JP2005089318A - Phenyleneethynylenes and nanoparticle composition containing the same - Google Patents
Phenyleneethynylenes and nanoparticle composition containing the same Download PDFInfo
- Publication number
- JP2005089318A JP2005089318A JP2003321313A JP2003321313A JP2005089318A JP 2005089318 A JP2005089318 A JP 2005089318A JP 2003321313 A JP2003321313 A JP 2003321313A JP 2003321313 A JP2003321313 A JP 2003321313A JP 2005089318 A JP2005089318 A JP 2005089318A
- Authority
- JP
- Japan
- Prior art keywords
- group
- general formula
- phe
- phenylene ethynylene
- phenylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *c(cc(c(*)c1)C#Cc(cc2)ccc2S)c1C#Cc(cc1)ccc1S Chemical compound *c(cc(c(*)c1)C#Cc(cc2)ccc2S)c1C#Cc(cc1)ccc1S 0.000 description 2
- GPZPDHTYJTVKEO-UHFFFAOYSA-N CC(C)(C)Sc1ccc(C)cc1 Chemical compound CC(C)(C)Sc1ccc(C)cc1 GPZPDHTYJTVKEO-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
本発明は特定の炭化水素側鎖を有するフェニレンエチニレンに関する。本発明のフェニレンエチニレンは分子末端に末端官能基を有する。該末端官能基が遷移金属元素やその酸化物などに結合する能力を利用し、金属や半導体のナノ粒子を高濃度で含有する自己組織化組成物(ナノコンポジット)が容易に得られる。かかるナノコンポジットは、必要に応じてパイ電子共役系との相互作用能を有するドーパント物質を含有して高い導電性を示し、しかも溶媒溶解性と塗膜形成能を有する。従って、導電性と塗布性を兼ね備えた塗料、インク、導電性フィルムなどに用いられる。 The present invention relates to phenyleneethynylene having a specific hydrocarbon side chain. The phenylene ethynylene of the present invention has a terminal functional group at the molecular end. A self-assembled composition (nanocomposite) containing metal or semiconductor nanoparticles at a high concentration can be easily obtained by utilizing the ability of the terminal functional group to bind to a transition metal element or oxide thereof. Such a nanocomposite contains a dopant substance capable of interacting with a pi-electron conjugated system as necessary, exhibits high conductivity, and has solvent solubility and coating film-forming ability. Therefore, it is used for paints, inks, conductive films and the like having both conductivity and coating properties.
フェニレンエチニレン骨格は、アセチレン構造とベンゼン環が結合したパイ電子共役系である。アセチレン結合は剛直であるので、ベンゼン環との単結合の自由回転があっても、フェニレンビニレン骨格(炭素−炭素二重結合とベンゼン環の結合)のように該自由回転によるパイ電子雲の重なり合いの変化を生じにくい。従って、外部環境や置換基効果によらずパイ電子共役系の導電性を最も安定に発現できる可能性を持つ化学構造であると言える。 The phenylene ethynylene skeleton is a pi-electron conjugated system in which an acetylene structure and a benzene ring are bonded. Since the acetylene bond is rigid, even if there is free rotation of a single bond with the benzene ring, the pie electron cloud overlaps due to the free rotation like a phenylene vinylene skeleton (bond of carbon-carbon double bond and benzene ring). It is hard to produce change of. Therefore, it can be said that the chemical structure has the possibility of most stably expressing the conductivity of the pi-electron conjugated system regardless of the external environment and the substituent effect.
遷移金属元素を含有するナノ粒子への配位能、溶媒溶解性及び溶融流動性を有する導電性高分子として、特許文献1には、メルカプト基(チオール基)を両末端に有しデンドロンを側鎖として有するポリフェニレンエチニレン(重合度は5〜500)が開示されている。同特許文献には、かかるポリフェニレンエチニレンと金属や半導体のナノ粒子(数平均粒径が1〜50nm)とからなる組成物が開示されている。 As a conductive polymer having coordination ability to nanoparticles containing a transition metal element, solvent solubility and melt flowability, Patent Document 1 discloses that a mercapto group (thiol group) is present at both ends and dendron is on the side. Polyphenylene ethynylene having a chain (degree of polymerization of 5 to 500) is disclosed. The patent document discloses a composition comprising such polyphenylene ethynylene and metal or semiconductor nanoparticles (number average particle diameter is 1 to 50 nm).
この組成物は、導電性を有する金や銀などの金属ナノ粒子を用い、必要に応じてヨウ素などのドーパント物質を含有させることで導電性を示す。しかしながら、ポリフェニレンエチニレンの分子量が大きいため、高い導電性の必要条件である金属ナノ粒子と結合をなす導電性高分子の末端チオール基の濃度が小さい。従って、大量の金属ナノ粒子を組成物に含有させたとしても、該末端チオール基と結合して導電性に有効に働く金属ナノ粒子の数は極めて限定され、その結果、達成される導電性に制限があった。 This composition exhibits conductivity by using conductive metal nanoparticles such as gold and silver, and if necessary, containing a dopant substance such as iodine. However, since the molecular weight of polyphenylene ethynylene is large, the concentration of the terminal thiol group of the conductive polymer that forms a bond with the metal nanoparticles, which is a necessary condition for high conductivity, is small. Therefore, even if a large amount of metal nanoparticles are contained in the composition, the number of metal nanoparticles that bind to the terminal thiol group and effectively work for conductivity is extremely limited. There were restrictions.
ナノ粒子として、例えばチオール基との結合を生じるII−VI族化合物半導体(酸化亜鉛など)を用いた場合も、その半導体性を組成物のバルク物性として発現することは、前記金属ナノ粒子における導電性同様の理由で制限があった。
汎用溶媒への溶解性を有し、その溶液の塗布により薄膜を容易に形成可能であり、含有させる金属や半導体のナノ粒子の性質を該薄膜のバルク物性として有効に発現する組成物を提供することに存する。 Provided is a composition that has solubility in a general-purpose solvent, can be easily formed into a thin film by application of the solution, and effectively expresses the properties of the contained metal or semiconductor nanoparticles as the bulk physical properties of the thin film. That is true.
(1)従来技術である末端官能基を有する高分子フェニレンエチニレン類の分子量を必要最小限として該末端官能基濃度を格段に向上し、それにより金属や半導体のナノ粒子を高濃度で有効利用可能となった。
(2)フェニレンエチニレン構造の側鎖の炭素数を一定の範囲とすることで、後記一般式(1)に記載の金属や半導体のナノ粒子を高濃度での有効利用を満足しながら、必要な溶
媒溶解性を確保した。
(3)後記一般式(1)に記載の末端官能基の有効なものとして、チオール基に代表される特定のものを見出した。
(4)特に、前記末端官能基として最も有効なチオール基を有するフェニレンエチニレン類の調製にあたり、前駆体であるチオール基がアセチル基で保護された化合物の脱アセチル化工程を検討し、対応するジスルフィドフェニレンエチニレンオリゴマーを経由する方法が非常に好ましいことを見出した。
(1) The molecular weight of the high molecular weight phenylene ethynylenes having terminal functional groups, which is a conventional technique, is improved to the minimum and the concentration of the terminal functional groups is significantly improved, thereby effectively utilizing metal and semiconductor nanoparticles at high concentrations. It has become possible.
(2) Necessary while satisfying the effective use of metal and semiconductor nanoparticles described in the general formula (1) at a high concentration by keeping the carbon number of the side chain of the phenyleneethynylene structure within a certain range. Secure solvent solubility.
(3) The specific thing represented by the thiol group was discovered as an effective thing of the terminal functional group as described in General formula (1) postscript.
(4) In particular, in the preparation of phenylene ethynylenes having the most effective thiol group as the terminal functional group, the deacetylation process of the compound in which the thiol group as a precursor is protected with an acetyl group is studied and supported. It has been found that a method via a disulfide phenylene ethynylene oligomer is very preferable.
以上4点の手段により本発明に到達した。
即ち、本発明の第一の要旨は、下記一般式(1)で表されるフェニレンエチニレン類、に存する。
The present invention has been achieved by the means described above.
That is, the first gist of the present invention resides in phenyleneethynylenes represented by the following general formula (1).
但し、一般式(1)においてR1及びR2は互いに異なっていてもよい炭素数10〜500である炭化水素残基を表し、Xは遷移金属元素又はその酸化物との結合能を有する官能基であるチオール基、リン酸基、カルボキシル基、スルホン酸基、アミノ基、水酸基のいずれかを表し、nは1〜4の整数を表す。
本発明の第二の要旨は、下記一般式(2)で表されるジスルフィドフェニレンエチニレンオリゴマー、に存する。
However, in the general formula (1), R 1 and R 2 represent a hydrocarbon residue having 10 to 500 carbon atoms which may be different from each other, and X is a function having a binding ability to a transition metal element or an oxide thereof. The group is any one of a thiol group, a phosphoric acid group, a carboxyl group, a sulfonic acid group, an amino group, and a hydroxyl group, and n represents an integer of 1 to 4.
The second gist of the present invention resides in a disulfide phenylene ethynylene oligomer represented by the following general formula (2).
但し、一般式(2)においてR1及びR2は互いに異なっていてもよい炭素数10〜500である炭化水素残基を表し、nは1〜4の整数を表し、pは2〜20の整数を表す。
本発明の第三の要旨は、前記ジスルフィドフェニレンエチニレンオリゴマーの還元することを特徴とする前記フェニレンエチニレン類の製造方法、に存する。
本発明の第四の要旨は、前記フェニレンエチニレン類と金属又は半導体のナノ粒子を含む組成物、に存する。
However, the general formula (2) R 1 and R 2 is a hydrocarbon residue is a good 10 to 500 carbon atoms which may be different from each other, n represents an integer of 1 to 4, p is from 2 to 20 Represents an integer.
The third gist of the present invention resides in a method for producing the phenylene ethynylenes, characterized in that the disulfide phenylene ethynylene oligomer is reduced.
The fourth gist of the present invention resides in a composition comprising the phenylene ethynylenes and metal or semiconductor nanoparticles.
本発明の第五の要旨は、前記組成物からなる薄膜状成形体、に存する。 The fifth gist of the present invention resides in a thin film-like molded body comprising the above composition.
本発明のナノコンポジットは、次の特徴を有する。
(1)溶媒に溶解する。
(2)溶液塗膜形成が可能である。
(3)圧縮成型による薄膜成形が可能である。
(4)導電性を有する。
The nanocomposite of the present invention has the following characteristics.
(1) Dissolve in a solvent.
(2) A solution coating can be formed.
(3) Thin film molding by compression molding is possible.
(4) It has conductivity.
[フェニレンエチニレン類]
本発明におけるフェニレンエチニレン類とは、一般式(1)で表される。但し、一般式(1)においてR1及びR2は互いに異なっていてもよい炭素数10〜500である炭化水素残基を表し、Xは遷移金属元素又はその酸化物との結合能を有する官能基であるチオール基、リン酸基、カルボキシル基、スルホン酸基、アミノ基、水酸基のいずれかを表し、nは1〜4の整数を表す。
[Phenyleneethynylenes]
The phenylene ethynylenes in the present invention are represented by the general formula (1). However, in the general formula (1), R 1 and R 2 represent a hydrocarbon residue having 10 to 500 carbon atoms which may be different from each other, and X is a function having a binding ability to a transition metal element or an oxide thereof. The group is any one of a thiol group, a phosphoric acid group, a carboxyl group, a sulfonic acid group, an amino group, and a hydroxyl group, and n represents an integer of 1 to 4.
一般式(1)のR1及びR2の炭素数は、溶媒溶解性の点でその下限値は好ましくは20、更に好ましくは30であり、一方その上限値はフェニレンエチニレン類の分子量を小さく抑制する点で好ましくは450、更に好ましくは400である。
一般式(1)のR1及びR2は、溶媒溶解性の点でデンドリマーであることが好ましい。ここでいうデンドリマーとは、一定の分岐繰返し単位による規則的な超分岐構造を有する炭化水素残基である。具体的には、Frechetらが開発した3,5−ジヒドロキシベンジルアルコール残基を繰返し単位とするポリベンジルエーテルデンドリマー(J. Am. Chem. Soc., 112巻, 7638頁(1990))及び脂肪族ポリエーテルデンドリマー(J. Am. Chem.
Soc., 120巻, 12996頁(1998))、Tomaliaらが開発したポリアミドアミンデンド
リマー(Aldrich社試薬カタログに「Star Burst」の商品名で記載のもの)、Newkomeらが開発したポリエーテルアミドデンドリマー(Macromolecules, 24巻, 1443頁(1991))、森川が開発した芳香族ポリエーテルケトンデンドリマー(Macromolecules, 32巻, 1062頁(1999))、ポリプロピレンイミンデンドリマー(DSM社が製造しAldrich社試薬カタログに
「DAB」の商品名で記載のもの)などが例示される。これらのうち、溶媒溶解性の点で好
ましいのは脂肪族ポリエーテルデンドリマー、芳香族デンドリマーであるポリベンジルエーテルデンドリマーや芳香族ポリエーテルケトンデンドリマーであり、中でも合成容易であることからポリベンジルエーテルデンドリマーが最も好ましい。
The lower limit of the number of carbon atoms of R 1 and R 2 in the general formula (1) is preferably 20 and more preferably 30 in terms of solvent solubility, while the upper limit of the carbon number of the phenyleneethynylenes is small. In terms of suppression, it is preferably 450, and more preferably 400.
R 1 and R 2 in the general formula (1) are preferably dendrimers from the viewpoint of solvent solubility. The dendrimer here is a hydrocarbon residue having a regular hyperbranched structure with a certain branched repeating unit. Specifically, polybenzyl ether dendrimers (J. Am. Chem. Soc., 112, 7638 (1990)) developed by Frechet et al. And having a repeating unit of 3,5-dihydroxybenzyl alcohol residue and aliphatic Polyether dendrimers (J. Am. Chem.
Soc., 120, 12996 (1998)), polyamidoamine dendrimers developed by Tomalia et al. (Described under the trade name “Star Burst” in the reagent catalog of Aldrich), polyether amide dendrimers developed by Newkome et al. Macromolecules, 24, 1443 (1991)), aromatic polyetherketone dendrimers developed by Morikawa (Macromolecules, 32, 1062 (1999)), polypropylene imine dendrimers (manufactured by DSM and listed in the Aldrich reagent catalog. Examples are those described under the trade name “DAB”). Of these, aliphatic polyether dendrimers and aromatic dendrimers such as polybenzyl ether dendrimers and aromatic polyether ketone dendrimers are preferred in terms of solvent solubility. Among them, polybenzyl ether dendrimers are easy to synthesize. Most preferred.
デンドリマーは完全に規則的な分岐構造を有するが、これより厳密でない超分岐構造を有するハイパーブランチポリマー(Hyperbranched polymer)も前記一般式(1)のR1及びR2の構造として有効である。かかる構造の例として、Macromolecules, 32巻, 6380頁(1999)やMacromolecules, 32巻, 6881頁(1999)に記載のある脂肪族ハイパーブランチポリマーが挙げられる。 Although the dendrimer has a perfectly regular branched structure, a hyperbranched polymer having a hyperbranched structure that is less strict than this is also effective as the structure of R 1 and R 2 in the general formula (1). Examples of such structures include the aliphatic hyperbranched polymers described in Macromolecules, 32, 6380 (1999) and Macromolecules, 32, 6881 (1999).
デンドリマーに代表される超分岐構造の効果は、その密集した超分岐によりフェニレンエチニレン主鎖を有効に被覆して溶媒溶解性を付与する点にある。これは、同等分子量で同様の繰返し単位を有する直鎖状分子より優れた点であるが、前記一般式(1)のR1及
びR2の分岐構造に制限はない。
前記一般式(1)においてXは、後述する組成物の必須成分である金属又は半導体のナノ粒子表面に存在する遷移金属元素又はその酸化物との結合能を有する官能基であり、具体的にはチオール基、リン酸基、カルボキシル基、スルホン酸基、アミノ基、水酸基のいずれかである。複数のXは同一でも異なってもよいが、同一が好ましい。これら官能基が遷移金属元素又はその酸化物と生成する結合は、通常、共有結合、イオン結合又は配位結
合であるが、その形式に制限はなく、該官能基を介してフェニレンエチニレン主鎖を金属又は半導体のナノ粒子表面に結合させる役割を果たせばよい。好ましい官能基は、結合力の点でチオール基、リン酸基、カルボキシル基及びアミノ基である。チオール基は、幅広い遷移金属元素に対して強い結合力を発揮するので最も好ましい。リン酸基は、遷移金属酸化物(例えば酸化亜鉛、酸化チタン、酸化ジルコニウムなど)に酸塩基反応で強い結合を形成するので、遷移金属酸化物表面を有するナノ粒子に対して非常に有効である。
The effect of the hyperbranched structure typified by a dendrimer is that the densely branched hyperbranches effectively coat the phenylene ethynylene main chain to impart solvent solubility. This is an advantage over a linear molecule having an equivalent molecular weight and a similar repeating unit, but there is no limitation on the branched structure of R 1 and R 2 in the general formula (1).
In the general formula (1), X is a functional group having an ability to bind to a transition metal element or an oxide thereof present on the surface of a metal or semiconductor nanoparticle that is an essential component of the composition described later. Is any of a thiol group, a phosphate group, a carboxyl group, a sulfonic acid group, an amino group, and a hydroxyl group. A plurality of X may be the same or different, but the same is preferable. The bond formed by these functional groups with the transition metal element or oxide thereof is usually a covalent bond, an ionic bond or a coordinate bond, but there is no limitation on the form thereof, and the phenylene ethynylene main chain is formed through the functional group. It is only necessary to play a role of bonding to the surface of the metal or semiconductor nanoparticle. Preferred functional groups are a thiol group, a phosphate group, a carboxyl group, and an amino group in terms of bonding strength. The thiol group is most preferable because it exhibits a strong binding force to a wide range of transition metal elements. Phosphoric acid groups form strong bonds to transition metal oxides (eg, zinc oxide, titanium oxide, zirconium oxide, etc.) through acid-base reactions and are therefore very effective for nanoparticles with transition metal oxide surfaces. .
前記一般式(1)においてnは1〜4の整数を表すが、フェニレンエチニレン類の分子量を小さく抑制する点及び合成簡便性の点で好ましくは1又は2、最も好ましくは1である。
[ジスルフィドフェニレンエチニレンオリゴマー]
前記フェニレンエチニレン類を製造するに当たり、前駆体として下記一般式(2)で表されるジスルフィドフェニレンエチニレンオリゴマーが有用である。
In the general formula (1), n represents an integer of 1 to 4, and is preferably 1 or 2 and most preferably 1 from the viewpoint of suppressing the molecular weight of the phenyleneethynylenes to be small and ease of synthesis.
[Disulfide phenylene ethynylene oligomer]
In producing the phenylene ethynylenes, a disulfide phenylene ethynylene oligomer represented by the following general formula (2) is useful as a precursor.
但し、一般式(2)においてR1、R2及びnは前記一般式(1)と同一であり、pは2〜20の整数を表す。pの上限値は、ジスルフィドフェニレンエチニレンオリゴマーが後述する還元反応により前記フェニレンエチニレン類を生成する反応収率の点で好ましくは15、更に好ましくは10であり、pの下限値は、ジスルフィドフェニレンエチニレンオリゴマーの化学的安定性や合成容易性の点で好ましくは3、更に好ましくは4である。 However, in the general formula (2), R 1 , R 2 and n are the same as those in the general formula (1), and p represents an integer of 2 to 20. The upper limit of p is preferably 15 and more preferably 10 from the viewpoint of the reaction yield in which the disulfide phenylene ethynylene oligomer produces the phenylene ethynylene by the reduction reaction described later, and the lower limit of p is disulfide phenylene. In view of chemical stability and ease of synthesis of the ethynylene oligomer, it is preferably 3, and more preferably 4.
かかるジスルフィドフェニレンエチニレンオリゴマーは、下記一般式(3)で表される保護基Aで保護された末端チオール基を有するフェニレンエチニレン類から調製される。保護基Aは、その脱保護条件で一般式(3)の分子構造の他の部分に化学変化を起こさせないものである限り制限はないが、例えばアセチル基やベンゾイル基等のアシル基が好適に用いられる。アシル基としては、脱保護が容易であることから、アセチル基が最適である。 Such a disulfide phenylene ethynylene oligomer is prepared from phenylene ethynylene having a terminal thiol group protected by a protecting group A represented by the following general formula (3). The protecting group A is not limited as long as it does not cause chemical changes in other parts of the molecular structure of the general formula (3) under the deprotection conditions. For example, an acyl group such as an acetyl group or a benzoyl group is preferable. Used. As the acyl group, an acetyl group is most suitable because deprotection is easy.
一般式(3)における保護基Aがアセチル基の場合、脱アセチル化の好適な方法として、水酸化ナトリウム等の無機強塩基の過剰当量(通常5〜100当量)を、水性有機溶媒(例えばテトラヒドロフラン/水系など)中で作用させる方法が例示できる。
前記ジスルフィドフェニレンエチニレンオリゴマーは、還元反応により前記フェニレンエチニレン類に変換される。還元反応は、2個の水素原子を1つのジスルフィド結合(−S−S−)に供給して2つのチオール基を生成する。かかる還元反応に使われる還元剤に制限はないが、例えば水素化ホウ素リチウム、水素化ホウ素ナトリウム
、水素化ホウ素カリウム等の水素化ホウ素塩類、水素化アルミニウムリチウム、水素化アルミニウムナトリウム、水素化アルミニウムカリウム等の水素化アルミニウム塩類等が挙げられる。これらのうち、水素化ホウ素ナトリウム等の水素化ホウ素塩類が好ましく、その反応条件は、例えばエタノールとテトラヒドロフランの混合溶媒にジスルフィドフェニレンエチニレンオリゴマーを溶解しておき過剰当量の水素化ホウ素塩(通常10〜300当量)を室温で作用させる。
When the protecting group A in the general formula (3) is an acetyl group, as a suitable method for deacetylation, an excess equivalent (usually 5 to 100 equivalents) of an inorganic strong base such as sodium hydroxide is added to an aqueous organic solvent (for example, tetrahydrofuran). / Aqueous system etc.) can be exemplified.
The disulfide phenylene ethynylene oligomer is converted into the phenylene ethynylene by a reduction reaction. In the reduction reaction, two hydrogen atoms are supplied to one disulfide bond (—S—S—) to generate two thiol groups. There is no limitation on the reducing agent used in such a reduction reaction. For example, borohydride salts such as lithium borohydride, sodium borohydride, potassium borohydride, lithium aluminum hydride, sodium aluminum hydride, potassium aluminum hydride And aluminum hydride salts such as Of these, borohydride salts such as sodium borohydride are preferred, and the reaction conditions are, for example, by dissolving disulfide phenylene ethynylene oligomer in a mixed solvent of ethanol and tetrahydrofuran and adding an excess equivalent amount of borohydride salt (usually 10 ~ 300 equivalents) at room temperature.
[ナノ粒子組成物]
前記フェニレンエチニレン類と金属又は半導体のナノ粒子を含む組成物は、汎用溶媒に可溶、その溶液を基板に塗布して薄膜を形成可能であり、該薄膜は導電性又は半導体性を発現するものとなる。かかるナノ粒子含有組成物には、特に導電性を向上させる目的で、必要に応じて、パイ電子共役系との相互作用能を有するドーパント物質を含有させてもよい。
[Nanoparticle composition]
The composition comprising phenyleneethynylenes and metal or semiconductor nanoparticles is soluble in a general-purpose solvent, and a thin film can be formed by applying the solution to a substrate. The thin film exhibits conductivity or semiconductivity. It will be a thing. Such a nanoparticle-containing composition may contain a dopant substance capable of interacting with the pi-electron conjugated system, if necessary, for the purpose of improving electrical conductivity.
本発明におけるナノ粒子とは、平均粒径が3〜100nmである粒子である。その上限値は電気特性(導電性又は半導体性)及び組成物の光線透過率を大きくする(つまり光散乱を低減する)点で好ましくは70nm、更に好ましくは50nm、最も好ましくは30nmであり、一方その下限値はナノ粒子自体の金属又は半導体としての結晶性を十分なものとして電気特性を確保する点で好ましくは5nm、更に好ましくは7nmである。 The nanoparticle in the present invention is a particle having an average particle diameter of 3 to 100 nm. The upper limit is preferably 70 nm, more preferably 50 nm, and most preferably 30 nm in terms of increasing electrical characteristics (conductivity or semiconductivity) and increasing the light transmittance of the composition (that is, reducing light scattering). The lower limit is preferably 5 nm, and more preferably 7 nm, from the viewpoint of ensuring electrical properties with sufficient crystallinity as the metal or semiconductor of the nanoparticle itself.
前記ドーパント物質は、フェニレンエチニレン構造中のアセチレン結合に配位してパイ電子雲の分極をもたらして電荷を生じさせる働きがある。この効果は導電性高分子において導電性を向上させる手段としてよく知られたものであり、ドーパント物質としては公知の物質、例えばヨウ素や臭素等のハロゲン単体分子、カンファースルホン酸やp−トルエンスルホン酸等の有機スルホン酸類等が例示される。これらのうち、後述する薄膜状成形体でのドーピング性の点でヨウ素が特に有効である。 The dopant substance has a function of coordinating with an acetylene bond in the phenylene ethynylene structure to cause polarization of the pi electron cloud to generate a charge. This effect is well known as a means for improving conductivity in a conductive polymer. As a dopant substance, known substances such as halogen simple molecules such as iodine and bromine, camphorsulfonic acid and p-toluenesulfonic acid are known. And organic sulfonic acids and the like. Among these, iodine is particularly effective in terms of doping properties in a thin film-like molded body to be described later.
前記金属ナノ粒子とは、遷移金属元素単体又はその複数種の合金を組成とするナノ粒子である。かかる金属組成としては、金、白金、銀、パラジウム、ロジウム、亜鉛、銅、ニッケル、鉄等の遷移金属単体、あるいはこれら遷移金属の合金(炭素、マグネシウム、アルミニウム等の非遷移金属元素を含有してもよい)が例示される。この中でも、金、白金、銀、銅等の貴金属は、導電性と酸化等の化学反応を起こしにくいことから好適であり、中でも金と白金は化学的安定性の点で最適である。 The said metal nanoparticle is a nanoparticle which makes a transition metal element simple substance or its multiple types of alloy a composition. As such a metal composition, a transition metal such as gold, platinum, silver, palladium, rhodium, zinc, copper, nickel, iron, or an alloy of these transition metals (containing non-transition metal elements such as carbon, magnesium, aluminum, etc.) May be exemplified). Among these, noble metals such as gold, platinum, silver, and copper are preferable because they are less likely to cause electrical reactions and chemical reactions such as oxidation, and gold and platinum are optimal in terms of chemical stability.
前記半導体ナノ粒子の組成としては、SnO2、Sn(II)Sn(IV)S3、SnS2、
SnS、SnSe、SnTe、PbS、PbSe、PbTe等の周期表第14族元素と周期表第16族元素との化合物、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb等の周期表第13族元素と周期表第15族元素との化合物(あるいはIII−V族化合物半導体)、Ga2S3、Ga2Se3、Ga2Te3、In2O3、In2S3、
In2Se3、In2Te3等の周期表第13族元素と周期表第16族元素との化合物、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、HgS、HgSe、HgTe等の周期表第12族元素と周期表第16族元素との化合物(あるいはII−VI族化合物半導体)、Cu2O、Cu2Se等の周期表第11族元素と周期表第16族元素との化合物、CuCl、CuBr、CuI、AgCl、AgBr等の周期表第11族元素と周期表第17族元素との化合物、NiO等の周期表第10族元素と周期表第16族元素との化合物、CoO、CoS等の周期表第9族元素と周期表第16族元素との化合物、α−Fe2O3、γ−Fe2O3、Fe3O4、FeS等の周期表第8族元素と周期表第16族元素との化合物、MnO等の周期表第7族元素と周期表第16族元素との化合物、MoS2、WO2等の周期表第6族元素と周期表第16族元素との化合物、VO、VO2、Ta2O5等の周期表第5族元素と周期表第16族元素との化合物、TiO2、Ti2O5、Ti2
O3、Ti5O9等の酸化チタン類(結晶型はルチル型、ルチル/アナターゼの混晶型、ア
ナターゼ型のいずれでも構わない)、CdCr2O4、CdCr2Se4、CuCr2S4、HgCr2Se4等のカルコゲンスピネル類、あるいはBaTiO3等が挙げられる。これら
半導体組成のうち好ましいものは、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe等のII−VI族化合物半導体、前記の酸化チタン類等の周期表第4族元素と周期表第16族元素との化合物であり、中でもZnを含んだII−VI族化合物半導体組成は最も好ましい。かかる半導体組成には、必要に応じて微量のドープ物質(故意に添加する不純物の意味)として例えばAl、Mn、Cu、Zn、Zr、Sn、Ag、Cl、Ce、Eu、Tb、Er等の元素を加えても構わず、かかるドープ物質の使用により、例えばZnS:Mn、ZnS:Tb(但し「:」の後の元素がドープ物質である)等のように可視領域等における好ましい発光能が付与される場合や、TiO2:Zrの
ように優れた耐光安定性が付与される場合がある。
As the composition of the semiconductor nanoparticles, SnO 2 , Sn (II) Sn (IV) S 3 , SnS 2 ,
Compound of periodic table group 14 element and periodic table group 16 element such as SnS, SnSe, SnTe, PbS, PbSe, PbTe, etc., periodic table of GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, etc. Compound of Group 13 element and Group 15 element of periodic table (or III-V compound semiconductor), Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 ,
Compound of periodic table group 13 element and periodic table group 16 element such as In 2 Se 3 and In 2 Te 3 , ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgS, HgSe, HgTe, etc. A periodic table group 12 element and a periodic table group 16 element compound (or II-VI group compound semiconductor), Cu 2 O, Cu 2 Se, etc. periodic table group 11 element and periodic table group 16 element Compound of periodic table group 11 element and periodic table group 17 element such as CuCl, CuBr, CuI, AgCl, AgBr, etc., Compound of periodic table group 10 element and periodic table group 16 element such as NiO , CoO, CoS periodic table group 9 element and periodic table group 16 element compound, α-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 , FeS periodic table group 8 Compounds of elements and group 16 elements of the periodic table Periodic table compounds of group 7 element and Periodic Table Group 16 element such as MnO, the compounds of the periodic table group 6 element and Periodic Table Group 16 element such as MoS 2, WO 2, VO, VO 2, Ta Compound of periodic table group 5 element and periodic table group 16 element such as 2 O 5 , TiO 2 , Ti 2 O 5 , Ti 2
Titanium oxides such as O 3 and Ti 5 O 9 (the crystal type may be any of rutile type, rutile / anatase mixed crystal type, or anatase type), CdCr 2 O 4 , CdCr 2 Se 4 , CuCr 2 S 4 And chalcogen spinels such as HgCr 2 Se 4 , BaTiO 3 and the like. Among these semiconductor compositions, preferred are ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe and other II-VI group compound semiconductors, and the periodic table Group 4 elements such as the above-mentioned titanium oxides. A II-VI group compound semiconductor composition containing Zn and a group 16 element is most preferable. In such a semiconductor composition, for example, Al, Mn, Cu, Zn, Zr, Sn, Ag, Cl, Ce, Eu, Tb, Er, etc. are used as trace amounts of doping substances (meaning impurities intentionally added) as necessary. An element may be added, and by using such a doped substance, for example, ZnS: Mn, ZnS: Tb (where the element after “:” is a doped substance) and the like, a preferable light emitting ability in the visible region or the like can be obtained. In some cases, excellent light-resistant stability such as TiO 2 : Zr may be imparted.
前記の半導体ナノ粒子は、例えばA.R.Kortanら;J.Am.Chem.Soc.,112巻,1327頁(1990)あるいは米国特許5985173号公報(1999)に報告されているように、その半導体結晶の電子励起特性を改良する目的で内核(コア)と外殻(シェル)からなるいわゆるコアシェル構造とすると、該コアを成す半導体結晶の量子効果の安定性が改良される場合があるので、前記のエキシトン吸発光帯を利用する場合に好適である。この場合、シェルの半導体結晶の組成として、禁制帯幅(バンドギャップ)がコアよりも大きなものを起用することによりエネルギー的な障壁を形成せしめることが一般に有効である。これは、不純物等の外界の影響や結晶表面での結晶格子欠陥等の理由による望ましくない表面準位の影響を抑制する機構によるものと推測される。かかるシェルに好適に用いられる半導体結晶の組成としては、コア半導体結晶のバンドギャップにもよるが、バルク状態のバンドギャップが温度300Kにおいて2.0電子ボルト以上であるもの、例えばBN、BAs、GaNやGaP等のIII−V族化合物半導体、
ZnO、ZnS、ZnSe、ZnTe、CdO、CdS等のII−VI族化合物半導体等が好適に用いられる。これらのうちより好ましいシェルとなる半導体結晶組成は、BN、BAs、GaN等のIII−V族化合物半導体、ZnO、ZnS、ZnSe、CdS等のI
I−VI族化合物半導体等のバルク状態のバンドギャップが温度300Kにおいて2.3電子ボルト以上のものであり、最も好ましいのはBN、BAs、GaN、ZnO、ZnS、ZnSe等のバルク状態のバンドギャップが温度300Kにおいて2.5電子ボルト以上のものである。
Examples of the semiconductor nanoparticles include A.I. R. Kortan et al. Am. Chem. Soc. 112, p. 1327 (1990) or US Pat. No. 5,985,173 (1999), for the purpose of improving the electronic excitation characteristics of the semiconductor crystal, it consists of an inner core (core) and an outer shell (shell). The so-called core-shell structure is suitable when the exciton absorption / emission band is used because the quantum effect stability of the semiconductor crystal forming the core may be improved. In this case, it is generally effective to form an energy barrier by using a shell semiconductor crystal having a forbidden band width (band gap) larger than that of the core. This is presumed to be due to a mechanism that suppresses the influence of an undesirable surface level due to the influence of the external world such as impurities and crystal lattice defects on the crystal surface. Although the composition of the semiconductor crystal suitably used for such a shell depends on the band gap of the core semiconductor crystal, the bulk band gap is 2.0 eV or more at a temperature of 300 K, for example, BN, BAs, GaN And III-V compound semiconductors such as GaP,
II-VI group compound semiconductors such as ZnO, ZnS, ZnSe, ZnTe, CdO, and CdS are preferably used. Among these, a semiconductor crystal composition that is a more preferable shell is a III-V group compound semiconductor such as BN, BAs, or GaN, or I such as ZnO, ZnS, ZnSe, or CdS.
The bulk state band gap of a group I-VI compound semiconductor, etc. is 2.3 eV or more at a temperature of 300 K, and the most preferred is the bulk state band gap of BN, BAs, GaN, ZnO, ZnS, ZnSe, etc. Is 2.5 eV or more at a temperature of 300K.
前記フェニレンエチニレン類とナノ粒子の混合比は、ナノ粒子の平均粒径(つまりフェニレンエチニレン類と結合する表面積)により最適値は変動するが、通常9/1〜1/9重量比であり、好ましくは7/3〜3/7重量比である。
前記ナノ粒子をフェニレンエチニレン類に混合する方法に制限はないが、通常、ナノ粒子は凝集を防ぐために予め有機配位子で被覆されている。かかる有機配位子は、本発明のフェニレンエチニレン類のチオール末端基により置換可能でなくてはならない。かかる有機配位子としては、n−ブタンチオール、n−ヘキサンチオール、n−オクタンチオール、n−ドデカンチオール等の炭素数4以上のアルカンチオール類、トリオクチルホスフィンオキシドやトリブチルホスフィンオキシド等の総炭素数12以上のトリアルキルホスフィンオキシド類、ドデシルアミン、ヘキサデシルアミン等の活性水素を有する炭素数12以上のアルキルアミン類、オレイン酸、ステアリル酸等の長鎖脂肪酸類、などが例示される。
The optimum mixing ratio of the phenylene ethynylenes and the nanoparticles varies depending on the average particle size of the nanoparticles (that is, the surface area bonded to the phenylene ethynylenes), but is usually 9/1 to 1/9 by weight. The weight ratio is preferably 7/3 to 3/7.
Although there is no restriction | limiting in the method of mixing the said nanoparticle with phenylene ethynylene, Usually, a nanoparticle is previously coat | covered with the organic ligand in order to prevent aggregation. Such organic ligands must be displaceable by the thiol end groups of the phenylene ethynylenes of the present invention. Examples of such organic ligands include alkanethiols having 4 or more carbon atoms such as n-butanethiol, n-hexanethiol, n-octanethiol, and n-dodecanethiol, and total carbons such as trioctylphosphine oxide and tributylphosphine oxide. Examples thereof include trialkylphosphine oxides having a number of twelve or more, alkylamines having twelve or more carbon atoms having active hydrogen such as dodecylamine and hexadecylamine, and long-chain fatty acids such as oleic acid and stearyl acid.
本発明のフェニレンエチニレン類と金属又は半導体のナノ粒子からなる組成物には、必要に応じて、樹脂材料に用いられる公知の種々の添加剤、例えば熱安定剤、酸化防止剤、ラジカル捕捉剤、紫外線吸収剤、可塑剤、離型剤、補強材(ガラス繊維、ガラスビーズ、ガラスフレーク、炭素繊維、マイカ、タルク、カオリン、粘土鉱物など)などを添加して
もよい。
In the composition comprising the phenyleneethynylenes of the present invention and metal or semiconductor nanoparticles, if necessary, various known additives used for resin materials, such as heat stabilizers, antioxidants, radical scavengers, etc. UV absorbers, plasticizers, mold release agents, reinforcing materials (glass fibers, glass beads, glass flakes, carbon fibers, mica, talc, kaolin, clay minerals, etc.) may be added.
[薄膜状成形体]
前記フェニレンエチニレン類と金属又は半導体のナノ粒子からなる組成物は、その溶液を基板に塗布乾燥する方法(以下、流延法と呼ぶ場合がある。)、圧縮成型法、押出し成形や射出成形などの熱可塑成形法など、公知の成形手段により薄膜状成形体とすると有用である。
[Thin-film shaped body]
The composition comprising the phenylene ethynylenes and metal or semiconductor nanoparticles is a method of coating and drying the solution on a substrate (hereinafter sometimes referred to as a casting method), a compression molding method, an extrusion molding or an injection molding. It is useful to form a thin film-like molded body by a known molding means such as a thermoplastic molding method.
かかる薄膜状成形体の膜厚は、通常0.1〜500μmであり、ディスプレイや太陽電池など光を透過するデバイスの電極に用いる場合など薄膜の光線透過率が必要な場合その上限値は好ましくは100μm、更に好ましくは80μmである。一方その下限値は、電気特性(導電性又は半導体性)と薄膜強度の点で好ましくは0.3μm、更に好ましくは0.5μmである。 The film thickness of such a thin film-shaped molded body is usually 0.1 to 500 μm, and when the light transmittance of the thin film is necessary, such as when used for an electrode of a device that transmits light such as a display or a solar cell, the upper limit is preferably 100 μm, more preferably 80 μm. On the other hand, the lower limit is preferably 0.3 μm, more preferably 0.5 μm, in terms of electrical characteristics (conductivity or semiconductivity) and thin film strength.
かかる薄膜状成形体の基板に制限はないが、その材質としてはガラス、半導体(シリコン等)、金属(アルミニウムやSUSなど)、炭素材料(黒鉛等)、樹脂(PETフィルム、ポリカーボネート樹脂フィルム、、ポリエチレンやポリプロピレン樹脂フィルム、塩化ビニル樹脂フィルムなど)などが例示される。
前記薄膜状成形体を流延法で製造する場合、使用する溶媒に制限はないが、溶媒としてはトルエンやヘキサン等の炭化水素類、テトラヒドロフラン(THF)やエチルセロソルブ等のエーテル類、アセトンやメチルエチルケトン等のケトン類、クロロホルム、塩化メチレン、クロロベンゼン等のハロゲン化炭化水素類、N,N−ジメチルホルムアミドやN−メチルピロリドン等のアミド類、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、n−ブタノール等のアルコール類、水等が例示され、これらは必要に応じて複数種を混合して使用してもよい。優れた溶解性を有するポリベンジルエーテルデンドリマーをフェニレンエチニレン類の側鎖として用いる場合、好適な溶媒はTHF又はクロロホルムであり、環境安全性の点でTHFが最も優れている。
Although there is no restriction | limiting in the board | substrate of this thin film-like molded object, As the material, glass (semiconductor etc.), metal (aluminum, SUS, etc.), carbon material (graphite etc.), resin (PET film, polycarbonate resin film, Examples thereof include polyethylene, polypropylene resin films, vinyl chloride resin films, and the like.
When the thin film-shaped molded product is produced by the casting method, the solvent used is not limited, but as the solvent, hydrocarbons such as toluene and hexane, ethers such as tetrahydrofuran (THF) and ethyl cellosolve, acetone and methyl ethyl ketone Ketones such as chloroform, halogenated hydrocarbons such as methylene chloride and chlorobenzene, amides such as N, N-dimethylformamide and N-methylpyrrolidone, methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol and the like These alcohols, water and the like are exemplified, and these may be used in combination of a plurality of kinds as required. When a polybenzyl ether dendrimer having excellent solubility is used as the side chain of phenylene ethynylene, a suitable solvent is THF or chloroform, and THF is most excellent in terms of environmental safety.
前記流延法の溶液における前記フェニレンエチニレン類と金属又は半導体のナノ粒子を含む組成物の濃度は、通常0.01〜50重量%、生産性の点でその下限値は好ましくは0.1重量%、更に好ましくは1重量%であり、一方その上限値は溶液粘度(塗布性)の点で好ましくは40重量%、更に好ましくは30重量%である。
前記圧縮成型法により本発明の薄膜状成形体を成形する場合、成形温度に制限はないが、通常0〜200℃、成形性と熱劣化防止の点で好ましくは10〜150℃、更に好ましくは20〜120℃の範囲である。
The concentration of the composition containing the phenylene ethynylenes and metal or semiconductor nanoparticles in the solution of the casting method is usually 0.01 to 50% by weight, and the lower limit is preferably 0.1 in terms of productivity. The upper limit is preferably 40% by weight, more preferably 30% by weight in terms of solution viscosity (applicability).
When the thin film-like molded product of the present invention is molded by the compression molding method, the molding temperature is not limited, but is usually 0 to 200 ° C., preferably 10 to 150 ° C. in terms of moldability and thermal deterioration prevention, and more preferably. It is the range of 20-120 degreeC.
前記熱可塑成形法により本発明の薄膜状成形体を成形する場合、成形温度に制限はないが、通常50〜300℃、成形性と熱劣化防止の点で好ましくは80〜270℃、更に好ましくは90〜250℃の範囲である。
以下に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はその要旨を越えない限り、これらの実施例によって限定されるものではない。
When the thin film-like molded product of the present invention is molded by the thermoplastic molding method, the molding temperature is not limited, but is usually 50 to 300 ° C., preferably 80 to 270 ° C., more preferably in terms of moldability and thermal deterioration prevention. Is in the range of 90-250 ° C.
EXAMPLES Specific embodiments of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples unless it exceeds the gist.
[測定装置と条件等]
(1)核磁気共鳴スペクトル(NMR):日本電子製 GSX500型,LA500型磁場強度:11.75 テ
スラ,1 H (500 MHz), 13C (125 MHz), 溶媒は主として重水素化クロロホルムを使用。室温で測定。
(2)質量分析:[1]MALDI-TOF-MS測定はApplied Biosystems製Voyager Elite-DE。[2
]DCI(EI)−MS測 定は日本電子製JMS-700/Mstation。
(3)GPC:島津製作所製高速液体クロマトグラフ(LC-VP series)。溶媒(移動相)はクロロホルム (関東化学)、カラムはShodex GPC K-806、GPC Shim-Pack 802C、温度は4
0℃、流速は毎分1. 00 mL 、検出器はUV(254nm)、分子量既知の単分散ポリスチレン
(昭和電工製:Shodex standar d)で検量線を作成した。
(4)走査型電子顕微鏡 日立製作所(株)製 S-5200 分解能0.5nm(30KV)、1.8nm(1KV)
(5)光励起発光スペクトル 島津製作所(株)製 RF-5300PC 分光光度計、石英セルにて測
定
(6)吸収スペクトル 島津製作所(株)製 UV-3150 紫外・可視分光分析、石英セルにて測
定
(7)電気化学測定:電源 Keithley SourceMeter 2400
(8)電気化学測定:テスタ Keithley Multimeter 2000
(9)膜厚測定装置:東京精密(株) SURFCOM 1400D
[導電性測定方法]
市販の油圧プレス式錠剤形成器(内径2.5mm)を用い、よく乾燥した2−3mgの試料をディスク形状に成形した。金を蒸着したガラス基板(15mm×30mm)2枚を電極として用意し、その間に、円形(直径3mm)の穴をあけたテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体の絶縁膜(膜厚25μm)を挟み、この絶縁膜の穴に前記ディスク形状に成形した試料を置いた。クリップで挟んで圧着し加熱減圧乾燥(100℃、3時間以上)した。膜厚測定後、300mLの三口フラスコ内に装入して電極に
配線し、密閉し、フラスコ内部の脱気と乾燥アルゴンガスによる置換を数回繰り返した後、室温で測定した。
[Measurement equipment and conditions]
(1) Nuclear magnetic resonance spectrum (NMR): JSX GSX500 type, LA500 type magnetic field strength: 11.75 Tesla, 1 H (500 MHz), 13 C (125 MHz), mainly deuterated chloroform. Measured at room temperature.
(2) Mass spectrometry: [1] MALDI-TOF-MS measurement was performed by Applied Biosystems Voyager Elite-DE. [2
] DCI (EI) -MS measurement is JMS-700 / Mstation manufactured by JEOL.
(3) GPC: Shimadzu high performance liquid chromatograph (LC-VP series). Solvent (mobile phase) is chloroform (Kanto Chemical), column is Shodex GPC K-806, GPC Shim-Pack 802C, temperature is 4
A calibration curve was prepared using monodisperse polystyrene (Showa Denko: Shodex standar d) having a molecular weight of 0 ° C., a flow rate of 1.00 mL / min, a detector of UV (254 nm), and a known molecular weight.
(4) Scanning electron microscope Hitachi, Ltd. S-5200 Resolution 0.5nm (30KV), 1.8nm (1KV)
(5) Photo-excitation emission spectrum RF-5300PC spectrophotometer manufactured by Shimadzu Corporation, measured with quartz cell
(6) Absorption spectrum UV-3150 made by Shimadzu Corporation UV / visible spectroscopic analysis, measured by quartz cell
(7) Electrochemical measurement: Power supply Keithley SourceMeter 2400
(8) Electrochemical measurement: Tester Keithley Multimeter 2000
(9) Film thickness measuring device: Tokyo Seimitsu Co., Ltd. SURFCOM 1400D
[Conductivity measurement method]
Using a commercially available hydraulic press tablet forming machine (inner diameter 2.5 mm), a well-dried 2-3 mg sample was formed into a disk shape. Insulating film of tetrafluoroethylene-hexafluoropropylene copolymer (film thickness: 25 μm) with two gold glass-deposited glass substrates (15 mm × 30 mm) as electrodes, with a circular hole (diameter 3 mm) between them A sample molded into the disk shape was placed in the hole of the insulating film. The sample was sandwiched between clips and then heated and dried under reduced pressure (100 ° C., 3 hours or more). After measuring the film thickness, the sample was placed in a 300 mL three-necked flask, wired to the electrode, sealed, and repeatedly deaerated inside the flask and replaced with dry argon gas several times, and then measured at room temperature.
[ヨウ素ドーピング処理方法]
あらかじめ脱気と乾燥アルゴンガス置換を繰り返した50mLの3口フラスコへ試料が
ついた電極基板を入れ、さらにヨウ素をひとかけら入れ密封した。真空ラインで一度引き、減圧を止め30分放置した。その後取り出して、電極を組みなおして調整して、前記導電性測定を行った。
[Iodine doping treatment method]
The electrode substrate with the sample was placed in a 50 mL three-necked flask that had been repeatedly degassed and replaced with dry argon gas, and a portion of iodine was further sealed. The vacuum line was pulled once, the decompression was stopped, and the mixture was left for 30 minutes. Thereafter, the electrode was taken out and adjusted by reassembling the electrode, and the conductivity measurement was performed.
[合成例、実施例及び比較例]
合成例1:S−アセチル−4−ヨードチオフェノールの合成
水(230mL)及び濃硫酸(40mL)の混合液を氷冷し4−ヨードベンゼンスルホニ
ルクロリド(10g)と亜鉛粉末( 13.6 g)を加え30分攪拌し、その後6時間加熱還
流した。反応終了後、水(50mL)及び塩化アンモニウム飽和水溶液(170mL)を加え、ジエチルエーテルで生成物を抽出し、得られた有機相を塩化ナトリウム飽和水溶液で洗浄後、硫酸ナトリウムで乾燥した。この有機相を減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し、目的の4−ヨードベンゼンチオールと対応するジスルフィド体の混合物を得た。4−ヨードベンゼンチオールは大気下で放置すると容易にジスルフィド体へと変化することがわかった。、本発明では、4−ヨードベンゼンチオールを積極的にジスルフィド体へ変換した後、そのジスルフィドの還元と該還元で生成するチオールのアセチル化を同時におこなうOrg.Lett.;26巻,4295(2001)に記載の方法を用いた。即ち、4−ヨードベンゼンチオールのジスルフィド体のN,N−ジメチルホルムアミド(DMF)溶液へ、室温にて別途調整した還元剤である[(n−C4H9)3PH]BF4とジイソプロピルエチルアミンの1:1混合溶液と約1当量の水を加え攪拌
し、続いて無水酢酸を添加して、チオールがアセチル基で保護された末端基成分S−アセチル−4−ヨードチオフェノールを得た。
[Synthesis Examples, Examples and Comparative Examples]
Synthesis Example 1: Synthesis of S-acetyl-4-iodothiophenol A mixture of water (230 mL) and concentrated sulfuric acid (40 mL) was ice-cooled, and 4-iodobenzenesulfonyl chloride (10 g) and zinc powder (13.6 g) were added. The mixture was stirred for 30 minutes and then heated to reflux for 6 hours. After completion of the reaction, water (50 mL) and saturated aqueous ammonium chloride solution (170 mL) were added, the product was extracted with diethyl ether, and the obtained organic phase was washed with saturated aqueous sodium chloride solution and dried over sodium sulfate. The organic phase was concentrated under reduced pressure and purified by silica gel column chromatography to obtain a mixture of the desired 4-iodobenzenethiol and the corresponding disulfide. It was found that 4-iodobenzenethiol easily converted to a disulfide form when left in the atmosphere. In the present invention, after actively converting 4-iodobenzenethiol to a disulfide form, the reduction of the disulfide and the acetylation of the thiol produced by the reduction are performed simultaneously in Org. Lett. 26, 4295 (2001) was used. That is, the disulfide of 4-iodobenzene thiol N, the N- dimethylformamide (DMF) solution, a reducing agent which is separately adjusted at room temperature [(n-C4H9) 3 PH ] BF 4 and diisopropylethylamine 1: One mixed solution and about 1 equivalent of water were added and stirred, and then acetic anhydride was added to obtain a terminal group component S-acetyl-4-iodothiophenol in which the thiol was protected with an acetyl group.
合成例2:ポリベンジルエーテルデンドリマーを結合したジエチニレンベンゼンの合成
前記J. Am. Chem. Soc., 112巻, 7638頁(1990)に記載の方法に従い、フェニル基を分岐末端の構造とする第3世代ポリベンジルエーテルデンドリマーを調製した。但し、原料として東京化成社から供給された第2世代のブロミドデンドロンである3,5−ビス[3,5−ビス(ベンジルオキシ)ベンジルオキシ]ベンジルブロミド([G−2]−Brと略記)を使用した。即ち、[G−2]−Br(2.05当量)と3,5−ジヒドロキシベン
ジルアルコール(Aldrich社;1.0当量)とを、新しく乳鉢で粉砕した炭酸カリウム(2.5当量)及び18−クラウン−6エーテル(0.2当量)の存在下アセトンを溶媒として60℃で加熱攪拌して縮合させるエーテル化反応を行い、第3世代のデンドロン[G−3]−OHを得た。これをメタノール/酢酸エチル系混合溶媒から再結晶精製し、四臭化炭素(1.25当量)とトリフェニルホスフィン(1.25当量)による臭素化反応を乾燥したTHF溶媒中で行って目的とする第3世代ブロミドデンドロン[G−3]−Brを得た。この[G−3]−Brもメタノール/酢酸エチル系混合溶媒から再結晶精製し、その構造と純度は、NMR、FT−IRスペクトルが前記文献の記載と一致することから確認した。こうして得た[G−3]−Brを用いて以下のようにデンドリマーを結合したジエチニレンベンゼンを合成した。即ち、1,4−ジヒドロキシ−2,5−ジヨードベンゼン(1.0当量)に、攪拌しながら塩化第一銅(0.05当量)とジクロロビス(トリフェニルホスフィン)パラジウム(II)(0.05当量)を室温で順次加え、容器内の真空引きと窒素置換を繰り返した。ここにトリメチルシリルアセチレン(3.0当量)とジイソプロピルアミン(3.0当量)を順次加え、60℃で4時間反応させた後、トルエンで希釈し濾過して固体を除去した。これをシリカゲルカラムクロマトグラフィで精製して1,4−ジヒドロキシ−2,5−ビス(トリメチルシリルエチニル)ベンゼンを得た。次いで、これを過剰量の無水炭酸カリウムとともにメタノール中で室温にて1昼夜攪拌し、メタノール/塩化メチレンを流出溶剤とするシリカゲルカラムクロマトグラフィで精製して1,4−ジヒドロキシ−2,5−ジエチニルベンゼンを得た。これらの生成物の化学構造は、1H−NMRにて確認した。更に、前記で合成した第3世代ブロミドデンドロン[G−3]−Br(2.1当量)と1,4−ジヒドロキシ−2,5−ジエチニルベンゼン(1.0当量)、無水炭酸カリウム(5.0当量)を混合した容器内の真空引きと窒素置換を繰り返し、ここに乾燥したDMFを加え60℃で6.5時間攪拌した。反応液を大過剰の氷水に良く攪拌しながら注ぎこみ、生成した固体を濾別し、シリカゲルカラムクロマトグラフィで精製して目的とする第3世代ポリベンジルエーテルデンドロン側鎖を結合したジエチニレンベンゼン(以下[G−3]2E2と略記)を得た。この生成物の構造は、NMRにてデンドリマー由来(ベンジル位、及びベンゼン環)、エチニル基、及びエチニル基が結合するベンゼン環にそれぞれ帰属されるシグナルが明瞭に観測されたことと、それらの積分値比から確認した。
Synthesis Example 2: Synthesis of diethynylenebenzene bonded with polybenzyl ether dendrimer According to the method described in J. Am. Chem. Soc., 112, 7638 (1990), the phenyl group has a branched terminal structure. Third generation polybenzyl ether dendrimers were prepared. However, 3,5-bis [3,5-bis (benzyloxy) benzyloxy] benzyl bromide (abbreviated as [G-2] -Br) which is a second-generation bromide dendron supplied from Tokyo Kasei Co., Ltd. as a raw material. It was used. That is, [G-2] -Br (2.05 equivalent) and 3,5-dihydroxybenzyl alcohol (Aldrich; 1.0 equivalent) were freshly ground in a mortar with potassium carbonate (2.5 equivalent) and 18 -A 3rd generation dendron [G-3] -OH was obtained by conducting an etherification reaction in which acetone was used as a solvent in the presence of crown-6 ether (0.2 equivalents) and condensed by heating and stirring at 60 ° C. This was recrystallized and purified from a methanol / ethyl acetate mixed solvent, and brominated with carbon tetrabromide (1.25 equivalents) and triphenylphosphine (1.25 equivalents) in a dry THF solvent. 3rd generation bromide dendron [G-3] -Br was obtained. This [G-3] -Br was also recrystallized and purified from a methanol / ethyl acetate mixed solvent, and its structure and purity were confirmed by NMR and FT-IR spectra being consistent with those described in the above literature. Using the thus obtained [G-3] -Br, a diethynylenebenzene having a dendrimer bonded thereto was synthesized as follows. That is, cuprous chloride (0.05 equivalent) and dichlorobis (triphenylphosphine) palladium (II) (0. 0 equivalent) to 1,4-dihydroxy-2,5-diiodobenzene (1.0 equivalent) with stirring. 05 equivalents) were sequentially added at room temperature, and evacuation and nitrogen substitution in the container were repeated. Trimethylsilylacetylene (3.0 equivalents) and diisopropylamine (3.0 equivalents) were sequentially added thereto, reacted at 60 ° C. for 4 hours, diluted with toluene, and filtered to remove solids. This was purified by silica gel column chromatography to obtain 1,4-dihydroxy-2,5-bis (trimethylsilylethynyl) benzene. Next, this was stirred with methanol in excess of anhydrous potassium carbonate at room temperature for one day, and purified by silica gel column chromatography using methanol / methylene chloride as an effluent solvent to obtain 1,4-dihydroxy-2,5-diethynyl. Benzene was obtained. The chemical structure of these products was confirmed by 1H-NMR. Further, the third-generation bromide dendron [G-3] -Br (2.1 equivalent) synthesized above, 1,4-dihydroxy-2,5-diethynylbenzene (1.0 equivalent), anhydrous potassium carbonate (5 (0.0 equivalent) was repeatedly evacuated and purged with nitrogen, dried DMF was added thereto, and the mixture was stirred at 60 ° C. for 6.5 hours. The reaction solution was poured into a large excess of ice water with good stirring, and the resulting solid was filtered off and purified by silica gel column chromatography to bind the desired third-generation polybenzyl ether dendron side chain with diethynylenebenzene ( Hereinafter, [G-3] 2E2) was obtained. The structure of this product is that the signals attributed to the dendrimer-derived (benzylic position and benzene ring), ethynyl group, and benzene ring to which the ethynyl group binds were clearly observed, and their integration. The value ratio was confirmed.
合成例3:第3世代ポリベンジルエーテルデンドロン側鎖を結合したS−アセチル基末端を有するフェニレンエチニレンの合成(以下、S−アセチル基末端を有するフェニレンエチニレン類をPhE−SAcと略記する)
Chem.Eur.J.;23巻,5118(2001)を参考に以下の反応を行った。合成例2で得た第3世代ポリベンジルエーテルデンドロン側鎖を結合したジエチニレンベンゼン[G−3]2E2(350mg、1当量)、トリフェニルホスフィン(0.41当量)、ジベンジリデンアセトンパラジウム(0)(0.1当量)、ヨウ化銅( 0.2当量)、S−アセチル−4−ヨードチオフェノール( 3.25当量)をガラス反応器に加
え、反応器内の真空引きとアルゴンガス置換を数回繰り返した後、乾燥THFを溶媒として加え、次いでジイソプロピルエチルアミン(8.2当量)を加え、50℃で一昼夜攪拌した。反応液をエバポレーターで濃縮し生成物をクロロホルムで抽出しこれを水洗した。そのクロロホルム溶液を硫酸マグネシウムで乾燥後、再び濃縮、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン/n−ヘキサン/ジエチルエーテル=10/1/
1)で分離精製し、さらにジクロロメタンに溶解させた成分をエタノールに加える再沈殿法で精製し、目的の第3世代ポリベンジルエーテルデンドロン側鎖を結合したPhE−SAc(以下、G3−PhE−SAcと略記)を得た。化合物の構造は核磁気共鳴スペクトルおよびMALDI−TOF MS分析、紫外−可視吸収スペクトル測定、蛍光スペクトル測定より
確認した。
Synthesis Example 3: Synthesis of phenylene ethynylene having an S-acetyl group terminal to which a third-generation polybenzyl ether dendron side chain is bonded (hereinafter, phenylene ethynylene having an S-acetyl group terminal is abbreviated as PhE-SAc).
Chem. Eur. J. et al. ; The following reaction was performed with reference to Volume 23, 5118 (2001). Diethynylenebenzene [G-3] 2E2 (350 mg, 1 equivalent), triphenylphosphine (0.41 equivalent), dibenzylideneacetone palladium (3 equivalents) to which the third generation polybenzyl ether dendron side chain obtained in Synthesis Example 2 was bonded. 0) (0.1 eq), copper iodide (0.2 eq), S-acetyl-4-iodothiophenol (3.25 eq) are added to the glass reactor and the reactor is evacuated and argon gas. After repeating the substitution several times, dry THF was added as a solvent, then diisopropylethylamine (8.2 equivalents) was added, and the mixture was stirred at 50 ° C. overnight. The reaction solution was concentrated with an evaporator, and the product was extracted with chloroform and washed with water. The chloroform solution was dried over magnesium sulfate, concentrated again, and silica gel column chromatography (eluent: dichloromethane / n-hexane / diethyl ether = 10/1 /
Separation and purification in 1), and further purification by reprecipitation method in which components dissolved in dichloromethane are added to ethanol, and the target PhE-SAc (hereinafter referred to as G3-PhE-SAc) bound to the third-generation polybenzyl ether dendron side chain. Abbreviated). The structure of the compound was confirmed by nuclear magnetic resonance spectrum, MALDI-TOF MS analysis, ultraviolet-visible absorption spectrum measurement, and fluorescence spectrum measurement.
1H NMR(CDCl3) d 2.25 (s, 6H,), 4.90-4.92 (m, 16H,), 4.98 (s, 32H), 5.01 (s, 4H
), 6.52-6.55 (m, 14H), 6.60-6.61(m, 8H), 6.65(m, 16H), 6.79 (s, 2H), 7.03(s, 2H), 7.15 (d, 4H, J = 8.2Hz), 7.27-7.41(m, 40H), 7.50 (d, 4H, J = 8.6Hz)。質量分析:ナトリウムが付加したイオン(m/z:3634)を検出した。
合成例4:第1世代ポリベンジルエーテルデンドロン側鎖を結合したPhE−SAcの合成
合成例3において、第3世代ポリベンジルエーテルデンドロン側鎖を結合したジエチニレンベンゼンの代わりに第1世代ポリベンジルエーテルデンドロン側鎖を結合したジエチニレンベンゼン(合成例2の手順を応用して同様に調製した)を用い、同様の手順で合成を行った。合成例3の反応生成物は溶媒溶解性に優れていたが、本合成例ではテトラヒドロフランやクロロホルムなどの溶媒に難溶な生成物を与えた。精製は、難溶生成物固体を十分に水洗して無機成分を除き、クロロホルムに分散した不溶物を濾紙で捕集し乾燥して行った。化合物の構造は核磁気共鳴スペクトル(溶媒:重水素化ジメチルホルムアミド-d7)およびMALDI−TOF MS分析より確認し、目的の第1世代ポリベンジルエーテルデンドロン側鎖を結合したPhE−SAc(以下、G1−PhE−SAcと略記)を得た。
1 H NMR (CDCl 3 ) d 2.25 (s, 6H,), 4.90-4.92 (m, 16H,), 4.98 (s, 32H), 5.01 (s, 4H
), 6.52-6.55 (m, 14H), 6.60-6.61 (m, 8H), 6.65 (m, 16H), 6.79 (s, 2H), 7.03 (s, 2H), 7.15 (d, 4H, J = 8.2 Hz), 7.27-7.41 (m, 40H), 7.50 (d, 4H, J = 8.6Hz). Mass spectrometry: Ions (m / z: 3634) added with sodium were detected.
Synthesis Example 4 Synthesis of PhE-SAc with First-Generation Polybenzyl Ether Dendron Side Chains In Synthesis Example 3, instead of diethynylenebenzene with the third-generation polybenzyl ether dendron side chains, first-generation polybenzyls The synthesis was carried out in the same procedure using dietinylene benzene (prepared in the same manner by applying the procedure of Synthesis Example 2) to which an ether dendron side chain was bonded. The reaction product of Synthesis Example 3 was excellent in solvent solubility, but in this Synthesis Example, a product that was hardly soluble in solvents such as tetrahydrofuran and chloroform was given. Purification was performed by thoroughly washing the hardly soluble product solid with water to remove inorganic components, collecting insoluble matter dispersed in chloroform with a filter paper, and drying. The structure of the compound was confirmed by nuclear magnetic resonance spectrum (solvent: deuterated dimethylformamide-d 7 ) and MALDI-TOF MS analysis, and PhE-SAc (hereinafter referred to as “the first generation polybenzyl ether dendron side chain”) bound thereto. (Abbreviated as G1-PhE-SAc).
合成例5:第2世代ポリベンジルエーテルデンドロン側鎖を結合したPhE−SAcの合成
合成例3において、第3世代ポリベンジルエーテルデンドロン側鎖を結合したジエチニレンベンゼンの代わりに第2世代ポリベンジルエーテルデンドロン側鎖を結合したジエチニレンベンゼンを用い、同様の手順で合成を行った。この合成例の反応生成物は、合成例3の反応生成物に比べてやや結晶性が良かったが溶媒溶解性は同等であった。精製は合成例3と同様に行った。化合物の構造は核磁気共鳴スペクトル(NMR)およびMALDI−TOF MS分析より確認し、目的の第2世代ポリベンジルエーテルデンドロン側鎖を結合したPhE−SAc(以下、G2−PhE−SAcと略記)を得た。
Synthesis Example 5 Synthesis of PhE-SAc with Second Generation Polybenzyl Ether Dendron Side Chains In Synthesis Example 3, the second generation polybenzyl was used instead of the diethylene benzene with the third generation polybenzyl ether dendron side chains attached. The synthesis was carried out in the same procedure using a diethylene benzene bonded with an ether dendron side chain. The reaction product of this synthesis example was slightly more crystalline than the reaction product of synthesis example 3, but the solvent solubility was equivalent. Purification was carried out in the same manner as in Synthesis Example 3. The structure of the compound was confirmed by nuclear magnetic resonance spectrum (NMR) and MALDI-TOF MS analysis, and the target PhE-SAc (hereinafter abbreviated as G2-PhE-SAc) bound to the second-generation polybenzyl ether dendron side chain was obtained. Obtained.
合成例6:n−ヘキシルオキシ側鎖を有するPhE−SAcの合成
まず、中間体である1,4−ジエチニル−2,5−ビスヘキシルオキシベンゼンを合成した。1,4−ジヒドロキシ−2,5−ジエチニルベンゼン(304mg、1当量)、1−ヨードヘキサン(2.2当量)及び炭酸カルシウム(5当量)をガラス反応器に加え、反応器内の真空引きと、アルゴンガス置換を数回繰り返した後、乾燥アセトンを溶媒として加え60℃で一晩攪拌した。反応液をエバポレーターで濃縮し生成物をクロロホルムで抽出し、有機相を水洗し硫酸マグネシウムで乾燥後、再び濃縮しシリカゲルカラムクロマトグラフィー(溶離液;クロロホルム/n-ヘキサン=1/1)で分離精製し、1,4−ジ
エチニル−2,5−ビスヘキシルオキシベンゼンの白色粉末を得た。こうして得た1,4−ジエチニル−2,5−ビスヘキシルオキシベンゼン(132mg、1当量)、トリフェニルホスフィン(0.41当量)、ジベンジリデンアセトンパラジウム(0)(0.1当
量)、ヨウ化銅(0.2当量)及びS−アセチル−4−ヨードチオフェノール(3.25当量)をガラス反応器に加え、反応器内の真空引きとアルゴンガス置換を数回繰り返した後、乾燥THFを溶媒として加え、さらにジイソプロピルエチルアミン(8.2当量)を攪拌しながら加えた。これを50℃で一昼夜攪拌した。反応液をエバポレーターで濃縮し生成物をクロロホルムで抽出し有機相を水洗した。この有機相を硫酸マグネシウムで乾燥後、再び濃縮しシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム)で分離精製し、更にクロロホルム溶液をエタノールに注いで再沈殿し、目的とするn−ヘキシルオキシ側鎖を有するPhE−SAc(以下、Hex−PhE−SAcと略記)を淡黄色固体として得た。この化合物の分子構造は中間体とともに核磁気共鳴スペクトルおよび質量分析により確認した。
Synthesis Example 6: Synthesis of PhE-SAc having an n-hexyloxy side chain First, 1,4-diethynyl-2,5-bishexyloxybenzene as an intermediate was synthesized. 1,4-dihydroxy-2,5-diethynylbenzene (304 mg, 1 eq), 1-iodohexane (2.2 eq) and calcium carbonate (5 eq) are added to the glass reactor and the reactor is evacuated. After repeating the argon gas replacement several times, dry acetone was added as a solvent and the mixture was stirred at 60 ° C. overnight. The reaction solution is concentrated with an evaporator, and the product is extracted with chloroform. The organic phase is washed with water, dried over magnesium sulfate, concentrated again, and separated and purified by silica gel column chromatography (eluent: chloroform / n-hexane = 1/1). A white powder of 1,4-diethynyl-2,5-bishexyloxybenzene was obtained. 1,4-diethynyl-2,5-bishexyloxybenzene (132 mg, 1 equivalent), triphenylphosphine (0.41 equivalent), dibenzylideneacetone palladium (0) (0.1 equivalent), iodination thus obtained Copper (0.2 eq) and S-acetyl-4-iodothiophenol (3.25 eq) were added to the glass reactor, and after evacuation and argon gas substitution in the reactor were repeated several times, dry THF was added. As a solvent, diisopropylethylamine (8.2 equivalents) was further added with stirring. This was stirred at 50 ° C. all day and night. The reaction solution was concentrated with an evaporator, the product was extracted with chloroform, and the organic phase was washed with water. This organic phase is dried over magnesium sulfate, concentrated again, and separated and purified by silica gel column chromatography (eluent: chloroform). Further, the chloroform solution is poured into ethanol for reprecipitation, and the desired n-hexyloxy side chain is removed. The obtained PhE-SAc (hereinafter abbreviated as Hex-PhE-SAc) was obtained as a pale yellow solid. The molecular structure of this compound was confirmed by nuclear magnetic resonance spectrum and mass spectrometry together with the intermediate.
合成例7:金ナノ粒子の合成
M.Brustら;J.Chem.Soc.Chem.Commun., 801頁(1994)に記載の2相還元法に基準じて、以下の操作を行った。塩化金酸(HAuCl4)の水溶液(30mmol/dm-
3)15mLと、相関移動触媒としてのテトラオクチルアンモニウムブロミドのトルエン溶液(50mmol/dm-3)40mLを混合し攪拌し、赤色金成分がトルエン相に移動し
た段階で、ヘキサンチオール(0.6mL)を加え、有機層が白濁するまで約10分間攪
拌した。ここへ、水素化ホウ素ナトリウムの水溶液(400mmol/dm-3)を一気に加え攪拌した。このとき発泡するので注意を要する。有機層は直ちに茶褐色に変化し、このまま約3時間攪拌を継続した。トルエン相をエバポレーターで数mL容量まで濃縮した
のちエタノールを加え、未反応のアルカンチオールおよびテトラオクチルアンモニウムブロミドを除去するため、−25℃で再沈殿させた。沈殿物をろ紙で捕集し、再び少量のトルエンに溶解後、エタノールを加え2度目の再沈殿を行った。この再沈殿操作をさらに3回繰り返し、最後に、沈殿物を捕集し乾燥することで、ヘキサンチオールを配位子とする金ナノ粒子の黒色粉末を得た。ヘキサンチオールの代わりにドデカンチオールを用い同様の操作を行って、ドデカンチオールを配位子とする金ナノ粒子も調整可能であった。構造確認は走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、核磁気共鳴スペクトル(NMR:ヘキサンチオールの存在確認)で行った。
Synthesis Example 7: Synthesis of gold nanoparticles The following operations were performed based on the two-phase reduction method described in Brush et al .; J. Chem. Soc. Chem. Commun., Page 801 (1994). An aqueous solution of chloroauric acid (HAuCl 4 ) (30 mmol / dm −)
3 ) 15 mL and 40 mL of a tetraoctylammonium bromide toluene solution (50 mmol / dm −3 ) as a phase transfer catalyst were mixed and stirred, and when the red gold component moved to the toluene phase, hexanethiol (0.6 mL) And stirred for about 10 minutes until the organic layer became cloudy. To this, an aqueous solution of sodium borohydride (400 mmol / dm -3 ) was added at once and stirred. Care must be taken because it foams at this time. The organic layer immediately turned brown and stirring was continued for about 3 hours. After concentrating the toluene phase with an evaporator to a volume of several mL, ethanol was added and reprecipitated at −25 ° C. to remove unreacted alkanethiol and tetraoctylammonium bromide. The precipitate was collected with a filter paper, dissolved in a small amount of toluene again, ethanol was added, and the second reprecipitation was performed. This reprecipitation operation was further repeated three times. Finally, the precipitate was collected and dried to obtain a black powder of gold nanoparticles having hexanethiol as a ligand. By performing the same operation using dodecanethiol instead of hexanethiol, gold nanoparticles having dodecanethiol as a ligand could be prepared. The structure was confirmed with a scanning electron microscope (SEM), a transmission electron microscope (TEM), and a nuclear magnetic resonance spectrum (NMR: confirmation of the presence of hexanethiol).
参考実験1:G3−PhE−SAcの溶液中のスペクトル
合成例3で得たG3−PhE−SAcのTHF溶液の吸収スペクトルは、280nm付近にポリベンジルエーテルデンドロン由来の吸収帯を、380nm付近にはフェニレンエチニレン構造由来の吸収帯をそれぞれ与えた。ポリベンジルエーテルデンドロンの吸収帯を278nmにおいて励起したところ、420nm付近にフェニレンエチニレン由来の発光帯が観測された。このようにフェニレンエチニレン由来の発光のみ観測されたことから、ポリベンジルエーテルデンドロン側鎖からフェニレンエチニレン骨格への効果的なエネルギー移動が生じていることを確認した。
Reference experiment 1: Spectrum in solution of G3-PhE-SAc The absorption spectrum of the THF solution of G3-PhE-SAc obtained in Synthesis Example 3 shows an absorption band derived from polybenzyl ether dendron around 280 nm. Absorption bands derived from the phenylene ethynylene structure were given respectively. When the absorption band of polybenzyl ether dendron was excited at 278 nm, an emission band derived from phenylene ethynylene was observed around 420 nm. Thus, only light emission derived from phenylene ethynylene was observed, so that it was confirmed that effective energy transfer from the polybenzyl ether dendron side chain to the phenylene ethynylene skeleton occurred.
参考実験2:G3−PhE−SAcの薄膜のスペクトル
薄膜の作成はTHF溶液を石英プレート上にキャストし溶媒を蒸発させておこなった。紫外−可視吸収スペクトルおよび発光スペクトル測定の結果、参考実験1の溶液中のスペクトルと多くの点で類似したが、発光帯は450nm付近に現れ溶液よりも長波長側にシフトした。
Reference experiment 2: G3-PhE-SAc thin film spectrum The thin film was prepared by casting a THF solution on a quartz plate and evaporating the solvent. As a result of measuring the ultraviolet-visible absorption spectrum and the emission spectrum, the spectrum in the solution of Reference Experiment 1 was similar in many respects, but the emission band appeared near 450 nm and shifted to the longer wavelength side than the solution.
G3−PhE−SAcを脱アセチル化して得るジスルフィドフェニレンエチニレンオリゴマーの調製
Chem.Eur.J.;23巻,5118(2001)に記載の方法を応用した。合成例3で得たG3−PhE−SAc(250mg)と水酸化ナトリウム(60当量)を、テトラヒドロフラン/水=4/1混合溶液に加え一晩攪拌した。減圧下溶媒を留去し、反
応物をクロロホルムで抽出し、有機相を水、続いて飽和塩化ナトリウム水溶液で洗浄し、有機相に硫酸マグネシウムを加え乾燥した。溶媒を減圧留去後、G3−PhE−SAcのアセチル基が除去されて生成したジスルフィドフェニレンエチニレンオリゴマー(以下「Oligo−G3−PhE−S」と略記)を得た。GPCにより、ポリスチレン換算の分子量は、重量平均分子量Mwが16000、数平均分子量Mnに対する比Mw/Mnが1.6であった。
Preparation of disulfide phenylene ethynylene oligomer obtained by deacetylation of G3-PhE-SAc Chem. Eur. J. et al. 23, 5118 (2001) was applied. G3-PhE-SAc (250 mg) obtained in Synthesis Example 3 and sodium hydroxide (60 equivalents) were added to a tetrahydrofuran / water = 4/1 mixed solution and stirred overnight. The solvent was distilled off under reduced pressure, the reaction product was extracted with chloroform, the organic phase was washed with water and then with a saturated aqueous sodium chloride solution, and magnesium sulfate was added to the organic phase for drying. After distilling off the solvent under reduced pressure, a disulfide phenylene ethynylene oligomer (hereinafter abbreviated as “Oligo-G3-PhE-S”) formed by removing the acetyl group of G3-PhE-SAc was obtained. As for the molecular weight in terms of polystyrene, the weight average molecular weight Mw was 16000 and the ratio Mw / Mn to the number average molecular weight Mn was 1.6 by GPC.
G2−PhE−SAcを脱アセチル化して得るジスルフィドフェニレンエチニレンオリゴマーの調製
実施例1においてG3−PhE−SAcの代わりに合成例5で得たG2−PhE−SAcを用いて同様の実験操作を行い、アセチル基が除去されて生成したジスルフィドフェニレンエチニレンオリゴマー(以下「Oligo−G2−PhE−S」と略記)を得た。GPCにより、ポリスチレン換算の分子量は、重量平均分子量Mwが7200、数平均分子
量Mnに対する比Mw/Mnが1.6であった。
Preparation of disulfide phenylene ethynylene oligomer obtained by deacetylating G2-PhE-SAc In Example 1, G2-PhE-SAc obtained in Synthesis Example 5 was used instead of G3-PhE-SAc, and the same experimental procedure was performed. Then, a disulfide phenylene ethynylene oligomer (hereinafter abbreviated as “Oligo-G2-PhE-S”) produced by removing the acetyl group was obtained. As for the molecular weight in terms of polystyrene, the weight average molecular weight Mw was 7200, and the ratio Mw / Mn to the number average molecular weight Mn was 1.6 by GPC.
参考実験3:G3−PhE−SAcの2級アミンによる脱アセチル化の試み
Organometallics,14巻, 4808頁(1995)の記載に基づき、G3−PhE−SAc(35mg)のクロロホルム溶液(3mL)に、ジエチルアミンまたはジイソプロピルアミン(3mL)を加え50度で30分〜3時間攪拌した。該文献では共役フェニレンエチレンの末端SAc基の脱アセチル化が進行しているが、本比較例の系ではほとんど進行しなかった。
(比較例1)
Hex−PhE−SAcの脱アセチル化の試み
実施例1と同様の方法を、合成例6で得たn−ヘキシル基を有するHex−PhE−S
Acに対して試みた。Hex−PhE−SAc(26mg)と、水酸化ナトリウム(60当量)、をテトラヒドロフラン/水=5/1混合溶液に加え攪拌した。反応液をジエチル
エーテルに注ぎ固体を析出させ、この固体をジエチルエーテルで洗浄した。この固体が懸濁したジエチルエーテル溶液に、3規定濃度の塩酸を加え酸性化した。有機相を分離し、水と飽和塩化ナトリウム水溶液で洗浄し硫酸マグネシウムで乾燥した。このとき徐々に黄色の難溶不溶物が生成し始めた。溶媒を留去後、クロロホルムに可溶な成分をNMRで確認したところ、オリゴマーと推測される複雑なシグナルを与え、また徐々にNMR測定管内でクロロホルムに難溶な成分を生成した。この結果、以後のナノコンポジット作成は困難となった。
Reference experiment 3: Attempt to deacetylate G3-PhE-SAc with secondary amine Based on the description of Organometallics, Vol. 14, page 4808 (1995), a solution of G3-PhE-SAc (35 mg) in chloroform solution (3 mL) Diethylamine or diisopropylamine (3 mL) was added and stirred at 50 degrees for 30 minutes to 3 hours. In this document, deacetylation of the terminal SAc group of conjugated phenyleneethylene proceeds, but hardly progressed in the system of this comparative example.
(Comparative Example 1)
Attempt to deacetylate Hex-PhE-SAc The same method as in Example 1 was performed in the same manner as in Example 1, but Hex-PhE-S having an n-hexyl group obtained in Synthesis Example 6.
Tried against Ac. Hex-PhE-SAc (26 mg) and sodium hydroxide (60 equivalents) were added to a tetrahydrofuran / water = 5/1 mixed solution and stirred. The reaction solution was poured into diethyl ether to precipitate a solid, which was washed with diethyl ether. The diethyl ether solution in which the solid was suspended was acidified by adding 3N hydrochloric acid. The organic phase was separated, washed with water and saturated aqueous sodium chloride solution and dried over magnesium sulfate. At this time, yellow hardly soluble insoluble matter gradually started to form. After distilling off the solvent, the components soluble in chloroform were confirmed by NMR. As a result, a complicated signal presumed to be an oligomer was given, and gradually insoluble components in chloroform were generated in the NMR measuring tube. As a result, subsequent nanocomposite preparation became difficult.
この比較例1から、共役棒状分子にデンドリマ側鎖を導入する本発明は、チオール基の脱アセチル化で生じるジスルフィドオリゴマーに溶解性を付与する効果を発揮することがわかった。 From Comparative Example 1, it was found that the present invention, in which a dendrimer side chain is introduced into a conjugated rod-like molecule, exerts an effect of imparting solubility to a disulfide oligomer produced by deacetylation of a thiol group.
第3世代デンドロンを側鎖とするジチオールフェニレンエチニレン
Tetrahedron,639頁(2003)を参考に以下の操作を行った。実施例
1で得た第3世代デンドロンを側鎖とするジスルフィドフェニレンエチニレンオリゴマーOligo−G3−PhE−S(69mg)を20%のエタノールを含有するテトラヒドロフラン(6mL)に溶解し、水素化ホウ素ナトリウム(200当量)を加え一晩攪拌した。反応溶液を3規定濃度の塩酸に注ぎ、有機溶媒をエバポレーターで減圧留去し、クロロホルムで抽出した。この有機相を水で洗浄し硫酸マグネシウムで乾燥し、濃縮して目的の第3世代デンドロンを側鎖とするジチオールフェニレンエチニレン(下記式(4)、但しRはフェニル末端を有する第3世代ポリベンジルエーテルデンドリマー残基を表す。)を黄色固体として得た。この化合物を以下「G3−PhE−SH」と略記する。
The following operation was performed with reference to dithiolphenylene ethynylene Tetrahedron, page 639 (2003) having a third generation dendron as a side chain. The disulfide phenylene ethynylene oligomer Oligo-G3-PhE-S (69 mg) having the third-generation dendron as a side chain obtained in Example 1 was dissolved in tetrahydrofuran (6 mL) containing 20% ethanol, and sodium borohydride was dissolved. (200 equivalents) was added and stirred overnight. The reaction solution was poured into 3N hydrochloric acid, and the organic solvent was distilled off under reduced pressure with an evaporator and extracted with chloroform. This organic phase is washed with water, dried over magnesium sulfate, and concentrated to dithiolphenylene ethynylene having the target third-generation dendron as a side chain (formula (4) below, where R is a third-generation polyphenyl having a phenyl terminal). Represents benzyl ether dendrimer residue.) As a yellow solid. This compound is hereinafter abbreviated as “G3-PhE-SH”.
1H NMR(CDCl3) 3.56 (s,2H), 4.88-4.95 (m, 16H), 4.98 (s, 32H), 5.01 (s, 4H), 6.52-6.55 (m, 14H,), 6.53-6.61(m, 8H), 6.65−6.66(m, 16H), 6.77 (s, 2H), 7.03 (s, 2H), 7.27- 7.40(m, 40H, PhH), 7.60 (d, 4H, J = 8.6Hz), 7.68 (d, 4H, J = 8.6Hz)。質量分析:M+3Na-2H(m/z:3592)を検出した。 1 H NMR (CDCl 3 ) 3.56 (s, 2H), 4.88-4.95 (m, 16H), 4.98 (s, 32H), 5.01 (s, 4H), 6.52-6.55 (m, 14H,), 6.53-6.61 (m, 8H), 6.65−6.66 (m, 16H), 6.77 (s, 2H), 7.03 (s, 2H), 7.27-7.40 (m, 40H, PhH), 7.60 (d, 4H, J = 8. 6 Hz), 7.68 (d, 4H, J = 8.6 Hz). Mass spectrometry: M + 3Na-2H (m / z: 3592) was detected.
G3−PhE−SHと金ナノ粒子からなるナノコンポジットの調製
実施例3で得た第3世代デンドロンを側鎖とするジチオールフェニレンエチニレンG3−PhE−SH(20mg)を20%エタノール/テトラヒドロフラン混合溶媒に溶解し、ここへ水素化ホウ素ナトリウム(42mg)を加え30分攪拌した。ここへ、合成例7で得たヘキサンチオールを配位子とする金ナノ粒子(13mg)を加え一晩攪拌した。反応終了後、反応前にはなかったヘキサンチオール臭があったことからヘキサンチオールが置換される配位子交換反応が進行したと考えられた。溶媒を減圧留去後、クロロホルムで抽出し有機相を得、これを水洗(2回)し次いで数mLの容量まで濃縮後、エタノールを加え−20℃で生成物を沈殿させた。溶媒上澄み液をデカンテーションで除き、沈殿物を再度クロロホルムに溶解、エタノールを加え−20℃で再沈殿させた。この再沈殿操作を3回行った。沈殿物を捕集し乾燥して目的のG3−PhE−SHと金ナノ粒子からなるナノコンポジットを得た。構造確認は走査型電子顕微鏡と核磁気共鳴スペクトル(NMR:
チオール基による金ナノ粒子との結合生成の確認)でおこなった。
(比較例2)
アンモニア水によるin−situ脱アセチル基反応によるナノコンポジット調製の試み
J.Am.Chem.Soc.,117巻,9529頁(1995)及びChem.E
ur.J.;23巻,5118(2001)によると、ジチオール末端共役分子を用いた自己集合膜(SAM)の作成において、NH4OHを用いるin−situ脱アセチル基
反応によりジスルフィドオリゴマー生成を回避している。そこで、この方法の本系への適用を検討した。アルゴンガス雰囲気下、合成例3で得たG3−PhE−SAc(7mg)をテトラヒドロフラン(0.5mL)に溶解させ、ここへ、合成例6で得たヘキサンチオールを配位子とする金ナノ粒子(7mg)と25%アンモニア水を加え攪拌したが、核磁気共鳴スペクトル(NMR)で実施例4同等のジチオールフェニレンエチニレンG3−PhE−SHと金ナノ粒子からなるナノコンポジットは生成しないことを確認した。反応溶媒をトルエンに変更しても同様の結果であった。
Preparation of nanocomposite composed of G3-PhE-SH and gold nanoparticles Dithiolphenyleneethynylene G3-PhE-SH (20 mg) having the third-generation dendron obtained in Example 3 as a side chain is mixed with 20% ethanol / tetrahydrofuran. Into this, sodium borohydride (42 mg) was added and stirred for 30 minutes. To this, gold nanoparticles (13 mg) having hexanethiol obtained in Synthesis Example 7 as a ligand were added and stirred overnight. After completion of the reaction, it was thought that the ligand exchange reaction in which hexanethiol was substituted proceeded because there was a hexanethiol odor that was not present before the reaction. After evaporating the solvent under reduced pressure, extraction with chloroform yielded an organic phase, which was washed with water (twice), concentrated to a volume of several mL, ethanol was added, and the product was precipitated at -20 ° C. The solvent supernatant was removed by decantation, the precipitate was dissolved again in chloroform, ethanol was added and reprecipitation was carried out at -20 ° C. This reprecipitation operation was performed three times. The precipitate was collected and dried to obtain a target nanocomposite composed of G3-PhE-SH and gold nanoparticles. The structure is confirmed by scanning electron microscope and nuclear magnetic resonance spectrum (NMR:
Confirmation of bond formation with gold nanoparticles by thiol group).
(Comparative Example 2)
Trial of nanocomposite preparation by in-situ deacetylation reaction with aqueous ammonia Am. Chem. Soc. 117, 9529 (1995) and Chem. E
ur. J. et al. 23, 5118 (2001) avoids the formation of disulfide oligomers by the in-situ deacetylation reaction using NH 4 OH in the production of a self-assembled film (SAM) using dithiol-terminated conjugated molecules. Therefore, the application of this method to this system was examined. G3-PhE-SAc (7 mg) obtained in Synthesis Example 3 was dissolved in tetrahydrofuran (0.5 mL) under an argon gas atmosphere, and gold nanoparticles having hexanethiol obtained in Synthesis Example 6 as a ligand were dissolved therein. (7 mg) and 25% aqueous ammonia were added and stirred, but it was confirmed by nuclear magnetic resonance spectrum (NMR) that a nanocomposite composed of dithiolphenyleneethynylene G3-PhE-SH equivalent to Example 4 and gold nanoparticles was not generated. did. Similar results were obtained even when the reaction solvent was changed to toluene.
G3−PhE−SHと金ナノ粒子からなるナノコンポジット薄膜の調製
実施例4で得たナノコンポジットをトルエンに溶解し、PETフィルム上にスピンコートして薄膜を得た。この薄膜は、PETフィルムのたわみに追随して曲がる柔軟性を持っていた。
Preparation of Nanocomposite Thin Film Consisting of G3-PhE-SH and Gold Nanoparticles The nanocomposite obtained in Example 4 was dissolved in toluene and spin coated on a PET film to obtain a thin film. This thin film had the flexibility to bend following the deflection of the PET film.
圧縮成型により得たナノコンポジット薄膜の導電性測定
前記導電性測定方法に従い、実施例4で得たナノコンポジットの圧縮成型薄膜を得、導電性を測定した。結果は表1に示した。
Conductivity measurement of nanocomposite thin film obtained by compression molding According to the conductivity measurement method, the nanocomposite compression molded thin film obtained in Example 4 was obtained, and the conductivity was measured. The results are shown in Table 1.
ヨウ素ドープした圧縮成型ナノコンポジット薄膜の導電性測定
実施例4で得たナノコンポジットを実施例6同様圧縮成型薄膜とし、次いで前記ヨウ素ドーピング処理を施して、前記導電性測定方法に従い測定した。結果は表1に示した。
Measurement of conductivity of compression-molded nanocomposite thin film doped with iodine The nanocomposite obtained in Example 4 was formed into a compression-molded thin film in the same manner as in Example 6, then subjected to the iodine doping treatment, and measured according to the method of measuring conductivity. The results are shown in Table 1.
半導体ナノ粒子を含有するナノコンポジット
実施例3で得たG3−PhE−SHを、公知のホットソープ法(トリオクチルホスフィンオキシドを配位子とする高温反応)で得られるCdSeナノ粒子やCdSe/ZnSコアシェル型ナノ粒子、あるいはエタノール中で酢酸亜鉛に水酸化リチウムなどの塩基を作用させて得られるZnOナノ粒子などの、チオール基が配位可能な半導体ナノ粒子と混合
して、ナノコンポジットを調製可能である。このナノコンポジットの構造は、実施例4同様、SEM観察とNMRにより確認される。
Nanocomposite containing semiconductor nanoparticles CdSe nanoparticles and CdSe / ZnS obtained by known hot soap method (high temperature reaction using trioctylphosphine oxide as a ligand) for G3-PhE-SH obtained in Example 3 Nanocomposites can be prepared by mixing with core-shell nanoparticles or semiconductor nanoparticles capable of coordinating thiol groups, such as ZnO nanoparticles obtained by allowing zinc acetate to react with zinc acetate in ethanol. It is. The structure of this nanocomposite is confirmed by SEM observation and NMR as in Example 4.
合成例8:ポリベンジルエーテルデンドリマー側鎖を有しチオール末端を有するポリフェニレンエチニレン
前記合成例2で合成した第3世代デンドリマーを結合したジエチニレンベンゼン[G−3]2E2(1.0当量)、1,4−ジヨードベンゼン(1.0当量)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.05当量)を混合し、ガラス容器内の真空引きと窒素置換を繰り返した後、乾燥THFを溶媒として加え、更に、ヨウ化第一銅2.75ミリモルを1000mLのジイソプロピルアミンに溶解した溶液をヨウ化第一銅として0.05当量となるよう攪拌しながら加えた。これを50℃で約24時間攪拌後、合成例1で得たS−アセチル−4−ヨードチオフェノールを少量加え更に約15時間反応を継続した。反応液は減圧下濃縮し、クロロホルム可溶分をメタノール中に投入する再沈殿法で精製した。この生成物はTHFに可溶であり、この溶液の吸収スペクトル測定で、280nm付近にポリベンジルエーテルデンドリマー由来の吸収帯を、432nm付近にPPhE高分子主鎖由来の吸収帯をそれぞれ観測した。このS−アセチル末端を有するポリフェニレンエチニレン(以下「S−Ac−PPhE」と略記)のGPCデータはMn = 14100, Mw = 18100, Mw/Mn = 1.28であった。
Synthesis Example 8: Polyphenylene ethynylene having a polybenzyl ether dendrimer side chain and having a thiol terminal The diethynylenebenzene [G-3] 2E2 (1.0 equivalent) to which the third-generation dendrimer synthesized in Synthesis Example 2 was bound 1,4-diiodobenzene (1.0 eq), tetrakis (triphenylphosphine) palladium (0) (0.05 eq) are mixed, and after repeated vacuuming and nitrogen substitution in the glass container, drying is performed. THF was added as a solvent, and a solution prepared by dissolving 2.75 mmol of cuprous iodide in 1000 mL of diisopropylamine was added as cuprous iodide with stirring to 0.05 equivalent. After stirring at 50 ° C. for about 24 hours, a small amount of S-acetyl-4-iodothiophenol obtained in Synthesis Example 1 was added, and the reaction was continued for about 15 hours. The reaction solution was concentrated under reduced pressure, and purified by a reprecipitation method in which the chloroform-soluble component was poured into methanol. This product was soluble in THF, and by measuring the absorption spectrum of this solution, an absorption band derived from a polybenzyl ether dendrimer was observed around 280 nm, and an absorption band derived from a PPhE polymer main chain was observed around 432 nm. The GPC data of this polyphenyleneethynylene having an S-acetyl terminus (hereinafter abbreviated as “S-Ac-PPhE”) were Mn = 14100, Mw = 18100, Mw / Mn = 1.28.
このS−Ac−PPhE(20mg)をTHF(3mL)に溶解し、水酸化ナトリウム(49mg)と水(1mL)をここに加え一晩室温で攪拌した。反応液はその後濃縮し、残渣をクロロホルムで抽出し、有機相を水で数回洗浄し、最後に飽和食塩水で洗った。有機相を濃縮して得た残渣を真空乾燥し、再度クロロホルム(10mL)に溶解して0.25μmPTFEフィルターで濾過して再び濃縮して、ポリベンジルエーテルデンドリマー側鎖を有しチオール末端を有するポリフェニレンエチニレン(以下「SH−PPhE」と略記)を得た。 This S-Ac-PPhE (20 mg) was dissolved in THF (3 mL), sodium hydroxide (49 mg) and water (1 mL) were added thereto, and the mixture was stirred overnight at room temperature. The reaction solution was then concentrated, the residue was extracted with chloroform, the organic phase was washed several times with water, and finally with saturated brine. The residue obtained by concentrating the organic phase is vacuum-dried, dissolved again in chloroform (10 mL), filtered through a 0.25 μm PTFE filter, and concentrated again to give polyphenylene having a polybenzyl ether dendrimer side chain and a thiol end. Ethynylene (hereinafter abbreviated as “SH-PPhE”) was obtained.
(比較例3)
チオール末端を有するポリフェニレンエチニレンと金ナノ粒子の組成物
合成例8で得たチオール末端を有するポリフェニレンエチニレンSH−PPhE(20mg)、THF(2.5mL)、エタノール(0.8mL)をナシ型フラスコ(25mL容量)に入れ、続いて水素化ホウ素ナトリウム(41mg)を添加し、約1時間攪拌した。合成例7で得たヘキサンチオールで表面被覆された金ナノ粒子(10.6mg)をTHF(0.5mL)とともに加え、一昼夜攪拌した。その後、溶媒を減圧で留去し反応物をクロロホルム(10mL)で抽出し、水洗(10mL)を数回繰り返し、得られたクロロホルム相を約0.5mL程度まで濃縮し、そこへエタノール(20mL)を注いで反応物分散液を得、これを−20〜−30℃で静置し沈殿物を得た。これをフィルターで捕集し、乾燥することで組成物を得た。このクロロホルム溶液を塗布して得たナノコンポジット薄膜の導電性測定を実施例6同様に行った。結果を表1に示した。
(Comparative Example 3)
Composition of thiol-terminated polyphenylene ethynylene and gold nanoparticles The thiol-terminated polyphenylene ethynylene SH-PPhE (20 mg), THF (2.5 mL), and ethanol (0.8 mL) obtained in Synthesis Example 8 are pear types. Placed in flask (25 mL capacity) followed by addition of sodium borohydride (41 mg) and stirred for about 1 hour. Gold nanoparticles (10.6 mg) surface-coated with hexanethiol obtained in Synthesis Example 7 were added together with THF (0.5 mL), and the whole was stirred overnight. Thereafter, the solvent was distilled off under reduced pressure, the reaction product was extracted with chloroform (10 mL), washed with water (10 mL) several times, the resulting chloroform phase was concentrated to about 0.5 mL, and ethanol (20 mL) was added thereto. By pouring, a reactant dispersion was obtained, which was allowed to stand at -20 to -30 ° C to obtain a precipitate. This was collected with a filter and dried to obtain a composition. The conductivity of the nanocomposite thin film obtained by applying this chloroform solution was measured in the same manner as in Example 6. The results are shown in Table 1.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003321313A JP2005089318A (en) | 2003-09-12 | 2003-09-12 | Phenyleneethynylenes and nanoparticle composition containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003321313A JP2005089318A (en) | 2003-09-12 | 2003-09-12 | Phenyleneethynylenes and nanoparticle composition containing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005089318A true JP2005089318A (en) | 2005-04-07 |
Family
ID=34453037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003321313A Pending JP2005089318A (en) | 2003-09-12 | 2003-09-12 | Phenyleneethynylenes and nanoparticle composition containing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005089318A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005232293A (en) * | 2004-02-19 | 2005-09-02 | Japan Science & Technology Agency | Water-soluble dendrimer molecular wire and method of its synthesis |
WO2006062226A1 (en) * | 2004-12-07 | 2006-06-15 | Sumitomo Chemical Company, Limited | Polymer material and device using same |
WO2007094361A1 (en) * | 2006-02-16 | 2007-08-23 | Idemitsu Kosan Co., Ltd. | Organic thin film transistor and organic thin film light-emitting transistor |
JP2010504409A (en) * | 2006-09-22 | 2010-02-12 | フライズ・メタルズ・インコーポレイテッド | Solvent system for metals and inks |
CN105669507A (en) * | 2016-01-04 | 2016-06-15 | 辽宁大学 | Molecular bridging agent and preparation method and application thereof in Raman probe |
JP2019502808A (en) * | 2015-11-03 | 2019-01-31 | カネカ アメリカズ ホールディング,インコーポレイティド | Controlling the dispersion stability of nanoparticles by adjusting the dielectric constant and determining the intrinsic dielectric constant of surfactant-free nanoparticles |
-
2003
- 2003-09-12 JP JP2003321313A patent/JP2005089318A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005232293A (en) * | 2004-02-19 | 2005-09-02 | Japan Science & Technology Agency | Water-soluble dendrimer molecular wire and method of its synthesis |
WO2006062226A1 (en) * | 2004-12-07 | 2006-06-15 | Sumitomo Chemical Company, Limited | Polymer material and device using same |
GB2435194A (en) * | 2004-12-07 | 2007-08-15 | Sumitomo Chemical Co | Polymer material and device using same |
GB2435194B (en) * | 2004-12-07 | 2009-12-02 | Sumitomo Chemical Co | Polymer material and device using the same |
US8445894B2 (en) | 2006-02-16 | 2013-05-21 | Idemitsu Kosan Co., Ltd. | Organic thin film transistor |
WO2007094361A1 (en) * | 2006-02-16 | 2007-08-23 | Idemitsu Kosan Co., Ltd. | Organic thin film transistor and organic thin film light-emitting transistor |
US7521710B2 (en) | 2006-02-16 | 2009-04-21 | Idemitsu Kosan Co., Ltd. | Organic thin film transistor |
JP2010504409A (en) * | 2006-09-22 | 2010-02-12 | フライズ・メタルズ・インコーポレイテッド | Solvent system for metals and inks |
US8597548B2 (en) | 2006-09-22 | 2013-12-03 | Alpha Metals, Inc. | Solvent systems for metals and inks |
JP2019502808A (en) * | 2015-11-03 | 2019-01-31 | カネカ アメリカズ ホールディング,インコーポレイティド | Controlling the dispersion stability of nanoparticles by adjusting the dielectric constant and determining the intrinsic dielectric constant of surfactant-free nanoparticles |
JP2022093375A (en) * | 2015-11-03 | 2022-06-23 | カネカ アメリカズ ホールディング,インコーポレイティド | Control of nanoparticles dispersion stability through dielectric constant tuning, and determination of intrinsic dielectric constant of surfactant-free nanoparticles |
JP7187316B2 (en) | 2015-11-03 | 2022-12-12 | カネカ アメリカズ ホールディング,インコーポレイティド | Control of dispersion stability of nanoparticles by adjusting dielectric constant and determination of intrinsic dielectric constant of surfactant-free nanoparticles |
JP7328393B2 (en) | 2015-11-03 | 2023-08-16 | カネカ アメリカズ ホールディング,インコーポレイティド | Control of dispersion stability of nanoparticles by adjusting dielectric constant and determination of intrinsic dielectric constant of surfactant-free nanoparticles |
CN105669507A (en) * | 2016-01-04 | 2016-06-15 | 辽宁大学 | Molecular bridging agent and preparation method and application thereof in Raman probe |
CN105669507B (en) * | 2016-01-04 | 2017-11-14 | 辽宁大学 | A kind of molecule bridging agent and preparation method thereof and the application in Raman microprobe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Batool et al. | Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties | |
Han et al. | One-step reverse micelle polymerization of organic dispersible polyaniline nanoparticles | |
EP2702005B1 (en) | Graphene nanoribbons, methods of making same, and uses thereof | |
TWI508922B (en) | Compositions and methods for growing copper nanowires | |
Wu et al. | β-Cyclodextrin-capped polyrotaxanes: one-pot facile synthesis via click chemistry and use as templates for platinum nanowires | |
JP5435229B2 (en) | Dispersant of fine metal particles comprising a polymer compound having a dithiocarbamate group | |
JP2009535497A (en) | Nanoparticles, method for producing the same, and use thereof | |
Ramesan et al. | Structural, mechanical and electrical properties biopolymer blend nanocomposites derived from poly (vinyl alcohol)/cashew gum/magnetite | |
Dule et al. | Hierarchical nanostructures of tunable shapes through self-aggregation of POSS end-functional polymer and poly (ionic liquid) hybrids | |
Ravi Kumar et al. | Synthesis and characterization of novel poly (aniline-co-m-aminoacetophenone) copolymer nanocomposites using dodecylbenzene sulfonic acid as a soft template | |
Doğan et al. | A novel shape-controlled synthesis of bifunctional organic polymeric nanoparticles | |
JP2005089318A (en) | Phenyleneethynylenes and nanoparticle composition containing the same | |
CN104919609A (en) | Thermoelectric conversion material, thermoelectric conversion element, and article for thermoelectric power generation and sensor power source using same | |
Agrawal et al. | Synthesis of CdS nanocrystals in poly (3-hexylthiophene) polymer matrix: optical and structural studies | |
WO2014119468A1 (en) | Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using thermoelectric conversion element, and power supply for sensors using thermoelectric conversion element | |
US20100289012A1 (en) | Organic switching element and method for producing the same | |
Abbas et al. | Preparation and characterization of nanocomposite between poly (aniline-co-m-chloroaniline)–copper sulfide nanoparticles | |
de Freitas et al. | Synthesis and characterization of single wall carbon nanotube-grafted poly (3-hexylthiophene) and their nanocomposites with gold nanoparticles | |
JP2004091328A (en) | Inorganic nanoparticle-organic compound composite and unidimensionally arranged integrated structure thereof | |
JP2002322348A (en) | Composition containing conductive polymer with dendron side chain and ultrafine particulate | |
Ye et al. | CdTe/PEDOT-PSS hybrid microspheres: Facile fabrication and multiple-color pH-sensing | |
Taranekar et al. | Nanocomposite Films of a Polyfluorene Copolymer and Carbazole–Thiol‐Capped Gold Nanoparticles: Electrochemical Crosslinking and Energy‐Transfer Properties | |
CN104919608A (en) | Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using thermoelectric conversion element, and power supply for sensors using thermoelectric conversion element | |
JP2009500475A (en) | Zinc oxide polymer nanocomposite and method for producing zinc oxide polymer nanocomposite | |
Zhao et al. | Synthesis and characterization of PbS/modified hyperbranched polyester nanocomposite hollow spheres at room temperature |