JP2005097022A - Synthetic method for group iiib nitride - Google Patents

Synthetic method for group iiib nitride Download PDF

Info

Publication number
JP2005097022A
JP2005097022A JP2003330777A JP2003330777A JP2005097022A JP 2005097022 A JP2005097022 A JP 2005097022A JP 2003330777 A JP2003330777 A JP 2003330777A JP 2003330777 A JP2003330777 A JP 2003330777A JP 2005097022 A JP2005097022 A JP 2005097022A
Authority
JP
Japan
Prior art keywords
group iiib
nitride
synthesizing
gan
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003330777A
Other languages
Japanese (ja)
Inventor
Koichi Niihara
皓一 新原
Hisafumi Kususe
尚史 楠瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003330777A priority Critical patent/JP2005097022A/en
Publication of JP2005097022A publication Critical patent/JP2005097022A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synthetic method for nitride in a simple process using inexpensive starting raw materials for the purpose of solving the problems in the conventional synthesis method for group IIIB nitride particulates, and to provide group IIIB nitride particulates having light emitting properties. <P>SOLUTION: In the synthetic method for group IIIB nitride, a group IIIB element-containing compound and a nitrogen-containing compound are dissolved into a solvent, thereafter, the solvent is evaporated, the obtained uniform mixture is heated to reduce the group IIIB element-containing compound, and, the group IIIB elements are nitrided with nitrogen in the nitrogen-containing compound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原料の湿式調製法と還元窒化方法を用いたIIIB族窒化物の合成方法に関する。   The present invention relates to a method for synthesizing a group IIIB nitride using a wet preparation method of raw materials and a reduction nitriding method.

IIIB族窒化物であるGaN及びBNは紫外発光体として注目され、現在、盛んに研究されている。しかしながら、これらの報告例のほとんどで、IIIB族窒化物は薄膜として合成されており、粉体や、物理的に特異な特性を示すナノ粒子の研究はまだ少ない。従来行われている薄膜を作製するプロセスは、非常に高価な装置を必要とし、さらに、複雑形状品への成膜が困難であるという欠点があった。   GaN and BN, which are group IIIB nitrides, have attracted attention as ultraviolet emitters and are currently being actively studied. However, in most of these reports, IIIB nitrides are synthesized as thin films, and there are still few studies on powders and nanoparticles that exhibit physically unique properties. The conventional process for producing a thin film requires a very expensive apparatus, and further has a drawback that it is difficult to form a film on a complicated shape.

六方晶BNは炭素と水素の存在下で高温熱処理をすると青白く発光することが報告されている(非特許文献1)。この手法では高温を必要とし、しかも、炭素の含有量を制御できないという問題点があった。   It has been reported that hexagonal BN emits light blue when subjected to high temperature heat treatment in the presence of carbon and hydrogen (Non-patent Document 1). This method has a problem that a high temperature is required and the carbon content cannot be controlled.

GaN粒子に関しては、これまでに次のような合成方法が報告されている。
(1)Ga、GaCl3、Ga2O3、硝酸ガリウム水和物、ジアルキルジチオカルバミン酸ガリウム、ガリウムトリイソプロポキシド、等とアンモニアガスとの反応方法(非特許文献2、特許文献1〜6)。この反応では窒素源として腐食性のアンモニアガスが使われている。また、得られる一次粒子はいずれもμmオーダーのものである。
(2)GaとNaN3との反応方法(非特許文献3)。この反応で窒素源として使われるアジ化物NaN3は、酸と反応し有毒かつ爆発性のアジ化水素酸を発生する。また、他の金属と容易に反応し、爆発性の高い塩も生成するため取り扱いが困難である。
(3)GaCl3とLi3Nとのベンゼン−サーマル反応方法(非特許文献4)。Li3Nは耐酸化性が低く取り扱いが困難である。また、ベンゼン−サーマル法では圧力容器を使うために大量合成が不可能である。
(4)トリス(ジメチルアミノ)ガリウムを、トリオクチルアミン中で加熱分解してナノ粒子を合成する方法(特許文献3)。この化合物は特殊な化合物であり、また反応の制御が難しく、工業的な大量生産に問題がある。
As for GaN particles, the following synthesis methods have been reported so far.
(1) Method of reacting ammonia gas with Ga, GaCl 3 , Ga 2 O 3 , gallium nitrate hydrate, gallium dialkyldithiocarbamate, gallium triisopropoxide, etc. (Non-patent Document 2, Patent Documents 1 to 6) . In this reaction, corrosive ammonia gas is used as a nitrogen source. Further, the obtained primary particles are all in the order of μm.
(2) Reaction method of Ga and NaN 3 (Non-patent Document 3). The azide NaN 3 used as a nitrogen source in this reaction reacts with acid to generate toxic and explosive hydroazide. In addition, it easily reacts with other metals and produces highly explosive salts, which are difficult to handle.
(3) A benzene-thermal reaction method between GaCl 3 and Li 3 N (Non-patent Document 4). Li 3 N has low oxidation resistance and is difficult to handle. In addition, since the benzene-thermal method uses a pressure vessel, large-scale synthesis is impossible.
(4) A method of synthesizing nanoparticles by thermally decomposing tris (dimethylamino) gallium in trioctylamine (Patent Document 3). This compound is a special compound, and it is difficult to control the reaction, which causes a problem in industrial mass production.

K. Era, F. Minami, and T.Kuzuba,“Fast Luminescence from Carbon-Related Defects of Hexagonal Boron Nitride”, Journal of Luminescence,Vol.24/25, pp71-74 (1981)K. Era, F. Minami, and T. Kuzuba, “Fast Luminescence from Carbon-Related Defects of Hexagonal Boron Nitride”, Journal of Luminescence, Vol. 24/25, pp71-74 (1981) K. Hara, Y. Matsuno and Y. Matsuo,“Vaper Phase Synthesis of Fluorecsent Gallium Nitride Powders”, Japanese Journal of Applied Physics Vol. 40,pp.L242-L244 (2001)K. Hara, Y. Matsuno and Y. Matsuo, “Vaper Phase Synthesis of Fluorecsent Gallium Nitride Powders”, Japanese Journal of Applied Physics Vol. 40, pp.L242-L244 (2001) 山根久典、青木真登、皿山正二、「フラックス法によるGaN単結晶の育成」、応用物理、第71巻、pp.548-522、(2002)Hisanori Yamane, Masato Aoki, Shoji Tairayama, "Growth of GaN single crystals by the flux method", Applied Physics, Vol. 71, pp.548-522, (2002) Y.Xie, Y. Qian, W. Wang, S. Zhan, “A Benzene-Thermal Synthetic Route to Nanocrystalline GaN,”Science,Vol.272, pp.1926-1927Y.Xie, Y. Qian, W. Wang, S. Zhan, “A Benzene-Thermal Synthetic Route to Nanocrystalline GaN,” Science, Vol.272, pp.1926-1927 特開2000−198978号公報JP 2000-198978 A 特開2001−151504号公報JP 2001-151504 A 特開2002−029713号公報JP 2002-029713 A 特開2002−029714号公報JP 2002-029714 A 特開2003−34510号公報JP 2003-34510 A 特開2003−63810号公報JP 2003-63810 A 特開2002−220213号公報Japanese Patent Laid-Open No. 2002-220213

一般的に、蛍光体を光・電子デバイスとして実用化するとき、最も適した形態は粒子である。特に、蛍光体を粒径10nm以下のナノ粒子にすると、バルクの場合と異なり、電子と正孔が非常に狭い空間に閉じこめられるために、安定に励起子(電子−正孔対)が生成され、発光量子効率が増加する量子閉じ込め効果が期待される。また、IIIB族窒化物の中でも紫外域にバンドギャップを持つGaNは、フィールドエミッションディスプレイなどのディスプレイ用蛍光体として汎用化が期待されている。   In general, when a phosphor is put into practical use as an optical / electronic device, the most suitable form is a particle. In particular, if the phosphor is a nanoparticle with a particle size of 10 nm or less, unlike the bulk, electrons and holes are confined in a very narrow space, so excitons (electron-hole pairs) are generated stably. A quantum confinement effect that increases the quantum efficiency of light emission is expected. Among group IIIB nitrides, GaN having a band gap in the ultraviolet region is expected to be widely used as a display phosphor such as a field emission display.

しかしながら、一般的にナノ粒子の表面には、ダングリングボンドなどの欠陥が多く、励起子はこれによって無輻射失活するためにほとんど発光しなくなる。また、表面に出ている原子の割合が多いため、表面エネルギーを下げようと凝集する傾向があり、この凝集によって生成した不完全な化学結合が欠陥と同様に、発光を低減させることも報告されている。また、ミクロンサイズの粒子を機械的に砕いてナノサイズにした場合結晶に転位が入り発光強度が低下する。   However, in general, there are many defects such as dangling bonds on the surface of the nanoparticles, and the excitons are almost non-radiatively deactivated due to non-radiation deactivation. In addition, since there is a large proportion of atoms appearing on the surface, there is a tendency to agglomerate to reduce the surface energy, and it has been reported that imperfect chemical bonds generated by this aggregation reduce luminescence as well as defects. ing. In addition, when micron-sized particles are mechanically crushed into nano-size, dislocations enter the crystal and the emission intensity decreases.

IIIB族窒化物微粒子の従来の合成方法では、窒素源として腐食性の強いアンモニアが主に用いられている。また、一部、アジ化ナトリウムを使う研究も報告されている。アジ化ナトリウム自体には爆発性はないが、酸と反応し有毒かつ爆発性のアジ化水素酸を発生する。さらに、他の金属と容易に反応し、爆発性の高い塩も生成するため非常に危険な薬品といえる。また、反応装置に特別な耐圧容器又は真空チャンバーを必要としている。   In the conventional method for synthesizing group IIIB nitride fine particles, ammonia having strong corrosivity is mainly used as a nitrogen source. Some studies using sodium azide have also been reported. Although sodium azide itself is not explosive, it reacts with acid to produce toxic and explosive hydroazide. Furthermore, it can be said to be a very dangerous chemical because it reacts easily with other metals to produce highly explosive salts. In addition, a special pressure vessel or vacuum chamber is required for the reaction apparatus.

本発明は、上記のとおりの従来のIIIB族窒化物微粒子の合成方法の問題点を解決するために、安価な出発原料を用いた簡便なプロセスで窒化物の合成方法を提供するとともに発光特性を有するIIIB族窒化物微粒子を提供することを課題とする。   In order to solve the problems of the conventional method for synthesizing group IIIB nitride fine particles as described above, the present invention provides a method for synthesizing nitride by a simple process using an inexpensive starting material, and has a light emitting characteristic. It is an object to provide group IIIB nitride fine particles.

本発明者らは、高温を必要とせずに比較的安全な出発原料を湿式法で調製し、これを尿素などの含窒素化合物を用いて還元窒化処理することによってIIIB族窒化物を合成する方法を見出した。   The present inventors have prepared a group IIIB nitride by preparing a relatively safe starting material by a wet method without requiring a high temperature, and subjecting this to a reduction nitriding treatment using a nitrogen-containing compound such as urea. I found.

本発明の方法によって、六方晶BN、乱層構造タイプのBN、GaN、Ga-In-N、六方晶BN微粒子にGaNナノ粒子を包含した複合微粒子などのIIIB族窒化物微粒子の製造が可能である。なお、微粒子とは、通常1nm〜1μnmの粒径を有する粒子、超微粒子とは、1nm〜100nmの粒径を有する粒子をいう。また、本発明において、ナノ粒子とは1nmから50nm程度の粒子をいう。六方晶BN粒子中に包含したGaNは5〜10nm程度のナノ粒子である。本発明において、これらの粒子の大きさは透過型電子顕微鏡(TEM)で観察される一次粒子の数平均粒径として示される。また、IIIB族は元素周期表のIIIB族に属するB,Al,Ga,Inの各元素をいう。   By the method of the present invention, it is possible to produce group IIIB nitride fine particles such as hexagonal BN, disordered layer type BN, GaN, Ga-In-N, and composite fine particles including GaN nanoparticles in hexagonal BN fine particles. is there. The fine particles are usually particles having a particle diameter of 1 nm to 1 μm, and the ultrafine particles are particles having a particle diameter of 1 nm to 100 nm. In the present invention, the nanoparticle means a particle of about 1 nm to 50 nm. GaN included in the hexagonal BN particles is a nanoparticle of about 5 to 10 nm. In the present invention, the size of these particles is shown as the number average particle size of primary particles observed with a transmission electron microscope (TEM). Group IIIB refers to B, Al, Ga, and In elements belonging to Group IIIB of the periodic table.

すなわち、本発明は、(1)IIIB族元素含有化合物と含窒素化合物を溶媒に溶解した後、溶媒を蒸発して得られた均一混合物を加熱してIIIB族元素含有化合物を還元して含窒素化合物の窒素によりIIIB族元素を窒化することを特徴とするIIIB族窒化物の合成方法、である。   That is, the present invention comprises (1) dissolving a group IIIB element-containing compound and a nitrogen-containing compound in a solvent, and then heating the homogeneous mixture obtained by evaporating the solvent to reduce the group IIIB element-containing compound to reduce nitrogen A method for synthesizing a group IIIB nitride, characterized in that a group IIIB element is nitrided with nitrogen of a compound.

また、本発明は、(2)IIIB族窒化物が六方晶BN、GaN、又はGa-In-N固溶体であることを特徴とする上記(1)のIIIB族窒化物の合成方法、である。   The present invention also provides (2) a method for synthesizing a group IIIB nitride according to (1) above, wherein the group IIIB nitride is a hexagonal BN, GaN, or Ga—In—N solid solution.

また、本発明は、(3)含窒素化合物が尿素であることを特徴とする上記(1)のIII
B族窒化物の合成方法、である。
Further, the present invention provides (3) III in (1) above, wherein the nitrogen-containing compound is urea.
This is a method for synthesizing a group B nitride.

また、本発明は、(4)溶媒が、水、アルコール、炭化水素系化合物のいずれかであることを特徴とする上記(1)〜(3)のいずれかのIIIB族窒化物の合成方法、である。   The present invention also provides (4) a method for synthesizing a group IIIB nitride according to any one of the above (1) to (3), wherein the solvent is water, alcohol, or a hydrocarbon compound, It is.

また、本発明は、(5)IIIB族窒化物が微粒子であることを特徴とする上記(1)のIIIB族窒化物の合成方法、である。   The present invention is also (5) the method for synthesizing a group IIIB nitride according to (1) above, wherein the group IIIB nitride is fine particles.

また、本発明は、(6)IIIB族窒化物は数平均粒子径が1nm〜50nmのナノ粒子であることを特徴とする上記(1)のIIIB族窒化物の合成方法、である。   The present invention is also (6) the method for synthesizing group IIIB nitride according to (1) above, wherein the group IIIB nitride is nanoparticles having a number average particle diameter of 1 nm to 50 nm.

また、本発明は、(7)IIIB族窒化物がミクロンサイズの粒子であることを特徴とする上記(1)のIIIB族窒化物の合成方法、である。   The present invention is also (7) the method for synthesizing a group IIIB nitride according to (1) above, wherein the group IIIB nitride is micron-sized particles.

また、本発明は、(8)IIIB族元素含有化合物と含窒素化合物とのモル比の調整によって、生成する粒子の粒径を制御することを特徴とする上記(5)〜(7)のいずれかに記載のIIIB族窒化物の合成方法、である。   Moreover, this invention controls the particle size of the produced | generated particle | grains by adjusting the molar ratio of (8) IIIB group element containing compound and a nitrogen-containing compound, Any of said (5)-(7) characterized by the above-mentioned. A method for synthesizing a group IIIB nitride as described above.

また、本発明は、(9)IIIB族窒化物が窒化ホウ素(BN)であり、スポンジ状の塊であることを特徴とする上記(1)のIIIB族窒化物の合成方法、である。   The present invention is also (9) the method for synthesizing a group IIIB nitride according to (1) above, wherein the group IIIB nitride is boron nitride (BN) and is a sponge-like lump.

また、本発明は、(10)IIIB族窒化物が酸素を含む乱層構造タイプの窒化ホウ素(BN)の微粒子であり、蛍光特性を示すことを特徴とする上記(1)のIIIB族窒化物の合成方法、である。   Further, the present invention is the (III) Group IIIB nitride according to (1), wherein the Group IIIB nitride is a turbulent structure type boron nitride (BN) fine particle containing oxygen and exhibits fluorescence characteristics This is a synthesis method.

また、本発明は、(11)IIIB族窒化物がGaNナノ粒子であり、蛍光特性を示すことを特徴とする上記(1)のIIIB族窒化物の合成方法、である。   The present invention also provides (11) a method for synthesizing a group IIIB nitride according to item (1), wherein the group IIIB nitride is GaN nanoparticles and exhibits fluorescence characteristics.

また、本発明は、(12)IIIB族窒化物がGaNと六方晶BNとの複合体又はGa-In-N固溶体と六方晶BNとの複合体からなる複合粒子であることを特徴とする上記(4)のIIIB族窒化物の合成方法、である。   The present invention is also characterized in that (12) the group IIIB nitride is a composite particle composed of a composite of GaN and hexagonal BN or a composite of Ga-In-N solid solution and hexagonal BN. (4) A method for synthesizing a group IIIB nitride.

また、本発明は、(13)六方晶BN中にGaNナノ粒子が単分散して包含された複合粒子であることを特徴とする上記(4)のIIIB族窒化物の合成方法、である。   The present invention is also (13) a method for synthesizing a group IIIB nitride according to (4) above, wherein the composite particles include GaN nanoparticles monodispersed in hexagonal BN.

本発明の方法によれば、従来、主に気相反応や噴霧法などで製造されている微粒子の製造法と違って、原料を一旦溶媒に溶解して溶媒を蒸発させて均質に混合調製した粉末混合物を加熱炉中に保持した状態で還元窒化することで微粒子、特に一次粒子径がナノメーターサイズの粒子を直接得ることができる。これは、本発明の方法でGaNやBN単相の粒子を合成する場合は、含窒素化合物の母体の中にGaN粒子が合成され、この際に、初期に生成した微細なGaN粒子は隣に生成したGaN粒子との距離が離れているために結合できず、反応終了後も微細な粒径を保っているからと推測される。また、BN/GaN複合粒子の場合も、同様にBN粒子の母体の中にGaN粒子が生成してしまうために、BN粒子を押しのけてGaN微粒子同士が接近することができず、微細な粒径のままGaN微粒子がBN粒子中に取り込まれてしまうからと推測される。   According to the method of the present invention, unlike the conventional fine particle production method mainly produced by a gas phase reaction or a spray method, the raw material is once dissolved in a solvent and the solvent is evaporated to prepare a homogeneous mixture. Fine particles, particularly particles having a primary particle size of nanometer size can be directly obtained by reductive nitriding while the powder mixture is held in a heating furnace. This is because when the GaN or BN single-phase particles are synthesized by the method of the present invention, the GaN particles are synthesized in the matrix of the nitrogen-containing compound. It is presumed that since the distance from the generated GaN particles is too large to be bonded, the fine particle size is maintained even after the reaction is completed. Similarly, in the case of BN / GaN composite particles, GaN particles are generated in the base of the BN particles, so that the GaN particles cannot be brought close to each other by pushing out the BN particles. It is assumed that the GaN fine particles are taken into the BN particles as they are.

本発明は、光・電子デバイスとして用いられるIIIB族窒化物蛍光体を従来の薄膜に代わる粒子形態で安全で安価な方法によって提供できる。また、得られる粒子の大きさを1nmからミクロンサイズまでの範囲で用途に応じて様々に調整できる。さらに、GaNナノ
粒子をBN粒子の中に包含した複合粒子も容易に合成できる。
INDUSTRIAL APPLICABILITY The present invention can provide a group IIIB nitride phosphor used as an optical / electronic device by a safe and inexpensive method in the form of particles instead of a conventional thin film. In addition, the size of the obtained particles can be variously adjusted depending on the application within the range from 1 nm to micron size. Furthermore, composite particles containing GaN nanoparticles in BN particles can be easily synthesized.

本発明の方法においては、まず、出発原料として溶媒に可溶なIIIB族元素含有化合物と、窒素源として溶媒に可溶な尿素やアンモニウム塩などの含窒素化合物を用意し、これらを溶媒に攪拌しながら溶解する。溶媒としては、水、アルコール、炭化水素系溶媒(ヘキサン、ベンゼン、トルエンなど)などを用いる。溶解操作は、大気中、室温でよい。なお、溶媒は原料と反応してしまって全て蒸発してしまわないような組み合わせを選択する必要がある。例えば、ホウ酸を出発原料として用いる場合、ホウ酸をアルコールのみで溶解乾燥した場合、ホウ酸アルコキシドとして全て蒸発してしまうので、このような場合は溶媒としては水、又は水を含むものを使う必要がある。   In the method of the present invention, first, a Group IIIB element-containing compound that is soluble in a solvent is prepared as a starting material, and a nitrogen-containing compound such as urea or ammonium salt that is soluble in a solvent is prepared as a nitrogen source, and these are stirred in the solvent. While dissolving. As the solvent, water, alcohol, hydrocarbon solvents (hexane, benzene, toluene, etc.) and the like are used. The dissolution operation may be performed in the atmosphere at room temperature. In addition, it is necessary to select a combination in which the solvent reacts with the raw material and does not completely evaporate. For example, when boric acid is used as a starting material, when boric acid is dissolved and dried only with alcohol, all of the boric acid alkoxide is evaporated. In such a case, water or a substance containing water is used as the solvent. There is a need.

出発原料のIIIB族元素含有化合物に対する含窒素化合物のモル比を任意に変化させることによって、生成する粒子の粒径を制御することができる。IIIB族元素含有化合物に対する含窒素化合物の量を増やすと、IIIB族元素含有化合物どうしの距離が広がることからより小さな粒径が得られる。例えば、含窒素化合物の還元窒化によってGaN粒子を生成する場合、生成したGaN粒子は近くに生成したGaN粒子と結合してGaN粒子を形成する。このとき、生成したGaN粒子間の距離が長くなるとGaN粒子が結合しにくくなり、粒径の小さいGaN粒子のままで得ることができる。   By arbitrarily changing the molar ratio of the nitrogen-containing compound to the group IIIB element-containing compound of the starting material, the particle size of the generated particles can be controlled. When the amount of the nitrogen-containing compound with respect to the group IIIB element-containing compound is increased, the distance between the group IIIB element-containing compounds increases, so that a smaller particle size can be obtained. For example, when GaN particles are generated by reductive nitridation of a nitrogen-containing compound, the generated GaN particles are combined with GaN particles generated nearby to form GaN particles. At this time, if the distance between the generated GaN particles is increased, the GaN particles are less likely to be combined and can be obtained as GaN particles having a small particle size.

出発原料を溶媒に完全に溶解した後、得られた透明な液体をエバポレーター又は凍結乾燥機などを用いて混合粉末に水分がなくなるまで完全に乾燥させる。この段階では出発原料は化学反応しておらず、粉末状の均一に混ざった混合物の数ミクロン〜1mm位の塊である。   After the starting material is completely dissolved in the solvent, the resulting transparent liquid is completely dried using an evaporator or a freeze dryer until the mixed powder is free of moisture. At this stage, the starting material is not chemically reacted, and is a lump of a few microns to 1 mm of a uniformly mixed powder.

この均質混合物の塊をそのまま多目的高温炉などの加熱炉中に保持する。窒素源は含窒素化合物から供給されるので、加熱雰囲気は、還元性雰囲気か不活性雰囲気であればよく、水素、窒素、水素+窒素、アンモニア雰囲気、アルゴン雰囲気などを用いる。加熱温度は、窒素反応を起こすに好適な加熱温度、時間を選定する。   The mass of the homogeneous mixture is held as it is in a heating furnace such as a multipurpose high temperature furnace. Since the nitrogen source is supplied from the nitrogen-containing compound, the heating atmosphere may be a reducing atmosphere or an inert atmosphere, and hydrogen, nitrogen, hydrogen + nitrogen, ammonia atmosphere, argon atmosphere, or the like is used. As the heating temperature, a heating temperature and time suitable for causing a nitrogen reaction are selected.

図1に、本発明の方法における加熱サイクルの一例を示す。400℃程度で3時間程度の加熱は含窒素化合物、例えば尿素中の窒素とガリウム源、ホウ素源、又はインジウム源を反応させるためのもので、素早く800℃程度まで昇温した場合、含窒素化合物が高温で分解してしまい、十分にガリウム源などと反応していないため、反応効率が悪く、酸化物(酸化ガリウムなど)が残ることがある。   FIG. 1 shows an example of a heating cycle in the method of the present invention. Heating at about 400 ° C for about 3 hours is for reacting nitrogen-containing compounds such as nitrogen in urea and gallium source, boron source, or indium source. Is decomposed at a high temperature and does not sufficiently react with a gallium source or the like, so that the reaction efficiency is poor and an oxide (such as gallium oxide) may remain.

また、400℃程度より低温の300℃程度で3時間程度保持した場合、温度が低すぎて含窒素化合物の窒素とガリウム源の反応が遅い。昇温速度は+5℃/分程度でよいが、昇温速度を1〜0.5℃/分程度に遅くすると400℃程度、3時間程度の保持は必ずしも必要ではない。また、降温は自然冷却でよく、特に調整する必要はない。還元窒化されたばかりのGaNやBNは酸素を含んでいる(特にBNは酸素を大量(15wt%程度)に含んでいる)ので、降温を真空中で行うことによって徐々に排出させることが好ましい。   In addition, when held at about 300 ° C., which is lower than about 400 ° C., for about 3 hours, the temperature is too low and the reaction of nitrogen of the nitrogen-containing compound and the gallium source is slow. The rate of temperature increase may be about + 5 ° C./min, but if the rate of temperature increase is reduced to about 1 to 0.5 ° C./min, holding at about 400 ° C. for about 3 hours is not necessarily required. Moreover, natural temperature may be sufficient for temperature fall, and it is not necessary to adjust in particular. Since GaN and BN that have just undergone reductive nitridation contain oxygen (particularly BN contains a large amount of oxygen (about 15 wt%)), it is preferable to gradually discharge the GaN or BN by lowering the temperature in a vacuum.

(1)BN粒子の製造方法
ホウ素源として溶媒に可溶なホウ酸などのホウ素化合物を用いる。BN粒子の場合は、還元窒化処理は400〜1000℃程度、1〜24時間程度が好ましい。この温度範囲より低いとBN粒子の生成があまり進行しない。得られるBN粒子は、紫外線照射により発光するが、焼成温度が1000℃より高いと、結晶性が良く酸素を含まないBN粒子が生成するため、発光強度が低下する。ホウ酸や酸化ホウ素をホウ素源として用いBN粒子を合成するとき最初に乱層構造のBNが生成する。この乱層構造のBNは六方晶BNと連続しており区別が難しい。この乱層
構造のBNは酸素を含んでおり、高温で熱処理すると酸素を排出しながら六方晶化が進行する。発光強度の強いBN粒子は500〜800℃の比較的低温で熱処理した酸素を多量に含む乱層構造タイプのBN粒子である。
(1) Method for producing BN particles A boron compound such as boric acid that is soluble in a solvent is used as a boron source. In the case of BN particles, the reductive nitriding treatment is preferably about 400 to 1000 ° C. and about 1 to 24 hours. Below this temperature range, the formation of BN particles does not progress much. The obtained BN particles emit light when irradiated with ultraviolet rays. However, when the firing temperature is higher than 1000 ° C., BN particles having good crystallinity and not containing oxygen are generated, so that the emission intensity decreases. When BN particles are synthesized using boric acid or boron oxide as a boron source, turbulent BN is first formed. This stratified BN is continuous with hexagonal BN and is difficult to distinguish. BN with this layered structure contains oxygen, and when heat-treated at a high temperature, hexagonalization proceeds while discharging oxygen. BN particles with strong emission intensity are BN particles with a large amount of oxygen that are heat-treated at a relatively low temperature of 500 to 800 ° C.

(2)GaN微粒子の製造方法
ガリウム源として溶媒に可溶な硝酸ガリウムなどの含ガリウム化合物を用いる。GaN微粒子の場合は、還元窒化処理は 400〜950℃程度の温度範囲で、5〜100時間程度行うことが好ましい。この温度が400℃より低いと窒化反応が遅くGaN微粒子中に酸素が残る。950℃よりも高いと生成したGaN微粒子がGaとNに分解する。高い合成温度で反応させるほど、また、長時間反応させるほど高結晶性のGaN微粒子が得られる。通常、蛍光体として使う場合は高結晶性のものが望まれるが、ベンゼン−サーマル反応の種結晶成長用に使う場合は低結晶のものが有利である。本発明の方法ではこれらの用途にそれぞれふさわしい結晶性の材料合成が可能である。
(2) Method for producing GaN fine particles A gallium-containing compound such as gallium nitrate which is soluble in a solvent is used as a gallium source. In the case of GaN fine particles, the reduction nitriding treatment is preferably performed at a temperature range of about 400 to 950 ° C. for about 5 to 100 hours. When this temperature is lower than 400 ° C., the nitriding reaction is slow and oxygen remains in the GaN fine particles. When the temperature is higher than 950 ° C., the generated GaN fine particles decompose into Ga and N. The higher the synthesis temperature and the longer the reaction time, the higher crystalline GaN fine particles can be obtained. Usually, when used as a phosphor, a highly crystalline material is desired, but when used for seed crystal growth in a benzene-thermal reaction, a low crystal material is advantageous. According to the method of the present invention, it is possible to synthesize crystalline materials suitable for these applications.

GaNにInを固溶させると、GaN本来のバンドギャップよりも小さくすることができ、発光波長を制御できる。また、GaNをナノ粒子化して、量子サイズ効果により発光波長が紫外領域にシフトしても、Inを固溶させることによって可視領域で発光させることが可能となる。   When In is dissolved in GaN, it can be made smaller than the original band gap of GaN, and the emission wavelength can be controlled. Further, even when GaN is made into nanoparticles and the emission wavelength is shifted to the ultraviolet region due to the quantum size effect, it is possible to emit light in the visible region by dissolving In.

従来、Ga-In-N固溶体の作製には気相法が使われているが、Inが高温で蒸発しやすいため固溶体を作製することが困難であった。しかしながら、本発明の方法では出発原料に、例えば、硝酸ガリウム-硝酸インジウム-尿素を用いることによって容易にGa-In-N固溶体を作製できる。このとき、合成温度は850℃まで可能であり、高い合成温度と長時間反応したものほど高結晶性のGa-In-N微粒子が得られる。   Conventionally, a gas phase method has been used to produce a Ga—In—N solid solution, but it has been difficult to produce a solid solution because In tends to evaporate at high temperatures. However, in the method of the present invention, a Ga—In—N solid solution can be easily prepared by using, for example, gallium nitrate-indium nitrate-urea as a starting material. At this time, the synthesis temperature can be up to 850 ° C., and the higher the synthesis temperature and the longer the reaction, the higher crystalline Ga—In—N fine particles can be obtained.

(3)GaN微粒子を包含するBN粒子の製造方法
一般的にナノ粒子の表面にはダングリングボンドなどの欠陥が多く、励起子はこれにトラップされて失活する。しかしながら、このナノ粒子を、それよりもバンドギャップの大きな物質でコーティングすることにより、量子閉じこめ効果が起こり、発光強度が増大する。
(3) Method for producing BN particles including GaN fine particles Generally, there are many defects such as dangling bonds on the surface of the nanoparticles, and excitons are trapped in this and deactivated. However, coating these nanoparticles with a material having a larger band gap causes a quantum confinement effect and increases the emission intensity.

本発明では、GaNよりもバンドギャップの大きな材料にBNを選択し、例えば、出発原料にホウ酸、硝酸ガリウム、含窒素化合物を用い還元窒化することにより、六方晶BN粒子中にGaN微粒子が単分散して包含されたBN粒子を作製できる。この方法によって、数平均粒径が1nm〜1μm程度のGaN微粒子及びその固溶体が六方晶BN中に均一に分散した複合粉末が得られる。GaN微粒子の大きさは、数平均粒径1nm〜100nm程度の超微粒子、さらには1nmから50nm程度のナノ粒子とすることができる。   In the present invention, BN is selected as a material having a larger band gap than GaN, and, for example, by reducing and nitriding using boric acid, gallium nitrate, and a nitrogen-containing compound as a starting material, GaN fine particles are single in hexagonal BN particles. Dispersed and contained BN particles can be produced. By this method, a composite powder in which GaN fine particles having a number average particle diameter of about 1 nm to 1 μm and a solid solution thereof are uniformly dispersed in hexagonal BN is obtained. The size of the GaN fine particles can be ultrafine particles having a number average particle diameter of about 1 nm to 100 nm, and further nanoparticles of about 1 nm to 50 nm.

実施例1
BN粒子の製造
表1の組成に従って、ホウ酸と尿素を秤量し、イオン交換水中に完全に溶解させ1時間攪拌した。組成1はホウ酸:尿素のモル比を1:3に、組成2はホウ酸:尿素のモル比を1:6に調整したものである。
Example 1
Production of BN particles Boric acid and urea were weighed according to the composition shown in Table 1, completely dissolved in ion-exchanged water, and stirred for 1 hour. Composition 1 is a boric acid: urea molar ratio adjusted to 1: 3, and composition 2 is a boric acid: urea molar ratio adjusted to 1: 6.

Figure 2005097022
Figure 2005097022

得られた透明の液体0.5Lからエバポレーターを用いて溶媒を蒸発させたところ、ホウ酸と尿素が均一に混合された粉末70gを得た。そして、この混合粉末を尿素が2.5g含まれるように(つまり、組成1では9.8g、組成2では17g、組成3では39g)アルミナ製坩堝に入れ、多目的高温炉を用い、次の条件で還元窒化したところ尿素比の少ない組成1ではスポンジ状の、尿素比の多い組成2及び3ではさらさらした白色又はやや灰色の粉末1gが得られた。   When the solvent was evaporated from 0.5 L of the obtained transparent liquid using an evaporator, 70 g of powder in which boric acid and urea were uniformly mixed was obtained. Then, this mixed powder is placed in an alumina crucible so that 2.5 g of urea is contained (that is, 9.8 g for composition 1, 17 g for composition 2, and 39 g for composition 3), and reduced under the following conditions using a multipurpose high-temperature furnace. As a result of nitriding, 1 g of a sponge-like powder was obtained with composition 1 having a low urea ratio, and 1 g of a white or slightly gray powder having been obtained with compositions 2 and 3 having a high urea ratio.

還元条件1
水素雰囲気中400℃3時間→500℃12時間→800℃真空(5×10-4Torr以下)6時間
還元条件2
水素雰囲気中400℃3時間→800℃12時間→800℃真空(5×10-4Torr以下)6時間
還元条件3
水素雰囲気中400℃3時間→1400℃12時間→1400℃真空(5×10-4Torr以下)6時間
Reduction condition 1
3 hours at 400 ℃ in hydrogen atmosphere → 12 hours at 500 ℃ → 800 ℃ vacuum (5 × 10 -4 Torr or less) 6 hours Reduction condition 2
3 hours at 400 ° C in a hydrogen atmosphere → 12 hours at 800 ° C → 800 ° C vacuum (5 x 10 -4 Torr or less) 6 hours Reduction condition 3
400 ℃ for 3 hours in hydrogen atmosphere → 1400 ℃ for 12 hours → 1400 ℃ vacuum (5 × 10 -4 Torr or less) for 6 hours

得られたサンプルのXRDパターンからはブロードなBNのピークが同定された。TEM観察の結果、組成1から合成したサンプルでは粒界を識別することができなかったが、組成3から合成したサンプルは大きさ200nm以下のBN微粒子であり、50nm程度のナノ粒子も確認することができた。また、組成1及び2を還元条件2又は3で熱処理したサンプル中に含まれる酸素重量を表2に示す   From the XRD pattern of the obtained sample, a broad BN peak was identified. As a result of TEM observation, the grain boundary could not be identified in the sample synthesized from composition 1, but the sample synthesized from composition 3 is BN fine particles of 200 nm or less, and also confirms nanoparticles of about 50 nm. I was able to. Table 2 shows the oxygen weight contained in the samples obtained by heat-treating compositions 1 and 2 under reducing conditions 2 or 3.

Figure 2005097022
Figure 2005097022

図2に、組成3を還元条件1〜3で熱処理したサンプルのXRDチャートを示す。それぞれに波長365nmの紫外光を照射したところ、還元条件1及び2で作製したサンプルにおいて、肉眼(目視)で青又は青白い明るい発光が観察された。還元条件1及び2で作製したBN微粒子は六方晶化度が低く酸素を多く含んでいた。これに比べ還元条件3で作製したBN微粒子は結晶性も高く酸素をあまり含有していなかった。   FIG. 2 shows an XRD chart of a sample obtained by heat-treating composition 3 under reducing conditions 1 to 3. When each was irradiated with ultraviolet light having a wavelength of 365 nm, bright light emission of blue or pale white was observed with the naked eye (visual observation) in the samples prepared under the reducing conditions 1 and 2. The BN fine particles prepared under reducing conditions 1 and 2 had a low degree of hexagonal crystallinity and contained a large amount of oxygen. In contrast, the BN fine particles prepared under reducing condition 3 had high crystallinity and did not contain much oxygen.

これよりBN微粒子で観察された強い発光はBN微粒子の結晶性及び酸素量に関係すると考えられる。同様の傾向は組成1及び2でも観察され、還元条件3で合成したサンプルは肉眼で強い発光を確認できなかったが、還元条件1及び2で合成したサンプルについては強い発光を確認できた。図3に、組成2を還元条件2で熱処理したサンプルのフォトルミネ
ッセンス(PL)スペクトルの測定結果を示す(励起波長:365nm)。波長395nm付近をピークとする発光が観察された。
This indicates that the strong luminescence observed with BN fine particles is related to the crystallinity and oxygen content of BN fine particles. A similar tendency was also observed in compositions 1 and 2, and the sample synthesized under reducing condition 3 could not confirm strong luminescence with the naked eye, but the sample synthesized under reducing conditions 1 and 2 could confirm strong luminescence. In FIG. 3, the measurement result of the photoluminescence (PL) spectrum of the sample which heat-processed the composition 2 on the reduction conditions 2 is shown (excitation wavelength: 365 nm). Luminescence with a peak near the wavelength of 395 nm was observed.

実施例2
GaN微粒子の製造
表3の組成に従って、硝酸ガリウム6.7水和物と尿素を秤量し、イオン交換水中に完全に溶解させ1時間攪拌した。組成4は硝酸ガリウム:尿素のモル比が1:2,組成5は硝酸ガリウム:尿素のモル比が1:10になるように調整したものである。
Example 2
Production of GaN fine particles According to the composition of Table 3, gallium nitrate 6.7 hydrate and urea were weighed, completely dissolved in ion-exchanged water, and stirred for 1 hour. Composition 4 is adjusted so that the molar ratio of gallium nitrate: urea is 1: 2, and composition 5 is adjusted so that the molar ratio of gallium nitrate: urea is 1:10.

Figure 2005097022
Figure 2005097022

得られた透明の液体0.2Lからエバポレーターを用いて溶媒を蒸発させたところ 硝酸ガリウムと尿素が均一に混合された粉末を、組成4では2.6g、組成5では3.3gを得た。そして、この混合粉末をアルミナ製坩堝に入れ、多目的高温炉を用い、次の条件で還元窒化したところさらさらした茶色又はこげ茶色の粉末約0.45gが得られた。   When the solvent was evaporated from 0.2 L of the obtained transparent liquid using an evaporator, 2.6 g of the powder in which gallium nitrate and urea were uniformly mixed and 3.3 g in the composition 5 were obtained. Then, this mixed powder was put in an alumina crucible and subjected to reduction nitridation under the following conditions using a multipurpose high-temperature furnace to obtain about 0.45 g of a free-brown brown or dark brown powder.

還元条件4
水素雰囲気中400℃3時間→400℃真空(5×10-4Torr以下)24時間
還元条件5
水素雰囲気中400℃3時間→800℃7時間→750℃真空(5×10-4Torr以下)24時間
還元条件6
水素雰囲気中400℃3時間→800℃30時間→750℃真空(5×10-4Torr以下)24時間
還元条件7
水素雰囲気中400℃3時間→800℃50時間→750℃真空(5×10-4Torr以下)24時間
Reduction condition 4
400 ° C for 3 hours in a hydrogen atmosphere → 400 ° C vacuum (5 × 10 -4 Torr or less) 24 hours reduction condition 5
400 ℃ for 3 hours in hydrogen atmosphere → 800 ° C. for 7 hours → 750 ° C. vacuum (5 × 10 −4 Torr or less) 24 hours reduction condition 6
Hydrogen atmosphere 400 ° C 3 hours → 800 ° C 30 hours → 750 ° C vacuum (5 × 10 -4 Torr or less) 24 hours reduction condition 7
400 ℃ for 3 hours in hydrogen atmosphere → 800 ° C. for 50 hours → 750 ° C. vacuum (5 × 10 −4 Torr or less) for 24 hours

図4に、組成4及び5を還元条件5で熱処理したサンプル4及び5のXRDパターンを示す。これらのXRD結果からGaN微粒子の生成が確認できた。図5に、サンプル4及びサンプル5のGaN微粒子のTEM観察写真を示す。出発原料に尿素量が多い場合、より微細なGaNナノ粒子が得られたことが分かる。図6に、組成4を還元条件6で熱処理したサンプルのPLスペクトルの測定結果を示す(励起波長:254nm)。波長390nm付近をピークとする発光が観察された。   FIG. 4 shows XRD patterns of Samples 4 and 5 obtained by heat-treating Compositions 4 and 5 under reducing condition 5. From these XRD results, the formation of GaN fine particles was confirmed. FIG. 5 shows TEM observation photographs of the GaN fine particles of Sample 4 and Sample 5. It can be seen that when the amount of urea is large in the starting material, finer GaN nanoparticles were obtained. FIG. 6 shows a PL spectrum measurement result of a sample obtained by heat-treating composition 4 under reducing condition 6 (excitation wavelength: 254 nm). Luminescence with a peak near the wavelength of 390 nm was observed.

実施例3
BN/GaN複合粒子の製造
表4の組成に従って、硝酸ガリウム6.7水和物とホウ酸と尿素を秤量し、イオン交換水中に完全に溶解させ1時間攪拌した。組成6は生成するGaNとBNの体積比が10:90、組成7は30:70になるように調整されている。
Example 3
Production of BN / GaN composite particles According to the composition shown in Table 4, gallium nitrate 6.7 hydrate, boric acid and urea were weighed, completely dissolved in ion-exchanged water, and stirred for 1 hour. Composition 6 is adjusted so that the volume ratio of GaN and BN produced is 10:90, and composition 7 is 30:70.

Figure 2005097022
Figure 2005097022

得られた透明の液体0.2Lからエバポレーターを用いて溶媒を蒸発させたところ硝酸ガリウム、ホウ酸と尿素が均一に混合された粉末5gを得た。そして、この混合粉末をアルミナ製坩堝に入れ、多目的高温炉を用い、次の条件で還元窒化したところさらさらした薄黄色の粉末が、組成6で約0.33g、組成7で約0.36gが得られた。   When the solvent was evaporated from 0.2 L of the obtained transparent liquid using an evaporator, 5 g of powder in which gallium nitrate, boric acid and urea were uniformly mixed was obtained. This mixed powder was put in an alumina crucible and reduced and nitrided under the following conditions using a multipurpose high-temperature furnace. As a result, a light yellow powder with a composition of about 0.33 g and a composition of about 0.36 g was obtained. It was.

還元条件8
水素雰囲気中400℃3時間→400℃真空(5×10-4Torr以下)24時間
還元条件9
水素雰囲気中400℃3時間→800℃7時間→750℃真空(5×10-4Torr以下)24時間
還元条件10
水素雰囲気中400℃3時間→800℃30時間→750℃真空(5×10-4Torr以下)24時間
還元条件11
水素雰囲気中400℃3時間→800℃50時間→750℃真空(5×10-4Torr以下)24時間
Reduction condition 8
400 ° C for 3 hours in a hydrogen atmosphere → 400 ° C vacuum (5 × 10 -4 Torr or less) 24 hours reduction condition 9
400 ℃ for 3 hours in hydrogen atmosphere → 800 ° C. for 7 hours → 750 ° C. vacuum (5 × 10 −4 Torr or less) 24 hours reduction condition 10
In a hydrogen atmosphere 400 ° C 3 hours → 800 ° C 30 hours → 750 ° C vacuum (5 × 10 -4 Torr or less) 24 hours Reduction condition 11
400 ℃ for 3 hours in hydrogen atmosphere → 800 ° C. for 50 hours → 750 ° C. vacuum (5 × 10 −4 Torr or less) for 24 hours

図7に、組成7を還元条件8〜10で熱処理して得られたサンプルのXRDパターンを示す。還元条件8では非晶質であるが、還元条件9及び10の熱処理でBNとGaN二相のみからなることが分かる。また、図8に、組成7を還元条件10で熱処理したサンプル7のTEM観察写真を示す。粒径7〜10nmのGaNナノ粒子が六方晶BN粒子からなるマトリックス中に単分散で均一に析出して包含された組織であることが分かった。さらに、BN含有量の多い組成6から合成した90体積%BN/10体積%GaN複合粒子では、分散しているGaNの粒径が4〜8nmとより細かいことが分かった。また、図9に、サンプル7のPLスペクトルの測定結果を示す(励起波長:254nm)。波長350、390、445nm付近をピークとする発光が観察された。   FIG. 7 shows an XRD pattern of a sample obtained by heat-treating composition 7 under reducing conditions 8-10. Although it is amorphous under the reducing condition 8, it can be seen that the heat treatment under the reducing conditions 9 and 10 consists of only BN and GaN two phases. Further, FIG. 8 shows a TEM observation photograph of Sample 7 obtained by heat-treating Composition 7 under reducing condition 10. It was found that GaN nanoparticles with a particle size of 7-10 nm were monodispersed and uniformly deposited in a matrix composed of hexagonal BN particles. Furthermore, it was found that in the 90 volume% BN / 10 volume% GaN composite particles synthesized from the composition 6 having a high BN content, the dispersed GaN has a finer particle size of 4 to 8 nm. FIG. 9 shows the PL spectrum measurement result of Sample 7 (excitation wavelength: 254 nm). Luminescence with peaks near wavelengths of 350, 390, and 445 nm was observed.

本発明の方法で得られる発光特性を有するGaN、BN等の窒化物は、従来の薄膜に代わって、微粒子、特にナノ粒子として発光量子効率が増加したフィールドエミッションディスプレイなどのディスプレイ用蛍光体や光・電子デバイス用発光体として有用である。また、高純度で低結晶性のGaNを得ることによって、気相合成のターゲット材料や、水熱合成の種結晶として応用が可能である。さらに、量子サイズ効果により発光波長がブルーシフトした発光強度の強いGaNナノ粒子を得ることによって、紫外域の発光体として応用が可能である。   Nitrides such as GaN and BN having the light emission characteristics obtained by the method of the present invention are phosphors for display and field emission displays such as field emission displays having increased emission quantum efficiency as fine particles, particularly nanoparticles, instead of conventional thin films. -Useful as a light emitter for electronic devices. In addition, by obtaining high purity and low crystalline GaN, it can be applied as a target material for vapor phase synthesis or a seed crystal for hydrothermal synthesis. Furthermore, by obtaining GaN nanoparticles with strong emission intensity whose emission wavelength is blue-shifted by the quantum size effect, it can be applied as an ultraviolet light emitter.

本発明の方法における加熱サイクルの一例を示すグラフである。It is a graph which shows an example of the heating cycle in the method of this invention. 実施例1の組成3を還元条件1〜3で熱処理した生成物のXRDパターンである。It is a XRD pattern of the product which heat-processed the composition 3 of Example 1 on reduction conditions 1-3. 実施例1の組成2を還元条件2で合成したBNのPLスペクトル(励起波長365nm)である。2 is a PL spectrum (excitation wavelength: 365 nm) of BN obtained by synthesizing composition 2 of Example 1 under reducing condition 2. FIG. 実施例2の組成4及び5を還元条件5で熱処理したサンプル4及び5のXRDパターンである。4 is an XRD pattern of Samples 4 and 5 obtained by heat-treating compositions 4 and 5 of Example 2 under reducing condition 5; 実施例2のサンプルの図面代用TEM観察写真である。4 is a TEM observation photograph substituting for a drawing of a sample of Example 2. FIG. 実施例2の組成4を還元条件6で合成したGaNのPLスペクトル(励起波長254nm)である。4 is a PL spectrum (excitation wavelength: 254 nm) of GaN obtained by synthesizing composition 4 of Example 2 under reducing condition 6. FIG. 実施例2の組成7を還元条件8〜10で熱処理した生成物のXRDパターンである。It is a XRD pattern of the product which heat-processed the composition 7 of Example 2 on reduction conditions 8-10. 実施例2の組成7を還元条件10で熱処理したサンプル7の図面代用TEM観察写真である。5 is a drawing-substituting TEM observation photograph of Sample 7 obtained by heat-treating Composition 7 of Example 2 under reducing condition 10; 実施例2のサンプル7のPLスペクトル(励起波長254nm)である。It is a PL spectrum (excitation wavelength: 254 nm) of Sample 7 of Example 2.

Claims (13)

IIIB族元素含有化合物と含窒素化合物を溶媒に溶解した後、溶媒を蒸発して得られた均一混合物を加熱してIIIB族元素含有化合物を還元して含窒素化合物の窒素によりIIIB族元素を窒化することを特徴とするIIIB族窒化物の合成方法。 After dissolving the group IIIB element-containing compound and the nitrogen-containing compound in the solvent, the homogeneous mixture obtained by evaporating the solvent is heated to reduce the group IIIB element-containing compound and nitride the group IIIB element with nitrogen of the nitrogen-containing compound. And a method for synthesizing a group IIIB nitride. IIIB族窒化物が六方晶BN、GaN、又はGa-In-N固溶体であることを特徴とする請求項1記載のIIIB族窒化物の合成方法。 2. The method for synthesizing a group IIIB nitride according to claim 1, wherein the group IIIB nitride is a hexagonal BN, GaN, or Ga—In—N solid solution. 含窒素化合物が尿素であることを特徴とする請求項1記載のIIIB族窒化物の合成方法。 The method for synthesizing a group IIIB nitride according to claim 1, wherein the nitrogen-containing compound is urea. 溶媒が、水、アルコール、又は炭化水素系化合物のいずれかであることを特徴とする請求項1〜3のいずれかに記載のIIIB族窒化物の合成方法。 The method for synthesizing a group IIIB nitride according to any one of claims 1 to 3, wherein the solvent is water, an alcohol, or a hydrocarbon compound. IIIB族窒化物が微粒子であることを特徴とする請求項1記載のIIIB族窒化物の合成方法。 2. The method for synthesizing a group IIIB nitride according to claim 1, wherein the group IIIB nitride is fine particles. IIIB族窒化物は数平均粒子径が1nm〜50nmのナノ粒子であることを特徴とする請求項1記載のIIIB族窒化物の合成方法。 2. The method for synthesizing a group IIIB nitride according to claim 1, wherein the group IIIB nitride is a nanoparticle having a number average particle diameter of 1 nm to 50 nm. IIIB族窒化物がミクロンサイズの粒子であることを特徴とする請求項1記載のIIIB族窒化物の合成方法。 2. The method for synthesizing a group IIIB nitride according to claim 1, wherein the group IIIB nitride is micron-sized particles. IIIB族元素含有化合物と含窒素化合物とのモル比の調整によって、生成する粒子の粒径を制御することを特徴とする請求項5〜7のいずれかに記載のIIIB族窒化物の合成方法。 The method for synthesizing a group IIIB nitride according to any one of claims 5 to 7, wherein the particle size of the generated particles is controlled by adjusting the molar ratio between the group IIIB element-containing compound and the nitrogen-containing compound. IIIB族窒化物が窒化ホウ素(BN)であり、スポンジ状の塊であることを特徴とする請求項1記載のIIIB族窒化物の合成方法。 The method for synthesizing a group IIIB nitride according to claim 1, wherein the group IIIB nitride is boron nitride (BN) and is a sponge-like lump. IIIB族窒化物が酸素を含む乱層構造タイプの窒化ホウ素(BN)の微粒子であり、蛍光特性を示すことを特徴とする請求項1記載のIIIB族窒化物の合成方法。 2. The method for synthesizing a group IIIB nitride according to claim 1, wherein the group IIIB nitride is fine particles of a boron layer (BN) of a turbostratic structure type containing oxygen and exhibits fluorescence characteristics. IIIB族窒化物がGaNナノ粒子であり、蛍光特性を示すことを特徴とする請求項1記載のIIIB族窒化物の合成方法。 2. The method for synthesizing a group IIIB nitride according to claim 1, wherein the group IIIB nitride is a GaN nanoparticle and exhibits fluorescence characteristics. IIIB族窒化物がGaNと六方晶BNとの複合体又はGa-In-N固溶体と六方晶BNとの複合体からなる複合粒子であることを特徴とする請求項4記載のIIIB族窒化物の合成方法。 The group IIIB nitride according to claim 4, wherein the group IIIB nitride is a composite particle comprising a composite of GaN and hexagonal BN or a composite of Ga-In-N solid solution and hexagonal BN. Synthesis method. 六方晶BN中にGaNナノ粒子が単分散して包含された複合粒子であることを特徴とする請求項4記載のIIIB族窒化物の合成製造方法。 The method for synthesizing and producing a group IIIB nitride according to claim 4, wherein the GaN nanoparticles are monodispersed and included in hexagonal BN.
JP2003330777A 2003-09-22 2003-09-22 Synthetic method for group iiib nitride Pending JP2005097022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330777A JP2005097022A (en) 2003-09-22 2003-09-22 Synthetic method for group iiib nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330777A JP2005097022A (en) 2003-09-22 2003-09-22 Synthetic method for group iiib nitride

Publications (1)

Publication Number Publication Date
JP2005097022A true JP2005097022A (en) 2005-04-14

Family

ID=34459614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330777A Pending JP2005097022A (en) 2003-09-22 2003-09-22 Synthetic method for group iiib nitride

Country Status (1)

Country Link
JP (1) JP2005097022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060944A1 (en) * 2005-11-22 2007-05-31 Chubu Chelest Co., Ltd. Method for producing metal nitride
JP2010180066A (en) * 2009-02-03 2010-08-19 National Institute For Materials Science Boron nitride spherical nanoparticle and method of producing the same
US8668843B2 (en) 2007-03-28 2014-03-11 Hiroshima University M-C-N-O based phosphor
JP2017036418A (en) * 2015-08-12 2017-02-16 三菱化学株式会社 Fluophor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145400A (en) * 1978-05-08 1979-11-13 Ube Ind Ltd Production of metal nitride powder
JPS5864276A (en) * 1981-09-28 1983-04-16 ユニオン・カ−バイド・コ−ポレ−シヨン Porous self-thermodecomposable boron nitride article
JPS60151202A (en) * 1983-08-25 1985-08-09 Yuka Meramin Kk Manufacture of boron nitride
JPS6424006A (en) * 1987-07-13 1989-01-26 Ibm Synthesis of iiia group and va group compounds
JPH0249090A (en) * 1988-08-11 1990-02-19 Central Glass Co Ltd Fluorescent substance consisting of bn(c,h)
JPH02296706A (en) * 1989-05-02 1990-12-07 Rhone Poulenc Chim Amorphous or irregular- laminate and spherical in particular boron nitride and its production method
JPH06319986A (en) * 1992-12-11 1994-11-22 Asahi Glass Co Ltd Fine hollow body of metal nitride and preparation thereof
JPH07247106A (en) * 1993-11-02 1995-09-26 Hc Starck Gmbh & Co Kg Fine powder of metal, alloy and metallic compound
JPH1072205A (en) * 1996-08-29 1998-03-17 Otsuka Chem Co Ltd Fine disk-like hexagonal boron nitride powder and its production
JPH1135308A (en) * 1997-07-18 1999-02-09 Natl Inst For Res In Inorg Mater Production of boron nitride with irrbgular layer structure
JP2000086210A (en) * 1998-07-09 2000-03-28 Kinya Adachi Boron nitride-oxide composite particles, their production and ultraviolet ray cut-off agent using same
JP2001031407A (en) * 1999-07-21 2001-02-06 Furukawa Co Ltd Production of gallium nitride
JP2001151504A (en) * 1999-11-24 2001-06-05 Nichia Chem Ind Ltd METHOD OF MANUFACTURING GaN POWDER
JP2003034510A (en) * 2001-04-25 2003-02-07 Mitsubishi Chemicals Corp Ultra-fine particle of gallium nitride crystal and method of manufacturing it

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145400A (en) * 1978-05-08 1979-11-13 Ube Ind Ltd Production of metal nitride powder
JPS5864276A (en) * 1981-09-28 1983-04-16 ユニオン・カ−バイド・コ−ポレ−シヨン Porous self-thermodecomposable boron nitride article
JPS60151202A (en) * 1983-08-25 1985-08-09 Yuka Meramin Kk Manufacture of boron nitride
JPS6424006A (en) * 1987-07-13 1989-01-26 Ibm Synthesis of iiia group and va group compounds
JPH0249090A (en) * 1988-08-11 1990-02-19 Central Glass Co Ltd Fluorescent substance consisting of bn(c,h)
JPH02296706A (en) * 1989-05-02 1990-12-07 Rhone Poulenc Chim Amorphous or irregular- laminate and spherical in particular boron nitride and its production method
JPH06319986A (en) * 1992-12-11 1994-11-22 Asahi Glass Co Ltd Fine hollow body of metal nitride and preparation thereof
JPH07247106A (en) * 1993-11-02 1995-09-26 Hc Starck Gmbh & Co Kg Fine powder of metal, alloy and metallic compound
JPH1072205A (en) * 1996-08-29 1998-03-17 Otsuka Chem Co Ltd Fine disk-like hexagonal boron nitride powder and its production
JPH1135308A (en) * 1997-07-18 1999-02-09 Natl Inst For Res In Inorg Mater Production of boron nitride with irrbgular layer structure
JP2000086210A (en) * 1998-07-09 2000-03-28 Kinya Adachi Boron nitride-oxide composite particles, their production and ultraviolet ray cut-off agent using same
JP2001031407A (en) * 1999-07-21 2001-02-06 Furukawa Co Ltd Production of gallium nitride
JP2001151504A (en) * 1999-11-24 2001-06-05 Nichia Chem Ind Ltd METHOD OF MANUFACTURING GaN POWDER
JP2003034510A (en) * 2001-04-25 2003-02-07 Mitsubishi Chemicals Corp Ultra-fine particle of gallium nitride crystal and method of manufacturing it

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T.KUSUNOSE ET AL.: "Fabrication and microstructure of silicon nitride/boron nitride nanocomposites", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 85, no. 11, JPN6009003834, November 2002 (2002-11-01), US, pages 2678 - 2688, ISSN: 0001237394 *
新原皓一: "多機能調和型の高強度マシナブル Si3N4/BN ナノコンポジット", 工業と化学, vol. 51, no. 8, JPN6009003835, 1998, JP, pages 1221 - 1223, ISSN: 0001237393 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060944A1 (en) * 2005-11-22 2007-05-31 Chubu Chelest Co., Ltd. Method for producing metal nitride
US8668843B2 (en) 2007-03-28 2014-03-11 Hiroshima University M-C-N-O based phosphor
JP2010180066A (en) * 2009-02-03 2010-08-19 National Institute For Materials Science Boron nitride spherical nanoparticle and method of producing the same
JP2017036418A (en) * 2015-08-12 2017-02-16 三菱化学株式会社 Fluophor

Similar Documents

Publication Publication Date Title
Lu et al. The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles
Wang et al. Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction
Wang et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties
US7381391B2 (en) Method of making Group III nitrides
Flores-Gonzalez et al. Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method
Varghese et al. Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO
Zhou et al. Shape control and spectroscopy of crystalline BaZrO 3 perovskite particles
EP1885332A2 (en) Use of an artificial sweetener to enhance absorption of nicotine
Bae et al. Triangular gallium nitride nanorods
CN112442363B (en) All-inorganic perovskite nanocrystal and pseudo-peritectic synthesis method thereof
JP2008521745A (en) Improved system and method for the synthesis of gallium nitride powders
Abd et al. Effect of annealing time of YAG: Ce 3+ phosphor on white light chromaticity values
Liu et al. One-pot solvothermal synthesis of uniform layer-by-layer self-assembled ultrathin hexagonal Gd 2 O 2 S nanoplates and luminescent properties from single doped Eu 3+ and codoped Er 3+, Yb 3+
Snure et al. Synthesis, characterization, and green luminescence in ZnO nanocages
Gu et al. Luminescent Zn 2 GeO 4 nanorod arrays and nanowires
Gaiser et al. Ionic-liquid-based synthesis of GaN nanoparticles
Single et al. Effect of preparation conditions on the crystallinity of chemically synthesized BCNO nanophosphor
Wen et al. Controllable synthesis of CsPbI 3 nanorods with tunable photoluminescence emission
Zhang et al. ZnO microrod arrays grown on a curved sphere surface and their optical properties
Gong et al. Rapid synthesis and visible photoluminescence of ZnS nanobelts
Feng et al. Controllable synthesis, growth mechanism and optical properties of the ZnSe quantum dots and nanoparticles with different crystalline phases
Zhao et al. Synthesis of ordered ZnO nanorods film on zinc-coated Si substrate and their photoluminescence property
JP2005097022A (en) Synthetic method for group iiib nitride
Nam et al. A novel regrowth mechanism and enhanced optical properties of Mg 0.25 Zn 0.75 O nanorods subjected to vapor-confined face-to-face annealing
Ogi et al. Fabrication and photoluminescence of highly crystalline GaN and GaN: Mg nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714