JP2005097475A - Copolymer latex with high long-term storage stability - Google Patents

Copolymer latex with high long-term storage stability Download PDF

Info

Publication number
JP2005097475A
JP2005097475A JP2003335216A JP2003335216A JP2005097475A JP 2005097475 A JP2005097475 A JP 2005097475A JP 2003335216 A JP2003335216 A JP 2003335216A JP 2003335216 A JP2003335216 A JP 2003335216A JP 2005097475 A JP2005097475 A JP 2005097475A
Authority
JP
Japan
Prior art keywords
parts
copolymer latex
monomer
polymerization
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003335216A
Other languages
Japanese (ja)
Other versions
JP4368646B2 (en
Inventor
Toshitaka Nishioka
利恭 西岡
Taizo Yokoyama
泰三 横山
Wataru Fujiwara
渡 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2003335216A priority Critical patent/JP4368646B2/en
Publication of JP2005097475A publication Critical patent/JP2005097475A/en
Application granted granted Critical
Publication of JP4368646B2 publication Critical patent/JP4368646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a copolymer latex having high long-term storage stability without emitting any substance causing indoor air pollution( sickhouse ). <P>SOLUTION: The copolymer latex is obtained by emulsion polymerization of a monomer mixture comprising 50-80 pts.wt. of an aliphatic conjugated diene monomer, 20-50 pts.wt. of a vinyl cyanide-based monomer and 0-10 pt(s).wt. of an ethylenically unsaturated carboxylic acid monomer. This copolymer latex contains, based on 100 pts.wt. thereof in terms of solids, ≥0.001 pt.wt. of a benzoisothiazoline-based compound of the general formula(1) and ≥0.001 pt.wt. of a 2-methyl-4-isothiazolin-3-one, being -100 mV to +300 mV in oxidation-reduction potential. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、長期保存安定性に優れる共重合体ラテックスに関する。更には、腐敗しにくく長期保存安定性に優れ、かつ、室内空気汚染の原因物質であるホルムアルデヒドを含有しない接着剤組成物や塗料に用いられる共重合体ラテックスに関する。   The present invention relates to a copolymer latex excellent in long-term storage stability. Furthermore, the present invention relates to a copolymer latex used for an adhesive composition and a paint that is resistant to spoilage, has excellent long-term storage stability, and does not contain formaldehyde, which is a cause of indoor air pollution.

SBR、NBR、MBR等の合成ゴムラテックスやスチレン−アクリル等のアクリル系エマルション(以下、広義に共重合体ラテックスと総称する)は、従来から一般塗料組成物、紙塗工用組成物、各種接着剤組成物に広く利用されてきている。特に、NBRラテックスは乾燥後のポリマーの耐油性が優れるため、耐油性不織布の補強剤、耐油性ゴム手袋の原料、耐油性フォームラバー原料などとして広く利用されている。NBRラテックスは水性であるために製造後の貯槽タンクでの保存、海上コンテナ、コンテナ、ドラム缶、一兎缶に充填出荷された後の保存中に菌類が繁殖して異臭を発生させるなどの問題があり、これらを解決する目的で防腐剤が製品の有り姿重量に対して数十ppmから数千ppm配合されることが知られている。   Synthetic rubber latex such as SBR, NBR, MBR, and acrylic emulsions such as styrene-acrylic (hereinafter generically referred to as copolymer latex) have been conventionally used for general paint compositions, paper coating compositions, and various adhesives. It has been widely used in pharmaceutical compositions. In particular, NBR latex is widely used as a reinforcing agent for oil-resistant non-woven fabric, a raw material for oil-resistant rubber gloves, a raw material for oil-resistant foam rubber, and the like because the polymer has excellent oil resistance after drying. Since NBR latex is water-based, there are problems such as storage in storage tanks after production, fungal growth and generation of off-flavors during storage after filling and shipping in marine containers, containers, drums, and cans. In order to solve these problems, it is known that preservatives are blended from several tens of ppm to several thousand ppm with respect to the actual weight of the product.

一方、室内空気汚染(シックハウス)の問題からNBRラテックスを使用した最終製品やNBRラテックスを原料として使用する屋内製造現場で室内空気汚染の原因物質であるホルムアルデヒドを放散しないことが強く求められるようになってきた。
そのため、NBRラテックスに使用できる防腐剤についても制限されてきている。
つまり、安価で防腐効果の優れたホルムアルデヒド系防腐剤であるホルマリンやトリアジンが使用できなくなってきている。
On the other hand, due to the problem of indoor air pollution (sick house), it is strongly required not to disperse formaldehyde which is a causative substance of indoor air pollution in the final product using NBR latex and indoor manufacturing sites using NBR latex as a raw material. I came.
Therefore, the preservatives that can be used in NBR latex have also been limited.
That is, formalin and triazine, which are formaldehyde preservatives that are inexpensive and have excellent antiseptic effects, cannot be used.

そこで、例えば特公昭60−54281号公報(特許文献1)のごとく2−メチル−4−イソチアゾリン−3−オン(以下H−MITと称する)、及びその塩素付加物(以下C−MITと称する)、あるいは臭素付加物の混合物を防腐剤として添加する技術が開示されている。しかし、これらを単独で使用しても防腐効果が低く長期保存安定性に劣る。
また、特開2001−303480号公報(特許文献2)や特開2001−303482号公報(特許文献3)には前記の一般式(1)で表わされるベンゾイソチアゾリン系化合物(以下BITと称する)を含有することを特徴とする紙塗工用ラテックスが紹介されているが、BIT単独では防腐効果が低く長期保存安定性は未だ十分とは言い難い。
更に、特開2001−303481号公報(特許文献4)にBITと下記の一般式(2)で表わされるハロゲン化脂肪族ニトロアルコール(以下BNPAと称する)とを併用する技術、特開2002−88681号公報(特許文献5)にH−MITとBNPAを併用する技術などが開示されている。
Therefore, for example, as disclosed in Japanese Patent Publication No. 60-54281 (Patent Document 1), 2-methyl-4-isothiazolin-3-one (hereinafter referred to as H-MIT) and its chlorine adduct (hereinafter referred to as C-MIT). Alternatively, a technique of adding a mixture of bromine adducts as a preservative is disclosed. However, even if these are used alone, the antiseptic effect is low and the long-term storage stability is poor.
JP-A-2001-303480 (Patent Document 2) and JP-A-2001-303482 (Patent Document 3) describe a benzoisothiazoline compound (hereinafter referred to as BIT) represented by the general formula (1). Although latex for paper coating, which is characterized by containing it, has been introduced, BIT alone has a low antiseptic effect, and long-term storage stability is still insufficient.
Furthermore, Japanese Patent Laid-Open No. 2001-303481 (Patent Document 4) uses a technique in which BIT and a halogenated aliphatic nitroalcohol (hereinafter referred to as BNPA) represented by the following general formula (2) are used in combination, Japanese Patent Laid-Open No. 2002-88681 No. (Patent Document 5) discloses a technique of using H-MIT and BNPA together.

Figure 2005097475
Figure 2005097475

(式中、R1は水素原子、ハロゲン原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表わし、R2は水素原子又は炭素数1〜4のアルキル基を、Xはハロゲン原子を表わす) (Wherein R1 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, R2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X represents a halogen atom) Represents an atom)

しかし、機構は不明であるが、BNPAは使用条件によっては分解すると極微量のホルムアルデヒドを発生させる可能性があり、その使用条件が制限される場合がある。
また、特開2001−181113号公報(特許文献6)や特表2001 −515016号(特許文献7)には、防腐効果に対するBITとH−MITの相乗効果に関する技術開示があるが、それらを特定組成の共重合体エマルジョンに適用することに関し何ら開示されておらず、特に本発明にて規定する酸化還元電位との関係についての技術開示はない。
However, although the mechanism is unknown, BNPA may generate a very small amount of formaldehyde when decomposed depending on the use conditions, and the use conditions may be limited.
Japanese Patent Laid-Open No. 2001-181113 (Patent Document 6) and Special Table 2001-515016 (Patent Document 7) have technical disclosures regarding the synergistic effect of BIT and H-MIT for the antiseptic effect. There is no disclosure regarding application to a copolymer emulsion of composition, and there is no technical disclosure regarding the relationship with the oxidation-reduction potential defined in the present invention.

特公昭60−54281号公報Japanese Examined Patent Publication No. 60-54281 特開2001−303480号公報JP 2001-303480 A 特開2001−303481号公報JP 2001-303481 A 特開2001−303482号公報JP 2001-303482 A 特開2002−88681号公報Japanese Patent Application Laid-Open No. 2002-88681 特開2001−181113号公報JP 2001-181113 A 特表2001 −515016号公報JP-T-2001-515016

本発明は、上記課題を解決するもので、室内空気汚染(シックハウス)の原因物質であるホルマリンを放散せず、かつ長期保存安定性に優れた共重合体ラテックスを提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a copolymer latex that does not dissipate formalin, which is a causative substance of indoor air pollution (sick house), and has excellent long-term storage stability.

本発明は、特定の酸化還元電位にコントロールされた特定単量体組成の共重合体ラテックスにH−MITとBITの特定量を併用して配合することを特徴とする。 The present invention is characterized in that a specific amount of H-MIT and BIT are used in combination in a copolymer latex having a specific monomer composition controlled to a specific oxidation-reduction potential.

本発明の共重合体ラテックスは、室内空気汚染(シックハウス)の原因物質であるホルムアルデヒドを放散せず、優れた長期保存安定性を示すものである。 The copolymer latex of the present invention does not disperse formaldehyde, which is a causative substance of indoor air pollution (sick house), and exhibits excellent long-term storage stability.

すなわち本発明は、
脂肪族共役ジエン系単量体50〜80重量部、シアン化ビニル系単量体20〜50重量部、エチレン性不飽和カルボン酸系単量体0〜10重量部からなる単量体を乳化重合して得られる共重合体ラテックスであって、該共重合体ラテックス100重量部(固形分換算)に対し、下記の一般式(1)で表わされるベンゾイソチアゾリン系化合物を0.001重量部以上および2−メチル−4−イソチアゾリン−3−オンを0.001重量部以上含有し、かつ酸化還元電位が−100mV〜+300mVであることを特徴とする共重合体ラテックスを提供するものである。
That is, the present invention
Emulsion polymerization of a monomer comprising 50 to 80 parts by weight of an aliphatic conjugated diene monomer, 20 to 50 parts by weight of a vinyl cyanide monomer, and 0 to 10 parts by weight of an ethylenically unsaturated carboxylic acid monomer The copolymer latex obtained by the above process, wherein the benzoisothiazoline compound represented by the following general formula (1) is added in an amount of 0.001 part by weight or more with respect to 100 parts by weight (in terms of solid content) of the copolymer latex. The present invention provides a copolymer latex containing 0.001 part by weight or more of 2-methyl-4-isothiazolin-3-one and having a redox potential of −100 mV to +300 mV.

以下、本発明を詳細に説明する。
本発明における共重合体ラテックスの単量体組成は、脂肪族共役ジエン系単量体50〜80重量部、シアン化ビニル系単量体20〜50重量部、エチレン性不飽和カルボン酸系単量体0〜10重量部により構成される。
Hereinafter, the present invention will be described in detail.
The monomer composition of the copolymer latex in the present invention is 50 to 80 parts by weight of an aliphatic conjugated diene monomer, 20 to 50 parts by weight of a vinyl cyanide monomer, and an ethylenically unsaturated carboxylic acid monomer. Consists of 0 to 10 parts by weight of body.

本発明に使用される脂肪族共役ジエン系単量体としては、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などが挙げられ、1種または2種以上用いることができる。特に1,3−ブタジエンが好ましい。
脂肪族共役ジエン系単量体は共重合体ラテックス100重量部(固形分換算)中、50〜80重量部の範囲で使用されることが必要である。脂肪族共役ジエン系単量体が50重量部未満では乾燥後のラテックスポリマーがNBRゴムとしての性質を呈さず、好ましくない。脂肪族共役ジエン系単量体が80重量部を越えると耐油性が低下する。好ましくは60〜75重量部である。
Examples of the aliphatic conjugated diene monomer used in the present invention include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and 2-chloro-1. , 3-butadiene, substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like can be used, and one or more can be used. 1,3-butadiene is particularly preferable.
The aliphatic conjugated diene monomer needs to be used in the range of 50 to 80 parts by weight in 100 parts by weight of copolymer latex (in terms of solid content). When the amount of the aliphatic conjugated diene monomer is less than 50 parts by weight, the latex polymer after drying does not exhibit properties as an NBR rubber, which is not preferable. When the amount of the aliphatic conjugated diene monomer exceeds 80 parts by weight, the oil resistance decreases. Preferably it is 60-75 weight part.

シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリルなどが挙げられ、これらを1種または2種以上使用することができる。特にアクリロニトリルまたはメタクリロニトリルの使用が好ましい。
シアン化ビニル系単量体は共重合体ラテックス100重量部(固形分換算)中、20〜50重量部の範囲で使用されることが必要である。シアン化ビニル系単量体が20重量部未満では耐油性が低下し、50重量部を越えると乾燥後ラテックスポリマーがNBRゴムとしての性質を呈さず、好ましくない。好ましくは25〜40重量部である。
Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile, and the like, and one or more of them can be used. In particular, the use of acrylonitrile or methacrylonitrile is preferred.
The vinyl cyanide monomer needs to be used in the range of 20 to 50 parts by weight in 100 parts by weight of copolymer latex (in terms of solid content). If the vinyl cyanide monomer is less than 20 parts by weight, the oil resistance is lowered, and if it exceeds 50 parts by weight, the latex polymer does not exhibit properties as an NBR rubber after drying. Preferably it is 25-40 weight part.

本発明に使用されるエチレン性不飽和カルボン酸系単量体としては、アクリル酸、メタクリル酸、クロトン酸、フマール酸、イタコン酸、マレイン酸などが挙げられ、1種または2種以上用いることができる。特にメタクリル酸が好ましい。
エチレン性不飽和カルボン酸系単量体は共重合体ラテックス100重量部(固形分換算)中、0〜10重量部の範囲で使用されることが必要である。エチレン性不飽和カルボン酸系単量体が10重量部を越えると共重合体ラテックスの粘度が高くなりすぎ、全ての用途で取り扱い上の問題を発生する可能性が高い。
Examples of the ethylenically unsaturated carboxylic acid monomer used in the present invention include acrylic acid, methacrylic acid, crotonic acid, fumaric acid, itaconic acid, maleic acid, and the like. it can. In particular, methacrylic acid is preferred.
The ethylenically unsaturated carboxylic acid-based monomer needs to be used in the range of 0 to 10 parts by weight in 100 parts by weight (in terms of solid content) of the copolymer latex. When the amount of the ethylenically unsaturated carboxylic acid monomer exceeds 10 parts by weight, the viscosity of the copolymer latex becomes too high, and there is a high possibility that handling problems will occur in all applications.

本発明の共重合体ラテックスは、その酸化還元電位が−100mV〜+300mVに調整されていることが必要である。この範囲を外れると、たとえH−MITとBITを共重合体成分100重量部(固形分換算)に対し、それぞれ0.001重量部以上存在させたとしても本発明の目的とする防腐効果が得られない。   The copolymer latex of the present invention needs to have its redox potential adjusted to -100 mV to +300 mV. Outside this range, even if H-MIT and BIT are present in an amount of 0.001 part by weight or more with respect to 100 parts by weight of the copolymer component (in terms of solid content), the antiseptic effect targeted by the present invention is obtained. I can't.

上記共重合体ラテックスの酸化還元電位を調節する方法は特に限定されないが、通常重合に用いられる反応開始剤としての酸化触媒、その酸化触媒の分解を促進するための還元剤、または酸化還元触媒の使用量および反応停止剤の使用量をコントロールしたり、残存する酸化剤を加熱操作や水蒸気蒸留操作によって低減したりする方法などが挙げられる。 The method for adjusting the oxidation-reduction potential of the copolymer latex is not particularly limited, but an oxidation catalyst as a reaction initiator usually used for polymerization, a reducing agent for promoting the decomposition of the oxidation catalyst, or a redox catalyst Examples thereof include a method of controlling the amount used and the amount used of the reaction terminator, and reducing the remaining oxidizing agent by a heating operation or a steam distillation operation.

本発明の共重合体ラテックスは、共重合体ラテックス100重量部(固形分換算)に対し、BITを0.001重量部以上およびH-MITを0.001重量部以上含有することが必要であり、その何れの含有量が0.001重量未満でも本発明の目的とする防腐効果が得られない。なお、これら防腐剤を必要以上に多量に添加してもそれ以上の防腐効果は望めず却ってコストアップに繋がるため、その上限値は合計で1重量部である。   The copolymer latex of the present invention must contain 0.001 part by weight or more of BIT and 0.001 part by weight or more of H-MIT with respect to 100 parts by weight of copolymer latex (in terms of solid content). Even if the content is less than 0.001 weight, the antiseptic effect intended by the present invention cannot be obtained. Note that even if these preservatives are added in a larger amount than necessary, no further antiseptic effect can be expected, leading to an increase in cost, so the upper limit is 1 part by weight in total.

本発明の共重合体ラテックスの乳化重合において、常用の乳化剤、重合開始剤、還元剤、酸化還元触媒、炭化水素系溶剤、電解質、重合促進剤、キレート剤等を使用することができる。 In the emulsion polymerization of the copolymer latex of the present invention, conventional emulsifiers, polymerization initiators, reducing agents, redox catalysts, hydrocarbon solvents, electrolytes, polymerization accelerators, chelating agents and the like can be used.

重合開始剤としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の水溶性重合開始剤、クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド等の油溶性重合開始剤を適宜用いることができる。特に過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムの水溶性重合開始剤、クメンハイドロパーオキサイドの油溶性重合開始剤の使用が好ましい。 As the polymerization initiator, water-soluble polymerization initiators such as potassium persulfate, sodium persulfate, ammonium persulfate, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, diisopropylbenzene hydroperoxide, An oil-soluble polymerization initiator such as 1,1,3,3-tetramethylbutyl hydroperoxide can be appropriately used. In particular, water-soluble polymerization initiators such as potassium persulfate, sodium persulfate and ammonium persulfate and oil-soluble polymerization initiators of cumene hydroperoxide are preferred.

また、反応系内に重合開始剤とともに還元剤を存在させると、反応速度が適度に促進されるとともに残留する重合開始剤の分解を助けるので好ましく、その使用量は反応終了時点で酸化還元電位が−100mV〜+300mVとなるよう調節しておいたほうがよい。ただし、反応終了時点で酸化還元電位が−100mV〜+300mVの範囲を逸脱していても、その後の工程で酸化剤や還元剤の微量添加、加熱操作や水蒸気蒸留操作によって、最終的にH−MITとBITを添加する時点で、酸化還元電位が−100mV〜+300mVとなっていれば本発明の効果を妨げるものではない。 In addition, the presence of a reducing agent together with the polymerization initiator in the reaction system is preferable because the reaction rate is moderately accelerated and the decomposition of the remaining polymerization initiator is facilitated, and the amount used thereof has a redox potential at the end of the reaction. It is better to adjust to -100mV to + 300mV. However, even if the oxidation-reduction potential deviates from the range of −100 mV to +300 mV at the end of the reaction, the H-MIT is finally obtained by adding a small amount of an oxidizing agent or a reducing agent, heating operation or steam distillation operation in the subsequent steps. If the oxidation-reduction potential is −100 mV to +300 mV at the time of adding BIT and BIT, the effect of the present invention is not hindered.

本発明において好ましく用いられる還元剤の具体例としては、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、亜ニチオン酸塩、ニチオン酸塩、チオ硫酸塩、また、L−アスコルビン酸、酒石酸、クエン酸などのカルボン酸類、更にはデキストロース、サッカロースなどの還元糖類、更にはジメチルアニリン、トリエタノールアミンなどのアミン類が挙げられる。特にL−アスコルビン酸が好ましい。
なお、ホルムアルデヒドスルホン酸塩、ベンズアルデヒドスルホン酸塩などの還元性スルホン酸塩は製品にホルムアルデヒドを含有させる結果となるので、本発明においては使用されない。
Specific examples of the reducing agent preferably used in the present invention include sulfite, bisulfite, pyrosulfite, nitrite, nithionate, thiosulfate, L-ascorbic acid, tartaric acid, citric acid and the like. Carboxylic acids of the above, further reducing sugars such as dextrose and saccharose, and amines such as dimethylaniline and triethanolamine. L-ascorbic acid is particularly preferable.
Note that reducing sulfonates such as formaldehyde sulfonate and benzaldehyde sulfonate are not used in the present invention because the product contains formaldehyde.

本発明の共重合体ラテックスの製造に使用できる乳化剤としては高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、非イオン性界面活性剤の硫酸エステル塩等のアニオン性界面活性剤あるいはポリエチレングリコールのアルキルエステル型、アルキルフェニルエーテル型、アルキルエーテル型等のノニオン性界面活性剤が挙げられ、これらを1種又は2種以上使用することができる。特に、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩が好ましい。 Examples of emulsifiers that can be used in the production of the copolymer latex of the present invention include sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether sulfonates, aliphatic sulfonates, aliphatic carboxylates, and nonionic surfactants. Nonionic surfactants such as anionic surfactants such as sulfuric acid ester salts of polyethylene or alkyl ester type, alkyl phenyl ether type, alkyl ether type of polyethylene glycol, and the like, and one or more of these should be used Can do. In particular, alkylbenzene sulfonate and alkyl diphenyl ether sulfonate are preferable.

本発明の共重合体ラテックスの製造に使用できる連鎖移動剤としては、n−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタン等のアルキルメルカプタン、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物、ターピノレンや、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物、2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等のフェノール系化合物、アリルアルコール等のアリル化合物、ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物、α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミド等のビニルエーテル、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート等が挙げられ、これらを1種または2種以上使用することができる。特に、n−オクチルメルカプタンやt−ドデシルメルカプタンが好ましい。これらの連鎖移動剤の量は特に限定されないが、通常、単量体100重量部に対して0〜5重量部にて使用される。 Examples of the chain transfer agent that can be used for the production of the copolymer latex of the present invention include alkyls such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and n-stearyl mercaptan. Xanthogen compounds such as mercaptan, dimethylxanthogen disulfide, diisopropylxanthogen disulfide, terpinolene, thiuram compounds such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide, 2,6-di-t-butyl-4 -Halogenation of phenolic compounds such as methylphenol and styrenated phenol, allyl compounds such as allyl alcohol, dichloromethane, dibromomethane, carbon tetrabromide, etc. Hydrogenated compounds, vinyl ethers such as α-benzyloxystyrene, α-benzyloxyacrylonitrile, α-benzyloxyacrylamide, triphenylethane, pentaphenylethane, acrolein, methacrolein, thioglycolic acid, thiomalic acid, 2-ethylhexylthioglyco A rate etc. are mentioned, These can be used 1 type or 2 or more types. In particular, n-octyl mercaptan and t-dodecyl mercaptan are preferable. The amount of these chain transfer agents is not particularly limited, but is usually 0 to 5 parts by weight with respect to 100 parts by weight of the monomer.

また、本発明においては連鎖移動剤としてα−メチルスチレンダイマーも使用することが可能である。α−メチルスチレンダイマーには、異性体として2,4−ジフェニル−4−メチル−1−ペンテン、2,4−ジフェニル−4−メチル−2−ペンテンおよび1,1,3−トリメチル−3−フェニルインダンがあるが、本発明に使用されるα−メチルスチレンダイマーとしては、2,4−ジフェニル−4−メチル−1−ペンテンの含有量が60重量%以上、特に80重量%以上であることが好ましい。なお、α−メチルスチレンダイマーは沸点が高く、共重合体ラテックスの製造後もラテックス粒子中に残留するため、本発明の目的とは別の環境問題から、その使用量は単量体100重量部に対して2重量部未満とすることが好ましい。 In the present invention, α-methylstyrene dimer can also be used as a chain transfer agent. α-Methylstyrene dimer includes 2,4-diphenyl-4-methyl-1-pentene, 2,4-diphenyl-4-methyl-2-pentene and 1,1,3-trimethyl-3-phenyl as isomers. Although there is indane, the α-methylstyrene dimer used in the present invention has a content of 2,4-diphenyl-4-methyl-1-pentene of 60% by weight or more, particularly 80% by weight or more. preferable. Since α-methylstyrene dimer has a high boiling point and remains in the latex particles even after the production of the copolymer latex, the amount used is 100 parts by weight of the monomer due to environmental problems different from the object of the present invention. The amount is preferably less than 2 parts by weight.

また、重合に際してペンテン、ヘキセン、ヘプテン、シクロペンテン、シクロヘキセン、シクロヘプテン、4−メチルシクロヘキセン、1−メチルシクロヘキセン等の不飽和炭化水素を使用しても良い。特に、沸点が適度に低く、重合終了後に水蒸気蒸留などによって回収、再利用しやすいシクロヘキセンが、本発明の目的とは異なるもの、環境問題の観点から好適である。 In the polymerization, unsaturated hydrocarbons such as pentene, hexene, heptene, cyclopentene, cyclohexene, cycloheptene, 4-methylcyclohexene, and 1-methylcyclohexene may be used. In particular, cyclohexene, which has a moderately low boiling point and can be easily recovered and reused by steam distillation or the like after the completion of polymerization, is preferable from the viewpoint of environmental problems, which is different from the object of the present invention.

本発明における重合方法は、一段重合、二段重合、多段階重合、シード重合、パワーフィード重合法等何れを採用してもよい。また、本発明の重合方法における各種成分の添加方法についても特に制限されるものではなく、一括添加方法、分割添加方法、連続添加方法の何れも採用することができる。 As the polymerization method in the present invention, any one of single-stage polymerization, two-stage polymerization, multi-stage polymerization, seed polymerization, power feed polymerization and the like may be adopted. Further, the addition method of various components in the polymerization method of the present invention is not particularly limited, and any of a batch addition method, a divided addition method, and a continuous addition method can be employed.

本発明における共重合体ラテックスは、腐敗しにくく長期保存安定性に優れ、かつ、室内空気汚染の原因物質ホルムアルデヒドを含有しないため、耐油性不織布、耐油性ゴム手袋、耐油性フォームラバーなどの製造現場の室内空気汚染を防止し、また、室内で使用される耐油性不織布、耐油性ゴム手袋、耐油性フォームラバーの原料として好適に使用することができるものである。   The copolymer latex in the present invention is resistant to spoilage, has excellent long-term storage stability, and does not contain formaldehyde, a causative agent for indoor air pollution, so it is a production site for oil-resistant nonwoven fabrics, oil-resistant rubber gloves, oil-resistant foam rubber, etc. It can be used as a raw material for oil-resistant nonwoven fabrics, oil-resistant rubber gloves, and oil-resistant foam rubber used indoors.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例に限定されるものではない。なお実施例中、割合を示す部および%は特に断りのない限り重量基準によるものである。また実施例における諸物性の評価は次の方法に拠った。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples, unless the summary is exceeded. In the examples, parts and percentages indicating percentages are based on weight unless otherwise specified. In addition, various physical properties in the examples were evaluated by the following methods.

共重合体ラテックスの粒子径の測定
数平均粒子径を動的光散乱法により測定した。測定に際しては、大塚電子製LPA−3000/3100を使用した。
Measurement of particle diameter of copolymer latex The number average particle diameter was measured by a dynamic light scattering method. In the measurement, LPA-3000 / 3100 manufactured by Otsuka Electronics was used.

共重合体ラテックスのゲル含有量の測定
室温雰囲気にて24時間乾燥させ、共重合体ラテックスのフィルムを作成する。そのフィルムを約1g秤量し、これを400ccのメチルエチルケトンに入れ48時間膨張溶解させる。その後、これを300メッシュの金網で濾過し、金網に捕捉されたメチルエチルケトン不溶部を乾燥後秤量し、この重量のはじめのフィルム重量に占める割合をゲル含有量として重量%で算出した。
Measurement of gel content of copolymer latex Drying is carried out in a room temperature atmosphere for 24 hours to prepare a film of copolymer latex. About 1 g of the film is weighed and placed in 400 cc of methyl ethyl ketone and expanded and dissolved for 48 hours. Thereafter, this was filtered through a 300-mesh wire mesh, the methyl ethyl ketone insoluble part captured by the wire mesh was dried and weighed, and the ratio of this weight to the initial film weight was calculated as a gel content in wt%.

共重合体ラテックスのガラス転移温度の測定
室温雰囲気にて24時間乾燥させて共重合体ラテックスのフィルムを作成し、セイコーインスツルメンツ社製示差走査熱量計(DSC6200)を用い、昇温速度10℃/分の条件にてガラス転移温度を測定した。
Measurement of Glass Transition Temperature of Copolymer Latex A film of copolymer latex was prepared by drying in a room temperature atmosphere for 24 hours, and a temperature increase rate of 10 ° C./min using a differential scanning calorimeter (DSC6200) manufactured by Seiko Instruments Inc. The glass transition temperature was measured under the following conditions.

共重合体ラテックスの酸化還元電位の測定
堀場製作所製 pHメーターに白金(ORP)電極を装着し、電極を25℃に温度調節したラテックスに浸漬し安定した時の電位を測定した。
Measurement of redox potential of copolymer latex A platinum (ORP) electrode was attached to a pH meter manufactured by Horiba, Ltd. The electrode was immersed in latex whose temperature was adjusted to 25C, and the potential when the electrode was stabilized was measured.

共重合体ラテックスのホルムアルデヒド放散量の測定
ホルムアルデヒド放散量はJIS A1901(2003)に準じた。共重合体ラテックス1〜10各々2.4gを塗布面積0.008mのガラス板の表面に塗布して(塗布量300g/m)、23℃で60分放置した。これを20リットルの小型チャンバー内に入れ、24時間後の放散速度をJIS A1901(2003)に準じて測定し、測定結果によって下記の通り評価した。
ホルムアルデヒド放散量
○・・・5(μg/m・h)以下
△・・・5(μg/m・h)を越えて20(μg/m・h)以下
×・・・20(μg/m・h)を越える
Measurement of formaldehyde emission amount of copolymer latex The amount of formaldehyde emission was in accordance with JIS A1901 (2003). By coating the copolymer latex 10 each 2.4g on the surface of the glass plate coated area 0.008 m 2 (coating amount 300g / m 2), and allowed to stand for 60 minutes at 23 ° C.. This was put in a 20-liter small chamber, and the emission rate after 24 hours was measured according to JIS A1901 (2003), and evaluated as follows according to the measurement results.
Formaldehyde emission ○ ・ ・ ・ 5 (μg / m 2・ h) or less △ ・ ・ ・ Over 5 (μg / m 2・ h) 20 (μg / m 2・ h) or less × ・ ・ ・ 20 (μg / m 2・ h)

共重合体ラテックスの長期保存安定性の評価
1)試験する各共重合体ラテックス100gに対して腐敗した共重合体ラテックス(菌数10以上)5gを加え、30℃で10時間放置し、さらに45℃に昇温して24時間保った後、30℃に戻し24時間保管する。
2)これをTGC寒天平板混釈法にて、30℃、48時間培養後のコロニーの数を測定する。以上が1回目の試験になる。
2回目の試験は、腐敗したラテックスを更に5g加えて、1)の温度条件で保管、管理し、2)の方法でコロニーの数を数える。同様に、コロニーが確認されるまで(菌数10以上で終了)腐敗ラテックスの摂取、測定を繰り返す。コロニーが確認されるまでの繰り返しの回数で長期保存安定性を下記の通り判定した。回数の多い方が防腐効果がよい。
○・・・コロニーが確認されるまでの繰り返しの回数が16回以上
△・・・コロニーが確認されるまでの繰り返しの回数が7回以上15回以下
×・・・コロニーが確認されるまでの繰り返しの回数が6回以下
Copolymers long-term storage stability evaluation 1 of latex) copolymer latex (having 10 6 or more bacteria corrupt for each copolymer latex 100g of testing) of 5g was added and allowed to stand at 30 ° C. 10 hours, further The temperature is raised to 45 ° C. and kept for 24 hours, then returned to 30 ° C. and stored for 24 hours.
2) The number of colonies after culturing at 30 ° C. for 48 hours is measured by the TGC agar plate pour method. This is the first test.
In the second test, an additional 5 g of spoiled latex is added, stored and managed under the temperature conditions of 1), and the number of colonies is counted by the method of 2). Similarly, until colonies are confirmed (completed in bacteria number 10 6 or higher) ingestion of corruption latex, the measurement is repeated. The long-term storage stability was determined by the number of repetitions until colonies were confirmed as follows. The higher the number of times, the better the antiseptic effect.
○: The number of repetitions until the colony is confirmed is 16 times or more. Δ ... The number of repetitions until the colony is confirmed is 7 times or more and 15 times or less. Number of repetitions is 6 or less

共重合体ラテックス1の作製(本発明例)
耐圧性の重合反応機に、窒素雰囲気下で純水125部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王株式会社製ネオペレックスG−25)2.0部、表1に示す1段目の各単量体およびシクロヘキセン1部、n−オクチルメルカプタン0.4部、L−アスコルビン酸0.08部を加えて十分攪拌した後、過硫酸カリウム0.35部を仕込み、35℃で重合を開始した。重合転化率が65%に達した後、表1に示す2段目の各単量体およびt−ドデシルメルカプタン0.2部、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王株式会社製ペレックスSS−L)0.50部、L−アスコルビン酸0.04部、過硫酸カリウム0.20部、純水20部を仕込み、反応温度を45℃に上げて更に反応を継続した。重合転化率が97%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.15部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してH-MITを0.020部とBIT0.030部を添加し、これら防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス1を得た。
Preparation of copolymer latex 1 (example of the present invention)
In a pressure-resistant polymerization reactor, 125 parts of pure water in a nitrogen atmosphere, 2.0 parts of sodium dodecylbenzenesulfonate (Neopelex G-25 manufactured by Kao Corporation) as an emulsifier, each unit in the first stage shown in Table 1 After adding 1 part of the monomer and cyclohexene, 0.4 part of n-octyl mercaptan and 0.08 part of L-ascorbic acid and stirring sufficiently, 0.35 part of potassium persulfate was charged and polymerization was started at 35 ° C. After the polymerization conversion reached 65%, each monomer in the second stage shown in Table 1 and 0.2 part of t-dodecyl mercaptan, sodium alkyldiphenyl ether disulfonate (Perex SS-L manufactured by Kao Corporation) 0. 50 parts, 0.04 part of L-ascorbic acid, 0.20 part of potassium persulfate, and 20 parts of pure water were added, the reaction temperature was raised to 45 ° C., and the reaction was further continued. After the polymerization conversion reached 97%, 0.15 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Immediately thereafter, 0.020 part of H-MIT and 0.030 part of BIT are added to 100 parts of the solid content of the copolymer, and the copolymer is stirred for 30 minutes so that these preservative components are uniformly dispersed. Latex 1 was obtained.

共重合体ラテックス2の作製(本発明例)
耐圧性の重合反応機に、窒素雰囲気下で純水120部、乳化剤としてアルキルジフェニルエーテルジスルホン酸ナトリウム(花王製ペレックスSS−L)2.0部、表1に示す1段目の各単量体およびα−メチルスチレンダイマー0.1部、t−ドデシルメルカプタン0.6部、L−アスコルビン酸0.10部を加えて十分攪拌した後、クメンハイドロパーオキサイド0.20部を仕込み、25℃で重合を開始した。重合転化率が75%に達した後、表1に示す2段目の各単量体およびt−ドデシルメルカプタン0.2部、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王株式会社製ペレックスSS−L)0.50部、クメンハイドロパーオキサイド0.10部、純水25部を仕込み、反応温度を35℃に上げて更に反応を継続した。重合転化率が98%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.07部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してH-MITを0.008部とBIT0.045部を添加し、これら防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス2を得た。
Preparation of copolymer latex 2 (example of the present invention)
In a pressure-resistant polymerization reactor, 120 parts of pure water under nitrogen atmosphere, 2.0 parts of sodium alkyldiphenyl ether disulfonate (Kao Perex SS-L) as an emulsifier, each monomer in the first stage shown in Table 1 and After adding 0.1 part of α-methylstyrene dimer, 0.6 part of t-dodecyl mercaptan and 0.10 part of L-ascorbic acid, 0.20 part of cumene hydroperoxide was charged and polymerized at 25 ° C. Started. After the polymerization conversion reached 75%, each monomer in the second stage shown in Table 1 and 0.2 part of t-dodecyl mercaptan, sodium alkyldiphenyl ether disulfonate (Perex SS-L manufactured by Kao Corporation) 0. 50 parts, 0.10 parts of cumene hydroperoxide and 25 parts of pure water were charged, the reaction temperature was raised to 35 ° C., and the reaction was further continued. After the polymerization conversion rate reached 98%, 0.07 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Immediately thereafter, 0.008 part of H-MIT and 0.045 part of BIT are added to 100 parts of the solid content of the copolymer, and the copolymer is stirred for 30 minutes so that these preservative components are uniformly dispersed. Latex 2 was obtained.

共重合体ラテックス3の作製(本発明例)
耐圧性の重合反応機に、窒素雰囲気下で純水140部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)1.5部、表1に示す各単量体およびt−ドデシルメルカプタン0.5部、L−アスコルビン酸0.03部を加えて十分攪拌した後、クメンハイドロパーオキサイド0.15部、過硫酸カリウム0.05部を仕込み、40℃で重合を開始した。重合転化率が70%に達した後、t−ドデシルメルカプタン0.5部、ドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)1.5部、L−アスコルビン酸0.02部、過硫酸カリウム0.1部、純水15部を仕込み、反応温度を50℃に上げて更に反応を継続した。重合転化率が98%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.05部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してH-MITを0.048部とBIT0.012部を添加し、これら防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス3を得た。
Preparation of copolymer latex 3 (example of the present invention)
In a pressure-resistant polymerization reactor, 140 parts of pure water in a nitrogen atmosphere, 1.5 parts of sodium dodecylbenzenesulfonate (Naoperex G-25 manufactured by Kao) as an emulsifier, each monomer and t-dodecyl shown in Table 1 After adding 0.5 part of mercaptan and 0.03 part of L-ascorbic acid and stirring sufficiently, 0.15 part of cumene hydroperoxide and 0.05 part of potassium persulfate were charged, and polymerization was started at 40 ° C. After the polymerization conversion reached 70%, 0.5 part of t-dodecyl mercaptan, 1.5 parts of sodium dodecylbenzenesulfonate (Naoperex G-25 manufactured by Kao), 0.02 part of L-ascorbic acid, persulfuric acid 0.1 parts of potassium and 15 parts of pure water were added, the reaction temperature was raised to 50 ° C., and the reaction was further continued. After the polymerization conversion rate reached 98%, 0.05 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Immediately thereafter, 0.048 part of H-MIT and 0.012 part of BIT are added to 100 parts of the solid content of the copolymer, and the mixture is stirred for 30 minutes so that these preservative components are uniformly dispersed. Latex 3 was obtained.

共重合体ラテックス4の作製(比較例)
耐圧性の重合反応機に、窒素雰囲気下で純水130部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)1.5部、表1に示す各単量体およびt−ドデシルメルカプタン0.5部、L−アスコルビン酸0.07部を加えて十分攪拌した後、クメンハイドロパーオキサイド0.15部、過硫酸カリウム0.10部を仕込み、35℃で重合を開始した。重合転化率が60%に達した後、t−ドデシルメルカプタン0.3部、ドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)2.0部、L−アスコルビン酸0.02部、過硫酸カリウム0.35部、純水20部を仕込み、反応温度を45℃に上げて更に反応を継続した。重合転化率が97%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.020部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してH-MITを0.010部とBIT0.055部を添加し、これら防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス4を得た。
Preparation of copolymer latex 4 (comparative example)
In a pressure-resistant polymerization reactor, 130 parts of pure water in a nitrogen atmosphere, 1.5 parts of sodium dodecylbenzenesulfonate (Kao Neoperex G-25) as an emulsifier, each monomer shown in Table 1, and t-dodecyl After adding 0.5 part of mercaptan and 0.07 part of L-ascorbic acid and stirring sufficiently, 0.15 part of cumene hydroperoxide and 0.10 part of potassium persulfate were charged, and polymerization was started at 35 ° C. After the polymerization conversion reached 60%, 0.3 part of t-dodecyl mercaptan, 2.0 parts of sodium dodecylbenzenesulfonate (Naoperex G-25 manufactured by Kao), 0.02 part of L-ascorbic acid, persulfuric acid 0.35 parts of potassium and 20 parts of pure water were charged, the reaction temperature was raised to 45 ° C., and the reaction was further continued. After the polymerization conversion reached 97%, 0.020 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Immediately thereafter, 0.010 part of H-MIT and 0.055 part of BIT are added to 100 parts of the solid content of the copolymer, and the copolymer is stirred for 30 minutes so that these preservative components are uniformly dispersed. Latex 4 was obtained.

共重合体ラテックス5の作製(比較例)
耐圧性の重合反応機に、窒素雰囲気下で純水125部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)2.0部、表1に示す1段目の各単量体およびシクロヘキセン2.0部、n−オクチルメルカプタン0.4部、L−アスコルビン酸0.10部を加えて十分攪拌した後、クメンハイドロパーオキサイド0.15部を仕込み、40℃で重合を開始した。重合転化率が75%に達した後、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王製ペレックスSS−L)0.7部、表1に示す2段目の各単量体、n−オクチルメルカプタン0.2部、L−アスコルビン酸0.40部、クメンハイドロパーオキサイド0.08部、純水25部を仕込み、反応温度を45℃に上げて更に反応を継続した。重合転化率が98%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.250部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してH-MITを0.048部とBIT0.012部を添加し、これら防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス5を得た。
Preparation of copolymer latex 5 (comparative example)
In a pressure-resistant polymerization reactor, 125 parts of pure water in a nitrogen atmosphere, 2.0 parts of sodium dodecylbenzenesulfonate (Neoperex G-25 manufactured by Kao) as an emulsifier, each monomer in the first stage shown in Table 1 Then, 2.0 parts of cyclohexene, 0.4 part of n-octyl mercaptan and 0.10 part of L-ascorbic acid were added and sufficiently stirred. Then, 0.15 part of cumene hydroperoxide was added, and polymerization was started at 40 ° C. . After the polymerization conversion reached 75%, 0.7 part of sodium alkyldiphenyl ether disulfonate (Kao Perex SS-L), each second-stage monomer shown in Table 1, 0.2 part of n-octyl mercaptan Then, 0.40 part of L-ascorbic acid, 0.08 part of cumene hydroperoxide and 25 parts of pure water were added, the reaction temperature was raised to 45 ° C., and the reaction was further continued. After the polymerization conversion reached 98%, 0.250 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Immediately thereafter, 0.048 part of H-MIT and 0.012 part of BIT are added to 100 parts of the solid content of the copolymer, and the mixture is stirred for 30 minutes so that these preservative components are uniformly dispersed. Latex 5 was obtained.

共重合体ラテックス6の作製(比較例)
耐圧性の重合反応機に、窒素雰囲気下で純水130部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)2.3部、表2に示す1段目の各単量体およびn−オクチルメルカプタン0.4部、L−アスコルビン酸0.10部を加えて十分攪拌した後、過硫酸カリウム0.35部を仕込み、35℃で重合を開始した。重合転化率が70%に達した後、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王製ペレックスSS−L)0.7部、表2に示す2段目の各単量体、n−オクチルメルカプタン0.2部、L−アスコルビン酸0.10部、過硫酸カリウム0.20部、純水20部を仕込み、反応温度を45℃に上げて更に反応を継続した。重合転化率が98%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.15部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してH-MITを0.065部を添加し、防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス6を得た。
Preparation of copolymer latex 6 (comparative example)
In a pressure-resistant polymerization reactor, 130 parts of pure water in a nitrogen atmosphere, 2.3 parts of sodium dodecylbenzenesulfonate (Naoperex G-25 manufactured by Kao) as an emulsifier, each monomer in the first stage shown in Table 2 After adding 0.4 parts of n-octyl mercaptan and 0.10 parts of L-ascorbic acid and stirring sufficiently, 0.35 part of potassium persulfate was charged and polymerization was started at 35 ° C. After the polymerization conversion reached 70%, 0.7 part of sodium alkyldiphenyl ether disulfonate (Kao Perex SS-L), each second-stage monomer shown in Table 2, 0.2 part of n-octyl mercaptan Then, 0.10 parts of L-ascorbic acid, 0.20 parts of potassium persulfate and 20 parts of pure water were added, the reaction temperature was raised to 45 ° C., and the reaction was further continued. After the polymerization conversion reached 98%, 0.15 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Thereafter, 0.065 part of H-MIT was immediately added to 100 parts of the solid content of the copolymer, and stirred for 30 minutes so that the preservative component was uniformly dispersed to obtain a copolymer latex 6.

共重合体ラテックス7の作製(比較例)
耐圧性の重合反応機に、窒素雰囲気下で純水135部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)2.5部、表2に示す各単量体およびt−ドデシルメルカプタン0.3部、L−アスコルビン酸0.03部を加えて十分攪拌した後、クメンハイドロパーオキサイド0.05部、過硫酸カリウム0.15部を仕込み、45℃で重合を開始した。重合転化率が75%に達した後、t−ドデシルメルカプタン0.3部、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王製ペレックスSS−L)0.5部、L−アスコルビン酸0.02部、過硫酸カリウム0.10部、純水20部を仕込み、反応温度を55℃に上げて更に反応を継続した。重合転化率が98%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.100部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してBIT0.070部を添加し、防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス7を得た。
Preparation of copolymer latex 7 (comparative example)
In a pressure-resistant polymerization reactor, 135 parts of pure water in a nitrogen atmosphere, 2.5 parts of sodium dodecylbenzenesulfonate (Kao Neoperex G-25) as an emulsifier, the monomers shown in Table 2 and t-dodecyl After adding 0.3 part of mercaptan and 0.03 part of L-ascorbic acid and stirring sufficiently, 0.05 part of cumene hydroperoxide and 0.15 part of potassium persulfate were charged, and polymerization was started at 45 ° C. After the polymerization conversion reached 75%, 0.3 part of t-dodecyl mercaptan, 0.5 part of sodium alkyldiphenyl ether disulfonate (Kao Perex SS-L), 0.02 part of L-ascorbic acid, potassium persulfate 0.10 parts and 20 parts of pure water were added, the reaction temperature was raised to 55 ° C., and the reaction was further continued. After the polymerization conversion rate reached 98%, 0.100 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Thereafter, 0.070 part of BIT was immediately added to 100 parts of the solid content of the copolymer, and stirred for 30 minutes so that the preservative component was uniformly dispersed to obtain a copolymer latex 7.

共重合体ラテックス8の作製(比較例)
耐圧性の重合反応機に、窒素雰囲気下で純水130部、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王製ペレックスSS−L)2.2部、表2に示す各単量体およびt−ドデシルメルカプタン0.5部、L−アスコルビン酸0.03部を加えて十分攪拌した後、クメンハイドロパーオキサイド0.05部、過硫酸カリウム0.15部を仕込み、40℃で重合を開始した。重合転化率が70%に達した後、t−ドデシルメルカプタン0.3部、ドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)0.5部、L−アスコルビン酸0.02部、過硫酸カリウム0.10部、純水25部を仕込み、反応温度を50℃に上げて更に反応を継続した。重合転化率が98%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.100部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してBNPA0.013部とH−MIT0.048部を添加し、防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス8を得た。
Preparation of copolymer latex 8 (comparative example)
In a pressure resistant polymerization reactor, in a nitrogen atmosphere, 130 parts of pure water, 2.2 parts of sodium alkyldiphenyl ether disulfonate (Kao Perex SS-L), each monomer shown in Table 2 and t-dodecyl mercaptan After 5 parts and 0.03 part of L-ascorbic acid were added and sufficiently stirred, 0.05 part of cumene hydroperoxide and 0.15 part of potassium persulfate were charged, and polymerization was started at 40 ° C. After the polymerization conversion reached 70%, 0.3 part of t-dodecyl mercaptan, 0.5 part of sodium dodecylbenzenesulfonate (Naoperex G-25 manufactured by Kao), 0.02 part of L-ascorbic acid, persulfuric acid 0.10 parts of potassium and 25 parts of pure water were charged, the reaction temperature was raised to 50 ° C., and the reaction was further continued. After the polymerization conversion rate reached 98%, 0.100 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Thereafter, 0.013 part of BNPA and 0.048 part of H-MIT are immediately added to 100 parts of the solid content of the copolymer, and stirred for 30 minutes so that the preservative component is uniformly dispersed. Obtained.

共重合体ラテックス9の作製(比較例)
耐圧性の重合反応機に、窒素雰囲気下で純水130部、ドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)2.0部、表2に示す1段目の各単量体およびt−ドデシルメルカプタン0.5部、L−アスコルビン酸0.03部を加えて十分攪拌した後、過硫酸カリウム0.25部を仕込み、45℃で重合を開始した。重合転化率が70%に達した後、メタクリル酸1.0部、t−ドデシルメルカプタン0.3部、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王製ペレックスSS−L)1.0部、L−アスコルビン酸0.02部、過硫酸カリウム0.20部、純水20部を仕込み、反応温度を55℃に上げて更に反応を継続した。重合転化率が98%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.100部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してBNPA0.010部とBIT0.055部を添加し、防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス9を得た。
Preparation of copolymer latex 9 (comparative example)
In a pressure resistant polymerization reactor, in a nitrogen atmosphere, 130 parts of pure water, 2.0 parts of sodium dodecylbenzenesulfonate (Naoperex G-25 manufactured by Kao), each monomer in the first stage shown in Table 2, and t -After 0.5 parts of dodecyl mercaptan and 0.03 part of L-ascorbic acid were added and sufficiently stirred, 0.25 part of potassium persulfate was charged and polymerization was started at 45 ° C. After the polymerization conversion reached 70%, 1.0 part of methacrylic acid, 0.3 part of t-dodecyl mercaptan, 1.0 part of sodium alkyldiphenyl ether disulfonate (Kao Perex SS-L), 0 part of L-ascorbic acid 0.02 part, 0.20 part of potassium persulfate and 20 parts of pure water were added, the reaction temperature was raised to 55 ° C., and the reaction was further continued. After the polymerization conversion rate reached 98%, 0.100 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Immediately thereafter, 0.010 part of BNPA and 0.055 part of BIT were added to 100 parts of the solid content of the copolymer, and stirred for 30 minutes so that the preservative component was uniformly dispersed to obtain a copolymer latex 9. .

共重合体ラテックス10の作製(比較例)
耐圧性の重合反応機に、窒素雰囲気下で純水135部、ドデシルベンゼンスルホン酸ナトリウム(花王製ネオペレックスG−25)2.5部、表2に示す各単量体およびt−ドデシルメルカプタン0.3部、L−アスコルビン酸0.03部を加えて十分攪拌した後、クメンハイドロパーオキサイド0.05部、過硫酸カリウム0.15部を仕込み、35℃で重合を開始した。重合転化率が75%に達した後、t−ドデシルメルカプタン0.3部、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王製ペレックスSS−L)0.5部、L−アスコルビン酸0.02部、過硫酸カリウム0.10部、純水20部を仕込み、反応温度を50℃に上げて更に反応を継続した。重合転化率が98%に達した後、重合停止剤としてジエチルヒドロキシルアミン0.200部を添加して重合を終了した。次いで、共重合体ラテックスを苛性カリ水溶液でpHを約8に調整した後、水蒸気蒸留(80〜95℃で7〜10時間)により未反応単量体および他の低沸点化合物を除去したのち30℃まで降温し、アンモニア水でpHを約9に調整した。その後、直ちに共重合体の固形分100部に対してトリアジン0.100部とBIT0.045部を添加し、防腐剤成分が均一に分散されるよう30分間撹拌して共重合体ラテックス10を得た。
Preparation of copolymer latex 10 (comparative example)
In a pressure resistant polymerization reactor, in a nitrogen atmosphere, 135 parts of pure water, 2.5 parts of sodium dodecylbenzenesulfonate (Naoperex G-25 manufactured by Kao), each monomer shown in Table 2 and t-dodecyl mercaptan 0 Then, 3 parts and 0.03 part of L-ascorbic acid were added and stirred sufficiently, and then 0.05 part of cumene hydroperoxide and 0.15 part of potassium persulfate were added, and polymerization was started at 35 ° C. After the polymerization conversion reached 75%, 0.3 part of t-dodecyl mercaptan, 0.5 part of sodium alkyldiphenyl ether disulfonate (Kao Perex SS-L), 0.02 part of L-ascorbic acid, potassium persulfate 0.10 parts and 20 parts of pure water were charged, the reaction temperature was raised to 50 ° C., and the reaction was further continued. After the polymerization conversion rate reached 98%, 0.200 part of diethylhydroxylamine was added as a polymerization terminator to complete the polymerization. Next, after adjusting the pH of the copolymer latex to about 8 with an aqueous caustic potash solution, the unreacted monomer and other low-boiling compounds were removed by steam distillation (7 to 10 hours at 80 to 95 ° C.), and then 30 ° C. The pH was adjusted to about 9 with aqueous ammonia. Thereafter, 0.100 part of triazine and 0.045 part of BIT are immediately added to 100 parts of the solid content of the copolymer, and stirred for 30 minutes so that the preservative component is uniformly dispersed to obtain a copolymer latex 10. It was.

各共重合体ラテックスの組成および、粒子径、ゲル含有量、酸化還元電位、ガラス転移温度、長期保存安定性評価結果、ホルムアルデヒド放散量測定結果を表1および表2にまとめた。 Tables 1 and 2 summarize the composition, particle size, gel content, redox potential, glass transition temperature, long-term storage stability evaluation results, and formaldehyde emission measurement results of each copolymer latex.

Figure 2005097475
Figure 2005097475

Figure 2005097475
Figure 2005097475

上記の通り、本発明によって得られる共重合体ラテックスは、室内空気汚染(シックハウス)の原因物質であるホルムアルデヒドを放散せず、かつ、優れた長期保存安定性を示し、耐油性不織布、耐油性ゴム手袋をはじめとするゴム成型品、耐油性フォームラバーなどに好適に用いられる構成材料を提供するものである。 As described above, the copolymer latex obtained by the present invention does not dissipate formaldehyde which is a cause of indoor air pollution (sick house) and exhibits excellent long-term storage stability, and is an oil-resistant nonwoven fabric and oil-resistant rubber. The present invention provides a constituent material suitably used for rubber molded products such as gloves and oil-resistant foam rubber.

Claims (1)

脂肪族共役ジエン系単量体50〜80重量部、シアン化ビニル系単量体20〜50重量部、エチレン性不飽和カルボン酸系単量体0〜10重量部からなる単量体を乳化重合して得られる共重合体ラテックスであって、該共重合体ラテックス100重量部(固形分換算)に対し、下記の一般式(1)で表わされるベンゾイソチアゾリン系化合物を0.001重量部以上および2−メチル−4−イソチアゾリン−3−オンを0.001重量部以上含有し、かつ酸化還元電位が−100mV〜+300mVであることを特徴とする共重合体ラテックス。
Figure 2005097475
(式中、Rは水素原子又は炭素数1〜8のアルキル基を表わす)
Emulsion polymerization of a monomer comprising 50 to 80 parts by weight of an aliphatic conjugated diene monomer, 20 to 50 parts by weight of a vinyl cyanide monomer, and 0 to 10 parts by weight of an ethylenically unsaturated carboxylic acid monomer The copolymer latex obtained by the above process, wherein the benzoisothiazoline compound represented by the following general formula (1) is added in an amount of 0.001 part by weight or more with respect to 100 parts by weight (in terms of solid content) of the copolymer latex. A copolymer latex comprising 0.001 part by weight or more of 2-methyl-4-isothiazolin-3-one and having a redox potential of -100 mV to +300 mV.
Figure 2005097475
(Wherein R represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms)
JP2003335216A 2003-09-26 2003-09-26 Copolymer latex with excellent long-term storage stability Expired - Lifetime JP4368646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003335216A JP4368646B2 (en) 2003-09-26 2003-09-26 Copolymer latex with excellent long-term storage stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335216A JP4368646B2 (en) 2003-09-26 2003-09-26 Copolymer latex with excellent long-term storage stability

Publications (2)

Publication Number Publication Date
JP2005097475A true JP2005097475A (en) 2005-04-14
JP4368646B2 JP4368646B2 (en) 2009-11-18

Family

ID=34462654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335216A Expired - Lifetime JP4368646B2 (en) 2003-09-26 2003-09-26 Copolymer latex with excellent long-term storage stability

Country Status (1)

Country Link
JP (1) JP4368646B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164078A1 (en) * 2016-03-23 2017-09-28 日本ゼオン株式会社 Method for producing latex composition
WO2017164077A1 (en) * 2016-03-23 2017-09-28 日本ゼオン株式会社 Latex composition and friction material
CN108779296A (en) * 2016-03-23 2018-11-09 日本瑞翁株式会社 latex and friction material
WO2019176921A1 (en) * 2018-03-12 2019-09-19 日本ゼオン株式会社 Latex and composite
WO2022209827A1 (en) * 2021-03-29 2022-10-06 日本ゼオン株式会社 Foam rubber latex composition and foam rubber

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067145B2 (en) 2016-03-23 2021-07-20 Zeon Corporation Method for producing latex composition
CN108779296B (en) * 2016-03-23 2020-12-29 日本瑞翁株式会社 Latex and friction material
JP7036003B2 (en) 2016-03-23 2022-03-15 日本ゼオン株式会社 Method for manufacturing latex composition
JPWO2017164077A1 (en) * 2016-03-23 2019-01-31 日本ゼオン株式会社 Latex composition and friction material
JPWO2017164078A1 (en) * 2016-03-23 2019-02-07 日本ゼオン株式会社 Method for producing latex composition
US20190093724A1 (en) 2016-03-23 2019-03-28 Zeon Corporation Method for producing latex composition
US20190093723A1 (en) * 2016-03-23 2019-03-28 Zeon Corporation Latex composition and friction material
WO2017164078A1 (en) * 2016-03-23 2017-09-28 日本ゼオン株式会社 Method for producing latex composition
CN108779296A (en) * 2016-03-23 2018-11-09 日本瑞翁株式会社 latex and friction material
WO2017164077A1 (en) * 2016-03-23 2017-09-28 日本ゼオン株式会社 Latex composition and friction material
KR102620131B1 (en) 2018-03-12 2023-12-29 니폰 제온 가부시키가이샤 Latex and composites
JPWO2019176921A1 (en) * 2018-03-12 2021-02-25 日本ゼオン株式会社 Latex and complex
WO2019176921A1 (en) * 2018-03-12 2019-09-19 日本ゼオン株式会社 Latex and composite
EP3766930A4 (en) * 2018-03-12 2021-11-24 Zeon Corporation Latex and composite
CN111801379A (en) * 2018-03-12 2020-10-20 日本瑞翁株式会社 Latex and composite
CN111801379B (en) * 2018-03-12 2022-07-26 日本瑞翁株式会社 Latex and composite
JP7207397B2 (en) 2018-03-12 2023-01-18 日本ゼオン株式会社 latex and composites
KR20200131234A (en) * 2018-03-12 2020-11-23 니폰 제온 가부시키가이샤 Latex and composites
WO2022209827A1 (en) * 2021-03-29 2022-10-06 日本ゼオン株式会社 Foam rubber latex composition and foam rubber

Also Published As

Publication number Publication date
JP4368646B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US20100076149A1 (en) Polychloroprene latex composition and its production method
JP4503261B2 (en) Copolymer latex with excellent long-term storage stability
JP6103470B2 (en) Chain transfer agent having condensed polycyclic aromatic skeleton, polymer having condensed polycyclic aromatic skeleton, and method for producing polymer
JP5428215B2 (en) Chloroprene latex and method for producing the same
JP4809671B2 (en) Dip molding copolymer latex, dip molding composition and dip molding product
JP4368646B2 (en) Copolymer latex with excellent long-term storage stability
KR102141789B1 (en) Producing method of copolymer latex for adhesives
JP2014152183A (en) Polychloroprene latex composition and adhesive
JP2005187544A (en) Copolymer latex for use in dip molding, composition for use in dip molding, and dip-molded product
JPH05214006A (en) Production of ultrahigh-molecular polymer emulsion
JP4282393B2 (en) Environmentally friendly copolymer latex with excellent long-term storage stability
JP5603356B2 (en) Latex composition, method for producing the composition, and aqueous adhesive composition
JP2005336273A (en) Copolymer latex for dip molding, dip molding composition and dip-molded product
EP3778676B1 (en) Method for producing conjugated-diene-based copolymer latex
JP2002053703A (en) Polychloroprene latex composition, manufacturing method therefor and adhesive composition using this latex composition
JP4870972B2 (en) Dip molding copolymer latex, dip molding composition and dip molding
EP2468777B1 (en) Method for producing polychloroprene latex, polychloroprene latex, and adhesive using same
JP5302251B2 (en) Copolymer latex
JP2007063370A (en) Polychloroprene latex composition and method for producing the same
JP6380048B2 (en) Monomer composition for emulsion polymerization
JPS60203610A (en) Polymerization of chloroprene and polychlorprene latex and polychloroprene rubber
JP2010106089A (en) Copolymer latex for rubber-polyester fiber adhesive
JPS6059248B2 (en) Method for producing xanthogen-modified chloroprene polymer
JP2005008859A (en) Polychloroprene latex composition, adhesive, coating material and production method for the same composition
JP7342888B2 (en) Isoprene-based polymer latex composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Ref document number: 4368646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4