pre-expanded particles to be produced. The average weight of polyolefin resin particles refers to the average weight of 100 arbitrarily selected polyolefin resin particles. The form of the polyolefin resin particles is not particularly limited. For example, a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, a prismatic shape, and the like can be given.
When the blending amount of the styrene monomer is more than 1000 parts by weight, it is not preferable because particles of the polystyrene resin alone are generated without impregnating the polyolefin resin particles. In addition, the chemical resistance and impact resistance of the foamed molded product obtained by secondary foaming of the pre-expanded particles are not preferable. On the other hand, when the blending amount of the styrene monomer is less than 100 parts by weight, the time required for the impregnation and polymerization of the polyolefin resin particles is shortened, but the ability to retain the foaming agent of the resulting olefin-modified polystyrene resin particles is It is not preferable because it decreases and cannot be highly foamed. In addition, the rigidity of the foamed molded product obtained by secondary foaming of the pre-expanded particles is not preferable.

なお、上記水性媒体中に分散剤を添加しておくことが好ましい。このような分散剤としては、例えば、部分ケン化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。この内、無機系分散剤が好ましい。   In addition, it is preferable to add a dispersant to the aqueous medium. Examples of such a dispersant include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose, magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, and magnesium phosphate. And inorganic dispersants such as magnesium carbonate and magnesium oxide. Of these, inorganic dispersants are preferred.

無機系分散剤を用いる場合には、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等が挙げられる。   When an inorganic dispersant is used, it is preferable to use a surfactant in combination. Examples of such surfactants include dodecyl benzene sulfonic acid soda and α-olefin sulfonic acid soda.

ここで、スチレン系モノマーの含浸及び重合工程は、最初に含浸を行いさえすれば別々に行ってもよいが、同時に進行させることが好ましい。
同時に進行させる場合、ポリオレフィン系樹脂粒子中のスチレン系モノマーの含有量が0〜35重量%に維持されるようにスチレン系モノマーの添加速度を調整したり、重合温度を調子して、含浸及び重合することが好ましい。添加、含浸及び重合工程を連続で行う場合、含有量は、0.5〜35重量%であることが好ましく、0.5〜30重量%であることがより好ましい。
Here, the impregnation and polymerization steps of the styrenic monomer may be performed separately as long as the impregnation is performed first, but it is preferable to proceed simultaneously.
When proceeding simultaneously, impregnation and polymerization are carried out by adjusting the addition rate of the styrene monomer or adjusting the polymerization temperature so that the content of the styrene monomer in the polyolefin resin particles is maintained at 0 to 35% by weight. It is preferable to do. When the addition, impregnation and polymerization steps are carried out continuously, the content is preferably 0.5 to 35% by weight, more preferably 0.5 to 30% by weight.

なお、上記含有量を算出する場合のポリオレフィン系樹脂粒子とは、ポリオレフィン系樹脂と含浸されたスチレン系モノマー、更に含浸されて既に重合したポリスチレン系樹脂とから構成された粒子を意味する。   In addition, the polyolefin resin particle in the case of calculating said content means the particle | grains comprised from the polyolefin resin, the styrene-type monomer impregnated, and the polystyrene-type resin already impregnated and impregnated.

スチレン系モノマーの含有量が35重量%より多いと、後述する範囲内に攪拌所要動力(Pv)を調整しても、所定の範囲の吸光度比の予備発泡粒子を得られない場合があるため好ましくない。   When the content of the styrenic monomer is more than 35% by weight, pre-expanded particles having an absorbance ratio in a predetermined range may not be obtained even if the required power for stirring (Pv) is adjusted within the range described later. Absent.

本発明では、ポリオレフィン系樹脂粒子及びスチレン系モノマーを含めた水性媒体が所定条件下にて攪拌される。具体的には、ポリオレフィン系樹脂粒子、スチレン系モノマー及び、必要に応じて他の分散物及び溶解物を含めた水性媒体1m3 を攪拌させるのに要する攪拌所要動力(Pv)が、0.06〜0.8kw/m3 となるように調整された攪拌条件である。攪拌所要動力は、0.08〜0.7kw/m3 であることが好ましい。この攪拌所要動力は、反応容器内の内容物が攪拌により受けた、正味の単位体積当たりのエネルギーに対応する。 In the present invention, an aqueous medium containing polyolefin resin particles and a styrene monomer is stirred under predetermined conditions. Specifically, the power required for stirring (Pv) required to stir the aqueous medium 1m 3 including the polyolefin resin particles, the styrene monomer, and, if necessary, other dispersion and dissolved matter is 0.06. It is the stirring conditions adjusted so that it might become -0.8kw / m < 3 >. The power required for stirring is preferably 0.08 to 0.7 kw / m 3 . This required power for stirring corresponds to the net energy per unit volume received by the contents in the reaction vessel.

従来、水性媒体中でスチレン系モノマーをポリオレフィン系樹脂粒子に含浸させて重合させる場合、水性媒体の攪拌が着目されることはなく、水性媒体を十分攪拌しうる条件下で行われている。従来における攪拌所要動力は、1〜2kw/m3 程度であると推測される。これに対して、本発明の製造方法は、従来より攪拌所要動力を低くすることで、スチレン系モノマーの重合に伴って、ポリオレフィン系樹脂が改質樹脂粒子の表面近傍に局在化し、表面近傍でポリオレフィン系樹脂をリッチに含む改質樹脂粒子が得られることを意外にも見い出すことでなされている。 Conventionally, when a polyolefin resin particle is impregnated with a styrene monomer in an aqueous medium and polymerized, the stirring of the aqueous medium is not noted, and it is performed under conditions that allow the aqueous medium to be sufficiently stirred. The conventional stirring power is estimated to be about 1 to 2 kw / m 3 . On the other hand, in the production method of the present invention, by lowering the power required for stirring than before, the polyolefin resin is localized in the vicinity of the surface of the modified resin particles with the polymerization of the styrene monomer, and in the vicinity of the surface. It has been surprisingly found that modified resin particles rich in polyolefin-based resin can be obtained.

攪拌所要動力を所定範囲内に調整すると共に、ポリオレフィン系樹脂粒子中におけるスチレン系モノマーの含有量を所定量に調整することによって、スチレン系モノマーをポリオレフィン系樹脂粒子の中心部付近にまで充分に含浸させることが可能となる。その結果、ポリオレフィン系樹脂粒子の中心部にスチレン系モノマーを多く存在させた状態とし、ポリオレフィン系樹脂粒子の中心部から表面に向かってスチレン系モノマー量が徐々に減少した状態とすることができる。   By adjusting the power required for stirring to a predetermined range and adjusting the content of the styrene monomer in the polyolefin resin particles to a predetermined amount, the styrene monomer is sufficiently impregnated near the center of the polyolefin resin particles. It becomes possible to make it. As a result, it is possible to obtain a state in which a large amount of styrene monomer is present at the center of the polyolefin resin particles, and to gradually reduce the amount of styrene monomer from the center of the polyolefin resin particles toward the surface.

更に、ポリオレフィン系樹脂粒子中に生成したポリスチレン系樹脂に、スチレン系モノマーが逐次吸収されながら重合していくので、ポリオレフィン系樹脂粒子は、ポリスチレン系樹脂の生成に伴って、中心部に近づけば近づく程、ポリスチレン系樹脂が豊富な状態になりながら大きな径に成長していく。   Furthermore, since the styrene monomer is sequentially absorbed into the polystyrene resin produced in the polyolefin resin particles and polymerized, the polyolefin resin particles come closer to the center as the polystyrene resin is produced. The larger the diameter, the larger the polystyrene resin.

その結果、後述の要領で得られる予備発泡粒子は、その中心部ではポリスチレン系樹脂が高比率で含有されており、ポリスチレン系樹脂にポリオレフィン系樹脂が層状に分散している。一方、表面近傍部では、ポリオレフィン系樹脂が高比率で含まれかつポリスチレン系樹脂がその割合を粒子表面に近づくにつれて徐々に減少させつつ小さくなりながらポリオレフィン系樹脂中に微分散した状態となっており、粒子表面は、ポリスチレン系樹脂が殆どなくポリオレフィン系樹脂がより高い比率で存在した状態となっている。   As a result, the pre-expanded particles obtained in the manner described below contain a high percentage of polystyrene resin at the center, and the polyolefin resin is dispersed in layers in the polystyrene resin. On the other hand, in the vicinity of the surface, the polyolefin resin is contained in a high ratio, and the polystyrene resin is in a state of being finely dispersed in the polyolefin resin while gradually decreasing and decreasing the ratio as it approaches the particle surface. The particle surface is in a state where there is almost no polystyrene resin and polyolefin resin is present at a higher ratio.

攪拌所要動力が0.06kw/m3 より低いと、水性媒体中におけるスチレン系モノマーの分散が不充分となって、スチレン系モノマーをポリオレフィン系樹脂粒子の中心部に充分に含浸させることが困難である。そのため、ポリオレフィン系樹脂粒子の表面近傍部においてスチレン系モノマーの重合が進行してしまって、得られる改質樹脂粒子の表面近傍部におけるポリオレフィン系樹脂の組成割合が減少することとなる。その結果、改質樹脂粒子を発泡させて得られる発泡成形体の耐薬品性及び耐衝撃性が低下することとなる。 If the power required for stirring is lower than 0.06 kw / m 3, the dispersion of the styrene monomer in the aqueous medium becomes insufficient, and it is difficult to sufficiently impregnate the styrene monomer in the center of the polyolefin resin particles. is there. Therefore, the polymerization of the styrene monomer proceeds in the vicinity of the surface of the polyolefin resin particles, and the composition ratio of the polyolefin resin in the vicinity of the surface of the resulting modified resin particles decreases. As a result, the chemical resistance and impact resistance of the foamed molded article obtained by foaming the modified resin particles are lowered.

逆に、攪拌所要動力が0.8kw/m3 より高いと、改質樹脂粒子中でのスチレン系モノマーとポリオレフィン系樹脂の混合が進み、表面近傍部にポリオレフィン系樹脂をリッチに含む改質樹脂粒子は得難くなる。加えて、スチレン系モノマーを含浸して軟化したポリオレフィン系樹脂粒子が偏平状に変形してしまう場合がある。その場合、充分な二次発泡力を有する予備発泡粒子を得ることが困難となる。 On the other hand, when the power required for stirring is higher than 0.8 kw / m 3 , the mixing of the styrene monomer and the polyolefin resin in the modified resin particles proceeds, and the modified resin containing the polyolefin resin rich in the vicinity of the surface Particles are difficult to obtain. In addition, the polyolefin resin particles impregnated with the styrene monomer and softened may be deformed into a flat shape. In that case, it becomes difficult to obtain pre-expanded particles having sufficient secondary foaming power.

ここで、攪拌所要動力は下記要領で測定したものをいう。
即ち、ポリオレフィン系樹脂粒子、スチレン系モノマー及び必要に応じて他の分散物並びに溶解物を含有する水性媒体を重合装置の重合容器内に供給し、攪拌翼を所定の回転数で回転させて水性媒体を攪拌する。このとき、攪拌翼を回転させるのに必要な回転駆動負荷を電流値A1 (アンペア)として計測する。この電流値A1 に実効電圧(ボルト)を乗じた値をP1 (ワット)とする。
Here, the power required for stirring refers to that measured in the following manner.
That is, an aqueous medium containing polyolefin resin particles, styrene monomers, and other dispersions and dissolved substances as necessary is supplied into a polymerization vessel of a polymerization apparatus, and a stirring blade is rotated at a predetermined rotational speed to form an aqueous medium. Stir the medium. At this time, the rotational driving load necessary to rotate the stirring blade is measured as a current value A 1 (ampere). A value obtained by multiplying the current value A 1 by an effective voltage (volts) is defined as P 1 (watts).

そして、重合装置の攪拌翼を重合容器内が空の状態で、上記と同一回転数で回転させ、攪拌翼を回転させるのに必要な回転駆動負荷を電流値A2 (アンペア)として計測する。この電流値A2 に実効電圧(ボルト)を乗じた値をP2 (ワット)とし、下記式2によって攪拌所要動力を算出できる。なお、V(m3 )は、ポリオレフィン系樹脂粒子、スチレン系モノマー及び必要に応じて他の分散物並びに溶解物を含めた水性媒体全体の体積である。
攪拌所要動力(Pv)=(P1 −P2 )/V・・・式2
Then, the stirring blade of the polymerization apparatus is rotated at the same rotation speed as described above in an empty state of the polymerization vessel, and the rotational driving load required to rotate the stirring blade is measured as a current value A 2 (ampere). The value obtained by multiplying the current value A 2 by the effective voltage (volt) is P 2 (watts), and the required power for stirring can be calculated by the following equation 2. V (m 3 ) is the volume of the entire aqueous medium including the polyolefin resin particles, the styrene monomer, and other dispersions and dissolved substances as required.
Power required for stirring (Pv) = (P 1 −P 2 ) / V Equation 2

重合容器の形状及び構造としては、従来からスチレン系モノマーの重合に用いられているものであれば、特に限定されない。
また、攪拌翼は、攪拌所要動力を所定の範囲に設定可能であれば、特に限定されない。具体的には、V型パドル翼、傾斜パドル翼、平パドル翼、ファードラー翼、プルマージン翼等のパドル翼、タービン翼、ファンタービン翼等のタービン翼、マリンプロペラ翼のようなプロペラ翼等が挙げられる。これら攪拌翼の内、パドル翼が好ましく、V型パドル翼、傾斜パドル翼、平パドル翼、ファードラー翼、プルマージン翼がより好ましい。攪拌翼は、単段翼であっても多段翼であってもよい。
また、攪拌翼の大きさについても、攪拌所要動力を所定の範囲に設定可能であれば、特に限定されない。
更に、重合容器に邪魔板(バッフル)を設けてもよい。
The shape and structure of the polymerization vessel are not particularly limited as long as they are conventionally used for the polymerization of styrene monomers.
The stirring blade is not particularly limited as long as the power required for stirring can be set within a predetermined range. Specifically, paddle blades such as V-type paddle blades, inclined paddle blades, flat paddle blades, fiddler blades, pull margin blades, turbine blades such as turbine blades and fan turbine blades, propeller blades such as marine propeller blades, etc. Can be mentioned. Of these stirring blades, paddle blades are preferable, and V-type paddle blades, inclined paddle blades, flat paddle blades, Ferdler blades, and pull margin blades are more preferable. The stirring blade may be a single-stage blade or a multi-stage blade.
Also, the size of the stirring blade is not particularly limited as long as the required power for stirring can be set within a predetermined range.
Furthermore, you may provide a baffle plate (baffle) in the superposition | polymerization container.

また、重合開始剤としては、スチレン系モノマーの重合に汎用されている重合開始剤を使用できる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−アミルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシベンゾエート、t−ブチルパーオキシビバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,2−ジ−t−ブチルパーオキシブタン、ジクミルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。なお、重合開始剤は、単独で用いられても併用されてもよい。   Moreover, as a polymerization initiator, the polymerization initiator currently used widely for superposition | polymerization of a styrene-type monomer can be used. For example, benzoyl peroxide, lauroyl peroxide, t-amyl peroxy octoate, t-butyl peroxybenzoate, t-amyl peroxybenzoate, t-butyl peroxybivalate, t-butyl peroxyisopropyl carbonate, t- Butyl peroxyacetate, t-butylperoxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t-butylperoxybutane, dicumyl peroxide And an azo compound such as azobisisobutyronitrile and azobisdimethylvaleronitrile. In addition, a polymerization initiator may be used independently or may be used together.

上記重合開始剤の水性媒体中への添加要領としては、特に限定されないが、下記要領で行なうことが好ましい。即ち、スチレン系モノマーの使用量が使用総量の90重量%に達するまでに、重合開始剤を、ポリオレフィン系樹脂粒子及びスチレン系モノマーの使用総量の0.02〜2.0重量%添加することが好ましい。重合開始剤は、より好ましくは使用総量の85重量%、特に80重量%に達するまでに添加することが好ましい。また、より好ましい重合開始剤の添加量は、使用総量に対して、0.10〜1.50重量%である。   The method for adding the polymerization initiator to the aqueous medium is not particularly limited, but is preferably performed according to the following procedure. That is, the polymerization initiator may be added in an amount of 0.02 to 2.0% by weight of the total amount of polyolefin resin particles and styrene monomer used until the amount of styrene monomer used reaches 90% by weight of the total amount used. preferable. The polymerization initiator is more preferably added until it reaches 85% by weight, particularly 80% by weight of the total amount used. Moreover, the more preferable addition amount of a polymerization initiator is 0.10-1.50 weight% with respect to the total amount used.

上記添加要領によれば、ポリオレフィン系樹脂粒子中におけるスチレン系モノマーの重合速度を向上させて、得られる改質樹脂粒子の表面近傍部におけるポリオレフィン系樹脂の組成割合を多くすることができる。その結果、改質樹脂粒子を発泡成形して得られる発泡成形体の強度を向上できる。   According to the said addition point, the polymerization rate of the styrene-type monomer in polyolefin-type resin particle can be improved, and the composition ratio of polyolefin-type resin in the surface vicinity part of the modified resin particle obtained can be increased. As a result, it is possible to improve the strength of the foam molded body obtained by foam molding the modified resin particles.

更に、重合開始剤の添加は、上記所定量まで、重合開始剤を含有するスチレン系モノマーを介して行うことが好ましい。残りのスチレン系モノマーは、重合開始剤を含まないモノマーを使用できる。   Furthermore, the addition of the polymerization initiator is preferably performed up to the predetermined amount via a styrene monomer containing the polymerization initiator. As the remaining styrenic monomer, a monomer containing no polymerization initiator can be used.

重合開始剤を含有するスチレン系モノマーを使用する理由としては、以下の理由が考えられる。
即ち、重合開始剤をスチレン系モノマーに含有させた上でポリオレフィン系樹脂粒子中に吸収させることによって、重合開始剤をスチレン系モノマーと共にポリオレフィン系樹脂粒子の中心部に効果的に含浸させられる。そのため、スチレン系モノマーの重合工程の早い段階から、ポリオレフィン系樹脂粒子の中心部に、優先的にスチレン系モノマーの重合に必要な量の重合開始剤を供給することができる。その結果、ポリオレフィン系樹脂粒子の中心部において優先的にスチレン系モノマーを重合させることができる。
The reason why the styrene monomer containing the polymerization initiator is used is considered as follows.
That is, by allowing the styrene monomer to contain the polymerization initiator and absorbing it in the polyolefin resin particles, the polymerization initiator and the styrene monomer can be effectively impregnated in the center of the polyolefin resin particles. Therefore, from the early stage of the styrene monomer polymerization process, a polymerization initiator in an amount necessary for the polymerization of the styrene monomer can be preferentially supplied to the central part of the polyolefin resin particles. As a result, the styrene monomer can be preferentially polymerized at the center of the polyolefin resin particles.

次に、重合開始剤を含有しないスチレン系モノマーを水性媒体中に添加すると、このスチレン系モノマーがポリオレフィン系樹脂粒子の中心部に形成されているポリスチレン系樹脂に逐次、吸収されながら、ポリオレフィン系樹脂粒子の中心部に豊富に存在する重合開始剤のもとで円滑に重合される。そのため、得られる改質樹脂粒子は、その表面付近より中心部で、ポリスチレン系樹脂が豊富な状態となる。   Next, when a styrene monomer that does not contain a polymerization initiator is added to the aqueous medium, the polyolefin resin is sequentially absorbed by the polystyrene resin formed at the center of the polyolefin resin particles. Polymerization is smoothly performed under a polymerization initiator that is abundant in the center of the particle. Therefore, the resulting modified resin particles are in a state of being rich in polystyrene resin in the central portion from near the surface.

重合開始剤を含有しないスチレン系モノマーの添加量は、スチレン系モノマーの使用総量の10〜60重量%が好ましく、15〜60重量%がより好ましく、20〜55重量%が特に好ましい。添加量が10重量%より少ないと、改質樹脂粒子の表面近傍部におけるポリスチレン系樹脂の比率が大きくなる場合があるので好ましくない。この場合、改質樹脂粒子から得られる予備発泡粒子を二次発泡させた発泡成形体の耐衝撃性及び耐薬品性が低下することがある。一方、60重量%より多いと、スチレン系モノマーの重合速度が低下して、改質樹脂粒子中にスチレン系モノマーが多量に残留することがあるので好ましくない。   The amount of the styrene monomer not containing the polymerization initiator is preferably 10 to 60% by weight, more preferably 15 to 60% by weight, and particularly preferably 20 to 55% by weight of the total amount of the styrene monomer used. If the addition amount is less than 10% by weight, the ratio of the polystyrene resin in the vicinity of the surface of the modified resin particles may increase, which is not preferable. In this case, the impact resistance and chemical resistance of the foamed molded product obtained by secondary foaming of pre-expanded particles obtained from the modified resin particles may decrease. On the other hand, when the amount is more than 60% by weight, the polymerization rate of the styrene monomer is decreased, and a large amount of the styrene monomer may remain in the modified resin particles.

重合開始剤を含有するスチレン系モノマーを水性媒体中に添加する方法としては、種々の方法が挙げられる。例えば、
(1)重合容器とは別の容器内でスチレン系モノマーに重合開始剤を溶解、含有させ、このスチレン系モノマーを重合容器内の攪拌状態の水性媒体に供給する方法、
(2)重合開始剤をスチレン系モノマーの一部、溶剤または可塑剤に溶解させて溶液を作製する。この溶液と、所定量のスチレン系モノマーとを重合容器内の攪拌状態の水性媒体に同時に供給する方法、
(3)重合開始剤を水性媒体に分散させた分散液を作製する。この分散液とスチレン系モノマーとを重合容器内の攪拌状態の水性媒体に同時に供給する方法
等が挙げられる。
Various methods are mentioned as a method of adding the styrene monomer containing a polymerization initiator to an aqueous medium. For example,
(1) A method in which a polymerization initiator is dissolved and contained in a styrene monomer in a container different from the polymerization container, and the styrene monomer is supplied to an agitated aqueous medium in the polymerization container.
(2) A polymerization initiator is dissolved in a part of a styrene monomer, a solvent or a plasticizer to prepare a solution. A method of simultaneously supplying this solution and a predetermined amount of a styrenic monomer to a stirred aqueous medium in a polymerization vessel;
(3) A dispersion in which a polymerization initiator is dispersed in an aqueous medium is prepared. Examples thereof include a method of simultaneously supplying the dispersion and the styrene monomer to the stirred aqueous medium in the polymerization vessel.

また、スチレン系モノマーをポリオレフィン系樹脂粒子中にて重合させる際の水性媒体の温度は、特に限定されないが、ポリオレフィン系樹脂の融点の−30〜+10℃の範囲であることが好ましい。より具体的には、70〜140℃が好ましく、80〜130℃がより好ましい。更に、水性媒体の温度は、スチレン系モノマーの重合開始から終了までの間、一定温度であってもよいし、段階的に上昇させてもよい。水性媒体の温度を上昇させる場合には、温度を段階的に0.1〜2℃/分の昇温速度で上昇させることが好ましい。   Further, the temperature of the aqueous medium when polymerizing the styrene monomer in the polyolefin resin particles is not particularly limited, but is preferably in the range of −30 to + 10 ° C. of the melting point of the polyolefin resin. More specifically, 70-140 degreeC is preferable and 80-130 degreeC is more preferable. Furthermore, the temperature of the aqueous medium may be a constant temperature from the start to the end of the polymerization of the styrenic monomer, or may be increased stepwise. When raising the temperature of the aqueous medium, it is preferable to raise the temperature stepwise at a rate of temperature rise of 0.1 to 2 ° C./min.

更に、架橋したポリオレフィン系樹脂からなる粒子を使用する場合、架橋は、スチレン系モノマーを含浸させる前に予め行なっておいてもよいし、ポリオレフィン系樹脂粒子中にスチレン系モノマーを含浸、重合させている間に行なってもよいし、ポリオレフィン系樹脂粒子中にスチレン系モノマーを含浸、重合させた後に行なってもよい。   Furthermore, when using particles comprising a crosslinked polyolefin resin, the crosslinking may be performed in advance before impregnating the styrene monomer, or by impregnating and polymerizing the styrene monomer in the polyolefin resin particles. It may be performed while the polyolefin resin particles are impregnated with a styrene monomer and polymerized.

ポリオレフィン系樹脂の架橋に用いられる架橋剤としては、例えば、2,2−ジ−t−ブチルパーオキシブタン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン等の有機過酸化物が挙げられる。なお、架橋剤は、単独でも二種以上が併用してもよい。また、架橋剤の使用量は、通常、ポリオレフィン系樹脂粒子100重量部に対して0.05〜1.0重量部が好ましい。   Examples of the crosslinking agent used for crosslinking the polyolefin resin include 2,2-di-t-butylperoxybutane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxy. An organic peroxide such as hexane may be mentioned. In addition, a crosslinking agent may be individual or may use 2 or more types together. Moreover, the usage-amount of a crosslinking agent has preferable 0.05-1.0 weight part normally with respect to 100 weight part of polyolefin resin particles.

架橋剤を添加する方法としては、例えば、架橋剤をポリオレフィン系樹脂に直接添加する方法、溶剤、可塑剤またはスチレン系モノマーに架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系モノマーに架橋剤を溶解させた上で添加する方法が好ましい。   As a method for adding a crosslinking agent, for example, a method in which a crosslinking agent is directly added to a polyolefin resin, a method in which a crosslinking agent is dissolved in a solvent, a plasticizer, or a styrene monomer, and a crosslinking agent is dispersed in water. For example, a method of adding after adding them. Among these, the method of adding after dissolving a crosslinking agent in a styrene-type monomer is preferable.

改質樹脂粒子には発泡剤を含浸させる(工程(b))。改質樹脂粒子中に発泡剤を含浸させる方法は、発泡剤の種類に応じて適宜変更可能である。例えば、改質樹脂粒子が分散している水性媒体中に発泡剤を圧入して改質樹脂粒子に発泡剤を含浸させる方法、改質樹脂粒子を回転混合機に供給し、この回転混合機内に発泡剤を圧入して改質樹脂粒子に発泡剤を含浸させる方法が挙げられる。なお、改質樹脂粒子に発泡剤を含浸させる温度は、通常、50〜140℃である。   The modified resin particles are impregnated with a foaming agent (step (b)). The method of impregnating the modified resin particles with the foaming agent can be appropriately changed according to the type of the foaming agent. For example, a method in which a foaming agent is pressed into an aqueous medium in which the modified resin particles are dispersed to impregnate the modified resin particles with the foaming agent, the modified resin particles are supplied to a rotary mixer, Examples thereof include a method in which a foaming agent is injected and the modified resin particles are impregnated with the foaming agent. In addition, the temperature which makes a modified resin particle impregnate a foaming agent is 50-140 degreeC normally.

ここで、発泡剤としては、例えば、プロパン、ブタン、ペンタン、ジメチルエーテル等の揮発性発泡剤が挙げられる。発泡剤は、単独で用いられても併用されてもよい。発泡剤の添加量としては、改質樹脂粒子100重量部に対して5〜25重量部が好ましい。   Here, examples of the foaming agent include volatile foaming agents such as propane, butane, pentane, and dimethyl ether. A foaming agent may be used independently or may be used together. The addition amount of the foaming agent is preferably 5 to 25 parts by weight with respect to 100 parts by weight of the modified resin particles.

更に、発泡助剤を発泡剤と共に用いてもよい。このような発泡助剤としては、例えば、トルエン、キシレン、エチルベンゼン、シクロヘキサン、D−リモネン等の溶剤、ジイソブチルアジペート、ジアセチル化モノラウレート、やし油等の可塑剤(高沸点溶剤)が挙げられる。なお、発泡助剤の添加量としては、改質樹脂粒子100重量部に対して0.1〜2.5重量部が好ましい。   Furthermore, you may use a foaming adjuvant with a foaming agent. Examples of such foaming aids include solvents such as toluene, xylene, ethylbenzene, cyclohexane, and D-limonene, and plasticizers (high boiling point solvents) such as diisobutyl adipate, diacetylated monolaurate, and coconut oil. . In addition, as addition amount of a foaming adjuvant, 0.1-2.5 weight part is preferable with respect to 100 weight part of modified resin particles.

また、改質樹脂粒子には、結合防止剤、融着促進剤、帯電防止剤、展着剤等の表面処理剤を添加してもよい。
結合防止剤は、改質樹脂粒子を予備発泡させる際の予備発泡粒子同士の合着を防止する役割を果たす。ここで、合着とは、予備発泡粒子の複数個が合一して一体化することをいう。具体例としては、タルク、炭酸カルシウム、ステアリン酸亜鉛、水酸化アルミニウム、エチレンビスステアリン酸アミド、第三リン酸カルシウム、ジメチルポリシロキサン等が挙げられる。
Further, a surface treatment agent such as a binding inhibitor, a fusion accelerator, an antistatic agent, or a spreading agent may be added to the modified resin particles.
The anti-bonding agent plays a role of preventing coalescence of the pre-expanded particles when the modified resin particles are pre-expanded. Here, coalescence means that a plurality of pre-expanded particles are united and integrated. Specific examples include talc, calcium carbonate, zinc stearate, aluminum hydroxide, ethylene bis stearamide, tricalcium phosphate, dimethylpolysiloxane and the like.

融着促進剤は、予備発泡粒子を二次発泡成形する際の予備発泡粒子同士の融着を促進させる役割を果たす。具体例としては、ステアリン酸、ステアリン酸トリグリセリド、ヒドロキシステアリン酸トリグリセリド、ステアリン酸ソルビタンエステル等が挙げられる。   The fusion accelerator plays a role of promoting fusion between the pre-foamed particles when the pre-foamed particles are subjected to secondary foam molding. Specific examples include stearic acid, stearic acid triglyceride, hydroxystearic acid triglyceride, sorbitan stearate, and the like.

帯電防止剤としては、ポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド等が挙げられる。
展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイル等が挙げられる。
Examples of the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride.
Examples of the spreading agent include polybutene, polyethylene glycol, and silicone oil.

なお、上記表面処理剤の総添加量は、改質樹脂粒子100重量部に対して0.01〜2.0重量部が好ましい。   The total amount of the surface treatment agent is preferably 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the modified resin particles.

揮発性発泡剤を含浸させた改質樹脂粒子を水蒸気等の加熱媒体を用いて加熱して所定の嵩密度に予備発泡させれば、予備発泡粒子を得ることができる(工程(c))。   If the modified resin particles impregnated with the volatile foaming agent are heated using a heating medium such as water vapor and pre-foamed to a predetermined bulk density, pre-foamed particles can be obtained (step (c)).

更に、この予備発泡粒子を成形機の型内に充填し、加熱して二次発泡させ、予備発泡粒子同士を融着一体化させることによって所望形状を有する発泡成形体を得ることができる。上記成形機としては、ポリスチレン系樹脂予備発泡粒子から発泡成形体を製造する際に用いられる成形機を用いることができる。   Furthermore, the pre-expanded particles are filled in a mold of a molding machine, heated and subjected to secondary foaming, and the pre-expanded particles are fused and integrated with each other to obtain a foam-molded article having a desired shape. As said molding machine, the molding machine used when manufacturing a foaming molding from a polystyrene-type resin pre-expanded particle can be used.

上記予備発泡粒子は、上述したように、その中心部ではポリスチレン系樹脂を高比率で含有し、表面近傍部ではポリオレフィン系樹脂を高比率で含有している。   As described above, the pre-expanded particles contain a high percentage of polystyrene resin at the center and a high percentage of polyolefin resin near the surface.

従って、予備発泡粒子を二次発泡させる際、その表面に多量に含まれているポリオレフィン系樹脂によって予備発泡粒子同士を強固に熱融着一体化させることができる。加えて、予備発泡粒子の中心に多量に含まれているポリスチレン系樹脂に起因した優れた発泡成形性をも発現させることができる。   Accordingly, when the pre-expanded particles are subjected to secondary foaming, the pre-expanded particles can be strongly heat-bonded and integrated with each other by the polyolefin resin contained in a large amount on the surface thereof. In addition, the excellent foam moldability resulting from the polystyrene-based resin contained in a large amount at the center of the pre-expanded particles can be exhibited.

得られた発泡成形体の表面全面は、予備発泡粒子の表面近傍部のポリオレフィン系樹脂に由来するポリオレフィン系樹脂が高比率で含有されている。換言すれば、発泡成形体は、ポリオレフィン系樹脂を高比率で含有した表面を有していることから、優れた耐薬品性及び耐衝撃性を備えている。   The entire surface of the obtained foamed molded article contains a high proportion of polyolefin resin derived from the polyolefin resin in the vicinity of the surface of the pre-foamed particles. In other words, the foam-molded article has excellent chemical resistance and impact resistance because it has a surface containing a high percentage of polyolefin resin.

しかも、発泡成形体を構成する各発泡粒子の内部は、予備発泡粒子の中心部が発泡してなるものであり、ポリスチレン系樹脂を高比率で含有しているから、発泡成形体は優れた剛性をも備えている。   Moreover, the inside of each expanded particle constituting the expanded molded body is formed by foaming the central part of the pre-expanded particle and contains a high proportion of polystyrene resin. Is also provided.

上記のようにして得られた発泡成形体は、車輛用バンパーの芯材、ドア内装緩衝材等の車輛用緩衝材、電子部品、各種工業資材、食品等の搬送容器等の各種用途に用いることができる。特に、車輛用緩衝材として好適に用いることができる。   The foamed molded body obtained as described above is used for various purposes such as vehicle bumper core materials, vehicle cushioning materials such as door interior cushioning materials, electronic parts, various industrial materials, food containers and the like. Can do. In particular, it can be suitably used as a vehicle cushioning material.

以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。なお、以下の実施例における嵩密度、吸光度比、スチレン系モノマーの最大含有量、ポリスチレン系樹脂のGPC測定によるz平均分子量、融着率、圧縮強度、耐衝撃性、耐薬品性の測定法を下記する。
(スチレン系モノマーの最大含有量)
スチレン系モノマーを含浸されて重合しつつあるポリオレフィン系樹脂粒子の一部を重合容器内から取り出して水性媒体と分離した後、ポリオレフィン系樹脂粒子表面の水分をガーゼで除去して測定用試料とした。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the following examples, the bulk density, absorbance ratio, maximum content of styrene monomer, z average molecular weight by GPC measurement of polystyrene resin, fusion rate, compressive strength, impact resistance, chemical resistance are measured. Below.
(Maximum content of styrene monomer)
A portion of the polyolefin resin particles impregnated with styrene monomer and polymerizing is taken out from the polymerization vessel and separated from the aqueous medium, and then the moisture on the surface of the polyolefin resin particles is removed with gauze to obtain a measurement sample. .

そして、測定用試料から0.08gを精秤し、トルエン40ミリリットル中に24時間浸漬してスチレン系モノマーを抽出した。このスチレン系モノマーを抽出した溶液に、ウイス試薬10ミリリットル、5重量%ヨウ化カリウム水溶液30ミリリットル及び1重量%でんぷん水溶液約30ミリリットルを入れ、N/40チオ硫酸ナトリウム溶液で滴定して試料の滴定数(ミリリットル)とした。なお、ウイス試薬は、氷酢酸2リットルにヨウ素8.7g及び三塩化ヨウ素7.9gを溶解させることによって作製した。   Then, 0.08 g was precisely weighed from the measurement sample and immersed in 40 ml of toluene for 24 hours to extract the styrene monomer. Titrate the sample by adding 10 ml of Wis reagent, 30 ml of 5 wt% potassium iodide aqueous solution and about 30 ml of 1 wt% starch aqueous solution to the styrene monomer extracted solution, and titrating with N / 40 sodium thiosulfate solution. A number (milliliter). The Wies reagent was prepared by dissolving 8.7 g of iodine and 7.9 g of iodine trichloride in 2 liters of glacial acetic acid.

また、測定用試料をトルエン中に浸漬させることなく上記と同様の要領で滴定を行ってブランクの滴定数(ミリリットル)とした。そして、ポリオレフィン系樹脂粒子中のスチレン系モノマーの含有量を下記式に基づいて算出した。   Further, the measurement sample was titrated in the same manner as described above without immersing the sample in toluene to obtain a blank titer (milliliter). And content of the styrene-type monomer in polyolefin-type resin particle was computed based on the following formula.

スチレン系モノマーの含有量(重量%)=0.1322×(ブランクの滴定数−試料滴定数)/測定用試料の重量(g)   Styrenic monomer content (% by weight) = 0.1322 × (blank drop constant−sample drop constant) / weight of measurement sample (g)

上述の測定をスチレン系モノマーを水性媒体中に添加し始めてから20分毎に行い、最も多かったスチレン系モノマーの含有量をスチレン系モノマーの最大含有量とした。   The above measurement was performed every 20 minutes from the start of adding the styrenic monomer to the aqueous medium, and the content of the most styrenic monomer was defined as the maximum content of the styrenic monomer.

(嵩密度)
予備発泡粒子の嵩密度は下記の要領で測定する。
まず、予備発泡粒子を500cm3 メスシリンダ内に500cm3 の目盛りまで充填する。
(The bulk density)
The bulk density of the pre-expanded particles is measured as follows.
First, pre-expanded particles are filled in a 500 cm 3 graduated cylinder to a scale of 500 cm 3 .

なお、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cm3 の目盛りに達しているものがあれば、その時点で予備発泡粒子のメスシリンダ内への充填を終了する。 When the graduated cylinder is visually observed from the horizontal direction and any pre-expanded particles reach a scale of 500 cm 3 , the filling of the pre-expanded particles into the graduated cylinder is terminated at that point.

次に、メスシリンダ内に充填した予備発泡粒子の重量を少数点以下2位の有効数字で秤量し、その重量をW(g)とする。そして、下記式により予備発泡粒子の嵩密度を算出する。
嵩密度(g/cm3 )=W/500
Next, the weight of the pre-expanded particles filled in the measuring cylinder is weighed with two significant figures after the decimal point, and the weight is defined as W (g). Then, the bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500

(吸光度比)
吸光度比(D698 /D2850)は下記の要領で測定される。即ち、無作為に選択した10個の各予備発泡粒子の表面をATR法赤外分光分析により粒子表面分析を行なって赤外線吸収スペクトルを得る。各赤外線吸収スペクトルから吸光度比(D698 /D2850)をそれぞれ算出し、最小の吸光度比と最大の吸光度比を除外する。そして、残余の8個の吸光度比の相加平均を吸光度比(D698 /D2850)とする。なお、吸光度比(D698 /D2850)は、例えば、Nicolet社から商品名「フーリエ変換赤外分光光度計 MAGMA560」で販売されている測定装置を用いて測定する。
(Absorbance ratio)
The absorbance ratio (D 698 / D 2850 ) is measured as follows. That is, the surface of each of 10 randomly selected pre-expanded particles is subjected to particle surface analysis by ATR infrared spectroscopy to obtain an infrared absorption spectrum. An absorbance ratio (D 698 / D 2850 ) is calculated from each infrared absorption spectrum, and the minimum absorbance ratio and the maximum absorbance ratio are excluded. The arithmetic average of the remaining 8 absorbance ratios is taken as the absorbance ratio (D 698 / D 2850 ). The absorbance ratio (D 698 / D 2850 ) is measured using, for example, a measuring apparatus sold by Nicolet under the trade name “Fourier transform infrared spectrophotometer MAGMA 560”.

(ポリスチレン系樹脂のz平均分子量)
予備発泡粒子を約60mg採取し、各予備発泡粒子をカッターを用いて二分割した上で常温にてクロロホルム10ミリリットルに24時間浸漬した。
(Z average molecular weight of polystyrene resin)
About 60 mg of pre-expanded particles were collected, and each pre-expanded particle was divided into two using a cutter, and then immersed in 10 ml of chloroform at room temperature for 24 hours.

しかる後、クロロホルムを非水系0.45・mクロマトディスクで濾過してGPC(ゲルパーミュエーションクロマトグラフ)を用いてポリスチレン換算z平均分子量を測定した。   Thereafter, chloroform was filtered through a non-aqueous 0.45 · m chromatographic disk, and the z-average molecular weight in terms of polystyrene was measured using GPC (gel permeation chromatograph).

測定装置:Water 社製 商品名「HPLC Detector484,Pump510」
測定条件
カラム:昭和電工社製 商品名「Shodex GPC K−806L(直径8.0×300mm)」2本
カラム温度:40℃、移動相:クロロホルム、移動相流量:1.2ミリリットル/分
注入・ポンプ温度:室温、測定時間:25分、検出:紫外線254nm
注入量:50マイクロリットル
検量線用標準ポリスチレン
昭和電工社製 商品名「Shodex」分子量:1030000
東ソー社製 分子量:5480000,3840000,355000,102000,37900,9100,2630,495
Measuring apparatus: Product name “HPLC Detector 484, Pump 510” manufactured by Water
Measurement conditions Column: Showa Denko Co., Ltd., trade name “Shodex GPC K-806L (diameter 8.0 × 300 mm)” Column temperature: 40 ° C., mobile phase: chloroform, mobile phase flow rate: 1.2 ml / min Pump temperature: room temperature, measurement time: 25 minutes, detection: ultraviolet 254 nm
Injection amount: 50 microliters Standard polystyrene for calibration curve Product name “Shodex” molecular weight: 1030000 made by Showa Denko KK
Tosoh Corporation molecular weight: 5480000, 3840000, 355000, 102000, 37900, 9100, 2630, 495

(融着率)
縦400mm×横300mm×高さ50mmの直方体形状の発泡成形体の表面にカッターで横方向に長さ300mm、深さ5mmの切り込み線を入れ、この切り込み線に沿って発泡成形体を二分割した。そして、発泡成形体の分割面において、発泡粒子内で破断している発泡粒子数(a)と、発泡粒子間の界面で破断している発泡粒子数(b)を測定し、下記式に基づいて融着率を算出した。
融着率(%)=100×(a)/〔(a)+(b)〕
(Fusion rate)
A 300 mm long and 5 mm deep score line was placed on the surface of a rectangular parallelepiped foam molded body having a length of 400 mm × width of 300 mm × height of 50 mm with a cutter, and the foam molded body was divided into two along this score line. . Then, on the divided surface of the foam molded body, the number of expanded particles (a) broken in the expanded particles and the number of expanded particles (b) broken at the interface between the expanded particles were measured, and based on the following formula: The fusing rate was calculated.
Fusing rate (%) = 100 × (a) / [(a) + (b)]

(圧縮強度)
発泡成形体から縦50mm×横50mm×厚み25mmの平面長方形状の試験片を切り出し、この試験片の5%圧縮強度をJIS K6767に準拠して測定した。なお、圧縮速度を10mm/分とした。
(Compressive strength)
A flat rectangular test piece having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm was cut out from the foamed molded article, and the 5% compressive strength of the test piece was measured in accordance with JIS K6767. The compression speed was 10 mm / min.

(耐衝撃性)
発泡成形体から縦215mm×横40mm×厚み20mmの平面長方形状の試験片を切り出した。そして、JIS K7211に準拠して、150mmの間隔を存して配設された一対の支点間に試験片を架設して321gの鋼球を落とし、落球衝撃値、即ち、50%破壊高さを下記式に基づいて算出した。但し、剛球の最大高さは120cmとした。
(Impact resistance)
A flat rectangular test piece having a length of 215 mm, a width of 40 mm, and a thickness of 20 mm was cut out from the foam molded article. Then, in accordance with JIS K7211, a test piece was installed between a pair of fulcrums arranged at intervals of 150 mm, and a steel ball of 321 g was dropped, and a falling ball impact value, that is, a 50% breaking height was obtained. It calculated based on the following formula. However, the maximum height of the hard sphere was 120 cm.

50%破壊高さH50=Hi+d〔Σ(i×ni)/N±0.5〕
但し、H50:50%破壊高さ(cm)
Hi:高さ水準(i)が0のときの試験片の高さ(cm)であり、
試験片が破壊することが予測される高さ
d:試験片の高さを上下させるときの高さ間隔(cm)
i:Hiのときを0とし、1つずつ増減する高さ水準
(i=・・・−3、−2、−1、0、1、2、3、・・・)
ni:各水準において破壊した(又は破壊しなかった)試験片の数
N:破壊した(又は破壊しなかった)試験片の総数( N=Σni)
何れか多い方のデータを使用する
なお、同数の場合はどちらを採用してもよい
±0.5:破壊したデータを使用する時は負を、
破壊しなかったデータを使用する時は正をとる
50% fracture height H 50 = Hi + d [Σ (i × ni) /N±0.5]
However, H 50 : 50% fracture height (cm)
Hi: the height (cm) of the test piece when the height level (i) is 0,
Height at which the specimen is expected to break d: Height interval (cm) when raising and lowering the height of the specimen
i: Height level when Hi is 0, and the height level increases or decreases by 1
(i = ...- 3, -2, -1, 0, 1, 2, 3, ...)
ni: number of test pieces destroyed (or not destroyed) at each level N: total number of test pieces destroyed (or not destroyed) (N = Σni)
Use whichever data is greater
In case of the same number, either one may be adopted. ± 0.5: Negative when using destroyed data,
Take positive when using unbroken data

(耐薬品性)
発泡成形体から縦100mm×横100mm×厚み20mmの平面長方形状の板状試験片を3枚切り出し、23℃、湿度50%の条件で24時間放置した。なお、試験片の上面全面が発泡成形体の表面から形成されるように試験片を発泡成形体から切り出した。
(chemical resistance)
Three flat rectangular plate-shaped test pieces having a length of 100 mm, a width of 100 mm, and a thickness of 20 mm were cut out from the foamed molded article and allowed to stand for 24 hours at 23 ° C. and a humidity of 50%. The test piece was cut out from the foam molded body so that the entire upper surface of the test piece was formed from the surface of the foam molded body.

次に、3枚の試験片の上面毎に別々の薬品(ガソリン、灯油、ジブチルフタレート(DBP))1gを均一に塗布し、23℃、湿度50%の条件で60分放置した。その後、試験片の上面から薬品を拭き取り、試験片の上面を目視観察して下記基準に基づいて判断した。
○:良好 変化なし
△:やや悪い 表面軟化
・:悪い 表面陥没(収縮)
Next, 1 g of different chemicals (gasoline, kerosene, dibutyl phthalate (DBP)) was uniformly applied to each of the upper surfaces of the three test pieces and left for 60 minutes under the conditions of 23 ° C. and 50% humidity. Then, the chemical | medical agent was wiped off from the upper surface of the test piece, the upper surface of the test piece was observed visually, and it judged based on the following reference | standard.
○: Good No change △: Slightly bad surface softening ・: Bad Surface depression (shrinkage)

(実施例1)
エチレン−酢酸ビニル共重合体(EVA)(日本ユニカー社製 商品名「NUC−3221」、酢酸ビニル含有量:5重量%、融点:107℃、メルトフローレート:0.5g/10分、密度:0.93g/cm3 )100重量部及び合成含水二酸化ケイ素0.5重量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリオレフィン系樹脂粒子を得た。ポリオレフィン系樹脂粒子の平均重量は0.60mgであった。なお、エチレン−酢酸ビニル共重合体のメルトフローレート及び密度は、JIS K6992−2に準拠して測定した値である。
(Example 1)
Ethylene-vinyl acetate copolymer (EVA) (trade name “NUC-3221” manufactured by Nippon Unicar Co., Ltd., vinyl acetate content: 5 wt%, melting point: 107 ° C., melt flow rate: 0.5 g / 10 min, density: 0.93 g / cm 3 ) 100 parts by weight and 0.5 parts by weight of synthetic hydrous silicon dioxide are supplied to an extruder, melt-kneaded, granulated by an underwater cutting method, and oval (egg-like) polyolefin resin particles Got. The average weight of the polyolefin resin particles was 0.60 mg. In addition, the melt flow rate and density of an ethylene-vinyl acetate copolymer are the values measured based on JIS K6992-2.

内径が1800mm、直胴部長さが1890mm、内容積が6.4m3 の重合容器3内にV型パドル翼4(攪拌羽根:3枚、攪拌羽根半径d1 :585mm、攪拌羽根幅d2 :315mm)を備えた重合装置を用意した。この重合装置の重合容器内に、70℃の水100重量部、ピロリン酸マグネシウム0.8重量部及びドデシルベンゼンスルホン酸ソーダ0.02重量部をV型パドル翼4で攪拌しながら供給して水性媒体とした。しかる後、水性媒体中に上記ポリオレフィン系樹脂粒子40重量部をV型パドル翼4で攪拌しながら懸濁させた。そして、水性媒体を85℃に加熱した上で、これ以後の攪拌所要動力が0.20kw/m3 を維持するようにV型パドル翼4の回転数を調整した。 In a polymerization vessel 3 having an inner diameter of 1800 mm, a straight body length of 1890 mm, and an internal volume of 6.4 m 3 , a V-shaped paddle blade 4 (3 stirring blades, stirring blade radius d 1 : 585 mm, stirring blade width d 2 : 315 mm) was prepared. In the polymerization vessel of this polymerization apparatus, 100 parts by weight of water at 70 ° C., 0.8 part by weight of magnesium pyrophosphate and 0.02 part by weight of sodium dodecylbenzenesulfonate were supplied while stirring with a V-type paddle blade 4 to form an aqueous solution. The medium. Thereafter, 40 parts by weight of the polyolefin-based resin particles were suspended in an aqueous medium while stirring with the V-type paddle blade 4. Then, after the aqueous medium was heated to 85 ° C., the rotation speed of the V-type paddle blade 4 was adjusted so that the power required for the subsequent stirring was maintained at 0.20 kw / m 3 .

なお、上記重合装置の重合容器3は、図7に示したように、断面凸円弧状の底面部31の外周縁から上方に向かって円筒状の周壁部32が突設している。更に、周壁部32の上端開口部は、断面凸円弧状の天井部33によって閉止されている。この重合容器3の天井部33から垂下された回転軸33aの下端部に、攪拌翼としてV型パドル翼4が取り付けられている。   As shown in FIG. 7, the polymerization vessel 3 of the polymerization apparatus has a cylindrical peripheral wall portion 32 projecting upward from the outer peripheral edge of the bottom surface portion 31 having a convex arcuate cross section. Further, the upper end opening of the peripheral wall 32 is closed by a ceiling 33 having a convex arcuate cross section. A V-type paddle blade 4 is attached as a stirring blade to the lower end portion of the rotating shaft 33a suspended from the ceiling portion 33 of the polymerization vessel 3.

このV型パドル翼4は、回転軸33aに取り付けるための取付部41とこの取付部41の外周面に水平方向に等間隔毎に一体的に設けられた3枚の側面平行四辺形状の攪拌羽根42とからなる。各攪拌羽根42は、上方における斜め外方を指向している。
図7中、61は、V型パドル翼4を回転させるためのモータ、62はモータの回転数を制御するためのインバータ、63はモータの負荷電流値を測定するための電流計、64は電源を意味する。
The V-shaped paddle blade 4 includes a mounting portion 41 for mounting on the rotating shaft 33a and three side parallelogram stirring blades integrally provided at equal intervals in the horizontal direction on the outer peripheral surface of the mounting portion 41. 42. Each stirring blade 42 is directed obliquely outward at the top.
In FIG. 7, 61 is a motor for rotating the V-type paddle blade 4, 62 is an inverter for controlling the rotational speed of the motor, 63 is an ammeter for measuring the load current value of the motor, and 64 is a power source. Means.

一方、重合開始剤としてベンゾイルパーオキサイド0.15重量部及びt−ブチルパーオキシベンゾエート0.01重量部、並びに、架橋剤としてジクミルパーオキサイド0.25重量部をスチレンモノマー(St)20重量部に溶解させて第一スチレン系モノマーを作製した。また、スチレンモノマー(St)40重量部に気泡調整剤としてエチレンビスステアリン酸アミド0.05重量部を溶解させて第二スチレン系モノマーを作製した。   On the other hand, 0.15 parts by weight of benzoyl peroxide and 0.01 parts by weight of t-butylperoxybenzoate as a polymerization initiator, and 0.25 parts by weight of dicumyl peroxide as a crosslinking agent and 20 parts by weight of styrene monomer (St). The first styrene-based monomer was prepared by dissolving in the solution. In addition, a second styrene monomer was prepared by dissolving 0.05 parts by weight of ethylenebisstearic acid amide as a bubble regulator in 40 parts by weight of styrene monomer (St).

そして、第一スチレン系モノマーを一時間当たり10重量部の割合で上記水性媒体中に連続的に滴下し、スチレンモノマー、重合開始剤及び架橋剤をポリオレフィン系樹脂粒子中に含浸させながら、スチレンモノマーをポリオレフィン系樹脂粒子中にて重合させた。   The first styrene monomer is continuously dropped into the aqueous medium at a rate of 10 parts by weight per hour, and the styrene monomer, the polymerization initiator and the crosslinking agent are impregnated in the polyolefin resin particles, Was polymerized in polyolefin resin particles.

次に、第一スチレン系モノマーの水性媒体への添加が終了した後、第二スチレン系モノマーを水性媒体中に一時間当たり20重量部の割合で連続的に滴下して、スチレンモノマー及び気泡調整剤をポリオレフィン系樹脂粒子中に含浸させながら、スチレンモノマーをポリオレフィン系樹脂粒子中にて重合させた。   Next, after the addition of the first styrene monomer to the aqueous medium is completed, the second styrene monomer is continuously dropped into the aqueous medium at a rate of 20 parts by weight per hour to adjust the styrene monomer and the bubbles. While impregnating the agent into the polyolefin resin particles, the styrene monomer was polymerized in the polyolefin resin particles.

更に、水性媒体を攪拌しつつ、第二スチレン系モノマーの水性媒体への滴下が終了してから1時間放置した後、水性媒体を140℃に加熱して3時間保持した。しかる後、重合容器を冷却して改質樹脂粒子を得た。   Further, while stirring the aqueous medium, the dropping of the second styrene monomer to the aqueous medium was allowed to stand for 1 hour, and then the aqueous medium was heated to 140 ° C. and held for 3 hours. Thereafter, the polymerization vessel was cooled to obtain modified resin particles.

続いて、内容積が1m3 の耐圧V型回転混合機に、改質樹脂粒子100重量部、水1.0重量部、ステアリン酸モノグリセリド0.15重量部及びジイソブチルアジペート0.5重量部を供給して回転させながら常温でブタン14重量部を圧入した。そして、回転混合機内を70℃に昇温して4時間保持した後に25℃まで冷却して発泡性の改質樹脂粒子を得た。 Subsequently, 100 parts by weight of the modified resin particles, 1.0 part by weight of water, 0.15 part by weight of stearic acid monoglyceride and 0.5 part by weight of diisobutyl adipate are supplied to a pressure-resistant V-type rotary mixer having an internal volume of 1 m 3. Then, 14 parts by weight of butane was press-fitted at room temperature while rotating. Then, the inside of the rotary mixer was heated to 70 ° C. and held for 4 hours, and then cooled to 25 ° C. to obtain expandable modified resin particles.

得られた発泡性の改質樹脂粒子を直ちに予備発泡機(積水工機製作所社製 商品名「SKK−70」)に供給し、0.02MPaの圧力の水蒸気を用いて予備発泡させて嵩密度0.06g/cm3 の予備発泡粒子を得た。 The obtained foamable modified resin particles are immediately supplied to a pre-foaming machine (trade name “SKK-70” manufactured by Sekisui Koki Seisakusho Co., Ltd.) and pre-foamed using steam at a pressure of 0.02 MPa to obtain a bulk density. 0.06 g / cm 3 of pre-expanded particles were obtained.

次に、予備発泡粒子を室温で7日間放置した後、成形機(積水工機製作所社製 商品名「ACE−3SP」)の金型内に充填した。そして、金型内に水蒸気を供給して予備発泡粒子を二次発泡させて、縦400mm×横300mm×高さ50mmの直方体形状の発泡成形体を製造した。   Next, the pre-expanded particles were allowed to stand at room temperature for 7 days, and then filled in a mold of a molding machine (trade name “ACE-3SP” manufactured by Sekisui Koki Co., Ltd.). And water vapor | steam was supplied in the metal mold | die and the pre-expanded particle was secondary-foamed, and the rectangular parallelepiped foaming molding of length 400mm x width 300mm x height 50mm was manufactured.

(実施例2)
攪拌所要動力を0.08kw/m3 に維持したこと以外は実施例1と同様にして予備発泡粒子及び発泡成形体を得た。
(Example 2)
Pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 1 except that the power required for stirring was maintained at 0.08 kw / m 3 .

(実施例3)
攪拌所要動力を0.50kw/m3 に維持したこと以外は実施例1と同様にして予備発泡粒子及び発泡成形体を得た。
(Example 3)
Pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 1 except that the power required for stirring was maintained at 0.50 kw / m 3 .

(実施例4)
第一スチレン系モノマーのスチレンモノマー量を20重量部から40重量部に変更したこと、第二スチレン系モノマーのスチレンモノマー量を40重量部から20重量部に変更したこと以外は実施例1と同様にして予備発泡粒子及び発泡成形体を得た。
Example 4
Example 1 except that the amount of styrene monomer in the first styrene monomer was changed from 20 parts by weight to 40 parts by weight, and the amount of styrene monomer in the second styrene monomer was changed from 40 parts by weight to 20 parts by weight. Thus, pre-foamed particles and a foam-molded product were obtained.

(実施例5)
水性媒体中に懸濁させたポリオレフィン系樹脂粒子を15重量部としたこと、重合開始剤としてベンゾイルパーオキサイド0.25重量部及びt−ブチルパーオキシベンゾエート0.02重量部、並びに、架橋剤としてジクミルパーオキサイド0.15重量部をスチレンモノマー30重量部に溶解させて第一スチレン系モノマーを作製し、第一スチレン系モノマーを一時間当たり10重量部の割合で水性媒体中に滴下したこと、スチレンモノマー55重量部に気泡調整剤としてエチレンビスステアリン酸アミド0.14重量部を溶解させて第二スチレン系モノマーを作製し、第二スチレン系モノマーを一時間当たり15重量部の割合で水性媒体中に滴下したこと以外は実施例1と同様にして予備発泡粒子及び発泡成形体を得た。
(Example 5)
15 parts by weight of polyolefin resin particles suspended in an aqueous medium, 0.25 parts by weight of benzoyl peroxide and 0.02 parts by weight of t-butylperoxybenzoate as a polymerization initiator, and as a crosslinking agent A first styrene monomer was prepared by dissolving 0.15 parts by weight of dicumyl peroxide in 30 parts by weight of styrene monomer, and the first styrene monomer was dropped into the aqueous medium at a rate of 10 parts by weight per hour. Then, 0.14 parts by weight of ethylene bis-stearic acid amide as a foam regulator is dissolved in 55 parts by weight of styrene monomer to prepare a second styrene monomer, and the second styrene monomer is aqueous at a rate of 15 parts by weight per hour. Pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1 except that it was dropped into the medium.

(実施例6)
水性媒体中に懸濁させたポリオレフィン系樹脂粒子を10重量部としたこと、重合開始剤としてベンゾイルパーオキサイド0.30重量部及びt−ブチルパーオキシベンゾエート0.02重量部、並びに、架橋剤としてジクミルパーオキサイド0.10重量部をスチレンモノマー30重量部に溶解させて第一スチレン系モノマーを作製し、第一スチレン系モノマーを一時間当たり10重量部の割合で水性媒体中に滴下したこと、スチレンモノマー60重量部に気泡調整剤としてエチレンビスステアリン酸アミド0.14重量部を溶解させて第二スチレン系モノマーを作製し、第二スチレン系モノマーを一時間当たり20重量部の割合で水性媒体中に滴下したこと以外は実施例1と同様にして予備発泡粒子及び発泡成形体を得た。
(Example 6)
10 parts by weight of polyolefin resin particles suspended in an aqueous medium, 0.30 part by weight of benzoyl peroxide and 0.02 part by weight of t-butylperoxybenzoate as a polymerization initiator, and as a crosslinking agent A first styrene monomer was prepared by dissolving 0.10 parts by weight of dicumyl peroxide in 30 parts by weight of a styrene monomer, and the first styrene monomer was dropped into an aqueous medium at a rate of 10 parts by weight per hour. Then, 0.14 parts by weight of ethylene bis-stearic acid amide as a foam regulator is dissolved in 60 parts by weight of styrene monomer to prepare a second styrene monomer, and the second styrene monomer is aqueous at a rate of 20 parts by weight per hour. Pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1 except that it was dropped into the medium.

(実施例7)
実施例5で得られた発泡性の改質樹脂粒子を、予備発泡機に投入し、0.04MPaの圧力の水蒸気を用いて予備発泡させることにより、嵩密度0.015g/cm3 の予備発泡粒子を得た。その後、実施例1と同様にして、発泡成形体を得た。
(Example 7)
The foamable modified resin particles obtained in Example 5 were put into a prefoaming machine and prefoamed using water vapor at a pressure of 0.04 MPa, so that the prefoaming with a bulk density of 0.015 g / cm 3 was performed. Particles were obtained. Then, it carried out similarly to Example 1, and obtained the foaming molding.

(実施例8)
実施例1で得られた発泡性の改質樹脂粒子を、予備発泡機に投入し、0.01MPaの圧力の水蒸気を用いて予備発泡させることにより、嵩密度0.15g/cm3 の予備発泡粒子を得た。その後、実施例1と同様にして、発泡成形体を得た。
(Example 8)
The foamable modified resin particles obtained in Example 1 were put into a prefoaming machine and prefoamed with water vapor at a pressure of 0.01 MPa, so that prefoaming with a bulk density of 0.15 g / cm 3 was performed. Particles were obtained. Then, it carried out similarly to Example 1, and obtained the foaming molding.

(実施例9)
直鎖状低密度ポリエチレン(LLDPE)(日本ユニカー社製 商品名「TUF−2032」、融点:125℃、メルトフローレート:0.9g/10分、密度:0.923g/cm3 )100重量部及びタルク0.3重量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリオレフィン系樹脂粒子を得た。ポリオレフィン系樹脂粒子の平均重量は0.50mgであった。なお、直鎖状低密度ポリエチレンのメルトフローレート及び密度は、JIS K6767に準拠して測定した。
Example 9
100 parts by weight of linear low density polyethylene (LLDPE) (trade name “TUF-2032” manufactured by Nippon Unicar Co., Ltd., melting point: 125 ° C., melt flow rate: 0.9 g / 10 min, density: 0.923 g / cm 3 ) And 0.3 parts by weight of talc was supplied to an extruder, melted and kneaded, and granulated by an underwater cutting method to obtain oval (egg-like) polyolefin resin particles. The average weight of the polyolefin resin particles was 0.50 mg. The melt flow rate and density of the linear low density polyethylene were measured according to JIS K6767.

実施例1と同一の重合装置を用い、この重合装置の重合容器3内に、70℃の水100重量部、ピロリン酸マグネシウム0.8重量部及びドデシルベンゼンスルホン酸ソーダ0.02重量部をV型パドル翼4で攪拌しながら供給して水性媒体とした。しかる後、水性媒体中に上記ポリオレフィン系樹脂粒子35重量部をV型パドル翼4で攪拌しながら懸濁させた。そして、水性媒体を125℃に加熱した上で、これ以後の攪拌所要動力が0.20kw/m3 を維持するようにV型パドル翼4の回転数を調整した。 Using the same polymerization apparatus as in Example 1, 100 parts by weight of water at 70 ° C., 0.8 part by weight of magnesium pyrophosphate and 0.02 part by weight of sodium dodecylbenzenesulfonate were added to the polymerization vessel 3 of this polymerization apparatus. An aqueous medium was supplied while stirring with a mold paddle blade 4. Thereafter, 35 parts by weight of the polyolefin-based resin particles were suspended in an aqueous medium while stirring with the V-type paddle blade 4. Then, after heating the aqueous medium to 125 ° C., the rotational speed of the V-type paddle blade 4 was adjusted so that the power required for stirring thereafter would be maintained at 0.20 kw / m 3 .

一方、スチレンモノマー20重量部に重合開始剤としてジクミルパーオキサイド0.15重量部を溶解させて第一スチレン系モノマーを作製した。   On the other hand, 0.15 part by weight of dicumyl peroxide as a polymerization initiator was dissolved in 20 parts by weight of styrene monomer to prepare a first styrene monomer.

そして、第一スチレン系モノマーを一時間当たり10重量部の割合で上記水性媒体中に連続的に滴下し、スチレンモノマー及び重合開始剤をポリオレフィン系樹脂粒子中に含浸させながら、スチレンモノマーをポリオレフィン系樹脂粒子中にて重合させた。   Then, the first styrene monomer is continuously dropped into the aqueous medium at a rate of 10 parts by weight per hour, and the styrene monomer and the polymerization initiator are impregnated in the polyolefin resin particles, while the styrene monomer is added to the polyolefin system. Polymerization was performed in the resin particles.

次に、第一スチレン系モノマーの水性媒体への添加が終了した後、スチレンモノマー45重量部を水性媒体中に一時間当たり20重量部の割合で連続的に滴下して、スチレンモノマーをポリオレフィン系樹脂粒子中に含浸させながら、スチレンモノマーをポリオレフィン系樹脂粒子中にて重合させた。なお、このスチレンモノマーは、表1において、便宜上、第二スチレン系モノマーの欄に記載した。   Next, after the addition of the first styrene monomer to the aqueous medium is completed, 45 parts by weight of the styrene monomer is continuously dropped into the aqueous medium at a rate of 20 parts by weight per hour, and the styrene monomer is added to the polyolefin-based medium. While impregnating the resin particles, the styrene monomer was polymerized in the polyolefin resin particles. This styrene monomer is shown in the column of the second styrene monomer for convenience in Table 1.

更に、水性媒体を攪拌しつつ、スチレンモノマーの水性媒体への滴下が終了してから1時間放置した後、水性媒体を140℃に加熱して1時間保持した。しかる後、重合容器を冷却して改質樹脂粒子を得た。   Further, while stirring the aqueous medium, the dropping of the styrene monomer to the aqueous medium was allowed to stand for 1 hour, and then the aqueous medium was heated to 140 ° C. and held for 1 hour. Thereafter, the polymerization vessel was cooled to obtain modified resin particles.

続いて、内容積が1m3 の耐圧V型回転混合機に、改質樹脂粒子100重量部、ステアリン酸モノグリセリド0.15重量部及びジイソブチルアジペート0.5重量部を供給して回転させながら常温でブタン14重量部を圧入した。そして、回転混合機内を80℃に昇温して3時間保持した後に25℃まで冷却して発泡性の改質樹脂粒子を得た。発泡性の改質樹脂粒子を水蒸気を用いて直ちに予備発泡させて嵩密度0.06g/cm3 の予備発泡粒子を得た。 Subsequently, 100 parts by weight of the modified resin particles, 0.15 parts by weight of stearic acid monoglyceride and 0.5 parts by weight of diisobutyl adipate are supplied to a pressure resistant V-type rotary mixer having an internal volume of 1 m 3 and rotated at room temperature. 14 parts by weight of butane was press-fitted. Then, the inside of the rotary mixer was heated to 80 ° C. and held for 3 hours, and then cooled to 25 ° C. to obtain expandable modified resin particles. The foamed modified resin particles were immediately pre-foamed using water vapor to obtain pre-foamed particles having a bulk density of 0.06 g / cm 3 .

次に、予備発泡粒子を室温で7日間放置した後、成形機(積水工機製作所社製 商品名「ACE−3SP」)の金型内に充填した。そして、金型内に水蒸気を供給して予備発泡粒子を二次発泡させて、縦400mm×横300mm×高さ50mmの直方体形状の発泡成形体を製造した。   Next, the pre-expanded particles were allowed to stand at room temperature for 7 days, and then filled in a mold of a molding machine (trade name “ACE-3SP” manufactured by Sekisui Koki Co., Ltd.). And water vapor | steam was supplied in the metal mold | die and the pre-expanded particle was secondary-foamed, and the rectangular parallelepiped foaming molding of length 400mm x width 300mm x height 50mm was manufactured.

(実施例10)
重合容器内に、V型パドル翼の代わりに、図8に示したような、下降流型45°傾斜パドル翼5(攪拌羽根:4枚、攪拌羽根半径d1 :550mm、攪拌羽根幅d2 :280mm)を上下二段に備えてなる重合装置を用いたこと、第一スチレン系モノマーを水性媒体中に滴下する直前の傾斜パドル翼5の回転数を、改質樹脂粒子の製造が完了するまで、一定に保持したこと以外は実施例1と同様にして予備発泡粒子及び発泡成形体を得た。
(Example 10)
In the polymerization vessel, instead of the V-shaped paddle blade, a downflow type 45 ° inclined paddle blade 5 (4 stirring blades, stirring blade radius d 1 : 550 mm, stirring blade width d 2 as shown in FIG. 8) : 280 mm) using a polymerization apparatus having two upper and lower stages, and the number of revolutions of the inclined paddle blade 5 immediately before dropping the first styrene monomer into the aqueous medium is completed. Until then, pre-expanded particles and a foam-molded article were obtained in the same manner as in Example 1 except that they were kept constant.

ここで、上記重合装置の重合容器3は実施例1と同一構造を有するものが用いられ、この重合容器3の天井部33から垂下された回転軸33aの下端部及び上下方向の中央部の夫々に、攪拌翼として下降流型45°傾斜パドル翼5が取り付けられている。   Here, the polymerization vessel 3 of the polymerization apparatus has the same structure as that of Example 1, and each of the lower end portion of the rotating shaft 33a suspended from the ceiling portion 33 of the polymerization vessel 3 and the central portion in the vertical direction. Further, a downflow type 45 ° inclined paddle blade 5 is attached as a stirring blade.

この下降流型45°傾斜パドル翼5は、回転軸33aに取り付けるための取付部51とこの取付部51の外周面に水平方向に等間隔毎に一体的に設けられた4枚の側面横長長方形状の攪拌羽根52とからなる。各攪拌羽根52は、水平方向に指向していると共に回転進行方向に対して上端から下端に向かって斜め前方に45°だけ傾斜した状態とされている。
更に、重合容器3には、邪魔板7が設置されている。邪魔板7は、重合容器3の側壁に、重合容器3の上面から見て、互いに90°の位置関係になるように設置されている。邪魔板7の幅は100mmであり、長さは1890mmである。
The downflow type 45 ° inclined paddle blade 5 includes a mounting portion 51 for mounting on the rotating shaft 33a and four laterally long rectangular rectangles integrally provided on the outer peripheral surface of the mounting portion 51 at equal intervals in the horizontal direction. And a stirring blade 52 in the form of a ring. Each agitating blade 52 is oriented in the horizontal direction and is inclined by 45 ° obliquely forward from the upper end toward the lower end with respect to the rotational traveling direction.
Further, a baffle plate 7 is installed in the polymerization container 3. The baffle plates 7 are installed on the side wall of the polymerization vessel 3 so as to have a 90 ° positional relationship with each other when viewed from the upper surface of the polymerization vessel 3. The baffle plate 7 has a width of 100 mm and a length of 1890 mm.

なお、第一スチレン系モノマーを水性媒体中に滴下させる直前の攪拌所要動力(当初攪拌所要動力)は、0.20kw/m3 であり、改質樹脂粒子の製造を完了した時点での攪拌所要動力(最終攪拌所要動力)は、0.29kw/m3 であった。 The power required for stirring immediately before dropping the first styrene monomer into the aqueous medium (initial power required for stirring) is 0.20 kw / m 3 , and stirring is required when the production of the modified resin particles is completed. The power (final stirring required power) was 0.29 kw / m 3 .

(実施例11)
分岐状低密度ポリエチレン(LDPE)(日本ユニカー社製 商品名「DFDJ−6775」、融点:112℃、メルトフローレート:0.2g/10分、密度:0.92g/cm3 )100重量部及び合成含水二酸化ケイ素0.5重量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリオレフィン系樹脂粒子を得た。ポリオレフィン系樹脂粒子の平均重量は0.75mgであった。なお、分岐状低密度ポリエチレンのメルトフローレート及び密度は、JIS K6767に準拠して測定した。上記ポリオレフィン系樹脂粒子を用いたこと以外は実施例10と同様にして予備発泡粒子及び発泡成形体を得た。なお、当初攪拌所要動力は、0.20kw/m3 であり、最終攪拌所要動力は、0.29kw/m3 であった。
(Example 11)
100 parts by weight of branched low density polyethylene (LDPE) (trade name “DFDJ-6775” manufactured by Nippon Unicar Co., Ltd., melting point: 112 ° C., melt flow rate: 0.2 g / 10 min, density: 0.92 g / cm 3 ) 0.5 parts by weight of synthetic hydrous silicon dioxide was supplied to an extruder, melted and kneaded, and granulated by an underwater cutting method to obtain elliptical spherical (egg-like) polyolefin resin particles. The average weight of the polyolefin resin particles was 0.75 mg. The melt flow rate and density of the branched low density polyethylene were measured according to JIS K6767. Pre-expanded particles and an expanded molded body were obtained in the same manner as in Example 10 except that the polyolefin resin particles were used. The initial required power for stirring was 0.20 kw / m 3 and the final required power for stirring was 0.29 kw / m 3 .

(実施例12)
当初攪拌所要動力が0.08kw/m3 となるように調整したこと以外は実施例11と同様にして予備発泡粒子及び発泡成形体を得た。なお、最終攪拌所要動力は、0.13kw/m3 であった。
(Example 12)
Pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 11 except that the initial power required for stirring was adjusted to 0.08 kw / m 3 . The final power required for stirring was 0.13 kw / m 3 .

(実施例13)
当初攪拌所要動力が0.45kw/m3 となるように調整したこと以外は実施例11と同様にして予備発泡粒子及び発泡成形体を得た。なお、最終攪拌所要動力は、0.68kw/m3 であった。
(Example 13)
Pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 11 except that the initial power required for stirring was adjusted to 0.45 kw / m 3 . The final power required for stirring was 0.68 kw / m 3 .

(比較例1)
攪拌所要動力を0.04kw/m3 としたこと以外は実施例1と同様にして予備発泡粒子及び発泡成形体を得た。
(Comparative Example 1)
Pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 1 except that the power required for stirring was 0.04 kw / m 3 .

(比較例2)
攪拌所要動力を0.90kw/m3 としたこと以外は実施例1と同様にして予備発泡粒子を得ようとした。しかしながら、改質樹脂粒子が偏平状になっていたので、予備発泡粒子及び発泡成形体を得ることができなかった。
(Comparative Example 2)
Pre-expanded particles were obtained in the same manner as in Example 1 except that the power required for stirring was 0.90 kw / m 3 . However, since the modified resin particles were flat, it was not possible to obtain the pre-expanded particles and the expanded molded body.

(比較例3)
攪拌所要動力を0.04kw/m3 としたこと、第二スチレン系モノマーを用いることなく、重合開始剤としてベンゾイルパーオキサイド0.15重量部及びt−ブチルパーオキシベンゾエート0.01重量部、架橋剤としてジクミルパーオキサイド0.25重量部、並びに、気泡調整剤としてエチレンビスステアリン酸アミド0.05重量部をスチレンモノマー60重量部に溶解させてなる第一スチレン系モノマーを作製し、この第一スチレン系モノマーを一時間当たり15重量部の割合で水性媒体中に滴下したこと以外は実施例1と同様にして予備発泡粒子及び発泡成形体を得た。
(Comparative Example 3)
The power required for stirring was 0.04 kw / m 3 , 0.15 parts by weight of benzoyl peroxide and 0.01 parts by weight of t-butylperoxybenzoate as a polymerization initiator without using a second styrene monomer, and crosslinking A first styrene monomer was prepared by dissolving 0.25 parts by weight of dicumyl peroxide as an agent and 0.05 parts by weight of ethylenebisstearic acid amide as a foam regulator in 60 parts by weight of a styrene monomer. Pre-expanded particles and an expanded molded article were obtained in the same manner as in Example 1 except that one styrene monomer was dropped into the aqueous medium at a rate of 15 parts by weight per hour.

(比較例4)
攪拌所要動力を0.20kw/m3 としたこと以外は比較例3と同様にして予備発泡粒子及び発泡成形体を得た。
(Comparative Example 4)
Pre-expanded particles and a foamed molded product were obtained in the same manner as in Comparative Example 3 except that the power required for stirring was 0.20 kw / m 3 .

(比較例5)
水性媒体中に懸濁させたポリオレフィン系樹脂粒子を60重量部としたこと、重合開始剤としてベンゾイルパーオキサイド0.1重量部及びt−ブチルパーオキシベンゾエート0.01重量部、並びに、架橋剤としてジクミルパーオキサイド0.35重量部をスチレンモノマー10重量部に溶解させて第一スチレン系モノマーを作製し、第一スチレン系モノマーを一時間当たり10重量部の割合で水性媒体中に滴下したこと、スチレンモノマー30重量部に気泡調整剤としてエチレンビスステアリン酸アミド0.04重量部を溶解させて第二スチレン系モノマーを作製し、第二スチレン系モノマーを一時間当たり15重量部の割合で水性媒体中に滴下したこと以外は実施例1と同様にして予備発泡粒子を得た。
(Comparative Example 5)
60 parts by weight of polyolefin resin particles suspended in an aqueous medium, 0.1 part by weight of benzoyl peroxide and 0.01 part by weight of t-butylperoxybenzoate as a polymerization initiator, and as a crosslinking agent A first styrene monomer was prepared by dissolving 0.35 parts by weight of dicumyl peroxide in 10 parts by weight of a styrene monomer, and the first styrene monomer was dropped into an aqueous medium at a rate of 10 parts by weight per hour. Then, 0.04 part by weight of ethylenebisstearic acid amide as a foam regulator is dissolved in 30 parts by weight of the styrene monomer to prepare a second styrene monomer, and the second styrene monomer is aqueous at a rate of 15 parts by weight per hour. Pre-expanded particles were obtained in the same manner as in Example 1 except that it was dropped into the medium.

そして、予備発泡粒子を室温で1日だけ放置したこと以外は実施例1と同様にして発泡成形体を得た。   Then, a foamed molded article was obtained in the same manner as in Example 1 except that the pre-expanded particles were allowed to stand for 1 day at room temperature.

(比較例6)
水性媒体中に懸濁させたポリオレフィン系樹脂粒子を8重量部としたこと、重合開始剤としてベンゾイルパーオキサイド0.32重量部及びt−ブチルパーオキシベンゾエート0.02重量部、並びに、架橋剤としてジクミルパーオキサイド0.10重量部をスチレンモノマー30重量部に溶解させて第一スチレン系モノマーを作製し、第一スチレン系モノマーを一時間当たり10重量部の割合で水性媒体中に滴下したこと、スチレンモノマー62重量部に気泡調整剤としてエチレンビスステアリン酸アミド0.14重量部を溶解させて第二スチレン系モノマーを作製し、第二スチレン系モノマーを一時間当たり21重量部の割合で水性媒体中に滴下したこと以外は実施例1と同様にして予備発泡粒子及び発泡成形体を得た。
(Comparative Example 6)
8 parts by weight of polyolefin resin particles suspended in an aqueous medium, 0.32 parts by weight of benzoyl peroxide and 0.02 parts by weight of t-butylperoxybenzoate as a polymerization initiator, and as a crosslinking agent A first styrene monomer was prepared by dissolving 0.10 parts by weight of dicumyl peroxide in 30 parts by weight of a styrene monomer, and the first styrene monomer was dropped into an aqueous medium at a rate of 10 parts by weight per hour. Then, 0.12 part by weight of ethylenebisstearic acid amide as a foam regulator is dissolved in 62 parts by weight of styrene monomer to prepare a second styrene monomer, and the second styrene monomer is aqueous at a rate of 21 parts by weight per hour. Pre-expanded particles and a foamed molded article were obtained in the same manner as in Example 1 except that it was dropped into the medium.

(比較例7)
嵩密度が0.06g/cm3 のエチレン−プロピレンランダム共重合体予備発泡粒子(エチレン−ランダム共重合体:エチレン成分=3.5重量%、平均重量:2mg)を高圧成形機を用いて金型内で二次発泡させて発泡成形体を得た。なお、表2において、エチレン−プロピレンランダム共重合体を「PP」を表現した。
(Comparative Example 7)
Pre-expanded ethylene-propylene random copolymer particles (ethylene-random copolymer: ethylene component = 3.5 wt%, average weight: 2 mg) having a bulk density of 0.06 g / cm 3 are gold-coated using a high-pressure molding machine. Secondary foaming was performed in the mold to obtain a foamed molded product. In Table 2, the ethylene-propylene random copolymer is expressed as “PP”.

(比較例8)
発泡性ポリスチレン粒子(積水化成品工業社製 商品名「エスレンビーズHDS」)を実施例1と同様の要領で嵩密度0.06g/cm3 に予備発泡させてポリスチレン予備発泡粒子を得た。そして、ポリスチレン予備発泡粒子を実施例1と同様の要領で二次発泡させて発泡成形体を得た。なお、表2において、ポリスチレンを「PSt」と表現した。
(Comparative Example 8)
Expandable polystyrene particles (trade name “Eslen Beads HDS” manufactured by Sekisui Plastics Co., Ltd.) were pre-expanded to a bulk density of 0.06 g / cm 3 in the same manner as in Example 1 to obtain polystyrene pre-expanded particles. Then, the polystyrene pre-expanded particles were subjected to secondary foaming in the same manner as in Example 1 to obtain a foam molded article. In Table 2, polystyrene was expressed as “PSt”.

(比較例9)
当初攪拌所要動力が0.04kw/m3 となるように調整したこと以外は実施例11と同様にして予備発泡粒子及び発泡成形体を得た。なお、最終攪拌所要動力は、0.06kw/m3 であった。
(Comparative Example 9)
Pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 11 except that the initial power required for stirring was adjusted to 0.04 kw / m 3 . The final power required for stirring was 0.06 kw / m 3 .

(比較例10)
当初攪拌所要動力が0.90kw/m3 となるように調整したこと以外は実施例11と同様にして予備発泡粒子を得ようとした。しかしながら、得られた改質樹脂粒子が偏平状になっていたので、予備発泡粒子及び発泡成形体を得ることができなかった。なお、最終攪拌所要動力(Pv)は、1.25kw/m3 であった。
(Comparative Example 10)
Pre-expanded particles were obtained in the same manner as in Example 11, except that the initial stirring power was adjusted to 0.90 kw / m 3 . However, since the obtained modified resin particles were flat, it was not possible to obtain pre-foamed particles and foamed molded products. The final power required for stirring (Pv) was 1.25 kw / m 3 .

実施例1〜13及び比較例1〜10において、予備発泡粒子の吸光度比(D698 /D2850)、予備発泡粒子中のポリスチレン系樹脂のGPC測定によるz平均分子量、スチレン系モノマーの重合途上におけるポリオレフィン系樹脂粒子中のスチレン系モノマーの最大含有量、発泡成形体の融着率、圧縮強度、耐衝撃性及び耐薬品性を表1〜3に示した。 In Examples 1 to 13 and Comparative Examples 1 to 10, the absorbance ratio of the pre-expanded particles (D 698 / D 2850 ), the z-average molecular weight by GPC measurement of the polystyrene resin in the pre-expanded particles, and during the polymerization of the styrene monomer Tables 1 to 3 show the maximum content of the styrene monomer in the polyolefin resin particles, the fusion rate of the foamed molded product, the compressive strength, the impact resistance, and the chemical resistance.

表1〜3から以下のことが分かる。
(1)実施例1〜8と比較例5〜6により、ポリスチレン系樹脂の配合量が、ポリオレフィン系樹脂の配合量に対して、1〜10倍の範囲であれば、良好な特性の発泡成形体を提供しうる予備発泡粒子が得られることが分かる。
(2)実施例1〜8と比較例1、3〜4により、吸光度比が0.1〜2.5の範囲であれば、良好な特性の発泡成形体を提供しうる予備発泡粒子が得られることが分かる。
(3)実施例1〜8と比較例1〜2、及び実施例11〜13と比較例9〜10により、攪拌所要動力が0.06〜0.8kw/m3 の範囲であれば、良好な特性の発泡成形体を提供しうる予備発泡粒子が得られることが分かる。
(4)実施例1〜8と比較例1、3〜4により、スチレン系モノマーの最大含有量が35重量%以下であれば、良好な特性の発泡成形体を提供しうる予備発泡粒子が得られることが分かる。
(5)実施例1〜8と実施例9により、ポリオレフィン系樹脂粒子の種類を変更しても、良好な特性の発泡成形体を提供しうる予備発泡粒子が得られることが分かる。
(6)実施例1〜9と比較例7〜8により、ポリオレフィン系樹脂で改質したポリスチレン系樹脂からなる予備発泡粒子は、良好な特性の発泡成形体を提供できることが分かる。
(7)実施例1〜9と実施例10〜13により、攪拌翼の形状が異なっても、攪拌所要動力が0.06〜0.8kw/m3 の範囲であれば、良好な特性の発泡成形体を提供しうる予備発泡粒子が得られることが分かる。
The following can be seen from Tables 1 to 3.
(1) By Examples 1-8 and Comparative Examples 5-6, if the compounding quantity of polystyrene-type resin is the range of 1-10 times with respect to the compounding quantity of polyolefin resin, it is foam molding of a favorable characteristic. It can be seen that pre-expanded particles that can provide a body are obtained.
(2) According to Examples 1 to 8 and Comparative Examples 1 and 3 to 4, pre-expanded particles capable of providing a foamed molded article having good characteristics are obtained if the absorbance ratio is in the range of 0.1 to 2.5. You can see that
(3) According to Examples 1 to 8 and Comparative Examples 1 to 2, and Examples 11 to 13 and Comparative Examples 9 to 10, if the required power for stirring is in the range of 0.06 to 0.8 kW / m 3 , good. It can be seen that pre-expanded particles can be obtained that can provide a foamed molded article having various characteristics.
(4) According to Examples 1 to 8 and Comparative Examples 1 and 3 to 4, pre-expanded particles capable of providing a foamed molded article having good characteristics are obtained if the maximum content of the styrene monomer is 35% by weight or less. You can see that
(5) It can be seen from Examples 1 to 8 and Example 9 that even if the type of the polyolefin resin particles is changed, pre-expanded particles that can provide a foamed molded article having good characteristics can be obtained.
(6) From Examples 1 to 9 and Comparative Examples 7 to 8, it is understood that the pre-expanded particles made of polystyrene resin modified with polyolefin resin can provide a foam molded article having good characteristics.
(7) Even if the shape of the stirring blade is different between Examples 1 to 9 and Examples 10 to 13, if the required power for stirring is in the range of 0.06 to 0.8 kw / m 3 , foaming with good characteristics It turns out that the pre-expanded particle which can provide a molded object is obtained.

(電子顕微鏡写真)
図1は、実施例1で得られた予備発泡粒子の表面をSEMを用いて倍率1500倍で撮影した電子顕微鏡写真である。
図2は、実施例1で得られた予備発泡粒子の表面近傍部断面をTEMを用いて倍率2万倍で撮影した電子顕微鏡写真である。
図3は、実施例1で得られた予備発泡粒子の表面近傍部断面をTEMを用いて倍率10万倍で撮影した電子顕微鏡写真である。
図4は、実施例1で得られた予備発泡粒子の中心部断面をTEMを用いて倍率2万倍で撮影した電子顕微鏡写真である。
図5は、実施例1で得られた予備発泡粒子にポリスチレン系樹脂の抽出処理を施した後、処理後の予備発泡粒子の表面をSEMを用いて倍率1500倍で撮影した電子顕微鏡写真である。
図6は、比較例3で得られた予備発泡粒子にポリスチレン系樹脂の抽出処理を施した後、処理後の予備発泡粒子の表面をSEMを用いて倍率1500倍で撮影した電子顕微鏡写真である。
(Electron micrograph)
FIG. 1 is an electron micrograph obtained by photographing the surface of the pre-expanded particles obtained in Example 1 using a SEM at a magnification of 1500 times.
FIG. 2 is an electron micrograph obtained by photographing the cross-section near the surface of the pre-expanded particles obtained in Example 1 at a magnification of 20,000 using a TEM.
FIG. 3 is an electron micrograph of a cross section near the surface of the pre-expanded particles obtained in Example 1 taken at a magnification of 100,000 using a TEM.
FIG. 4 is an electron micrograph of a cross section of the central portion of the pre-expanded particles obtained in Example 1 taken at a magnification of 20,000 using a TEM.
FIG. 5 is an electron micrograph obtained by subjecting the pre-expanded particles obtained in Example 1 to polystyrene resin extraction, and then photographing the surface of the pre-expanded particles after processing at a magnification of 1500 times using SEM. .
FIG. 6 is an electron micrograph of the pre-expanded particles obtained in Comparative Example 3 taken with a polystyrene resin, and the surface of the pre-expanded particles after processing was photographed using a SEM at a magnification of 1500 times. .

図2〜4は下記の要領で撮影した。
即ち、実施例1で得られた予備発泡粒子を二分割した。そして、予備発泡粒子の断面を常温硬化型のエポキシ樹脂(包埋樹脂)で全面的に被覆した後、四酸化ルテニウム(RuO4 )で染色した。
2 to 4 were taken as follows.
That is, the pre-expanded particles obtained in Example 1 were divided into two. Then, the cross-section of the pre-expanded particles was entirely covered with a room temperature curing type epoxy resin (embedding resin) and then dyed with ruthenium tetroxide (RuO 4 ).

次に、予備発泡粒子をウルトラミクロトームを用いて薄膜状にスライスして試験片を作製した。この試験片をTEMを用いて所定倍率で撮影した。   Next, the pre-expanded particles were sliced into a thin film using an ultramicrotome to prepare a test piece. This test piece was photographed at a predetermined magnification using a TEM.

また、図5〜6においてポリスチレン系樹脂の抽出処理は下記の要領で行なった。
予備発泡粒子をテトラヒドロフラン40ミリリットル中に浸漬して23℃で3時間攪拌し、予備発泡粒子からポリスチレン系樹脂を抽出した。
Moreover, in FIGS. 5-6, the extraction process of the polystyrene-type resin was performed in the following way.
The pre-expanded particles were immersed in 40 ml of tetrahydrofuran and stirred at 23 ° C. for 3 hours to extract a polystyrene resin from the pre-expanded particles.

次に、抽出後の予備発泡粒子をテトラヒドロフラン中から取り出し、予備発泡粒子の表面に付着又は浸透したテトラヒドロフランを自然乾燥させて除去し、ポリスチレン系樹脂を抽出した予備発泡粒子を得た。   Next, the pre-expanded particles after extraction were taken out from the tetrahydrofuran, and the tetrahydrofuran adhering to or penetrating the surface of the pre-expanded particles was removed by natural drying to obtain pre-expanded particles from which polystyrene resin was extracted.

図2及び図3に示したように、予備発泡粒子の表面近傍部においては、ポリオレフィン系樹脂1が高比率で含有されている一方、ポリスチレン系樹脂2は、粒子表面に近づくにつれて徐々に減少していると共に大きさも小さくなっている。そして、予備発泡粒子の表面は、概ねポリオレフィン系樹脂1から形成されている。   As shown in FIG. 2 and FIG. 3, in the vicinity of the surface of the pre-expanded particles, the polyolefin resin 1 is contained in a high ratio, while the polystyrene resin 2 gradually decreases as it approaches the particle surface. And the size is getting smaller. The surface of the pre-expanded particles is generally formed from the polyolefin resin 1.

また、図4に示したように、予備発泡粒子の中心部の気泡膜では、ポリスチレン系樹脂2が高比率で含有されており、ポリオレフィン系樹脂1がポリスチレン系樹脂2中に層状に分散した状態となっている。   Further, as shown in FIG. 4, in the cell membrane at the center of the pre-expanded particles, the polystyrene resin 2 is contained in a high ratio, and the polyolefin resin 1 is dispersed in a layered manner in the polystyrene resin 2. It has become.

更に、図1及び図5は、実施例1の予備発泡粒子からポリスチレン系樹脂を抽出した前後の粒子表面を表したものである。一方、図6は、比較例3の予備発泡粒子からポリスチレン系樹脂を抽出した後の粒子表面を表したものである。   Furthermore, FIG.1 and FIG.5 represents the particle | grain surface before and behind extracting polystyrene-type resin from the pre-expanded particle | grains of Example 1. FIG. On the other hand, FIG. 6 shows the particle surface after extracting the polystyrene resin from the pre-expanded particles of Comparative Example 3.

図1及び図5から、実施例1の予備発泡粒子の表面には、ポリスチレン系樹脂抽出後の空隙が僅かに形成されているに過ぎないのに対して、図6から分かるように、比較例3の予備発泡粒子の表面には、ポリスチレン系樹脂抽出後の空隙が無数に形成されていることが分かる。   From FIG. 1 and FIG. 5, the surface of the pre-expanded particles of Example 1 is formed with only a few voids after the polystyrene resin extraction, whereas as can be seen from FIG. It can be seen that innumerable voids after the polystyrene resin extraction are formed on the surface of the pre-expanded particles 3.

本発明の予備発泡粒子は、その表面近傍部に、ポリオレフィン系樹脂が高比率で含有されている。一方、ポリスチレン系樹脂の割合は、粒子表面に近づくにつれて減少している。また、粒子内部に向かってポリスチレン系樹脂の割合が徐々に多くなり、中心部では高比率で含有された状態となっている。更に、ポリスチレン系樹脂は、表面近傍部で、ポリオレフィン系樹脂中に微分散した状態となっている。   The pre-expanded particles of the present invention contain a high percentage of polyolefin resin in the vicinity of the surface. On the other hand, the ratio of the polystyrene resin decreases as the particle surface is approached. Moreover, the ratio of the polystyrene-based resin gradually increases toward the inside of the particles, and is contained in a high ratio at the center. Further, the polystyrene resin is finely dispersed in the polyolefin resin in the vicinity of the surface.

従って、本発明の予備発泡粒子は、そのポリスチレン系樹脂が高比率で含有された中心部に起因した優れた発泡成形性を有している。その結果、所望形状を有する発泡成形体を容易に製造することができる。   Therefore, the pre-expanded particles of the present invention have excellent foam moldability due to the central portion containing the polystyrene resin in a high ratio. As a result, a foamed molded product having a desired shape can be easily produced.

また、予備発泡粒子の表面近傍部は、ポリオレフィン系樹脂が大部分を占めた状態となっている。よって、予備発泡粒子を型内に充填して二次発泡させると、粒子同士が互いに良好に熱融着一体化して、優れた強度及び外観を有する発泡成形体を得ることができる。   In addition, the vicinity of the surface of the pre-expanded particles is in a state where most of the polyolefin-based resin is occupied. Therefore, when the pre-expanded particles are filled in the mold and subjected to secondary foaming, the particles are well fused and integrated with each other, and a foamed molded article having excellent strength and appearance can be obtained.

加えて、得られた発泡成形体は、その表面が概ねポリオレフィン系樹脂によって被覆された状態となっているので、優れた耐薬品性及び耐衝撃性を有している。一方、発泡成形体を構成する発泡粒子内部はポリスチレン系樹脂が高比率で含有された状態となっているので優れた剛性も有している。   In addition, the obtained foamed molded article has excellent chemical resistance and impact resistance because the surface thereof is generally coated with a polyolefin resin. On the other hand, the inside of the foamed particles constituting the foamed molded article is in a state in which a polystyrene resin is contained in a high ratio, and therefore has excellent rigidity.

また、ポリスチレン系樹脂のGPC測定によるz平均分子量が35万〜110万である場合には、予備発泡粒子の二次発泡性を向上させることができる。加えて、優れた強度を有する発泡成形体を得ることができる。   Moreover, when the z average molecular weight by GPC measurement of a polystyrene-type resin is 350,000-1.1 million, the secondary foamability of a pre-expanded particle can be improved. In addition, a foamed molded article having excellent strength can be obtained.

更に、本発明の予備発泡粒子の製造方法によれば、上述の如き優れた特性を有する予備発泡粒子を特別な装置を用いることなく容易に製造することができる。   Furthermore, according to the method for producing pre-expanded particles of the present invention, the pre-expanded particles having the excellent characteristics as described above can be easily produced without using a special apparatus.

また、上記予備発泡粒子の製造方法において、所定量の重合開始剤を所定時までに添加することで、予備発泡粒子の表面近傍部におけるポリオレフィン系樹脂の比率をより高くできる。その結果、予備発泡粒子からより優れた強度を有する発泡成形体を得ることができる。   In the method for producing pre-expanded particles, the ratio of the polyolefin resin in the vicinity of the surface of the pre-expanded particles can be further increased by adding a predetermined amount of the polymerization initiator by a predetermined time. As a result, it is possible to obtain a foamed molded article having more excellent strength from the pre-expanded particles.

更に、所定量の重合開始剤を含むスチレン系モノマーを水性媒体中で重合させ、次いで重合開始剤を含まないスチレン系モノマーを水性媒体中で重合させることで、予備発泡粒子の表面近傍部におけるポリオレフィン系樹脂の比率を確実に高くできる。その結果、予備発泡粒子から更に優れた強度を有する発泡成形体を得ることができる。   Further, a styrene monomer containing a predetermined amount of a polymerization initiator is polymerized in an aqueous medium, and then a styrene monomer not containing a polymerization initiator is polymerized in an aqueous medium, whereby a polyolefin in the vicinity of the surface of the pre-expanded particles is obtained. The ratio of the resin can be reliably increased. As a result, it is possible to obtain a foamed molded article having further excellent strength from the pre-expanded particles.

本発明の発泡成形体は、車輛用バンパーの芯材、ドア内装緩衝材等の車輛用緩衝材、電子部品、各種工業資材、食品等の搬送容器等に有用である。   The foamed molded article of the present invention is useful for vehicle bumper cores, vehicle cushioning materials such as door interior cushioning materials, electronic parts, various industrial materials, food containers and the like.

実施例1で得られたオレフィン改質ポリスチレン系樹脂予備発泡粒子の表面をSEMを用いて撮影した電子顕微鏡写真である。2 is an electron micrograph of the surface of pre-foamed olefin-modified polystyrene resin particles obtained in Example 1 taken using an SEM. 実施例1で得られたオレフィン改質ポリスチレン系樹脂予備発泡粒子の表面近傍部断面をTEMを用いて撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface vicinity part cross section of the olefin modification polystyrene-type resin pre-expanded particle obtained in Example 1 using TEM. 実施例1で得られたオレフィン改質ポリスチレン系樹脂予備発泡粒子の表面近傍部断面をTEMを用いて撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface vicinity part cross section of the olefin modification polystyrene-type resin pre-expanded particle obtained in Example 1 using TEM. 実施例1で得られたオレフィン改質ポリスチレン系樹脂予備発泡粒子の中心部断面をTEMを用いて撮影した電子顕微鏡写真である。2 is an electron micrograph of a cross section of the central portion of the olefin-modified polystyrene resin pre-expanded particles obtained in Example 1 taken using a TEM. ポリスチレン系樹脂の抽出処理を施した後のオレフィン改質ポリスチレン系樹脂予備発泡粒子(実施例1)の表面をSEMを用いて撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface of the olefin modification polystyrene-type resin pre-expanded particle (Example 1) after performing the extraction process of a polystyrene-type resin using SEM. ポリスチレン系樹脂の抽出処理を施した後のオレフィン改質ポリスチレン系樹脂予備発泡粒子(比較例3)の表面をSEMを用いて撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface of the olefin modification polystyrene-type resin pre-expanded particle (comparative example 3) after performing the extraction process of a polystyrene-type resin using SEM. 実施例1で用いられた重合容器の概略断面図である。2 is a schematic cross-sectional view of a polymerization vessel used in Example 1. FIG. 実施例10で用いられた重合容器の概略断面図である。3 is a schematic cross-sectional view of a polymerization vessel used in Example 10. FIG. ポリスチレン系樹脂量と吸光度比の関係を示す検量線である。It is a calibration curve showing the relationship between the amount of polystyrene resin and the absorbance ratio.

符号の説明Explanation of symbols

1 ポリオレフィン系樹脂
2 ポリスチレン系樹脂
3 重合容器
4 V型パドル翼
5 傾斜パドル翼
1 Polyolefin resin 2 Polystyrene resin 3 Polymerization vessel 4 V-type paddle blade 5 Inclined paddle blade

Claims (19)

ポリオレフィン系樹脂で改質されたポリスチレン系樹脂予備発泡粒子からなり、ポリスチレン系樹脂を形成するスチレン系モノマーが、ポリオレフィン系樹脂100重量部に対して、100〜1000重量部の範囲で使用され、該粒子の嵩密度が0.012〜0.20g/cm3 であると共に、ATR法赤外分光分析により測定された粒子表面の赤外線吸収スペクトルから得られる698cm-1及び2850cm-1での吸光度比(D698 /D2850)が0.1〜2.5の範囲であるオレフィン改質ポリスチレン系樹脂予備発泡粒子。 A styrene monomer comprising polystyrene resin pre-expanded particles modified with a polyolefin resin and forming a polystyrene resin is used in a range of 100 to 1000 parts by weight with respect to 100 parts by weight of the polyolefin resin. with a bulk density of particles is 0.012~0.20g / cm 3, the absorbance ratio at 698cm -1 and 2850 cm -1 obtained from an infrared absorption spectrum of the measured particle surface by ATR method infrared spectroscopy ( D 698 / D 2850 ) olefin-modified polystyrene resin pre-expanded particles in the range of 0.1 to 2.5. 吸光度比が、0.4〜2.0の範囲である請求項1に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子。   The olefin-modified polystyrene resin pre-expanded particles according to claim 1, wherein the absorbance ratio is in the range of 0.4 to 2.0. 嵩密度が、0.014〜0.15g/cm3 の範囲である請求項1に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子。 The olefin-modified polystyrene resin pre-expanded particles according to claim 1, wherein the bulk density is in a range of 0.014 to 0.15 g / cm 3 . ポリオレフィン系樹脂が、予備発泡粒子の中心部より、表面に多く存在する請求項1に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子。   The olefin-modified polystyrene resin pre-expanded particles according to claim 1, wherein the polyolefin-based resin is present more on the surface than in the center of the pre-expanded particles. ポリスチレン系樹脂のGPC測定によるz平均分子量が35万〜110万の範囲である請求項1に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子。   2. The olefin-modified polystyrene resin pre-expanded particles according to claim 1, wherein the polystyrene-based resin has a z-average molecular weight of 350,000 to 1.1 million as measured by GPC. ポリオレフィン系樹脂が、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン又はエチレン−酢酸ビニル共重合体であり、ポリスチレン系樹脂が、ポリスチレン樹脂である請求項1に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子。   2. The olefin-modified polystyrene-based resin reserve according to claim 1, wherein the polyolefin-based resin is a branched low-density polyethylene, a linear low-density polyethylene, or an ethylene-vinyl acetate copolymer, and the polystyrene-based resin is a polystyrene resin. Expanded particles. ポリオレフィン系樹脂粒子が分散されている水性媒体中、スチレン系モノマー(使用されるポリオレフィン系樹脂粒子100重量部に対して100〜1000重量部)を、ポリオレフィン系樹脂粒子中に含浸させながら重合開始剤の存在下にて重合させてオレフィン改質ポリスチレン系樹脂粒子を得る工程(a)、該樹脂粒子に発泡剤を含浸させる工程(b)、発泡剤含浸樹脂粒子を予備発泡させてオレフィン改質ポリスチレン系樹脂予備発泡粒子を得る工程(c)とからなり、
工程(a)において、水性媒体が、0.06〜0.8kw/m3 の攪拌所要動力で攪拌され、スチレン系モノマーの含浸及び重合が、ポリオレフィン系樹脂粒子中のスチレン系モノマー含有量が35重量%以下となる条件下で行われるオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。
Polymerization initiator while impregnating polyolefin resin particles with styrene monomer (100 to 1000 parts by weight with respect to 100 parts by weight of polyolefin resin particles used) in an aqueous medium in which polyolefin resin particles are dispersed. The step (a) of obtaining olefin-modified polystyrene resin particles by polymerizing in the presence of olefin, the step (b) of impregnating the resin particles with a foaming agent, and pre-foaming the foaming agent-impregnated resin particles to produce olefin-modified polystyrene A step (c) of obtaining a resin-based pre-expanded particle,
In the step (a), the aqueous medium is stirred with a required power of stirring of 0.06 to 0.8 kw / m 3 , and the impregnation and polymerization of the styrenic monomer has a styrenic monomer content in the polyolefin resin particles of 35. A process for producing olefin-modified polystyrene-based resin pre-expanded particles, which is carried out under a condition of not more than% by weight.
工程(a)において、スチレン系モノマーの使用量が使用総量の90重量%に達するまでに、
重合開始剤を、ポリオレフィン系樹脂粒子及びスチレン系モノマーの使用総量の0.02〜2.0重量%添加する請求項7に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。
In step (a), the amount of the styrenic monomer used reaches 90% by weight of the total amount used.
The method for producing olefin-modified polystyrene resin pre-expanded particles according to claim 7, wherein the polymerization initiator is added in an amount of 0.02 to 2.0% by weight based on the total amount of the polyolefin resin particles and the styrene monomer used.
工程(a)において、スチレン系モノマーの使用量が使用総量の90重量%に達するまでに、
重合開始剤を、ポリオレフィン系樹脂粒子及びスチレン系モノマーの使用総量の0.02〜2.0重量%添加した後、重合開始剤を含有しないスチレン系モノマーを添加する請求項7に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。
In step (a), the amount of the styrenic monomer used reaches 90% by weight of the total amount used.
The olefin modification according to claim 7, wherein the polymerization initiator is added in an amount of 0.02 to 2.0% by weight of the total amount of the polyolefin resin particles and the styrene monomer, and then the styrene monomer not containing the polymerization initiator is added. For producing pre-expanded polystyrene resin particles.
重合開始剤を含有しないスチレン系モノマーの添加量が、スチレン系モノマーの使用総量に対して、10〜60重量%の範囲である請求項9に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。   The olefin-modified polystyrene resin pre-expanded particles according to claim 9, wherein the addition amount of the styrene monomer not containing a polymerization initiator is in the range of 10 to 60 wt% with respect to the total amount of the styrene monomer used. Method. スチレン系モノマーの重合が、ポリオレフィン系樹脂粒子の融点の−30〜+10℃の温度範囲で行われる請求項7に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。   The method for producing pre-expanded olefin-modified polystyrene resin particles according to claim 7, wherein the polymerization of the styrene monomer is performed in a temperature range of -30 to + 10 ° C of the melting point of the polyolefin resin particles. ポリオレフィン系樹脂粒子が、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン又はエチレン−酢酸ビニル共重合体の粒子であり、スチレン系モノマーが、スチレンモノマーである請求項7に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。   The olefin-modified polystyrene according to claim 7, wherein the polyolefin resin particles are branched low density polyethylene, linear low density polyethylene, or ethylene-vinyl acetate copolymer particles, and the styrene monomer is a styrene monomer. For producing resin-based pre-expanded particles. 攪拌所要動力が、0.08〜0.7kw/m3 の範囲である請求項7に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。 The method for producing olefin-modified polystyrene resin pre-expanded particles according to claim 7, wherein the power required for stirring is in the range of 0.08 to 0.7 kw / m 3 . スチレン系モノマーの含浸及び重合が、ポリオレフィン系樹脂粒子中のスチレン系モノマーの含有量が0〜30重量%の範囲となる条件下で行われる請求項7に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。   The olefin-modified polystyrene resin pre-foaming according to claim 7, wherein the impregnation and polymerization of the styrene monomer are performed under a condition that the content of the styrene monomer in the polyolefin resin particles is in the range of 0 to 30% by weight. Particle production method. 工程(b)が、パドル型の攪拌翼による攪拌下で行われる請求項7に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。   The method for producing olefin-modified polystyrene resin pre-expanded particles according to claim 7, wherein the step (b) is performed with stirring by a paddle type stirring blade. スチレン系モノマーの使用総量が、ポリオレフィン系樹脂粒子100重量部に対して、130〜700重量部の範囲である請求項7に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。   The method for producing olefin-modified polystyrene resin pre-expanded particles according to claim 7, wherein the total amount of the styrene monomer used is in the range of 130 to 700 parts by weight with respect to 100 parts by weight of the polyolefin resin particles. スチレン系モノマーが、架橋剤を含む請求項7に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子の製造方法。   The method for producing olefin-modified polystyrene resin pre-expanded particles according to claim 7, wherein the styrene monomer contains a crosslinking agent. 請求項1に記載のオレフィン改質ポリスチレン系樹脂予備発泡粒子を型内に充填し発泡成形させてなる発泡成形体。   A foam-molded product obtained by filling the olefin-modified polystyrene resin pre-expanded particles according to claim 1 into a mold and foam-molding. 車輛用緩衝材として用いる請求項18に記載の発泡成形体。   The foaming molding of Claim 18 used as a shock absorbing material for vehicles.
JP2004231186A 2003-08-29 2004-08-06 Olefin-modified polystyrene resin pre-expanded particles, method for producing the same, and expanded molded article Active JP4226530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231186A JP4226530B2 (en) 2003-08-29 2004-08-06 Olefin-modified polystyrene resin pre-expanded particles, method for producing the same, and expanded molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003307870 2003-08-29
JP2004231186A JP4226530B2 (en) 2003-08-29 2004-08-06 Olefin-modified polystyrene resin pre-expanded particles, method for producing the same, and expanded molded article

Publications (2)

Publication Number Publication Date
JP2005097555A true JP2005097555A (en) 2005-04-14
JP4226530B2 JP4226530B2 (en) 2009-02-18

Family

ID=34467435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231186A Active JP4226530B2 (en) 2003-08-29 2004-08-06 Olefin-modified polystyrene resin pre-expanded particles, method for producing the same, and expanded molded article

Country Status (1)

Country Link
JP (1) JP4226530B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027943A1 (en) * 2004-09-03 2006-03-16 Sekisui Plastics Co., Ltd. Styrene-modified polyethylene resin beads, styrene -modified polyethylene resin expandable beads, processes for production of both, pre-expanded beads, and products of expansion molding
WO2006027944A1 (en) 2004-09-06 2006-03-16 Sekisui Plastics Co., Ltd. Styrene-modified particle of linear low-density polyethylene resin, expandable styrene-modified particle of linear low-density polyethylene resin, processes for producing these, pre-expanded particle, and molded foam
JP2007270116A (en) * 2006-03-10 2007-10-18 Sekisui Plastics Co Ltd Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding
WO2008117504A1 (en) 2007-03-27 2008-10-02 Sekisui Plastics Co., Ltd. Particle of carbon-containing modified polystyrene resin, expandable particle of carbon-containing modified polystyrene resin, expanded particle of carbon-containing modified polystyrene resin, molded foam of carbon-containing modified polystyrene resin, and processes for producing these
JP2008239910A (en) * 2007-03-29 2008-10-09 Sekisui Plastics Co Ltd Method of manufacturing modified polystyrenic resin particles, foaming modified polystyrenic particles, modified polystyrenic resin foamed particles, and modified polystyrenic resin foamed molding
JP2008239793A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Modified polystyrene resin particle, expandable modified polystyrene resin particle, modified polystyrene resin foamed particle, modified polystyrene resin foamed molded product, and manufacturing methods therefor
JP2008239794A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Self-extinguishing carbon-containing modified polystyrene resin particle, expandable self-extinguishing carbon-containing modified polystyrene resin particle, self-extinguishing carbon-containing modified polystyrene resin foamed particle, self-extinguishing carbon-containing modified polystyrene resin foamed molded product, and manufacturing methods therefor
JP2008266583A (en) * 2007-03-27 2008-11-06 Sekisui Plastics Co Ltd Particles of carbon-containing modified polystyrene resin, expandable particles of carbon-containing modified polystyrene resin, expanded particles of carbon-containing modified polystyrene resin, foam-molded article of carbon-containing modified polystyrene resin, and process for producing them
EP1990351A1 (en) * 2006-02-28 2008-11-12 Sekisui Plastics Co., Ltd. Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
JP2009263639A (en) * 2008-03-31 2009-11-12 Sekisui Plastics Co Ltd Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
WO2009157374A1 (en) * 2008-06-24 2009-12-30 株式会社カネカ Pre-foamed particles of styrene modified polyethylene resin and foaming molded product formed of the pre-foamed particles of styrene modified polyethylene resin
JP2010111827A (en) * 2008-11-10 2010-05-20 Kaneka Corp Method for producing pre-expanded particle of styrene-modified polyethylene-based resin
WO2011030732A1 (en) * 2009-09-08 2011-03-17 積水化成品工業株式会社 Foam-molded articles and process for production thereof
WO2011030731A1 (en) * 2009-09-08 2011-03-17 積水化成品工業株式会社 Process for production of expandable resin particles, pre-expanded beads, and products of expansion molding
JP2011057994A (en) * 2010-11-04 2011-03-24 Sekisui Plastics Co Ltd Method for producing styrene-modified polyethylene-based resin particle, and method for producing styrene-modified polyethylene-based foamable resin particle
JP2012025123A (en) * 2010-07-27 2012-02-09 Sekisui Plastics Co Ltd Component packaging material
JP2014177565A (en) * 2013-03-15 2014-09-25 Kaneka Corp Styrene-modified polyethylene-based pre-expanded particle and molding thereof
JP2015044985A (en) * 2013-07-30 2015-03-12 アキレス株式会社 Polystyrene based resin foam

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027943A1 (en) * 2004-09-03 2006-03-16 Sekisui Plastics Co., Ltd. Styrene-modified polyethylene resin beads, styrene -modified polyethylene resin expandable beads, processes for production of both, pre-expanded beads, and products of expansion molding
US8476325B2 (en) 2004-09-03 2013-07-02 Sekisui Plastics Co., Ltd. Styrene-modified polyethylene-based resin beads, styrene-modified polyethylene-based expandable resin beads, production method therefor, pre-expanded beads and expanded molded article
WO2006027944A1 (en) 2004-09-06 2006-03-16 Sekisui Plastics Co., Ltd. Styrene-modified particle of linear low-density polyethylene resin, expandable styrene-modified particle of linear low-density polyethylene resin, processes for producing these, pre-expanded particle, and molded foam
US8592494B2 (en) 2004-09-06 2013-11-26 Sekisui Plastics Co., Ltd. Styrene-modified linear low-density polyethylene-based resin beads, styrene-modified linear low-density polyethylene-based expandable resin beads, production method therefor, pre-expanded beads and expanded molded article
EP1990351A4 (en) * 2006-02-28 2010-09-22 Sekisui Plastics Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
US8329294B2 (en) 2006-02-28 2012-12-11 Sekisui Plastics Co., Ltd. Styrene-modified polypropylene type resin particle, foamable styrene-modified polypropylene type resin particle, styrene-modified polypropylene type resin foamed particle, styrene-modified polypropylene type resin foamed molded product, and production methods thereof
EP1990351A1 (en) * 2006-02-28 2008-11-12 Sekisui Plastics Co., Ltd. Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
JP2007270116A (en) * 2006-03-10 2007-10-18 Sekisui Plastics Co Ltd Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding
JP2008239794A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Self-extinguishing carbon-containing modified polystyrene resin particle, expandable self-extinguishing carbon-containing modified polystyrene resin particle, self-extinguishing carbon-containing modified polystyrene resin foamed particle, self-extinguishing carbon-containing modified polystyrene resin foamed molded product, and manufacturing methods therefor
JP2008266583A (en) * 2007-03-27 2008-11-06 Sekisui Plastics Co Ltd Particles of carbon-containing modified polystyrene resin, expandable particles of carbon-containing modified polystyrene resin, expanded particles of carbon-containing modified polystyrene resin, foam-molded article of carbon-containing modified polystyrene resin, and process for producing them
JP2008239793A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Modified polystyrene resin particle, expandable modified polystyrene resin particle, modified polystyrene resin foamed particle, modified polystyrene resin foamed molded product, and manufacturing methods therefor
US8841353B2 (en) 2007-03-27 2014-09-23 Sekisui Plastics Co., Ltd. Carbon-containing modified polystyrene type resin particle, foamable carbon-containing modified polystyrene type resin particle, carbon-containing modified polystyrene type resin foamed particle, carbon-containing modified polystyrene type resin foamed molded product, and production methods thereof
WO2008117504A1 (en) 2007-03-27 2008-10-02 Sekisui Plastics Co., Ltd. Particle of carbon-containing modified polystyrene resin, expandable particle of carbon-containing modified polystyrene resin, expanded particle of carbon-containing modified polystyrene resin, molded foam of carbon-containing modified polystyrene resin, and processes for producing these
JP2008239910A (en) * 2007-03-29 2008-10-09 Sekisui Plastics Co Ltd Method of manufacturing modified polystyrenic resin particles, foaming modified polystyrenic particles, modified polystyrenic resin foamed particles, and modified polystyrenic resin foamed molding
JP2009263639A (en) * 2008-03-31 2009-11-12 Sekisui Plastics Co Ltd Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
WO2009157374A1 (en) * 2008-06-24 2009-12-30 株式会社カネカ Pre-foamed particles of styrene modified polyethylene resin and foaming molded product formed of the pre-foamed particles of styrene modified polyethylene resin
JP5664238B2 (en) * 2008-06-24 2015-02-04 株式会社カネカ Styrene-modified polyethylene resin pre-expanded particles and foam-molded article comprising the styrene-modified polyethylene resin pre-expanded particles
JP2010111827A (en) * 2008-11-10 2010-05-20 Kaneka Corp Method for producing pre-expanded particle of styrene-modified polyethylene-based resin
WO2011030731A1 (en) * 2009-09-08 2011-03-17 積水化成品工業株式会社 Process for production of expandable resin particles, pre-expanded beads, and products of expansion molding
WO2011030732A1 (en) * 2009-09-08 2011-03-17 積水化成品工業株式会社 Foam-molded articles and process for production thereof
JP5713909B2 (en) * 2009-09-08 2015-05-07 積水化成品工業株式会社 Foam molded body and method for producing the same
JP5713908B2 (en) * 2009-09-08 2015-05-07 積水化成品工業株式会社 Method for producing expandable resin particles, pre-expanded particles, and expanded molded body
JP2012025123A (en) * 2010-07-27 2012-02-09 Sekisui Plastics Co Ltd Component packaging material
JP2011057994A (en) * 2010-11-04 2011-03-24 Sekisui Plastics Co Ltd Method for producing styrene-modified polyethylene-based resin particle, and method for producing styrene-modified polyethylene-based foamable resin particle
JP2014177565A (en) * 2013-03-15 2014-09-25 Kaneka Corp Styrene-modified polyethylene-based pre-expanded particle and molding thereof
JP2015044985A (en) * 2013-07-30 2015-03-12 アキレス株式会社 Polystyrene based resin foam

Also Published As

Publication number Publication date
JP4226530B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
KR100688238B1 (en) Pre-expanded particle of olefin-modified polystyrene resin, process for producing the same, and molded foam
JP4226530B2 (en) Olefin-modified polystyrene resin pre-expanded particles, method for producing the same, and expanded molded article
JP4917511B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP6170703B2 (en) POLYSTYRENE COMPOSITE RESIN PARTICLE AND METHOD FOR PRODUCING THE SAME, FOAMABLE PARTICLE, FOAMED PARTICLE AND FOAM MOLDED
JP6251409B2 (en) COMPOSITE RESIN PARTICLE AND METHOD FOR PRODUCING THE SAME, FOAMABLE PARTICLE, FOAMED PARTICLE, FOAM MOLDED ARTICLE, AND AUTOMOBILE INTERIOR MATERIAL
JP2006088456A (en) Foamed molded product having voids
JP5918905B2 (en) Composite resin particles and expandable composite resin particles, pre-expanded particles and foamed molded products
JP5053675B2 (en) Modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam moldings
JP4837407B2 (en) Expandable polystyrene resin particles, polystyrene resin foam particles, polystyrene resin foam moldings, polystyrene resin foam slices, and methods for producing the same
JPWO2010110337A1 (en) Method for reducing volatile organic compounds in composite resin particles and composite resin particles
WO2004085528A1 (en) Expandable resin beads of styrene-modified, straight -chain, and low-density polyethylene, process for production thereof, pre-expanded beads, and foams
JP5553983B2 (en) Styrene-modified polyethylene resin particles and pre-expanded particles obtained from the resin particles
JP2013123851A (en) Method for reducing odor in composite resin particle, composite resin particle, foamable particle, prefoamed particle, foam molded product and automobile interior material
JP6441948B2 (en) Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body
TWI464183B (en) The method of reducing the odor in the composite resin particles and the composite resin particles
JP5119348B2 (en) Method for producing foamed molded article having voids
JP6262114B2 (en) Method for producing composite resin particles
JP6031614B2 (en) Carbon black-containing composite resin pre-expanded particles, method for producing the same, and expanded molded article
JP6228610B2 (en) Polystyrene-based composite resin particles, expandable composite resin particles, pre-expanded particles, and method for producing expanded molded body
JP2010270284A (en) Styrene-modified polyethylene resin foamed molded article
JP2006088450A (en) Foam molded product having voids
JP2012201826A (en) Polystyrene resin particle, method for producing the same, polystyrene resin foam particle and polystyrene resin foam molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4226530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5