JP2005093572A - Photovoltaic element and photosensor provided therewith - Google Patents

Photovoltaic element and photosensor provided therewith Download PDF

Info

Publication number
JP2005093572A
JP2005093572A JP2003322464A JP2003322464A JP2005093572A JP 2005093572 A JP2005093572 A JP 2005093572A JP 2003322464 A JP2003322464 A JP 2003322464A JP 2003322464 A JP2003322464 A JP 2003322464A JP 2005093572 A JP2005093572 A JP 2005093572A
Authority
JP
Japan
Prior art keywords
electron
group
material layer
organic material
donating organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003322464A
Other languages
Japanese (ja)
Other versions
JP4498706B2 (en
Inventor
Toshiya Kosaka
俊也 匂坂
Masaomi Sasaki
正臣 佐々木
Masashi Torii
昌史 鳥居
Shinichi Kawamura
慎一 河村
Takashi Okada
崇 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003322464A priority Critical patent/JP4498706B2/en
Publication of JP2005093572A publication Critical patent/JP2005093572A/en
Application granted granted Critical
Publication of JP4498706B2 publication Critical patent/JP4498706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Hybrid Cells (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic photovoltaic element which can be manufactured easily to enable wet type film forming, does not easily form pin-hole, assures higher stability and results in higher conversion efficiency, against the conventional organic/organic pn type photovoltaic element. <P>SOLUTION: The organic photovoltaic element laminates a transparent electrode 2, an electron accepting organic layer 3 an electron supplying organic layer 4 and a rear electrode 5 on a transparent insulating support material 1. The electron supplying organic layer 4 includes a polymer material, for example, expressed by the following formula. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光起電力素子及びこれを備えてなる光センサーに関する。   The present invention relates to a photovoltaic device and an optical sensor including the same.

有機物を能動材料として用いた光起電力素子が多く研究されている。その目的は、単結晶、多結晶、アモルファスのSiでは達成が困難とされている、安価で毒性のない光起電力素子を開発するためである。   Many photovoltaic devices using organic substances as active materials have been studied. The purpose is to develop an inexpensive and non-toxic photovoltaic element that is difficult to achieve with single crystal, polycrystal, and amorphous Si.

光起電力素子は、光エネルギーを電気エネルギー(電圧×電流)に変換する素子であるため、変換効率がその主要な評価対象となる。光電流の生成には内部電界の存在が必要であるが、内部電界を生成する方法としていくつかの素子構成が知られている。   Since the photovoltaic element is an element that converts light energy into electric energy (voltage × current), conversion efficiency is a main evaluation target. The generation of a photocurrent requires the presence of an internal electric field, but several device configurations are known as methods for generating an internal electric field.

(1)ショットキー接合またはMIS型接合
この素子は、金属/半導体接合で生じる内部電界を利用したものである。有機半導体材料としてメロシアニン染料、フタロシアニン顔料等が報告されている(非特許文献1)。この素子は、開放電圧(Voc)は大きくとれるが、電極として金属材料が用いられているため、電極の光透過率が低くなる。実際の光透過率は、よくても30%、通常は10%前後である。また、これらの材料は耐酸化性に乏しい。従って、この素子形態では高い変換効率と、安定した特性を作り出すことは望めない。
(1) Schottky junction or MIS type junction This element utilizes an internal electric field generated at a metal / semiconductor junction. Merocyanine dyes, phthalocyanine pigments and the like have been reported as organic semiconductor materials (Non-patent Document 1). Although this element can take a large open circuit voltage (Voc), since a metal material is used for the electrode, the light transmittance of the electrode is lowered. The actual light transmittance is at most 30%, usually around 10%. In addition, these materials have poor oxidation resistance. Therefore, it is not possible to create high conversion efficiency and stable characteristics in this element form.

(2)n型無機半導体/p型有機半導体接合を利用したヘテロpn接合
この素子は、n型無機半導体/p型有機半導体を接合したときに生じる内部電界を利用したものである。n型材料としてCdS,ZnO等が用いられる。p型有機半導体材料としてメロシアニン染料、フタロシアニン等が報告されている(非特許文献2)。この素子は、電荷生成が主として有機層でなされるため、分光感度の制限を受ける。通常、有機層は単一の材料から形成されるが、400nmから800nmまで強い光吸収をもつ有機半導体は現在存在しないからである。従って、この素子構成では光入射電極の光透過性や、電極の安定性の問題はクリアできるが、分光感度領域が狭いため、高い変換効率は望めない。
(2) Heterogeneous pn junction using n-type inorganic semiconductor / p-type organic semiconductor junction This element utilizes an internal electric field generated when an n-type inorganic semiconductor / p-type organic semiconductor is joined. CdS, ZnO or the like is used as the n-type material. Merocyanine dyes, phthalocyanines and the like have been reported as p-type organic semiconductor materials (Non-patent Document 2). This element is limited in spectral sensitivity because charge generation is mainly performed in the organic layer. This is because the organic layer is usually formed from a single material, but there is currently no organic semiconductor having strong light absorption from 400 nm to 800 nm. Therefore, this element configuration can solve the problems of light transmittance of the light incident electrode and stability of the electrode, but high conversion efficiency cannot be expected because the spectral sensitivity region is narrow.

(3)有機/有機ヘテロpn接合を利用したもの
この素子は、電子受容性の有機物と電子供与性の有機物を接合したときに生じる電界を利用したものである。この電子受容性有機物としてはマラカイトグリーン、メチルバイオレット、ピリリウム等の染料、フラバンスロン、ペリレン顔料等の縮合多環芳香族化合物が報告されており、電子供与性有機物としてはフタロシアニン顔料、メロシアニン染料等が報告されている(非特許文献3)。上記2種の構成と較べ、現在のところ最も望ましいものである。透明電極からの光照射が行え、また、2種の材料で光電荷生成が可能であるため、分光感度も広げることができる。しかし、Tang氏の技術は次の様な欠点を有している。
(3) Using an organic / organic hetero pn junction This element uses an electric field generated when an electron-accepting organic substance and an electron-donating organic substance are joined. As this electron-accepting organic substance, dyes such as malachite green, methyl violet and pyrylium, condensed polycyclic aromatic compounds such as flavanthrone and perylene pigment have been reported, and as electron-donating organic substances, phthalocyanine pigments, merocyanine dyes, etc. It has been reported (Non-Patent Document 3). It is currently the most desirable compared to the above two configurations. Light irradiation from a transparent electrode can be performed, and photocharge can be generated with two kinds of materials, so that spectral sensitivity can be increased. However, Tang's technology has the following drawbacks.

すなわち、前記電子供与性有機物及び電子受容性有機物の光電流、開放電圧、安定性等の特性及び成膜時ピンホールが生じやすいこと等の問題があって未だ十分とは言えない。また記されている材料が、電子受容性有機物は短波長領域に分光感度を有し、電子供与性有機物は長波長領域に分光感度を有しているため積層する組合せが限定されてしまう。   That is, the electron donating organic substance and the electron accepting organic substance have problems such as photocurrent, open circuit voltage, stability, and the like, and pinholes are likely to be formed during film formation. In addition, since the electron-accepting organic material has spectral sensitivity in the short wavelength region and the electron-donating organic material has spectral sensitivity in the long wavelength region, the combination of layers is limited.

下記特許文献1には、電子供与性有機物または電子受容性有機物として特定のジイミダゾール化合物を用いる光起電力素子が提案されている。しかし、この素子構成においても、未だ電子供与性有機物と電子受容性有機物との組合せの最適化は十分とはいえず、よりいっそうの光電変換効率の向上が求められる。また材料が低分子化合物ゆえ、素子作成プロセスにおいては蒸着プロセスが主となり、多量生産や大面積化が容易ではないという課題も残されている。   Patent Document 1 below proposes a photovoltaic device using a specific diimidazole compound as an electron-donating organic substance or an electron-accepting organic substance. However, even in this device configuration, the combination of the electron donating organic substance and the electron accepting organic substance is not yet optimized, and further improvement in photoelectric conversion efficiency is required. In addition, since the material is a low-molecular compound, a vapor deposition process is mainly used in the device fabrication process, and there remains a problem that mass production and area increase are not easy.

A.K.Ghoshら:J.Appl.Phys.49,5982(1978)A. K. Ghosh et al. Appl. Phys. 49, 5982 (1978) A.Horら:Appl.Phys.Lett.,42,15(1983)A. Hor et al .: Appl. Phys. Lett. , 42, 15 (1983) C.Tang:Appl.Phys.Lett.,48,183(1986)C. Tang: Appl. Phys. Lett. , 48, 183 (1986) 特開平5−21823号公報Japanese Patent Laid-Open No. 5-21823

本発明は、上記従来の実情に鑑みなされたものであって、その目的は、有機/有機pnタイプの光起電力素子に対し、湿式成膜可能で製造が容易であり、ピンホールを生じにくく、安定性がよく、かつ高い変換効率を与える有機光起電力素子および、それを用いた光センサーを提供することにある。   The present invention has been made in view of the above-described conventional circumstances, and its purpose is that an organic / organic pn type photovoltaic device can be formed into a wet film, can be easily manufactured, and does not easily generate pinholes. Another object of the present invention is to provide an organic photovoltaic device having good stability and high conversion efficiency, and an optical sensor using the organic photovoltaic device.

本発明者らは、上記目的を達成するため鋭意検討した結果、特定の構成単位を有する高分子材料を電子供与性有機物層に含有する光起電力素子が上記目的に対して有効であることを見出し、本発明を完成するに至った。本発明には、以下の発明が包含される。   As a result of intensive studies to achieve the above object, the present inventors have found that a photovoltaic device containing a polymer material having a specific structural unit in an electron donating organic material layer is effective for the above object. The headline and the present invention were completed. The present invention includes the following inventions.

すなわち、請求項1の発明に係る光起電力素子は、少なくとも一方が透光性である2つの電極の間に、接合により内部電界を生じる電子受容性有機物層と電子供与性有機物層が積層された光起電力素子において、
前記電子供与性有機物層に、少なくとも下記一般式(1)で表される高分子材料を含有することを特徴とする。
That is, in the photovoltaic device according to the invention of claim 1, an electron-accepting organic material layer and an electron-donating organic material layer that generate an internal electric field by bonding are laminated between two electrodes, at least one of which is translucent. In the photovoltaic device
The electron donating organic material layer contains at least a polymer material represented by the following general formula (1).

Figure 2005093572
Figure 2005093572

(式中、R1,R2,R3はそれぞれ独立にハロゲン原子、置換もしくは無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基から選択される基を表し、x,y,zはそれぞれ独立に0から4の整数を表し、R1,R2,R3が各々複数存在する場合には、同一でも別異でもよく、Arは置換または無置換の芳香族炭化水素基を表す。) (Wherein R 1 , R 2 and R 3 each independently represents a halogen atom, a substituted or unsubstituted group, a group selected from a linear or branched alkyl group, an alkoxy group or an alkylthio group, and x, y , Z each independently represents an integer of 0 to 4, and when there are a plurality of R 1 , R 2 , R 3 , they may be the same or different, Ar is a substituted or unsubstituted aromatic hydrocarbon group Represents.)

ここで上記一般式(1)で表される高分子材料としては、次の一般式(2)〜(4)で表されるものが好適である。   Here, as the polymer material represented by the general formula (1), those represented by the following general formulas (2) to (4) are preferable.

Figure 2005093572
Figure 2005093572

(式中、R1,R2,R3,R4はそれぞれ独立にハロゲン原子、置換もしくは無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基から選択される基を表し、wは0から5の整数を示し、x,y,zはそれぞれ独立に0から4の整数を表し、R1,R2,R3,R4が各々複数存在する場合には、同一でも別異でもよい。) (Wherein R 1 , R 2 , R 3 and R 4 each independently represents a halogen atom, a substituted or unsubstituted group selected from a linear or branched alkyl group, an alkoxy group or an alkylthio group; w represents an integer of 0 to 5, x, y, and z each independently represent an integer of 0 to 4, and when there are a plurality of R 1 , R 2 , R 3 , and R 4 , they may be the same or different. It may be different.)

Figure 2005093572
Figure 2005093572

(式中、R1,R2,R3,R5,R6はそれぞれ独立にハロゲン原子、置換もしくは無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基から選択される基を表し、uは0から5の整数を示し、v,x,y,zはそれぞれ独立に0から4の整数を表し、R1,R2,R3,R5,R6が各々複数存在する場合には、同一でも別異でもよい。) (Wherein R 1 , R 2 , R 3 , R 5 and R 6 are each independently a halogen atom, a substituted or unsubstituted group selected from a linear or branched alkyl group, an alkoxy group, or an alkylthio group. , U represents an integer from 0 to 5, v, x, y, and z each independently represent an integer from 0 to 4, and there are a plurality of R 1 , R 2 , R 3 , R 5 , and R 6 , respectively. They may be the same or different.)

Figure 2005093572
Figure 2005093572

(式中、R1,R2,R3,R7,R8,R9,R10はそれぞれ独立にハロゲン原子、置換もしくは無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基から選択される基を表し、tは0から3の整数を示し、s,x,y,zはそれぞれ独立に0から4の整数を表し、R1,R2,R3,R7,R8が各々複数存在する場合には、同一でも別異でもよい。) (In the formula, R 1 , R 2 , R 3 , R 7 , R 8 , R 9 and R 10 are each independently a halogen atom, substituted or unsubstituted, a linear or branched alkyl group, an alkoxy group or an alkylthio group. Represents a group selected from the group, t represents an integer of 0 to 3, s, x, y, z each independently represents an integer of 0 to 4, R 1 , R 2 , R 3 , R 7 , When there are a plurality of R 8 s , they may be the same or different.)

また、前記一般式(1)の高分子材料において、R1,R2,R3の少なくとも一つが炭素数1〜18の置換または無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基であることを好適とする。 In the polymer material of the general formula (1), at least one of R 1 , R 2 , and R 3 is a substituted or unsubstituted group having 1 to 18 carbon atoms, a linear or branched alkyl group, an alkoxy group, or It is preferably an alkylthio group.

請求項6の発明に係る光起電力素子は、
透明電極、電子受容性有機物層、電子供与性有機物層、背面電極がこの順に積層された光起電力素子において、
前記電子供与性有機物層に、上記一般式(1)で表される高分子材料、上記一般式(2)で表される高分子材料、上記一般式(3)で表される高分子材料、上記一般式(4)で表される高分子材料のいずれかを含有することを特徴とする(図1参照)。
The photovoltaic element according to the invention of claim 6 is:
In a photovoltaic device in which a transparent electrode, an electron-accepting organic material layer, an electron-donating organic material layer, and a back electrode are laminated in this order,
A polymer material represented by the general formula (1), a polymer material represented by the general formula (2), a polymer material represented by the general formula (3); Any one of the polymer materials represented by the general formula (4) is contained (see FIG. 1).

請求項7の発明に係る光起電力素子は、透明電極、透光性n型無機半導体層、電子受容性有機物層、電子供与性有機物層、背面電極がこの順に積層された光起電力素子において、
前記電子供与性有機物層に、上記一般式(1)で表される高分子材料、上記一般式(2)で表される高分子材料、上記一般式(3)で表される高分子材料、上記一般式(4)で表される高分子材料のいずれかを含有することを特徴とする(図2参照)。
The photovoltaic device according to the invention of claim 7 is a photovoltaic device in which a transparent electrode, a translucent n-type inorganic semiconductor layer, an electron-accepting organic material layer, an electron-donating organic material layer, and a back electrode are laminated in this order. ,
A polymer material represented by the general formula (1), a polymer material represented by the general formula (2), a polymer material represented by the general formula (3); Any one of the polymer materials represented by the general formula (4) is contained (see FIG. 2).

請求項8の発明に係る光起電力素子は、透明電極、電子受容性有機物層、第一電子供与性有機物層、第二電子供与性有機物層、背面電極がこの順に積層された光起電力素子において、
前記第二電子供与性有機物層に、上記一般式(1)で表される高分子材料、上記一般式(2)で表される高分子材料、上記一般式(3)で表される高分子材料、上記一般式(4)で表される高分子材料のいずれかを含有することを特徴とする(図3参照)。
The photovoltaic device according to the invention of claim 8 is a photovoltaic device in which a transparent electrode, an electron-accepting organic material layer, a first electron-donating organic material layer, a second electron-donating organic material layer, and a back electrode are laminated in this order. In
The second electron-donating organic material layer includes a polymer material represented by the general formula (1), a polymer material represented by the general formula (2), and a polymer represented by the general formula (3). Any one of the material and the polymer material represented by the general formula (4) is contained (see FIG. 3).

請求項9の発明に係る光起電力素子は、透明電極、透光性n型無機半導体層、電子受容性有機物層、第一電子供与性有機物層、第二電子供与性有機物層、背面電極がこの順に積層された光起電力素子において、
前記第二電子供与性有機物層に、上記一般式(1)で表される高分子材料、上記一般式(2)で表される高分子材料、上記一般式(3)で表される高分子材料、上記一般式(4)で表される高分子材料のいずれかを含有することを特徴とする(図4参照)。
The photovoltaic element according to the invention of claim 9 comprises a transparent electrode, a translucent n-type inorganic semiconductor layer, an electron-accepting organic material layer, a first electron-donating organic material layer, a second electron-donating organic material layer, and a back electrode. In photovoltaic elements stacked in this order,
The second electron-donating organic material layer includes a polymer material represented by the general formula (1), a polymer material represented by the general formula (2), and a polymer represented by the general formula (3). Any one of the materials and the polymer material represented by the general formula (4) is contained (see FIG. 4).

請求項10の発明に係る光センサーは、請求項1〜9のいずれかに記載の光起電力素子を備えていることを特徴とする。   An optical sensor according to a tenth aspect of the invention includes the photovoltaic element according to any one of the first to ninth aspects.

以上の本発明によれば、安定性に優れかつピンホールを生じにくく、しかも湿式成膜可能で製造が容易な光起電力素子、及びこの光起電力素子を用いた有用な光センサーが提供されるという優れた効果を奏するものである。   According to the present invention as described above, a photovoltaic device that is excellent in stability, hardly generates pinholes, can be formed into a wet film and can be easily manufactured, and a useful optical sensor using the photovoltaic device are provided. This is an excellent effect.

以下本発明をさらに詳細に説明する。
本発明の光起電力素子は電子供与性有機物層中に、特定の構成単位を有する高分子材料が含有されていることを特徴とする。本発明で用いられる高分子材料は、上記一般式(1)で表される有機半導体材料である。
The present invention is described in further detail below.
The photovoltaic element of the present invention is characterized in that a polymer material having a specific structural unit is contained in the electron donating organic material layer. The polymer material used in the present invention is an organic semiconductor material represented by the general formula (1).

本発明の有機半導体材料は、芳香環上に置換基を有していてもよい。溶媒への溶解性の向上の観点からはアルキル基やアルコキシ基などが挙げられる。これら置換基の炭素数が増加すれば溶解性はより向上するが、その反面キャリア移動度は低下してしまうため、溶解性が損なわれない範囲で所望の特性が得られるような置換基を選択することが好ましい。その場合の好適な置換基の例としては炭素数が1〜25のアルキル基及びアルコキシ基またはアルキルチオ基が挙げられる。更に好適には、炭素数が1〜18のアルキル基及びアルコキシ基またはアルキルチオ基が挙げられる。これら置換基は同一のものを複数導入してもよいし、異なるものを複数導入してもよい。また、これらのアルキル基及びアルコキシ基またはアルキルチオ基はさらにハロゲン原子、シアノ基、フェニル基、ヒドロキシル基、カルボキシル基または炭素数1〜12の直鎖、分岐鎖もしくは環状のアルキル基やアルコキシ基またはアルキルチオ基で置換されたフェニル基を含有していてもよい。   The organic semiconductor material of the present invention may have a substituent on the aromatic ring. An alkyl group, an alkoxy group, etc. are mentioned from a viewpoint of the solubility improvement to a solvent. As the number of carbons in these substituents increases, the solubility will improve, but on the other hand, the carrier mobility will decrease, so select a substituent that will provide the desired properties within the range that does not impair the solubility. It is preferable to do. Examples of a suitable substituent in that case include an alkyl group having 1 to 25 carbon atoms, an alkoxy group, and an alkylthio group. More preferably, an alkyl group having 1 to 18 carbon atoms, an alkoxy group, or an alkylthio group is used. A plurality of the same substituents may be introduced, or a plurality of different substituents may be introduced. These alkyl groups and alkoxy groups or alkylthio groups are further halogen atoms, cyano groups, phenyl groups, hydroxyl groups, carboxyl groups, linear, branched or cyclic alkyl groups having 1 to 12 carbon atoms, alkoxy groups or alkylthio groups. A phenyl group substituted with a group may be contained.

アルキル基として具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、t−ブチル基、s−ブチル基、n−ブチル基、i−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、3,7−ジメチルオクチル基、2−エチルヘキシル基、トリフルオロメチル基、2−シアノエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、シクロペンチル基、シクロヘキシル基等を一例として挙げることができ、アルコキシ基、アルキルチオ基としては上記アルキル基の結合位に酸素原子または硫黄原子を挿入してアルコキシ基、アルキルチオ基としたものが一例として挙げられる。   Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, t-butyl group, s-butyl group, n-butyl group, i-butyl group, pentyl group, hexyl group, Heptyl, octyl, nonyl, decyl, 3,7-dimethyloctyl, 2-ethylhexyl, trifluoromethyl, 2-cyanoethyl, benzyl, 4-chlorobenzyl, 4-methylbenzyl, A cyclopentyl group, a cyclohexyl group, etc. can be mentioned as an example, As an alkoxy group and an alkylthio group, what made the alkoxy group and the alkylthio group by inserting an oxygen atom or a sulfur atom in the bond position of the said alkyl group is mentioned as an example. .

上記重合体(有機半導体材料)は、アルキル基やアルコキシ基またはアルキルチオ基の存在により、溶媒への溶解性がさらに向上する。これらの材質において溶解性を向上させることは、フィルムの湿式成膜過程の製造許容範囲が大きくなることから重要である。例えば塗工溶媒の選択肢の拡大、溶液調製時の温度範囲の拡大、溶媒の乾燥時の温度及び圧力範囲の拡大となり、これらプロセッシビリティーの高さにより、結果的に高純度で均一性の高い高品質な薄膜が得られる可能性が高くなる。   The polymer (organic semiconductor material) is further improved in solubility in a solvent due to the presence of an alkyl group, an alkoxy group, or an alkylthio group. It is important to improve the solubility of these materials because the manufacturing tolerance of the film wet film forming process is increased. For example, the choice of coating solvent is expanded, the temperature range during solution preparation is expanded, the temperature and pressure range during solvent drying is expanded, and the high processability results in high purity and high uniformity. The possibility of obtaining a high-quality thin film increases.

前記一般式(1)における置換もしくは無置換の芳香族炭化水素基としては単環基、多環基(縮合多環基、非縮合多環基)の何れでもよく、一例として以下のものを挙げることができる。例えばフェニル基、ナフチル基、ピレニル基、フルオレニル基、アズレニル基、アントリル基、トリフェニレニル基、クリセニル基、ビフェニリル基、ターフェニリル基などが挙げられる。   The substituted or unsubstituted aromatic hydrocarbon group in the general formula (1) may be either a monocyclic group or a polycyclic group (a condensed polycyclic group or a non-condensed polycyclic group). be able to. Examples thereof include a phenyl group, a naphthyl group, a pyrenyl group, a fluorenyl group, an azulenyl group, an anthryl group, a triphenylenyl group, a chrycenyl group, a biphenylyl group, and a terphenylyl group.

また、これら芳香族炭化水素基は、以下に示す置換基を有していてもよい。
(1)ハロゲン原子、トリフルオロメチル基、シアノ基、ニトロ基。
(2)炭素数1〜25の無置換もしくは置換のアルキル基、アルコキシ基。
(3)アリールオキシ基。(アリール基としてフェニル基、ナフチル基を有するアリールオキシ基が挙げられる。これは、炭素数1〜25の無置換もしくは置換のアルキル基、炭素数1〜25の無置換もしくは置換のアルコキシ基、又はハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基、4−クロロフェノキシ基、6−メチル−2−ナフチルオキシ基等が挙げられる。)
(4)アルキルチオ基又はアリールチオ基。(アルキルチオ基又はアリールチオ基としては、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。)
(5)アルキル置換アミノ基。(具体的には、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(p−トリル)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ユロリジル基等が挙げられる。)
(6)アシル基。(アシル基としては、具体的にはアセチル基、プロピオニル基、ブチリル基、マロニル基、ベンゾイル基等が挙げられる。)
Moreover, these aromatic hydrocarbon groups may have a substituent shown below.
(1) Halogen atom, trifluoromethyl group, cyano group, nitro group.
(2) An unsubstituted or substituted alkyl group or alkoxy group having 1 to 25 carbon atoms.
(3) Aryloxy group. (An aryloxy group having a phenyl group or a naphthyl group as the aryl group is exemplified. This is an unsubstituted or substituted alkyl group having 1 to 25 carbon atoms, an unsubstituted or substituted alkoxy group having 1 to 25 carbon atoms, or A halogen atom may be contained as a substituent, specifically, a phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 4-methylphenoxy group, 4-methoxyphenoxy group, 4-chlorophenoxy group, And 6-methyl-2-naphthyloxy group.
(4) An alkylthio group or an arylthio group. (Specific examples of the alkylthio group or arylthio group include a methylthio group, an ethylthio group, a phenylthio group, and a p-methylphenylthio group.)
(5) An alkyl-substituted amino group. (Specifically, diethylamino group, N-methyl-N-phenylamino group, N, N-diphenylamino group, N, N-di (p-tolyl) amino group, dibenzylamino group, piperidino group, morpholino group And a urolidyl group.)
(6) Acyl group. (Specific examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, a malonyl group, and a benzoyl group.)

上記一般式(1)に示される繰り返し単位を含む重合体のうち、より好ましい第一の態様は、上記一般式(2)で表される。   Of the polymers containing the repeating unit represented by the general formula (1), a more preferred first embodiment is represented by the general formula (2).

上記一般式(1)に示される繰り返し単位を含む重合体のうち、より好ましい第二の態様は上記一般式(3)で表される。   Of the polymers containing the repeating unit represented by the general formula (1), a more preferred second embodiment is represented by the general formula (3).

上記一般式(1)に示される繰り返し単位を含む重合体のうち、より好ましい第三の態様は上記一般式(4)で表される。   Of the polymers containing the repeating unit represented by the general formula (1), a more preferred third embodiment is represented by the general formula (4).

上記一般式(1)〜(4)に示される繰り返し単位を含む重合体の製造方法は、例えばアルデヒドとホスホネートを用いたWittig-Horner反応、アルデヒドとホスホニウム塩を用いたWittig反応、ビニル置換体とハロゲン化物を用いたHeck反応、アミンとハロゲン化物を用いたUllmann反応などを用いることができ、公知の方法により製造可能である。   The method for producing a polymer containing the repeating unit represented by the general formulas (1) to (4) includes, for example, a Wittig-Horner reaction using an aldehyde and a phosphonate, a Wittig reaction using an aldehyde and a phosphonium salt, A Heck reaction using a halide, a Ullmann reaction using an amine and a halide, and the like can be used, and they can be produced by a known method.

なお、本発明で用いられる上記一般式(1)〜(4)で表される構造単位からなる重合体の具体的な製造方法は、例えば本願出願人が提出した特願2003−35582号の明細書に、その詳細が記載されている。   In addition, the specific manufacturing method of the polymer which consists of a structural unit represented by said general formula (1)-(4) used by this invention is the specification of Japanese Patent Application No. 2003-35582 which the applicant of this application submitted, for example. The details are described in the book.

上記一般式(1)〜(4)に示される重合体の好ましい分子量はポリスチレン換算数平均分子量で1000〜1000000であり、より好ましくは2000〜500000である。分子量が小さすぎる場合にはクラックが発生するなど、成膜性が悪化し実用性に乏しくなる。また分子量が大きすぎる場合には、一般の有機溶媒への溶解性が悪くなり、溶液の粘度が高くなって塗工が困難になり、やはり実用上問題になる。   The preferred molecular weights of the polymers represented by the above general formulas (1) to (4) are 1000 to 1000000 in terms of polystyrene-equivalent number average molecular weight, and more preferably 2000 to 500000. When the molecular weight is too small, cracks are generated and the film formability is deteriorated, resulting in poor practicality. On the other hand, when the molecular weight is too large, the solubility in a general organic solvent is deteriorated, the viscosity of the solution becomes high and the coating becomes difficult, which is also a practical problem.

本発明の半導体材料は種々の一般的有機溶媒、例えばジクロロメタン、テトラヒドロフラン、クロロホルム、トルエン、ジクロロベンゼン及びキシレン等に対し、良好な溶解性を示す。従って本発明の高分子材料を溶解できる適当な溶媒により適当な濃度の溶液を作製し、これを用いて湿式成膜法により半導体薄膜を作製することができる。   The semiconductor material of the present invention exhibits good solubility in various common organic solvents such as dichloromethane, tetrahydrofuran, chloroform, toluene, dichlorobenzene and xylene. Therefore, a solution having an appropriate concentration can be prepared using an appropriate solvent capable of dissolving the polymer material of the present invention, and a semiconductor thin film can be prepared by a wet film forming method using the solution.

有機半導体層を形成するための湿式成膜法としては、スピンコート法、ディッピング法、ブレード塗工法、スプレー塗工法、キャスト法、インクジェット法、印刷法等の公知の湿式成膜技術によって薄膜化することができる。これら各種成膜法に対し、上記記載の溶媒種から適切な溶媒が選択される。膜厚は50〜3000Åが好ましい。   As a wet film forming method for forming an organic semiconductor layer, a thin film is formed by a known wet film forming technique such as a spin coating method, a dipping method, a blade coating method, a spray coating method, a casting method, an ink jet method, or a printing method. be able to. For these various film forming methods, an appropriate solvent is selected from the solvent types described above. The film thickness is preferably 50 to 3000 mm.

また、本発明では、上記一般式(1)に示される高分子材料のうち、いずれか一種を適宜に選択して用いる(単独で使用)こともできるが、2種以上を併用してもよい。   In the present invention, any one of the polymer materials represented by the general formula (1) may be appropriately selected and used (used alone), but two or more may be used in combination. .

本発明の高分子材料以外の電子供与性有機物層中に用いられる高分子材料としては、例えば次のような従来公知の材料が挙げられる。
(a)ポリ-N-ビニルカルバゾール誘導体、ポリ-γ-カルバゾリルエチルグルタメート誘導体、ピレン−ホルムアルデヒド縮合物誘導体、ポリビニルピレン、ポリビニルフェナントレン、オキサゾール誘導体、イミダゾール誘導体、ジスチリルベンゼン誘導体、ジフェネチルベンゼン誘導体(特開平9−127713号公報に記載)、
(b)α−フェニルスチルベン誘導体(特開平9−297419号公報に記載)、
(c)ブタジエン誘導体(特開平9−80783号公報に記載)、
(d)水素化ブタジエン(特開平9−80784号公報に記載)、
(e)ジフェニルシクロヘキサン誘導体(特開平9−80772号公報に記載)、
(f)ジスチリルトリフェニルアミン誘導体(特開平9−222740号公報に記載)、
(g)ジフェニルジスチリルベンゼン誘導体(特開平9−265197号公報、同9−265201号公報に記載)、
(h)スチルベン誘導体(特開平9−211877号公報に記載)、
(i)m−フェニレンジアミン誘導体(特開平9−304956号公報、同9−304957号公報に記載)、
(j)レゾルシン誘導体(特開平9−329907号公報に記載)、
(k)トリアリールアミン誘導体(特開昭64−9964号、特開平7−199503号、特開平8−176293号、特開平8−208820号、特開平8−253568号、特開平8−269446号、特開平3−221522号、特開平4−11627号、特開平4−183719号、特開平4−124163号、特開平4−320420号、特開平4−316543号、特開平5−310904号、特開平7−56374号、特開平8−62864号の各公報、米国特許5,428,090号明細書、同5,486,439号明細書に記載)。
Examples of the polymer material used in the electron-donating organic layer other than the polymer material of the present invention include the following conventionally known materials.
(A) Poly-N-vinylcarbazole derivative, poly-γ-carbazolylethyl glutamate derivative, pyrene-formaldehyde condensate derivative, polyvinylpyrene, polyvinylphenanthrene, oxazole derivative, imidazole derivative, distyrylbenzene derivative, diphenethylbenzene derivative (Described in JP-A-9-127713),
(B) α-phenylstilbene derivatives (described in JP-A-9-297419),
(C) butadiene derivatives (described in JP-A-9-80783),
(D) hydrogenated butadiene (described in JP-A-9-80784),
(E) a diphenylcyclohexane derivative (described in JP-A-9-80772),
(F) Distyryltriphenylamine derivative (described in JP-A-9-222740),
(G) a diphenyl distyrylbenzene derivative (described in JP-A-9-265197 and JP-A-9-265201),
(H) a stilbene derivative (described in JP-A-9-211877),
(I) m-phenylenediamine derivatives (described in JP-A Nos. 9-304956 and 9-304957),
(J) a resorcin derivative (described in JP-A-9-329907),
(K) Triarylamine derivatives (JP-A 64-9964, JP-A-7-199503, JP-A-8-176293, JP-A-8-208820, JP-A-8-253568, JP-A-8-269446) JP-A-3-221522, JP-A-4-11627, JP-A-4-183719, JP-A-4-124163, JP-A-4-320420, JP-A-4-316543, JP-A-5-310904, JP-A-7-56374, JP-A-8-62864, US Pat. Nos. 5,428,090 and 5,486,439).

以上、高分子材料について説明してきたが、光電変換効率の向上等を目的として、低分子型電子供与性有機材料を本発明の高分子材料と共に含有させてもよい。それには従来公知の低分子型電子供与性有機材料を用いることができ、これらの低分子電子供与性有機材料は単独または2種類以上を混合して用いることができる。   Although the polymer material has been described above, a low molecular electron donating organic material may be included together with the polymer material of the present invention for the purpose of improving the photoelectric conversion efficiency. For this purpose, conventionally known low molecular electron donating organic materials can be used, and these low molecular electron donating organic materials can be used alone or in combination of two or more.

従来公知の低分子電子供与性有機材料としては、
(11)α−フェニルスチルベン誘導体(特開昭57−73075号公報に記載)、
(12)ヒドラゾン誘導体(特開昭55−154955号、同55−156954号、同55−52063号、同56−81850号などの各公報に記載)、
(13)トリフェニルメタン誘導体(特公昭5−10983号公報に記載)、
(14)アントラセン誘導体(特開昭51−94829号公報に記載)、
(15)オキサゾール誘導体、オキサジアゾール誘導体(特開昭52−139065号公報、同52−139066号公報に記載)、
(16)イミダゾール誘導体、トリフェニルアミン誘導体(特開平3−285960号公報に記載)、
(17)ベンジジン誘導体(特公昭58−32372号公報に記載)、
(18)スチリル誘導体(特開昭56−29245号、同58−198043号の各公報に記載)、
(19)カルバゾール誘導体(特開昭58−58552号公報に記載)、
(20)ピレン誘導体(特開平2−94812号公報に記載)、
などが挙げられる。
As a conventionally known low molecular electron donating organic material,
(11) α-phenylstilbene derivatives (described in JP-A-57-73075),
(12) Hydrazone derivatives (described in JP-A Nos. 55-154955, 55-156955, 55-52063, 56-81850, etc.),
(13) Triphenylmethane derivatives (described in Japanese Patent Publication No. 5-10983),
(14) Anthracene derivative (described in JP-A-51-94829),
(15) Oxazole derivatives, oxadiazole derivatives (described in JP-A-52-139065 and JP-A-52-139066),
(16) Imidazole derivatives, triphenylamine derivatives (described in JP-A-3-285960),
(17) Benzidine derivatives (described in Japanese Patent Publication No. 58-32372),
(18) Styryl derivatives (described in JP-A Nos. 56-29245 and 58-198043),
(19) Carbazole derivatives (described in JP-A-58-58552),
(20) Pyrene derivatives (described in JP-A-2-94812),
Etc.

本発明は、有機/有機pnタイプの光起電力素子において、電子供与性有機物層に特定の高分子材料を用いるものである。かかる光起電力素子は、例えば以下の図1、図2、図3、図4の形態(積層構造)で使用される。   The present invention uses a specific polymer material for the electron donating organic layer in an organic / organic pn type photovoltaic device. Such a photovoltaic element is used, for example, in the form (laminated structure) shown in FIG. 1, FIG. 2, FIG. 3, and FIG.

図1は、透明絶縁支持体1の上に透明電極2、電子受容性有機物層3、電子供与性有機物層4および背面電極5を積層し、透明電極2と背面電極5とにそれぞれリード線6を取り付けたものである。
図2は、上記図1に示した透明電極2と電子受容性有機物層3との間に、透光性n型無機半導体層7を設けたものである。この構成の特徴は、透光性n型無機半導体層7が挿入されたことにある。
図3は、図1の素子における電子供与性有機物層4が、第一電子供与性有機物層41と、第二電子供与性有機物層42の2層からなるものに置き換ったものである。
図4は、図3の素子において透明電極2と電子受容性有機物層3との間に、透光性n型無機半導体層7が挿入されたものである。
In FIG. 1, a transparent electrode 2, an electron-accepting organic material layer 3, an electron-donating organic material layer 4 and a back electrode 5 are laminated on a transparent insulating support 1, and lead wires 6 are respectively connected to the transparent electrode 2 and the back electrode 5. Is attached.
FIG. 2 shows a transparent n-type inorganic semiconductor layer 7 provided between the transparent electrode 2 and the electron-accepting organic material layer 3 shown in FIG. The feature of this configuration is that the translucent n-type inorganic semiconductor layer 7 is inserted.
FIG. 3 is a diagram in which the electron donating organic material layer 4 in the device of FIG. 1 is replaced with a two-layer structure comprising a first electron donating organic material layer 41 and a second electron donating organic material layer 42.
FIG. 4 shows a transparent n-type inorganic semiconductor layer 7 inserted between the transparent electrode 2 and the electron-accepting organic material layer 3 in the element shown in FIG.

上記、図1から図4の本素子が光起電力能を有する(すなわち光センサーとしても機能する)理由は、電子受容性有機物層と電子供与有機物層の界面で両層のフェルミレベルの違いによって生ずる局所的な内部電界に起因している。この内部電界が働いている部分に光が吸収されることによりキャリアが発生する。これが最終的に外部に電流として取り出される。従って、この界面にいかに多くの光が到達し吸収されるか、電子受容性有機物層と電気供与有機物層の間に生ずる内部電界の大きさ等のキャリア発生能と電子受容性有機物層、電子供与有機物層の電子及び正孔の移動能及び注入性等が光起電力素子の変換効率の大きな因子となる。これらは電子受容性有機物層、電子供与有機物層に使用される材料に大きく左右されるものであるが、本発明者らは、電子供与性有機物層に上記一般式(1)(上記一般式(2)〜(4)の場合を含む)で表される高分子材料を含有することにより、光電変換効率が向上することを見いだした。ここで光起電力素子の変換効率(η)は次式によって表される。   The reason why the present device shown in FIGS. 1 to 4 has the photovoltaic ability (that is, also functions as a photosensor) is that the difference in Fermi level between the two layers at the interface between the electron-accepting organic material layer and the electron-donating organic material layer. This is due to the local internal electric field that occurs. Carriers are generated by absorbing light in the portion where the internal electric field works. This is finally taken out as an electric current. Therefore, how much light reaches and is absorbed at this interface, the ability to generate carriers such as the magnitude of the internal electric field generated between the electron-accepting organic layer and the electron-donating organic layer, the electron-accepting organic layer, and the electron donating The mobility and injectability of electrons and holes in the organic material layer are factors that greatly affect the conversion efficiency of the photovoltaic device. These are greatly affected by the materials used for the electron-accepting organic material layer and the electron-donating organic material layer. The present inventors have described the above-mentioned general formula (1) (the above general formula ( It was found that the photoelectric conversion efficiency is improved by including the polymer material represented by 2) to (4). Here, the conversion efficiency (η) of the photovoltaic element is expressed by the following equation.

(数1)
η(%) =(Voc × Jsc × ff × 100)/Pin
(Equation 1)
η (%) = (Voc × Jsc × ff × 100) / Pin

上式において、Vocは開放時の電圧、Jscは短絡時の電流、ffはフィルタファクターと呼ばれる光照射時の電圧−電流曲線の因子を示す値である。Pinは入射光エネルギーである。   In the above equation, Voc is a voltage at the time of opening, Jsc is a current at the time of a short circuit, and ff is a value indicating a factor of a voltage-current curve at the time of light irradiation called a filter factor. Pin is the incident light energy.

図2及び図4に設けられている透光性n型無機半導体層7は、電子受容性有機物層と電極材料とのエネルギー障壁をなくし電荷の移動を容易にする役割と、電子受容性有機物層のピンホールの影響を消失させる役割をはたしていると考えられる。
図3及び図4の第二電子供与性有機物層42は、光活性層における吸収光の有効利用や、生成した電荷の再結合確率を低減するなどの役割をしていると考えられる。
The translucent n-type inorganic semiconductor layer 7 provided in FIG. 2 and FIG. 4 has a role of eliminating the energy barrier between the electron-accepting organic material layer and the electrode material and facilitating charge transfer, and the electron-accepting organic material layer. It is thought that it plays a role in eliminating the effects of pinholes.
The second electron-donating organic material layer 42 in FIGS. 3 and 4 is considered to play a role such as effective use of absorbed light in the photoactive layer and reduction of recombination probability of generated charges.

次に本発明の光起電力素子に使用される各種の材料、製法等について説明する。
本発明において使用する透明絶縁支持体1としては、ガラス、プラスチックフィルム等が用いられる。
本発明において使用する透明電極2としては、酸化スズインジウム(ITO)、酸化スズ、酸化インジウム、酸化亜鉛、半透明Au等が用いられる。好ましい膜厚は100〜10000Åである。本発明において使用する透光性n型半導体層7の材料としては、酸化亜鉛、3価の金属がドープされた酸化亜鉛、CdS、酸化チタン等が用いられる。膜厚は10〜10000Åである。
Next, various materials and manufacturing methods used for the photovoltaic device of the present invention will be described.
As the transparent insulating support 1 used in the present invention, glass, plastic film or the like is used.
As the transparent electrode 2 used in the present invention, indium tin oxide (ITO), tin oxide, indium oxide, zinc oxide, translucent Au, or the like is used. A preferable film thickness is 100 to 10,000 mm. As a material of the translucent n-type semiconductor layer 7 used in the present invention, zinc oxide, zinc oxide doped with a trivalent metal, CdS, titanium oxide, or the like is used. The film thickness is 10 to 10,000 mm.

本発明において用いる電子受容性有機物層3の材料としては、ペリレン系顔料(Pigment Red(以下PR)179,PR190,PR149,PR189,PR123,Pigment Brown 26等)、ペリノン系顔料(Pigment Orange 43,PR 194等)、アントラキノン系顔料(PR168,PR177,Vat Yellow 4等)、フラバンスロン等の含キノン黄色顔料、クリスタルバイオレット、メチルバイオレット、マラカイトグリーン等の染料フルオレノン、2,4,7トリニトロフルオレノン、テトラシアノキノジメタン、テトラシアノエチレン等のアクセプター化合物を挙げることができる。これらは蒸着、スピンコート法、ディッピング法にて成膜される。膜厚は100〜3000Åが好ましい。   Examples of materials for the electron-accepting organic material layer 3 used in the present invention include perylene pigments (Pigment Red (hereinafter PR) 179, PR190, PR149, PR189, PR123, Pigment Brown 26, etc.), perinone pigments (Pigment Orange 43, PR). 194), anthraquinone pigments (PR168, PR177, Vat Yellow 4, etc.), quinone-containing yellow pigments such as flavanthrone, dye fluorenones such as crystal violet, methyl violet, malachite green, 2,4,7 trinitrofluorenone, tetra Examples include acceptor compounds such as cyanoquinodimethane and tetracyanoethylene. These are formed by vapor deposition, spin coating, or dipping. The film thickness is preferably 100 to 3000 mm.

本発明において用いる第一電子供与性有機物層41の材料としては、フタロシアニン系顔料(中心金属がCu,Zn,Co,Ni,Pb,Pt,Fe,Mg等の2価のもの、無金属フタロシアニン、アルミニウムクロルフタロシアニン、インジウムクロルフタロシアニン、インジウムブロムフタロシアニン、ガリウムクロルフタロシアニン等のハロゲン原子が配位した3価金属のフタロシアニン、塩素化銅フタロシアニン、塩素化亜鉛フタロシアニン、その他バナジルフタロシアニン、チタニルフタロシアニン等の酸素が配位したフタロシアニン)、インジゴ、チオインジゴ系顔料(Pigment Blue 66,Pigment Violet 36等)、キナクリドン系顔料(Pigment Violet 19,Pigment Red 122等)、メロシアニン化合物、シアニン化合物、スクアリウム化合物等の染料が挙げられる。これらの層は蒸着、スピンコート法、キャスト法、インクジェット工法、ディッピング塗工法等の公知の方法によって成膜される。薄膜は50〜3000Åが好ましい。   As the material of the first electron donating organic layer 41 used in the present invention, phthalocyanine pigments (divalent ones such as Cu, Zn, Co, Ni, Pb, Pt, Fe, Mg, etc., metal-free phthalocyanine, Oxygen such as aluminum chlorophthalocyanine, indium chlorophthalocyanine, indium bromophthalocyanine, trivalent metal phthalocyanine coordinated with halogen atoms such as gallium chlorophthalocyanine, chlorinated copper phthalocyanine, chlorinated zinc phthalocyanine, vanadyl phthalocyanine, titanyl phthalocyanine, etc. Phthalocyanine), indigo, thioindigo pigments (Pigment Blue 66, Pigment Violet 36, etc.), quinacridone pigments (Pigment Violet 19, Pigment Re) d 122, etc.), dyes such as merocyanine compounds, cyanine compounds, squalium compounds, and the like. These layers are formed by a known method such as vapor deposition, spin coating method, casting method, ink jet method, dipping coating method or the like. The thin film is preferably 50 to 3000 mm.

また本発明で用いられる背面電極5としては、Au,Pt,Ni,Pd,Cu,Cr,Ag等の仕事関数の高い金属が用いられる。膜厚は50〜3000Åが好ましい。   Further, as the back electrode 5 used in the present invention, a metal having a high work function such as Au, Pt, Ni, Pd, Cu, Cr, or Ag is used. The film thickness is preferably 50 to 3000 mm.

以下、実施例を挙げて本発明を更に詳しく説明するが、これら実施例によって本発明は何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited at all by these Examples.

[実施例1]
よく洗浄したITOガラス(松崎真空製、30Ω/□)上に、真空蒸着法で電子受容性有機物層としてペリレンテトラカルボン酸メチルイミド(PL−ME)を約400Åの厚さで設けた。次いで本発明で用いられる上記一般式(1)で表される高分子化合物として、下記重合体(A)の1.0wt%トルエン溶液を調製した。この溶液をスピンコート法により約400Åの膜厚で塗布し、電子供与性有機物層を形成した。その上に金を真空蒸着した。ITOと金がなす面積は0.25cm2とした。2つの電極に銀ペーストにてリード線を取り付けた。
[Example 1]
On a well-cleaned ITO glass (manufactured by Matsuzaki Vacuum, 30Ω / □), perylenetetracarboxylic acid methylimide (PL-ME) was provided as an electron-accepting organic material layer in a thickness of about 400 mm by a vacuum deposition method. Next, a 1.0 wt% toluene solution of the following polymer (A) was prepared as the polymer compound represented by the general formula (1) used in the present invention. This solution was applied by spin coating to a film thickness of about 400 mm to form an electron donating organic material layer. Gold was vacuum deposited thereon. The area formed by ITO and gold was 0.25 cm 2 . Lead wires were attached to the two electrodes with silver paste.

Figure 2005093572
Figure 2005093572

この素子のITO側に、75mW/cm2の白色光を照射しながら、6mV/sで掃引される電圧を印加して変換効率を測定したところVoc=0.38V、Jsc=1.85mA/cm2、ff=0.38となり、変換効率0.36%が得られた。この値は有機光起電力素子としては大きなものである。 The conversion efficiency was measured by applying a voltage swept at 6 mV / s while irradiating white light of 75 mW / cm 2 on the ITO side of this element. Voc = 0.38 V, Jsc = 1.85 mA / cm 2 and ff = 0.38, and a conversion efficiency of 0.36% was obtained. This value is large for an organic photovoltaic device.

[実施例2]
よく洗浄したITOガラス(松崎真空製、30Ω/□)上に基板温度約250℃で、導入ガスとしてアルゴンを用い、DCマグネトロンスパッタ法で、透光性n型無機半導体層として酸化亜鉛を約1500Åの厚さで設けた。その上に、真空蒸着法で電子受容性有機物層としてペリレンテトラカルボン酸メチルイミド(PL−ME)を約400Åの厚さで設けた。次いで本発明で用いられる上記一般式(1)で表される高分子化合物として、下記重合体(B)の1.0wt%トルエン溶液を調製した。この溶液をスピンコート法により約400Åの膜厚で塗布し、電子供与性有機物層を形成した。その上に金を真空蒸着した。ITOと金がなす面積は0.25cm2とした。2つの電極に銀ペーストにてリード線を取り付けた。
[Example 2]
On a well-cleaned ITO glass (manufactured by Matsuzaki Vacuum, 30Ω / □) at a substrate temperature of about 250 ° C., using argon as an introduction gas, and using a DC magnetron sputtering method, zinc oxide as a translucent n-type inorganic semiconductor layer is about 1500 mm. It was provided with the thickness. On top of that, perylenetetracarboxylic acid methylimide (PL-ME) was provided in a thickness of about 400 mm as an electron-accepting organic material layer by a vacuum deposition method. Next, a 1.0 wt% toluene solution of the following polymer (B) was prepared as the polymer compound represented by the general formula (1) used in the present invention. This solution was applied by spin coating to a film thickness of about 400 mm to form an electron donating organic material layer. Gold was vacuum deposited thereon. The area formed by ITO and gold was 0.25 cm 2 . Lead wires were attached to the two electrodes with silver paste.

Figure 2005093572
Figure 2005093572

以下実施例1と同様にして変換効率を測定した。その結果、Voc=0.40V、Jsc=1.85mA/cm2、ff=0.38となり、変換効率0.37%が得られた。この値は有機光起電力素子としては大きなものである。 Thereafter, the conversion efficiency was measured in the same manner as in Example 1. As a result, Voc = 0.40V, Jsc = 1.85 mA / cm 2 , and ff = 0.38, and a conversion efficiency of 0.37% was obtained. This value is large for an organic photovoltaic device.

[実施例3]
よく洗浄したITOガラス(松崎真空製、30Ω/□)上に、真空蒸着法で電子受容性有機物層としてペリレンテトラカルボン酸メチルイミド(PL−ME)を約400Åの厚さで、次いで第一電子供与性有機物層としてアルミニウムクロルフタロシアニン(AlClPc)を約100Åの厚さで設けた。さらに本発明で用いられる上記一般式(1)で表される高分子化合物として、下記重合体(C)の1.0wt%トルエン溶液を調製した。この溶液をスピンコート法により約400Åの膜厚で塗布し、第二電子供与性有機物層を形成した。その上に金を真空蒸着した。ITOと金がなす面積は0.25cm2とした。2つの電極に銀ペーストにてリード線を取り付けた。
[Example 3]
On a well-cleaned ITO glass (manufactured by Matsuzaki Vacuum, 30Ω / □), perylenetetracarboxylic acid methylimide (PL-ME) is deposited as an electron-accepting organic material layer by vacuum deposition at a thickness of about 400 mm, and then the first electron donation As the organic layer, aluminum chlorophthalocyanine (AlClPc) was provided with a thickness of about 100 mm. Furthermore, a 1.0 wt% toluene solution of the following polymer (C) was prepared as the polymer compound represented by the general formula (1) used in the present invention. This solution was applied by spin coating to a film thickness of about 400 mm to form a second electron donating organic material layer. Gold was vacuum deposited thereon. The area formed by ITO and gold was 0.25 cm 2 . Lead wires were attached to the two electrodes with silver paste.

Figure 2005093572
Figure 2005093572

以下実施例1と同様にして変換効率を測定した。その結果、Voc=0.42V、Jsc=1.9mA/cm2、ff=0.42となり、変換効率0.45%が得られた。この値は有機光起電力素子としては大きなものである。 Thereafter, the conversion efficiency was measured in the same manner as in Example 1. As a result, Voc = 0.42V, Jsc = 1.9 mA / cm 2 , ff = 0.42, and a conversion efficiency of 0.45% was obtained. This value is large for an organic photovoltaic device.

[実施例4]
よく洗浄したITOガラス(松崎真空製、30Ω/□)上に基板温度約250℃で、導入ガスとしてアルゴンを用い、DCマグネトロンスパッタ法で、透光性n型無機半導体層として酸化亜鉛を約1500Åの厚さで設けた。酸化亜鉛上に、真空蒸着法で電子受容性有機物層としてペリレンテトラカルボン酸メチルイミド(PL−ME)を約400Åの厚さで、次いで第一電子供与性有機物層としてアルミニウムクロルフタロシアニン(AlClPc)を約100Åの厚さで設けた。さらに本発明で用いられる上記一般式(1)で表される高分子化合物として、前記重合体(A)の1.0wt%トルエン溶液を調製した。この溶液をスピンコート法により約400Åの膜厚で塗布し、第二電子供与性有機物層を形成した。その上に金を真空蒸着した。
[Example 4]
On a well-cleaned ITO glass (manufactured by Matsuzaki Vacuum, 30Ω / □) at a substrate temperature of about 250 ° C., using argon as an introduction gas, and using a DC magnetron sputtering method, zinc oxide as a translucent n-type inorganic semiconductor layer is about 1500 mm. It was provided with the thickness. On the zinc oxide, perylenetetracarboxylic acid methylimide (PL-ME) is formed as an electron-accepting organic material layer in a thickness of about 400 mm by vacuum deposition, and then aluminum chlorophthalocyanine (AlClPc) is used as the first electron-donating organic material layer. It was provided with a thickness of 100 mm. Furthermore, a 1.0 wt% toluene solution of the polymer (A) was prepared as the polymer compound represented by the general formula (1) used in the present invention. This solution was applied by spin coating to a film thickness of about 400 mm to form a second electron donating organic material layer. Gold was vacuum deposited thereon.

以下実施例1と同様にして変換効率を測定した。その結果、Voc=0.43V、Jsc=2.44mA/cm2、ff=0.46となり、変換効率0.64%が得られた。この値は有機光起電力素子としては大きなものである。 Thereafter, the conversion efficiency was measured in the same manner as in Example 1. As a result, Voc = 0.43V, Jsc = 2.44 mA / cm 2 , ff = 0.46, and a conversion efficiency of 0.64% was obtained. This value is large for an organic photovoltaic device.

[実施例5]
よく洗浄したITOガラス(松崎真空製、30Ω/□)上に基板温度約250℃で、導入ガスとしてアルゴンを用い、DCマグネトロンスパッタ法で、透光性n型無機半導体層として酸化亜鉛を約1500Åの厚さで設けた。酸化亜鉛上に、真空蒸着法で電子受容性有機物層としてペリレンテトラカルボン酸メチルイミド(PL−ME)を約400Åの厚さで、次いで第一電子供与性有機物層としてアルミニウムクロルフタロシアニン(AlClPc)を約100Åの厚さで設けた。さらに本発明で用いられる上記一般式(1)で表される高分子化合物として、前記重合体(B)の1.0wt%トルエン溶液を調製した。この溶液をスピンコート法により約400Åの膜厚で塗布し、第二電子供与性有機物層を形成した。その上に金を真空蒸着した。
以下実施例1と同様にして変換効率を測定した。その結果、Voc=0.45V、Jsc=2.23mA/cm2、ff=0.46となり、変換効率0.62%が得られた。この値は有機光起電力素子としては大きなものである。
[Example 5]
On a well-cleaned ITO glass (manufactured by Matsuzaki Vacuum, 30Ω / □) at a substrate temperature of about 250 ° C., using argon as an introduction gas, and using a DC magnetron sputtering method, zinc oxide as a translucent n-type inorganic semiconductor layer is about 1500 mm. It was provided with the thickness. On the zinc oxide, perylenetetracarboxylic acid methylimide (PL-ME) is formed as an electron-accepting organic material layer in a thickness of about 400 mm by vacuum deposition, and then aluminum chlorophthalocyanine (AlClPc) is used as the first electron-donating organic material layer. It was provided with a thickness of 100 mm. Furthermore, a 1.0 wt% toluene solution of the polymer (B) was prepared as the polymer compound represented by the general formula (1) used in the present invention. This solution was applied by spin coating to a film thickness of about 400 mm to form a second electron donating organic material layer. Gold was vacuum deposited thereon.
Thereafter, the conversion efficiency was measured in the same manner as in Example 1. As a result, Voc = 0.45V, Jsc = 2.23 mA / cm 2 , ff = 0.46, and a conversion efficiency of 0.62% was obtained. This value is large for an organic photovoltaic device.

[実施例6]
よく洗浄したITOガラス(松崎真空製、30Ω/□)上に基板温度約250℃で、導入ガスとしてアルゴンを用い、DCマグネトロンスパッタ法で、透光性n型無機半導体層として酸化亜鉛を約1500Åの厚さで設けた。酸化亜鉛上に、真空蒸着法で電子受容性有機物層としてペリレンテトラカルボン酸メチルイミド(PL−ME)を約400Åの厚さで、次いで第一電子供与性有機物層としてアルミニウムクロルフタロシアニン(AlClPc)を約100Åの厚さで設けた。さらに本発明で用いられる上記一般式(1)で表される高分子化合物として、前記重合体(C)の1.0wt%トルエン溶液を調製した。この溶液をスピンコート法により約400Åの膜厚で塗布し、第二電子供与性有機物層を形成した。その上に金を真空蒸着した。
[Example 6]
On a well-cleaned ITO glass (manufactured by Matsuzaki Vacuum, 30Ω / □) at a substrate temperature of about 250 ° C., using argon as an introduction gas, and using a DC magnetron sputtering method, zinc oxide as a translucent n-type inorganic semiconductor layer is about 1500 mm. It was provided with the thickness. On the zinc oxide, perylenetetracarboxylic acid methylimide (PL-ME) is formed as an electron-accepting organic material layer in a thickness of about 400 mm by vacuum deposition, and then aluminum chlorophthalocyanine (AlClPc) is used as the first electron-donating organic material layer. It was provided with a thickness of 100 mm. Furthermore, a 1.0 wt% toluene solution of the polymer (C) was prepared as the polymer compound represented by the general formula (1) used in the present invention. This solution was applied by spin coating to a film thickness of about 400 mm to form a second electron donating organic material layer. Gold was vacuum deposited thereon.

以下実施例1と同様にして変換効率を測定した。その結果、Voc=0.45V、Jsc=2.23mA/cm2、ff=0.48となり、変換効率0.64%が得られた。この値は有機光起電力素子としては大きなものである。 Thereafter, the conversion efficiency was measured in the same manner as in Example 1. As a result, Voc = 0.45V, Jsc = 2.23 mA / cm 2 , ff = 0.48, and a conversion efficiency of 0.64% was obtained. This value is large for an organic photovoltaic device.

本発明に係る光起電力素子の具体例を示す模式的断面図である。It is typical sectional drawing which shows the specific example of the photovoltaic element which concerns on this invention. 本発明に係る光起電力素子の別の具体例を示す模式的断面図である。It is typical sectional drawing which shows another specific example of the photovoltaic element which concerns on this invention. 本発明に係る光起電力素子の更に別の具体例を示す模式的断面図である。It is typical sectional drawing which shows another specific example of the photovoltaic element which concerns on this invention. 本発明に係る光起電力素子の更に別の具体例を示す模式的断面図である。It is typical sectional drawing which shows another specific example of the photovoltaic element which concerns on this invention.

符号の説明Explanation of symbols

1:透明絶縁支持体
2:透明電極
3:電子受容性有機物層
4:電子供与性有機物層
5:背面電極
6:リード線
7:透光性n型無機半導体層
41:第一電子供与性有機物層
42:第二電子供与性有機物層


1: transparent insulating support 2: transparent electrode 3: electron-accepting organic material layer 4: electron-donating organic material layer 5: back electrode 6: lead wire 7: translucent n-type inorganic semiconductor layer 41: first electron-donating organic material Layer 42: Second electron donating organic material layer


Claims (10)

少なくとも一方が透光性である2つの電極の間に、接合により内部電界を生じる電子受容性有機物層と電子供与性有機物層が積層された光起電力素子において、
前記電子供与性有機物層に、少なくとも下記一般式(1)で表される高分子材料を含有することを特徴とする光起電力素子。
Figure 2005093572

(式中、R1,R2,R3はそれぞれ独立にハロゲン原子、置換もしくは無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基から選択される基を表し、x,y,zはそれぞれ独立に0から4の整数を表し、R1,R2,R3が各々複数存在する場合には、同一でも別異でもよく、Arは置換または無置換の芳香族炭化水素基を表す。)
In a photovoltaic device in which an electron-accepting organic material layer and an electron-donating organic material layer that generate an internal electric field by bonding are laminated between two electrodes, at least one of which is translucent,
A photovoltaic device, wherein the electron-donating organic layer contains at least a polymer material represented by the following general formula (1).
Figure 2005093572

(Wherein R 1 , R 2 and R 3 each independently represents a halogen atom, a substituted or unsubstituted group, a group selected from a linear or branched alkyl group, an alkoxy group or an alkylthio group, and x, y , Z each independently represents an integer of 0 to 4, and when there are a plurality of R 1 , R 2 , R 3 , they may be the same or different, Ar is a substituted or unsubstituted aromatic hydrocarbon group Represents.)
前記一般式(1)において、R1,R2,R3の少なくとも一つが炭素数1〜18の置換または無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基であることを特徴とする請求項1に記載の光起電力素子。 In the general formula (1), at least one of R 1 , R 2 , and R 3 is a substituted or unsubstituted group having 1 to 18 carbon atoms, and is a linear or branched alkyl group, an alkoxy group, or an alkylthio group. 2. The photovoltaic device according to claim 1, wherein 前記高分子材料が、下記一般式(2)で表されるものであることを特徴とする請求項1に記載の光起電力素子。
Figure 2005093572

(式中、R1,R2,R3,R4はそれぞれ独立にハロゲン原子、置換もしくは無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基から選択される基を表し、wは0から5の整数を示し、x,y,zはそれぞれ独立に0から4の整数を表し、R1,R2,R3,R4が各々複数存在する場合には、同一でも別異でもよい。)
The photovoltaic device according to claim 1, wherein the polymer material is represented by the following general formula (2).
Figure 2005093572

(Wherein R 1 , R 2 , R 3 and R 4 each independently represents a halogen atom, a substituted or unsubstituted group selected from a linear or branched alkyl group, an alkoxy group or an alkylthio group; w represents an integer of 0 to 5, x, y, and z each independently represent an integer of 0 to 4, and when there are a plurality of R 1 , R 2 , R 3 , and R 4 , they may be the same or different. It may be different.)
前記高分子材料が、下記一般式(3)で表されるものであることを特徴とする請求項1に記載の光起電力素子。
Figure 2005093572

(式中、R1,R2,R3,R5,R6はそれぞれ独立にハロゲン原子、置換もしくは無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基から選択される基を表し、uは0から5の整数を示し、v,x,y,zはそれぞれ独立に0から4の整数を表し、R1,R2,R3,R5,R6が各々複数存在する場合には、同一でも別異でもよい。)
The photovoltaic element according to claim 1, wherein the polymer material is represented by the following general formula (3).
Figure 2005093572

(Wherein R 1 , R 2 , R 3 , R 5 and R 6 are each independently a halogen atom, a substituted or unsubstituted group selected from a linear or branched alkyl group, an alkoxy group, or an alkylthio group. , U represents an integer from 0 to 5, v, x, y, and z each independently represent an integer from 0 to 4, and there are a plurality of R 1 , R 2 , R 3 , R 5 , and R 6 , respectively. They may be the same or different.)
前記高分子材料が、下記一般式(4)で表されるものであることを特徴とする請求項1に記載の光起電力素子。
Figure 2005093572

(式中、R1,R2,R3,R7,R8,R9,R10はそれぞれ独立にハロゲン原子、置換もしくは無置換で、直鎖または分岐鎖のアルキル基またはアルコキシ基もしくはアルキルチオ基から選択される基を表し、tは0から3の整数を示し、s,x,y,zはそれぞれ独立に0から4の整数を表し、R1,R2,R3,R7,R8が各々複数存在する場合には、同一でも別異でもよい。)
The photovoltaic device according to claim 1, wherein the polymer material is represented by the following general formula (4).
Figure 2005093572

(In the formula, R 1 , R 2 , R 3 , R 7 , R 8 , R 9 and R 10 are each independently a halogen atom, substituted or unsubstituted, a linear or branched alkyl group, an alkoxy group or an alkylthio group. Represents a group selected from the group, t represents an integer of 0 to 3, s, x, y, z each independently represents an integer of 0 to 4, R 1 , R 2 , R 3 , R 7 , When there are a plurality of R 8 s , they may be the same or different.)
透明電極、電子受容性有機物層、電子供与性有機物層、背面電極がこの順に積層された光起電力素子において、
前記電子供与性有機物層に、前記一般式(1)〜(4)のいずれかで表される高分子材料を含有することを特徴とする請求項1〜5のいずれかに記載の光起電力素子。
In a photovoltaic device in which a transparent electrode, an electron-accepting organic material layer, an electron-donating organic material layer, and a back electrode are laminated in this order,
The photovoltaic material according to any one of claims 1 to 5, wherein the electron donating organic material layer contains a polymer material represented by any one of the general formulas (1) to (4). element.
透明電極、透光性n型無機半導体層、電子受容性有機物層、電子供与性有機物層、背面電極がこの順に積層された光起電力素子において、
前記電子供与性有機物層に、前記一般式(1)〜(4)のいずれかで表される高分子材料を含有することを特徴とする請求項1〜5のいずれかに記載の光起電力素子。
In a photovoltaic device in which a transparent electrode, a light-transmitting n-type inorganic semiconductor layer, an electron-accepting organic material layer, an electron-donating organic material layer, and a back electrode are laminated in this order,
The photovoltaic material according to any one of claims 1 to 5, wherein the electron donating organic material layer contains a polymer material represented by any one of the general formulas (1) to (4). element.
透明電極、電子受容性有機物層、第一電子供与性有機物層、第二電子供与性有機物層、背面電極がこの順に積層された光起電力素子において、
前記第二電子供与性有機物層に、前記一般式(1)〜(4)のいずれかで表される高分子材料を含有することを特徴とする請求項1〜5のいずれかに記載の光起電力素子。
In a photovoltaic device in which a transparent electrode, an electron-accepting organic material layer, a first electron-donating organic material layer, a second electron-donating organic material layer, and a back electrode are laminated in this order,
The light according to any one of claims 1 to 5, wherein the second electron-donating organic layer contains a polymer material represented by any one of the general formulas (1) to (4). Electromotive force element.
透明電極、透光性n型無機半導体層、電子受容性有機物層、第一電子供与性有機物層、第二電子供与性有機物層、背面電極がこの順に積層された光起電力素子において、
前記第二電子供与性有機物層に、前記一般式(1)〜(4)のいずれかで表される高分子材料を含有することを特徴とする請求項1〜5のいずれかに記載の光起電力素子。
In a photovoltaic device in which a transparent electrode, a light-transmitting n-type inorganic semiconductor layer, an electron-accepting organic material layer, a first electron-donating organic material layer, a second electron-donating organic material layer, and a back electrode are laminated in this order,
The light according to any one of claims 1 to 5, wherein the second electron-donating organic layer contains a polymer material represented by any one of the general formulas (1) to (4). Electromotive force element.
請求項1〜9のいずれかに記載の光起電力素子を備えていることを特徴とする光センサー。

An optical sensor comprising the photovoltaic element according to claim 1.

JP2003322464A 2003-09-16 2003-09-16 Photovoltaic element and optical sensor provided with the same Expired - Fee Related JP4498706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322464A JP4498706B2 (en) 2003-09-16 2003-09-16 Photovoltaic element and optical sensor provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322464A JP4498706B2 (en) 2003-09-16 2003-09-16 Photovoltaic element and optical sensor provided with the same

Publications (2)

Publication Number Publication Date
JP2005093572A true JP2005093572A (en) 2005-04-07
JP4498706B2 JP4498706B2 (en) 2010-07-07

Family

ID=34453805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322464A Expired - Fee Related JP4498706B2 (en) 2003-09-16 2003-09-16 Photovoltaic element and optical sensor provided with the same

Country Status (1)

Country Link
JP (1) JP4498706B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339199A (en) * 2005-05-31 2006-12-14 Ricoh Co Ltd Photoelectric conversion element and its manufacturing method, and solar cell using the photoelectric conversion element
JP2007013115A (en) * 2005-05-31 2007-01-18 Ricoh Co Ltd Photoelectric conversion element and its manufacturing method, and solar cell using the same
JP2007077223A (en) * 2005-09-13 2007-03-29 Ricoh Co Ltd Poly(triarylamine)
JP2007194557A (en) * 2006-01-23 2007-08-02 Toppan Printing Co Ltd Compound photoelectric conversion element, and method for manufacturing same
JP2007243048A (en) * 2006-03-10 2007-09-20 Sony Corp Organic semiconductor element and organic semiconductor film
JP2009043980A (en) * 2007-08-09 2009-02-26 Ricoh Co Ltd Photoelectric conversion element, method of manufacturing the same, and solar battery using the photoelectric conversion element
JP2009070858A (en) * 2007-09-10 2009-04-02 Asahi Kasei Chemicals Corp Manufacturing method for electron acceptor organic matter layer for composing photovoltaic element for photosensor and/or electron donor organic matter layer
JP2010141318A (en) * 2008-12-10 2010-06-24 Xerox Corp Thin-film transistor and method of manufacturing thin-film transistor
JP2011204802A (en) * 2010-03-24 2011-10-13 Fujifilm Corp Organic photoelectric conversion element, imaging element, and imaging apparatus
US8129494B2 (en) 2006-12-26 2012-03-06 Asahi Kasei E-Materials Corporation Resin composition for printing plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339199A (en) * 2005-05-31 2006-12-14 Ricoh Co Ltd Photoelectric conversion element and its manufacturing method, and solar cell using the photoelectric conversion element
JP2007013115A (en) * 2005-05-31 2007-01-18 Ricoh Co Ltd Photoelectric conversion element and its manufacturing method, and solar cell using the same
JP2007077223A (en) * 2005-09-13 2007-03-29 Ricoh Co Ltd Poly(triarylamine)
JP2007194557A (en) * 2006-01-23 2007-08-02 Toppan Printing Co Ltd Compound photoelectric conversion element, and method for manufacturing same
JP2007243048A (en) * 2006-03-10 2007-09-20 Sony Corp Organic semiconductor element and organic semiconductor film
US8129494B2 (en) 2006-12-26 2012-03-06 Asahi Kasei E-Materials Corporation Resin composition for printing plate
US8263730B2 (en) 2006-12-26 2012-09-11 Asahi Kasei E-Materials Corporation Resin composition for printing plate
EP2567995A2 (en) 2006-12-26 2013-03-13 Asahi Kasei E-materials Corporation Resin composition for printing plate
JP2009043980A (en) * 2007-08-09 2009-02-26 Ricoh Co Ltd Photoelectric conversion element, method of manufacturing the same, and solar battery using the photoelectric conversion element
JP2009070858A (en) * 2007-09-10 2009-04-02 Asahi Kasei Chemicals Corp Manufacturing method for electron acceptor organic matter layer for composing photovoltaic element for photosensor and/or electron donor organic matter layer
JP2010141318A (en) * 2008-12-10 2010-06-24 Xerox Corp Thin-film transistor and method of manufacturing thin-film transistor
JP2011204802A (en) * 2010-03-24 2011-10-13 Fujifilm Corp Organic photoelectric conversion element, imaging element, and imaging apparatus

Also Published As

Publication number Publication date
JP4498706B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US5264048A (en) Photoelectric conversion device
US20040177879A1 (en) Hole transporting agents and photoelectric conversion device comprising the same
JPH06318725A (en) Photovoltaic element and its manufacture
JPH05308146A (en) Organic photovoltaic element
JP6150732B2 (en) Photovoltaic element
TW200908405A (en) Organic photosensitive optoelectronic devices with nonplanar porphyrins
US5201961A (en) Photovoltaic device containing organic material layers and having high conversion efficiency
JP4498706B2 (en) Photovoltaic element and optical sensor provided with the same
JP2017505995A (en) Hole-transporting and light-absorbing materials for solid solar cells
JP7389018B2 (en) Manufacturing method of Sn-based perovskite layer and solar cell
JP5106361B2 (en) Organic photoelectric conversion device using benzophosphole compound
US8471143B2 (en) Photoelectric conversion element and solar cell
KR101802525B1 (en) Photovoltaic device
JPH06177410A (en) Manufacture of photovoltaic element and its manufacture
JP2006253496A (en) Photovoltaic element
JPH05275728A (en) Organic photovoltaic element
JP2006243626A (en) Light wavelength converting element
JP2006253489A (en) Photovoltaic element and photosensor employing it
JP2012094858A (en) Photovoltaic device
JPH05102506A (en) Photovoltaic element
JPH05291598A (en) Organic photovoltaic element
JPH07106613A (en) Organic n-type semiconductor and organic solar cell
JPH03263380A (en) Photovoltaic element
JPH05343718A (en) Photovoltaic element
JPH07240530A (en) Organic solar cell and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees