JP2005091241A5 - - Google Patents

Download PDF

Info

Publication number
JP2005091241A5
JP2005091241A5 JP2003327035A JP2003327035A JP2005091241A5 JP 2005091241 A5 JP2005091241 A5 JP 2005091241A5 JP 2003327035 A JP2003327035 A JP 2003327035A JP 2003327035 A JP2003327035 A JP 2003327035A JP 2005091241 A5 JP2005091241 A5 JP 2005091241A5
Authority
JP
Japan
Prior art keywords
particles
magnetic
metal
average particle
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003327035A
Other languages
Japanese (ja)
Other versions
JP2005091241A (en
JP4164806B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2003327035A priority Critical patent/JP4164806B2/en
Priority claimed from JP2003327035A external-priority patent/JP4164806B2/en
Publication of JP2005091241A publication Critical patent/JP2005091241A/en
Publication of JP2005091241A5 publication Critical patent/JP2005091241A5/ja
Application granted granted Critical
Publication of JP4164806B2 publication Critical patent/JP4164806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

[1] 本発明の磁性粒子は、金属酸化物を炭素で還元することによって得られる平均粒径1μm以下の金属粒子と、前記金属粒子を包含若しくは担持する炭素粒子若しくは炭素膜を有し磁気ビーズ用であることを特徴とする。望ましくは前記金属粒子の平均粒径を0.001〜1μmとする。 [1] Magnetic particles of the present invention, the average particle size 1μm or less of the metal particles obtained by reducing a metal oxide with carbon, magnetic beads have a carbon particle or carbon film to cover or carrying the metal particles It is for use . Desirably, the average particle diameter of the metal particles is 0.001 to 1 μm.

本発明の磁性粒子は、特に磁気ビーズ用の磁性粒子として用いることができる。ここで、“磁気ビーズ用”とは、生体物質を水溶液中から抽出したり、或いは生体物質を水溶液中に分散させるような用途に相当し、磁気ビーズとして用いることができるという意味である。従って、本願明細書において、“磁気ビーズ用”とは、本発明の磁性粒子の組成等を限定する用語ではない。   The magnetic particles of the present invention can be used particularly as magnetic particles for magnetic beads. Here, “for magnetic beads” means that the biological material is extracted from the aqueous solution or the biological material is dispersed in the aqueous solution and can be used as a magnetic bead. Therefore, in the present specification, “for magnetic beads” is not a term for limiting the composition and the like of the magnetic particles of the present invention.

平均粒径は、例えば、金属超微粒子の試料粉末を溶媒中に分散させて、レーザー光線を照射して回折を利用して平均粒径を測定する方法(第1の方法)により求めることができる。第1の方法では平均粒径の測定が困難な場合には、試料を電子顕微鏡で観察して平均粒径を測定する試料の電子顕微鏡写真を取る。写真内で任意の長さの線分を引いて、線分の粒子を横断する部分の長さの和Lと線分が横断した粒子の数Nとから、平均粒径=L/Nとして求める。ただし、測定対象の粒子の数50個以上として平均値を求める。 The average particle diameter can be determined, for example, by a method (first method) in which a sample powder of ultrafine metal particles is dispersed in a solvent, irradiated with a laser beam, and the average particle diameter is measured using diffraction. When it is difficult to measure the average particle diameter by the first method, the sample is observed with an electron microscope and an electron micrograph of the sample for measuring the average particle diameter is taken. A line segment of an arbitrary length is drawn in the photograph, and the average particle size = L / N is obtained from the sum L of the lengths of the portions crossing the particles of the line segment and the number N of particles crossed by the line segment. . However, the average value is obtained by setting the number of particles to be measured to 50 or more.

[2] 本発明の他の磁性粒子は、金属酸化物をホウ素で還元することによって得られる平均粒径1μm以下の金属粒子と、前記金属粒子を包含若しくは担持する窒化ホウ素粒子若しくは窒化ホウ素膜を有し磁気ビーズ用であることを特徴とする。望ましくは前記金属粒子の平均粒径を0.001〜1μmとする。 [2] Another magnetic particle of the present invention includes a metal particle having an average particle size of 1 μm or less obtained by reducing a metal oxide with boron, and a boron nitride particle or a boron nitride film containing or supporting the metal particle. Yes and characterized in that it is a magnetic bead. Desirably, the average particle diameter of the metal particles is 0.001 to 1 μm.

Claims (5)

金属酸化物を炭素で還元することによって得られる平均粒径1μm以下の金属粒子と、前記金属粒子を包含若しくは担持する炭素粒子若しくは炭素膜を有する磁気ビーズ用磁性粒子。 Magnetic particles for magnetic beads comprising metal particles having an average particle size of 1 μm or less obtained by reducing metal oxide with carbon, and carbon particles or carbon films containing or supporting the metal particles. 金属酸化物をホウ素で還元することによって得られる平均粒径1μm以下の金属粒子と、前記金属粒子を包含若しくは担持する窒化ホウ素粒子若しくは窒化ホウ素膜を有する磁気ビーズ用磁性粒子。 Magnetic particles for magnetic beads comprising metal particles having an average particle size of 1 μm or less obtained by reducing metal oxide with boron, and boron nitride particles or a boron nitride film containing or supporting the metal particles. 比表面積をγ(mThe specific surface area is γ (m 2 /g)、粒度をr(μm)、密度をρ(g/cm/ G), particle size r (μm), density ρ (g / cm 3Three )としたときに、)
γ>6/(r・ρ)  γ> 6 / (r · ρ)
を満足する請求項1または2に記載の磁性粒子。The magnetic particle according to claim 1 or 2, satisfying
窒化ホウ素若しくは炭素に包含若しくは担持された金属粒子と、被膜を備える磁性粒子であって、Magnetic particles comprising a metal particle, which is included or supported in boron nitride or carbon, and a coating,
前記金属粒子は平均粒径が0.001〜1μmであり、  The metal particles have an average particle diameter of 0.001 to 1 μm,
前記被膜は、金、銀もしくは白金族元素の少なくとも一つで構成される貴金属であり、  The coating is a noble metal composed of at least one of gold, silver or platinum group elements,
比表面積をγ(m  The specific surface area is γ (m 2 /g)、粒度をr(μm)、密度をρ(g/cm/ G), particle size r (μm), density ρ (g / cm 3Three )としたときに、γ>6/(r・ρ)を満たすことを特徴とする磁性粒子。) Satisfying γ> 6 / (r · ρ).
磁気ビーズ用に用いることを特徴とする請求項4に記載の磁性粒子。The magnetic particles according to claim 4, wherein the magnetic particles are used for magnetic beads.
JP2003327035A 2003-09-19 2003-09-19 Magnetic particles for magnetic beads Expired - Fee Related JP4164806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327035A JP4164806B2 (en) 2003-09-19 2003-09-19 Magnetic particles for magnetic beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327035A JP4164806B2 (en) 2003-09-19 2003-09-19 Magnetic particles for magnetic beads

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008024792A Division JP2008135779A (en) 2008-02-05 2008-02-05 Method of manufacturing magnetic particles for magnetic bead

Publications (3)

Publication Number Publication Date
JP2005091241A JP2005091241A (en) 2005-04-07
JP2005091241A5 true JP2005091241A5 (en) 2006-05-25
JP4164806B2 JP4164806B2 (en) 2008-10-15

Family

ID=34457016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327035A Expired - Fee Related JP4164806B2 (en) 2003-09-19 2003-09-19 Magnetic particles for magnetic beads

Country Status (1)

Country Link
JP (1) JP4164806B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006126504A1 (en) * 2005-05-23 2008-12-25 独立行政法人産業技術総合研究所 Silver-coated particles and uses thereof
JP4465038B2 (en) * 2008-08-20 2010-05-19 株式会社フォスメガ Magnetic field sensor
EP2383374A1 (en) * 2010-04-29 2011-11-02 BASF Corporation Nano-particles containing carbon and a ferromagnetic metal or alloy
CN102351564B (en) * 2011-07-20 2012-11-21 福州大学 Method for preparing wood ceramics by sintering coal tar pitch and biomass materials
JP2012096232A (en) * 2011-12-26 2012-05-24 Hitachi Maxell Ltd Method for producing magnetic carrier

Similar Documents

Publication Publication Date Title
Khlebtsov et al. Surface-enhanced Raman scattering inside Au@ Ag core/shell nanorods
Schmucker et al. Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance
Neupane et al. Synthesis of gelatin-capped gold nanoparticles with variable gelatin concentration
Adams et al. Non‐lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly
Galstyan et al. Fabrication and investigation of gas sensing properties of Nb-doped TiO2 nanotubular arrays
Olejnik et al. Cell-biological effects of zinc oxide spheres and rods from the nano-to the microscale at sub-toxic levels
Pastoriza‐Santos et al. Synthetic routes and plasmonic properties of noble metal nanoplates
Lima et al. Influence of Al2O3 nanoparticles structure immobilized upon glassy-carbon electrode on the electrocatalytic oxidation of phenolic compounds
Jing et al. Solidifying framework nucleic acids with silica
Zhao et al. A sensitive hydrazine electrochemical sensor based on zinc oxide nano-wires
Barman et al. Electrochemical detection of para‐nitrophenol using copper metal nanoparticles modified gold electrode
Plowman et al. Electrochemical behavior of gold–silver alloy nanoparticles
Torati et al. Protein immobilization onto electrochemically synthesized CoFe nanowires
Wang et al. Retention of silver nanoparticles and silver ion to natural soils: effects of soil physicochemical properties
Pal et al. Size-dependent properties of ZnmSn clusters: A density-functional tight-binding study
Mauruto de Oliveira et al. Tapioca Biofilm Containing Nitrogen‐doped Titanium Dioxide Nanoparticles for Electrochemical Detection of 17‐β Estradiol
Silva et al. Development and application of a routine robust graphite/poly (lactic acid) composite electrode for the fast simultaneous determination of Pb 2+ and Cd 2+ in jewelry by square wave anodic stripping voltammetry
Praig et al. Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films
JP2005091241A5 (en)
Manzke et al. Formation of highly ordered alloy nanoparticles based on precursor-filled latex spheres
Ávila-Avilés et al. SERS activity of hybrid nano/microstructures Ag-Fe3O4 based on Dimorphotheca ecklonis pollen grains as bio-template
Sonawane et al. Effects of cold atmospheric plasma treatment on the morphological and optical properties of plasmonic silver nanoparticles
Wang et al. Circumventing silver oxidation induced performance degradation of silver surface-enhanced Raman scattering substrates
Rane et al. Microscopy applied to materials sciences and life sciences
Lee et al. Laser-induced conversion of Au powders to highly stable nanoparticles with a narrow size distribution