JP2005089830A - Method for producing sponge titanium - Google Patents

Method for producing sponge titanium Download PDF

Info

Publication number
JP2005089830A
JP2005089830A JP2003325429A JP2003325429A JP2005089830A JP 2005089830 A JP2005089830 A JP 2005089830A JP 2003325429 A JP2003325429 A JP 2003325429A JP 2003325429 A JP2003325429 A JP 2003325429A JP 2005089830 A JP2005089830 A JP 2005089830A
Authority
JP
Japan
Prior art keywords
molten magnesium
titanium
reduction reaction
reaction vessel
sponge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003325429A
Other languages
Japanese (ja)
Other versions
JP4181469B2 (en
Inventor
Naofumi Nakahara
直文 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2003325429A priority Critical patent/JP4181469B2/en
Publication of JP2005089830A publication Critical patent/JP2005089830A/en
Application granted granted Critical
Publication of JP4181469B2 publication Critical patent/JP4181469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of producing a sponge titanium material which is suitable for producing a high purity titanium material for a target and is low in contents of nickel and chromium. <P>SOLUTION: Molten magnesium charged inside a reduction reaction vessel is heated and vaporized under the reduced pressure. The vapor is refluxed at the inner surface of the reduction reaction vessel to elute impurities present near the inner surface of the reduction reaction vessel into molten magnesium. Next, the molten magnesium is discharged to the outside of the vessel, then new molten magnesium is charged to start the reduction reaction with titanium tetrachloride. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、スポンジチタンの製造方法に係り、とりわけ、ニッケルやクロム成分の低い高純度スポンジチタンの製造方法に関する。   The present invention relates to a method for producing sponge titanium, and more particularly, to a method for producing high purity sponge titanium having a low nickel or chromium component.

近年における電子機器の発達に伴い、電子部品に対する高機能化の要求が高まっている。電子部品の中でも、集積回路のバリヤ材として用いられるチタン材の品質に対する要求がかなり厳しくなっている。この種のチタン材はターゲット用高純度チタンと呼ばれる場合があり、通常のチタン材とは一線が画されている。このターゲット用高純度チタン材に要求される品質の一例を挙げると、酸素(の濃度、以下同じ)<200ppm、ニッケル<5ppm、クロム<1ppm、鉄<10ppm等であり、厳しい特性が要求されている。一般的に用いられるチタン材の不純物は、例えば、ニッケルやクロムあるいは鉄においては数百ppm程度含まれているため、高純度チタン材の製造にあたっては、原料、反応容器、作業工程にわたって格別な配慮がなされている。   With the recent development of electronic devices, there is an increasing demand for higher functionality for electronic components. Among electronic components, the requirements for the quality of titanium materials used as barrier materials for integrated circuits have become quite strict. This type of titanium material is sometimes referred to as high-purity titanium for targets, and is distinct from ordinary titanium materials. An example of the quality required for this high-purity titanium material for target is oxygen (concentration, the same applies hereinafter) <200 ppm, nickel <5 ppm, chromium <1 ppm, iron <10 ppm, etc. Yes. The impurities of commonly used titanium materials include, for example, several hundred ppm in nickel, chromium, or iron. Therefore, when manufacturing high-purity titanium materials, special considerations are taken across raw materials, reaction vessels, and work processes. Has been made.

クロール法によるスポンジチタンは、四塩化チタンと溶融マグネシウムを、高温のステンレス容器の中で反応させて生成させるために、ステンレス容器壁から生成スポンジチタン中にニッケルやクロム等の不純物が拡散または溶出して生成スポンジチタンを汚染する。一方、電解工程で製造された溶融マグネシウム中には微量のニッケルしか含有されていないが、溶融マグネシウムの運搬中に、溶融マグネシウムの運搬容器からニッケルやクロムが溶出して溶融マグネシウムを汚染する場合がある。   Sponge titanium by the crawl method is produced by reacting titanium tetrachloride and molten magnesium in a high-temperature stainless steel container, so that impurities such as nickel and chromium diffuse or elute from the stainless steel container wall into the generated sponge titanium. The resulting sponge titanium is contaminated. On the other hand, the molten magnesium produced in the electrolysis process contains only a small amount of nickel, but during the transportation of the molten magnesium, nickel and chromium may be eluted from the molten magnesium transport container to contaminate the molten magnesium. is there.

これに対して、本発明の目的とは異なるものの耐熱鋼の構成成分がスポンジチタン中に溶出して耐熱強度が低下することを防止するため、還元反応容器の内部にニッケルを含まないような炭素鋼やクロム鋼で構成されたスリーブを設けて、このスリーブと還元反応容器との空間部を溶融塩化マグネシウムで満たし、還元反応容器からのニッケルやクロムの溶出を防止する技術が知られている(特許文献1)。また、ステンレス製の還元反応容器の内面を炭素鋼でライニングした還元反応容器も公知である(特許文献2)。   On the other hand, in order to prevent the heat resistant steel from being dissolved in the sponge titanium, which is different from the object of the present invention, to prevent the heat resistant strength from being lowered, carbon which does not contain nickel inside the reduction reaction vessel There is a known technique for providing a sleeve made of steel or chrome steel, filling the space between the sleeve and the reduction reaction vessel with molten magnesium chloride, and preventing elution of nickel and chromium from the reduction reaction vessel ( Patent Document 1). A reduction reaction vessel in which the inner surface of a stainless reduction reaction vessel is lined with carbon steel is also known (Patent Document 2).

特開昭57−009847号公報JP-A-57-009847 特開平9−287035号公報Japanese Patent Laid-Open No. 9-287035

しかしながら、スリーブに用いられる炭素鋼中に含まれる程度のニッケル含有率であっても、ターゲット用チタン材の品質特性を満足することはできず、別の態様が望まれていた。また、ステンレス製の還元反応容器の内面を炭素鋼でライニングした還元反応容器にあっては、還元剤であるニッケル濃度の低い溶融マグネシウムを装入してしばらく放置すると、この溶融マグネシウム中のニッケル濃度が上昇するという課題があり、近年のターゲット用チタン材に対する品質特性を満足することが難しくなりつつある。
よって本発明は、ターゲット用高純度チタン材の製造に好適なニッケルやクロムの含有率の低いスポンジチタン材の製造を可能とする方法を提供することを目的とする。
However, even if it is nickel content of the grade contained in the carbon steel used for a sleeve, the quality characteristic of the titanium material for targets cannot be satisfied, and another aspect was desired. In addition, in a reduction reaction vessel in which the inner surface of a stainless steel reduction reaction vessel is lined with carbon steel, if a molten magnesium with a low nickel concentration as a reducing agent is charged and left for a while, the nickel concentration in the molten magnesium Is increasing, and it is becoming difficult to satisfy the quality characteristics of titanium materials for targets in recent years.
Accordingly, an object of the present invention is to provide a method that enables the production of a sponge titanium material having a low nickel or chromium content suitable for the production of a high-purity titanium material for a target.

本出願人は、上記目的を達成すべく鋭意検討したところ、還元反応容器に装入した溶融マグネシウムを加熱して減圧下におき、還元反応容器の内面で還流させて該溶融マグネシウムを系外に抜き出し、次いで新規な溶融マグネシウムを装入して四塩化チタンとの還元反応を行うことにより、ニッケル汚染の少ないスポンジチタンを生成できることを見出し、本発明を完成するに至った。すなわち本発明は、四塩化チタンを溶融マグネシウムで還元してスポンジチタンを製造する方法において、還元反応容器に装入した溶融マグネシウムを減圧下で加熱して蒸気とし、この蒸気を還元反応容器の内面で還流させて該溶融マグネシウムを容器外に抜き出し、次いで、新規な溶融マグネシウムを装入して四塩化チタンとの還元反応を開始することを特徴とする。この方法では、溶融マグネシウムを容器外に抜き出した後、再度溶融塩化マグネシウムを供給し、次いで該溶融マグネシウムを容器外に抜き出してから、新規な溶融マグネシウムを装入して四塩化チタンとの還元反応を開始する形態を採ることができる。   As a result of intensive studies to achieve the above object, the present applicant heated the molten magnesium charged in the reduction reaction vessel under reduced pressure, and refluxed the inner surface of the reduction reaction vessel to bring the molten magnesium out of the system. It was discovered that sponge titanium with less nickel contamination can be produced by extracting and then introducing a new molten magnesium and carrying out a reduction reaction with titanium tetrachloride, thereby completing the present invention. That is, the present invention relates to a method for producing titanium sponge by reducing titanium tetrachloride with molten magnesium, wherein the molten magnesium charged in the reduction reaction vessel is heated to a vapor under reduced pressure, and this vapor is converted to the inner surface of the reduction reaction vessel. The molten magnesium is withdrawn to the outside of the container and then charged with new molten magnesium to start a reduction reaction with titanium tetrachloride. In this method, after molten magnesium is extracted out of the container, molten magnesium chloride is supplied again, and then the molten magnesium is extracted out of the container and then charged with new molten magnesium and reduced with titanium tetrachloride. The form which starts can be taken.

また、本出願人は、還元反応容器に装入した溶融マグネシウム中に四塩化チタンを滴下して生成させたスポンジチタンに、溶融マグネシウム中のニッケルを移行させることによっても、溶融マグネシウム中に含有する不純物を効果的に分離除去できることを見出した。この知見に基づく本発明は、四塩化チタンを溶融マグネシウムで還元してスポンジチタンを製造する方法において、還元反応容器に装入した溶融マグネシウムの浴面に予備的に四塩化チタンを滴下してスポンジチタンを生成させて還元反応容器の底部に該スポンジチタンを分離した後、該溶融マグネシウムの浴面に四塩化チタンを供給して還元反応を開始することを特徴とする。この方法では、溶融マグネシウム中の不純物の分離除去に使用するスポンジチタンの生成に使用する四塩化チタンの供給量を全反応量の1〜5%とする形態を採ることができる。   Further, the present applicant also contains nickel in the molten magnesium by transferring titanium tetrachloride dropwise into the molten magnesium charged in the reduction reaction vessel, and contained in the molten magnesium. It has been found that impurities can be separated and removed effectively. Based on this knowledge, the present invention provides a method for producing titanium sponge by reducing titanium tetrachloride with molten magnesium, in which titanium tetrachloride is preliminarily dropped onto the bath surface of molten magnesium charged in the reduction reaction vessel. After titanium is produced and the sponge titanium is separated at the bottom of the reduction reaction vessel, titanium tetrachloride is supplied to the molten magnesium bath to start the reduction reaction. In this method, it is possible to take a form in which the supply amount of titanium tetrachloride used for producing sponge titanium used for separating and removing impurities in molten magnesium is 1 to 5% of the total reaction amount.

上記いずれの本発明においては、溶融マグネシウム中の不純物濃度が0.5〜5ppmであることが好ましい。また、溶融マグネシウム中に含まれる不純物は、鉄、ニッケル、クロム、マグネシウム酸化物、マグネシウム窒化物のうちの少なくとも1種が挙げられる。   In any of the present inventions described above, the impurity concentration in the molten magnesium is preferably 0.5 to 5 ppm. Moreover, the impurity contained in molten magnesium includes at least one of iron, nickel, chromium, magnesium oxide, and magnesium nitride.

本発明によれば、還元反応容器の内部に仕込んだ溶融マグネシウム中のニッケルやクロムあるいは酸化物、窒化物等の不純物が、還元反応で生成されたスポンジチタンに移行することを防止することができ、その結果、ターゲット用チタン材としての優れた品質特性を発揮する。   According to the present invention, it is possible to prevent impurities such as nickel, chromium, oxide, and nitride in molten magnesium charged in the reduction reaction vessel from being transferred to sponge titanium produced by the reduction reaction. As a result, it exhibits excellent quality characteristics as a target titanium material.

本発明は、還元反応容器内に溶融マグネシウムを滞留させ、減圧下にて加熱して、溶融マグネシウム加熱蒸発させて還元反応容器の内面で還流させることを特徴とするものである。すなわち、還元反応容器の底部に保持した溶融マグネシウムを800〜900℃程度まで加熱した後、炉内を0.1〜0.5気圧程度に減圧することが好ましい。このように減圧状態を維持することで、溶融マグネシウムが蒸発しやすくなり、還元反応容器の内面に凝縮した溶融マグネシウムは、還元反応容器の内面近傍のニッケルを溶出させて容器の底部にある溶融マグネシウム浴に還流する。この操作を継続することにより、還元反応容器の内面近傍に存在するニッケルを溶出分離することができる。また、溶融マグネシウムと接している還元反応容器の底部内壁面近傍に存在するニッケルも、溶融マグネシウム中に溶出させることができる。   The present invention is characterized in that molten magnesium is retained in a reduction reaction vessel, heated under reduced pressure, heated and evaporated by molten magnesium, and refluxed on the inner surface of the reduction reaction vessel. That is, after heating the molten magnesium held at the bottom of the reduction reaction vessel to about 800 to 900 ° C., the inside of the furnace is preferably decompressed to about 0.1 to 0.5 atm. By maintaining the reduced pressure state in this manner, the molten magnesium easily evaporates, and the molten magnesium condensed on the inner surface of the reduction reaction vessel elutes the nickel in the vicinity of the inner surface of the reduction reaction vessel, and the molten magnesium at the bottom of the vessel Reflux to bath. By continuing this operation, nickel present in the vicinity of the inner surface of the reduction reaction vessel can be eluted and separated. In addition, nickel existing in the vicinity of the inner wall surface of the bottom of the reduction reaction vessel in contact with the molten magnesium can be eluted into the molten magnesium.

ここで、還元反応容器に装入する溶融マグネシウムは、容積にして反応容器の約10〜20%程度装入すればよい。この範囲を超えて装入すると、溶融マグネシウムの回収・再利用が難しくなり、逆に下回る量では、還元反応容器から溶出するニッケルを効率よく除去することが困難になる。   Here, the molten magnesium charged into the reduction reaction vessel may be charged in a volume of about 10 to 20% of the reaction vessel. If the amount exceeds this range, it becomes difficult to recover and reuse the molten magnesium. If the amount is less than this range, it will be difficult to efficiently remove nickel eluted from the reduction reaction vessel.

溶融マグネシウムはニッケルと容易に合金化することが知られているが、還元反応容器内に一旦仕込んだ溶融マグネシウムは、還元反応容器内で、ある一定時間保持することが好ましい。例えば、還元反応容器内の温度を800〜900℃に維持する場合、溶融マグネシウムは30〜60分程度保持することが好ましい。このように溶融マグネシウムを還元反応容器内に一定時間保持することにより、溶融マグネシウムと接する還元反応容器の内面から溶出するニッケルを完全に溶融マグネシウム中に移行させることができる。   Although it is known that molten magnesium is easily alloyed with nickel, the molten magnesium once charged in the reduction reaction vessel is preferably held in the reduction reaction vessel for a certain period of time. For example, when maintaining the temperature in a reduction reaction container at 800-900 degreeC, it is preferable to hold | maintain molten magnesium for about 30-60 minutes. By holding the molten magnesium in the reduction reaction vessel for a certain time as described above, nickel eluted from the inner surface of the reduction reaction vessel in contact with the molten magnesium can be completely transferred into the molten magnesium.

還元反応容器壁は、高純度スポンジチタンを製造するにあたっては、通常、ステンレス鋼の内面に炭素鋼を内張りしたクラッド鋼が用いられるが、還元反応容器の使用を繰り返していく過程で、内張りの一部が溶損あるいは剥離する場合がある。このような場合には、溶融マグネシウムの保持時間を長めにとることが、容器内面からのニッケル汚染を防止する意味から好適である。なお、格別の場合には、60分を超えて溶融マグネシウムを還元反応容器内に保持してもよい。   For the production of high purity sponge titanium, the reduction reaction vessel wall is usually made of clad steel with carbon steel lined on the inner surface of stainless steel, but in the process of repeated use of the reduction reaction vessel, The part may be melted or peeled off. In such a case, it is preferable in view of preventing nickel contamination from the inner surface of the container to take a longer holding time of the molten magnesium. In exceptional cases, the molten magnesium may be held in the reduction reaction vessel for more than 60 minutes.

還元反応容器内に装入した溶融マグネシウムは、一旦系外に抜き出すことが望ましい。系外に抜き出した溶融マグネシウムは、通常品のスポンジチタン製造の還元剤として使用することができる。なお、還元反応容器に装入した溶融マグネシウムの全量を系外に抜き出すことが好ましいが、容器の構造上、全量抜き出すことができず容器底部に一部残る場合がある。このような場合には、溶融マグネシウム中に溶融塩化マグネシウムを供給してもよい。溶融塩化マグネシウムは溶融マグネシウムに比べて比重が大きいので、溶融マグネシウム中を沈降し、還元反応容器の底部に溶融塩化マグネシウムが置換され、その上に溶融マグネシウムが浮遊する。このような構成を採ることにより、ニッケル等の不純物を含んだ溶融マグネシウムを効率よく系外に抜き出すことができる。なお、溶融塩化マグネシウムの供給量は、容器底部に残留する溶融マグネシウムが全量抜き出せるレベルに達するまでが適量とされる。   It is desirable that the molten magnesium charged into the reduction reaction vessel is once extracted out of the system. Molten magnesium extracted out of the system can be used as a reducing agent for the production of normal sponge titanium. Although it is preferable to extract the entire amount of molten magnesium charged into the reduction reaction vessel out of the system, there is a case where the entire amount cannot be extracted due to the structure of the vessel and a part of the molten magnesium may remain at the bottom of the vessel. In such a case, molten magnesium chloride may be supplied into the molten magnesium. Since molten magnesium chloride has a higher specific gravity than molten magnesium, it settles in molten magnesium, and the molten magnesium chloride is replaced at the bottom of the reduction reaction vessel, and the molten magnesium floats thereon. By adopting such a configuration, molten magnesium containing impurities such as nickel can be efficiently extracted out of the system. The supply amount of molten magnesium chloride is an appropriate amount until reaching the level at which the entire amount of molten magnesium remaining at the bottom of the container can be extracted.

以上の操作が完了したら、次いで、ニッケル濃度の低い溶融マグネシウムを再度還元反応容器に供給することが好ましい。還元反応容器に供給された溶融マグネシウムは還元反応容器内面と接するが、還元反応容器の内面近傍に存在したニッケルはすでに溶融マグネシウムで洗浄されているので、溶融マグネシウム中へのニッケルの溶出はほとんどない。   When the above operation is completed, it is preferable to supply molten magnesium having a low nickel concentration to the reduction reaction vessel again. The molten magnesium supplied to the reduction reaction vessel is in contact with the inner surface of the reduction reaction vessel, but the nickel existing in the vicinity of the inner surface of the reduction reaction vessel has already been washed with molten magnesium, so there is almost no elution of nickel into the molten magnesium. .

本発明の別の実施態様としては、最初に還元反応容器に装入した溶融マグネシウムを所定時間保持した後、還元反応容器の上方空間から溶融マグネシウムの浴面に向かって液状四塩化チタンを予備的に滴下して供給する方法が挙げられる。この方法では、溶融マグネシウムの浴面に達した四塩化チタンは溶融マグネシウムに還元されてチタン粒を形成し、浴面に浮遊するが、反応の継続に伴って相互に凝集成長し、溶融マグネシウム中を沈降する。溶融マグネシウム中を沈降する間に、チタン粒は溶融マグネシウム中に溶解しているニッケル等の不純物を吸収分離し、還元反応容器の底部に沈降する。このようにして、溶融マグネシウム中に溶解しているニッケル等の不純物をスポンジチタンの形で分離することができる。   In another embodiment of the present invention, the molten magnesium initially charged in the reduction reaction vessel is held for a predetermined time, and then liquid titanium tetrachloride is preliminarily supplied from the upper space of the reduction reaction vessel toward the molten magnesium bath surface. The method of dropping and supplying to a method is mentioned. In this method, titanium tetrachloride that has reached the bath surface of molten magnesium is reduced to molten magnesium to form titanium grains and floats on the bath surface. To settle. While settling in the molten magnesium, the titanium particles absorb and separate impurities such as nickel dissolved in the molten magnesium and settle to the bottom of the reduction reaction vessel. In this way, impurities such as nickel dissolved in molten magnesium can be separated in the form of sponge titanium.

溶融マグネシウム中に滴下する四塩化チタンは、溶融マグネシウム中に含有する不純物を吸収できる程度の量を供給すればよく、不純物の含有量に応じて適量を滴下すればよく、例えば、全反応量の1〜5%程度の四塩化チタンを供給すればよい。供給する四塩化チタンは、溶融マグネシウムの浴面全体と接触するように供給することが好ましい。このように供給することにより、溶融マグネシウム浴全体のニッケルを効率よく捕捉することができる。なお、この方法では、溶融マグネシウムに四塩化チタンを所定量供給した後、溶融マグネシウム浴全体を撹拌してもよい。溶融マグネシウム浴の撹拌により、溶融マグネシウム浴中に滞留しているチタン粒と溶融マグネシウム浴全体が接触し、溶融マグネシウムに溶解しているニッケルを効率よく除去することができる。なお、溶融マグネシウム中には、酸化マグネシウムや窒化マグネシウム等の不純物も含まれている場合があり、これらの不純物も効率よく分離除去できる。   Titanium tetrachloride dripped into the molten magnesium may be supplied in an amount that can absorb the impurities contained in the molten magnesium, and an appropriate amount may be added according to the content of the impurities. What is necessary is just to supply about 1 to 5% of titanium tetrachloride. The supplied titanium tetrachloride is preferably supplied so as to be in contact with the entire molten magnesium bath surface. By supplying in this way, nickel of the whole molten magnesium bath can be efficiently captured. In this method, after supplying a predetermined amount of titanium tetrachloride to the molten magnesium, the entire molten magnesium bath may be stirred. By stirring the molten magnesium bath, the titanium particles staying in the molten magnesium bath come into contact with the entire molten magnesium bath, and nickel dissolved in the molten magnesium can be efficiently removed. The molten magnesium may contain impurities such as magnesium oxide and magnesium nitride, and these impurities can be separated and removed efficiently.

なお、上記方法では、ニッケルで汚染された溶融マグネシウムを還元反応容器から抜き出すという作業を省くことが可能であるものの、ニッケルをできる限り除去するという観点からは、還元反応容器に最初に装入した溶融マグネシウムを一旦系外に抜き出した方がよい場合がある。したがって、状況に応じて方法を適宜選択すればよい。   In the above method, although it is possible to omit the work of extracting molten magnesium contaminated with nickel from the reduction reaction vessel, from the viewpoint of removing nickel as much as possible, the reduction reaction vessel was initially charged. In some cases, it is better to extract molten magnesium out of the system. Therefore, the method may be appropriately selected according to the situation.

また、別の態様としては、前述の四塩化チタンを供給せず、その代りにスポンジチタン粒を、還元反応容器に装入した溶融マグネシウム浴中に供給してもよい。このような態様をとることでも溶融マグネシウム中のニッケルを除去することができる。この場合、溶融マグネシウム浴中に供給するスポンジチタン粒は、できればスポンジチタン塊を破砕した直後のものを用いることが好ましい。すなわち、このようなフレッシュなスポンジチタン粒を用いることで、効率よく溶融マグネシウム中のニッケルを分離除去することができる。溶融マグネシウム浴中に供給するスポンジチタン粒は、粒度が大きいほどマグネシウム浴中を円滑に沈降するが、反応性は微粒なほど高いので、状況に応じて粒度を適宜選択すればよく、例えば、粒度が1〜10mm程度の範囲から選択される。また、この際にも溶融マグネシウム浴全体を撹拌することにより、溶融マグネシウム中のニッケル等の不純物を効率よく除去することができる。   As another aspect, titanium tetrachloride described above may not be supplied, and instead, titanium sponge particles may be supplied into a molten magnesium bath charged in a reduction reaction vessel. By taking such an embodiment, nickel in molten magnesium can be removed. In this case, it is preferable to use the sponge titanium particles supplied into the molten magnesium bath immediately after crushing the sponge titanium lump if possible. That is, by using such fresh sponge titanium particles, nickel in molten magnesium can be separated and removed efficiently. The sponge titanium particles supplied into the molten magnesium bath settle more smoothly in the magnesium bath as the particle size is larger, but the reactivity is higher as the particles are finer, so the particle size may be appropriately selected according to the situation. Is selected from a range of about 1 to 10 mm. Also at this time, impurities such as nickel in the molten magnesium can be efficiently removed by stirring the entire molten magnesium bath.

[実施例1]
炭素鋼で内張りした7tバッチサイズのステンレス鋼製容器に、ニッケル濃度1ppmの溶融マグネシウムを容器容量の20%まで装入し、0.1kg/cmGまで減圧した。この状態で30分静置後、溶融マグネシウムを全量抜き出し、再度、ニッケル濃度1ppmの溶融マグネシウムを装入し、四塩化チタンの滴下を開始してスポンジチタンの製造を行った。このようにして製造したスポンジチタン中のニッケル濃度を調べたところ、1ppmであり、市場から要求される品質特性を満足した。
[実施例2]
[Example 1]
A 7 t batch size stainless steel container lined with carbon steel was charged with molten magnesium having a nickel concentration of 1 ppm up to 20% of the container volume, and the pressure was reduced to 0.1 kg / cm 2 G. After standing in this state for 30 minutes, the entire amount of molten magnesium was extracted, and again molten magnesium having a nickel concentration of 1 ppm was charged, and titanium tetrachloride was started to be dropped to produce titanium sponge. The nickel concentration in the thus produced sponge titanium was found to be 1 ppm, which satisfied the quality characteristics required by the market.
[Example 2]

炭素鋼で内張りした7tバッチサイズのステンレス製容器に、ニッケル濃度1ppmの溶融マグネシウムを容器容量の60%まで装入し、30分静置した。次いで、この溶融マグネシウムを抜き出すことなく、溶融マグネシウムの浴面上に四塩化チタンを280kg滴下した後、30分間静置した。このようにして製造したスポンジチタン中のニッケル濃度を調べたところ、1ppmであり、市場から要求される品質特性を満足した。   A 7 t batch size stainless steel container lined with carbon steel was charged with molten magnesium having a nickel concentration of 1 ppm up to 60% of the container volume and allowed to stand for 30 minutes. Next, 280 kg of titanium tetrachloride was dropped onto the molten magnesium bath without extracting the molten magnesium, and then allowed to stand for 30 minutes. The nickel concentration in the thus produced sponge titanium was found to be 1 ppm, which satisfied the quality characteristics required by the market.

[比較例]
溶融マグネシウムによる還元反応容器の洗浄を行わない以外は、実施例1の条件と同様にしてスポンジチタンを製造し、このスポンジチタンのニッケル濃度を調べたところ、3ppmであった。
[Comparative example]
Sponge titanium was produced in the same manner as in Example 1 except that the reduction reaction vessel was not washed with molten magnesium, and the nickel concentration of this sponge titanium was determined to be 3 ppm.

Claims (6)

四塩化チタンを溶融マグネシウムで還元してスポンジチタンを製造する方法において、還元反応容器に装入した溶融マグネシウムを減圧下で加熱して蒸気とし、この蒸気を還元反応容器の内面で還流させて該溶融マグネシウムを容器外に抜き出し、次いで、新規な溶融マグネシウムを装入して四塩化チタンとの還元反応を開始することを特徴とするスポンジチタンの製造方法。   In the method of producing titanium sponge by reducing titanium tetrachloride with molten magnesium, the molten magnesium charged in the reduction reaction vessel is heated to a vapor under reduced pressure, and the vapor is refluxed on the inner surface of the reduction reaction vessel. A method for producing titanium sponge, which comprises extracting molten magnesium out of a container and then charging the novel molten magnesium to start a reduction reaction with titanium tetrachloride. 溶融マグネシウムを容器外に抜き出した後、再度溶融塩化マグネシウムを供給し、次いで該溶融マグネシウムを容器外に抜き出してから、新規な溶融マグネシウムを装入して四塩化チタンとの還元反応を開始することを特徴とする請求項1に記載のスポンジチタンの製造方法。   After extracting the molten magnesium out of the container, supply the molten magnesium chloride again, then withdraw the molten magnesium out of the container, and then charge the new molten magnesium to start the reduction reaction with titanium tetrachloride. The method for producing a titanium sponge according to claim 1. 四塩化チタンを溶融マグネシウムで還元してスポンジチタンを製造する方法において、還元反応容器に装入した溶融マグネシウムの浴面に予備的に四塩化チタンを滴下してスポンジチタンを生成させて還元反応容器の底部に該スポンジチタンを分離した後、溶融マグネシウムの浴面に四塩化チタンを供給して還元反応を開始することを特徴とするスポンジチタンの製造方法。   In the method of producing sponge titanium by reducing titanium tetrachloride with molten magnesium, titanium tetrachloride is preliminarily dropped onto the bath surface of molten magnesium charged in the reduction reaction vessel to produce sponge titanium and the reduction reaction vessel A method for producing a titanium sponge, comprising separating the titanium sponge from the bottom of the metal and then supplying titanium tetrachloride to the bath surface of the molten magnesium to start a reduction reaction. 前記溶融マグネシウム中の不純物の分離除去に使用するスポンジチタンの生成に使用する四塩化チタンの供給量を全反応量の1〜5%とすることを特徴とする請求項3に記載のスポンジチタンの製造方法。   The supply amount of titanium tetrachloride used for the production of sponge titanium used for separating and removing impurities in the molten magnesium is set to 1 to 5% of the total reaction amount. Production method. 前記溶融マグネシウム中の不純物濃度が0.5〜5ppmであることを特徴とする請求項1〜4のいずれかに記載のスポンジチタンの製造方法。   5. The method for producing titanium sponge according to claim 1, wherein an impurity concentration in the molten magnesium is 0.5 to 5 ppm. 前記溶融マグネシウム中に含まれる不純物が鉄、ニッケル、クロム、マグネシウム酸化物、マグネシウム窒化物のうちの少なくとも1種であることを特徴とする請求項1〜5のいずれかに記載のスポンジチタンの製造方法。
The manufacture of sponge titanium according to any one of claims 1 to 5, wherein the impurity contained in the molten magnesium is at least one of iron, nickel, chromium, magnesium oxide, and magnesium nitride. Method.
JP2003325429A 2003-09-18 2003-09-18 Method for producing sponge titanium Expired - Lifetime JP4181469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325429A JP4181469B2 (en) 2003-09-18 2003-09-18 Method for producing sponge titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325429A JP4181469B2 (en) 2003-09-18 2003-09-18 Method for producing sponge titanium

Publications (2)

Publication Number Publication Date
JP2005089830A true JP2005089830A (en) 2005-04-07
JP4181469B2 JP4181469B2 (en) 2008-11-12

Family

ID=34455869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325429A Expired - Lifetime JP4181469B2 (en) 2003-09-18 2003-09-18 Method for producing sponge titanium

Country Status (1)

Country Link
JP (1) JP4181469B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224368A (en) * 2006-02-23 2007-09-06 Toho Titanium Co Ltd Metal refining method, and method for manufacturing active metal using it
JP2007313551A (en) * 2006-05-29 2007-12-06 Toho Titanium Co Ltd Method for welding clad vessel and method for producing sponge titanium using the vessel
JP2008190024A (en) * 2007-02-08 2008-08-21 Toho Titanium Co Ltd Method for producing titanium sponge
WO2018025127A1 (en) * 2016-08-02 2018-02-08 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. A method of producing titanium from titanium oxides through magnesium vapour reduction
US10927433B2 (en) 2016-08-02 2021-02-23 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Method of producing titanium from titanium oxides through magnesium vapour reduction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224368A (en) * 2006-02-23 2007-09-06 Toho Titanium Co Ltd Metal refining method, and method for manufacturing active metal using it
JP2007313551A (en) * 2006-05-29 2007-12-06 Toho Titanium Co Ltd Method for welding clad vessel and method for producing sponge titanium using the vessel
JP2008190024A (en) * 2007-02-08 2008-08-21 Toho Titanium Co Ltd Method for producing titanium sponge
WO2018025127A1 (en) * 2016-08-02 2018-02-08 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. A method of producing titanium from titanium oxides through magnesium vapour reduction
US10316391B2 (en) 2016-08-02 2019-06-11 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Method of producing titanium from titanium oxides through magnesium vapour reduction
US10927433B2 (en) 2016-08-02 2021-02-23 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Method of producing titanium from titanium oxides through magnesium vapour reduction

Also Published As

Publication number Publication date
JP4181469B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
AU2017279628B2 (en) A system and method for extraction and refining of titanium
EP1088113B1 (en) Electrolytic process for removing a substance from solid compounds
JP4381401B2 (en) Method for producing niobium powder
TWI496895B (en) Recycling method and device for indium or indium alloy
AU2006224012B2 (en) Method of high-melting-point metal separation and recovery
JP4181469B2 (en) Method for producing sponge titanium
JP2008190024A (en) Method for producing titanium sponge
KR101546039B1 (en) Method for recovering graphite from molten pig-iron
KR101476308B1 (en) Apparatus for reducing metal oxide with magnesium, and the method for reducing metal oxide using the same
US4419126A (en) Aluminum purification system
JP4904067B2 (en) Method for purifying metal magnesium and method for producing metal tantalum using the same
US3663001A (en) Vacuum separator
JP4309675B2 (en) Method for producing titanium alloy
JP2003096588A (en) Method of manufacturing high-purity metal magnesium and method of manufacturing high-purity titanium
WO2000040767A1 (en) Carbothermic aluminium production using scrap aluminium as coolant
JP3809514B2 (en) Method for producing titanium metal by reducing lower chloride of titanium
JP2006037133A (en) Method for producing high purity hafnium material, high purity hafnium material obtained by the method, and sputtering target
JP2006028590A (en) Method for producing metal titanium
WO2011130790A1 (en) Smelting method using a fluxing agent
JP2008231509A (en) High purity metal and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

R150 Certificate of patent or registration of utility model

Ref document number: 4181469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term