JP2005089232A - Method of producing cement composition - Google Patents
Method of producing cement composition Download PDFInfo
- Publication number
- JP2005089232A JP2005089232A JP2003324275A JP2003324275A JP2005089232A JP 2005089232 A JP2005089232 A JP 2005089232A JP 2003324275 A JP2003324275 A JP 2003324275A JP 2003324275 A JP2003324275 A JP 2003324275A JP 2005089232 A JP2005089232 A JP 2005089232A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- composition
- weight
- inorganic waste
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004568 cement Substances 0.000 title claims abstract description 167
- 239000000203 mixture Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title abstract description 25
- 239000010805 inorganic waste Substances 0.000 claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 12
- 239000010440 gypsum Substances 0.000 claims abstract description 12
- 229910052602 gypsum Inorganic materials 0.000 claims abstract description 12
- 238000010304 firing Methods 0.000 claims abstract description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 26
- 239000004567 concrete Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 239000000843 powder Substances 0.000 claims description 22
- 239000002893 slag Substances 0.000 claims description 22
- 238000002156 mixing Methods 0.000 claims description 17
- 239000002270 dispersing agent Substances 0.000 claims description 15
- 239000010883 coal ash Substances 0.000 claims description 11
- 239000002956 ash Substances 0.000 claims description 4
- 238000004056 waste incineration Methods 0.000 claims description 4
- 239000002699 waste material Substances 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 7
- 239000006227 byproduct Substances 0.000 abstract description 2
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 abstract 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 24
- 239000000047 product Substances 0.000 description 24
- 229910004298 SiO 2 Inorganic materials 0.000 description 12
- 239000000292 calcium oxide Substances 0.000 description 12
- 235000012255 calcium oxide Nutrition 0.000 description 12
- 239000006072 paste Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 235000019738 Limestone Nutrition 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000006028 limestone Substances 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000011398 Portland cement Substances 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 125000003827 glycol group Chemical group 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HOOWDPSAHIOHCC-UHFFFAOYSA-N dialuminum tricalcium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[Al+3].[Al+3].[Ca++].[Ca++].[Ca++] HOOWDPSAHIOHCC-UHFFFAOYSA-N 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、セメント組成物の新規な製造方法に関する。詳しくは、Al2O3等のアルミニウム成分を高濃度で含有する無機廃棄物を多量に処理することができ、しかも、得られる硬化体の物性において問題のないセメント組成物を得ることが可能なセメント組成物の製造方法を提供するものである。
The present invention relates to a novel method for producing a cement composition. Specifically, it is possible to treat a large amount of inorganic waste containing a high concentration of an aluminum component such as Al 2 O 3 and to obtain a cement composition having no problem in the physical properties of the resulting cured product. A method for producing a cement composition is provided.
近年、地球環境問題の観点から、廃棄物の有効利用が重要な課題となってきている。特に、セメント製造原料或いは燃料として廃棄物を使用し、セメントクリンカーの焼成を行う方法は、該廃棄物の多量処理の観点から最も効果的な方法として注目されており、既に多くの廃棄物を使用したプロセスが提案されている(非特許文献1)。 In recent years, effective use of waste has become an important issue from the viewpoint of global environmental problems. In particular, the method of using waste as a cement manufacturing raw material or fuel and firing cement clinker is attracting attention as the most effective method from the viewpoint of mass processing of the waste, and already uses a lot of waste. Has been proposed (Non-Patent Document 1).
しかしながら、上記廃棄物のうち、石炭灰、都市ゴミ焼却灰、高炉水砕スラグ、高炉徐冷スラグなどの無機廃棄物は、通常の組成のセメントクリンカー成分に比べてアルミニウムの含有量が多く、そのため、かかるアルミニウムの含有量が多い無機廃棄物(以下、高Al含有無機廃棄物ともいう。)の使用量を増大させた場合、セメントクリンカー成分のうちアルミン酸三カルシウム(3CaO・Al2O3、以下C3Aと略記する)の含有量が増加する傾向がある。このC3Aは水和初期の反応性が高いため、その含有量が増加すると、これを使用したセメントペースト、モルタル、コンクリート等のセメント組成物の流動性、施工性が低下するという問題が生じる。 However, among the above wastes, inorganic wastes such as coal ash, municipal waste incineration ash, blast furnace granulated slag, and blast furnace slow-cooled slag have a higher aluminum content than ordinary cement clinker components. In the case where the amount of inorganic waste containing a large amount of aluminum (hereinafter also referred to as high Al-containing inorganic waste) is increased, tricalcium aluminate (3CaO · Al 2 O 3 , among the cement clinker components) The content of (hereinafter abbreviated as C 3 A) tends to increase. Since this C 3 A has a high reactivity at the initial stage of hydration, when its content increases, there arises a problem that the fluidity and workability of the cement composition such as cement paste, mortar, concrete and the like are lowered. .
それ故、セメントクリンカー原料への高Al含有無機廃棄物の使用量には限界があり、通常のセメントクリンカー原料としての使用量の上限は、原料全体の20%程度に止まり、それ以上の高Al含有無機廃棄物をセメント製造設備で処理することは困難であるというのが現状であった。 Therefore, there is a limit to the amount of high Al-containing inorganic waste used in the cement clinker raw material, and the upper limit of the amount used as a normal cement clinker raw material is only about 20% of the total raw material. At present, it is difficult to treat the inorganic waste contained in the cement production facility.
従って、得られるセメント組成物の使用時における流動性、施工性を低下させることなく、より多くの高Al含有無機廃棄物をセメント製造へ使用する技術の開発が望まれていた。 Accordingly, it has been desired to develop a technique for using more high Al-containing inorganic waste for cement production without reducing the fluidity and workability during use of the resulting cement composition.
本発明者等は、上記課題を解決すべく鋭意研究を行ってきた。その結果、セメントクリンカーの焼成とは別工程にて、高Al含有無機廃棄物を使用してCaO・Al2O3・2SiO2を20重量%以上含有する焼成物を製造し、これをセメントクリンカー成分及び石膏と混合してセメント組成物とすることにより、高Al含有無機廃棄物を大量にセメント組成物の原料として使用することができ、しかも、該セメント組成物得られる硬化特性において問題とならない程度に安定であること、そして、前記セメントクリンカーの原料としての高Al含有無機廃棄物の処理量に加えて、セメント組成物における高Al含有無機廃棄物の処理量を飛躍的増大せしめることが可能であることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive research to solve the above problems. As a result, the calcination of cement clinker in a separate step, to produce a calcined product of CaO · Al 2 O 3 · 2SiO 2 containing 20% by weight or more using a high Al-containing inorganic wastes, which cement clinker By mixing with ingredients and gypsum to make a cement composition, a large amount of high Al-containing inorganic waste can be used as a raw material for the cement composition, and there is no problem in the curing characteristics obtained by the cement composition. It is possible to increase the treatment amount of high Al content inorganic waste in the cement composition in addition to the treatment amount of high Al content inorganic waste as a raw material of the cement clinker. As a result, the present invention has been completed.
即ち、本発明は、アルミニウム成分を高濃度で含有する無機廃棄物を焼成して20重量%以上含有するCaO・Al2O3・2SiO2を主成分とする焼成物を生成せしめ、該焼成物、セメントクリンカー成分及び石膏を混合することを特徴とするセメント組成物の製造方法である。 That is, the present invention calcinates inorganic waste containing an aluminum component at a high concentration to produce a fired product containing CaO.Al 2 O 3 .2SiO 2 as a main component and containing 20% by weight or more. And a cement clinker component and gypsum are mixed.
本発明のセメント組成物の製造方法は、使用時の流動性、施工性を大きく低下させることなく、アルミニウム成分を高濃度で含有する無機廃棄物を多量に処理する事の出来る新規な製造方法であり、かかる方法によって、新規なセメント混和材をも提供するものである。 The production method of the cement composition of the present invention is a novel production method capable of treating a large amount of inorganic waste containing a high concentration of aluminum components without greatly reducing the fluidity and workability during use. Yes, such a method also provides a new cement admixture.
ちなみに、従来、セメント製造における廃棄物使用量は原料中の20%程度が上限であったが、本発明の製造方法を使用することにより、セメントの品質に悪影響を与えることなく、セメント原料中の量に換算して70%程度まで廃棄物使用量を増加させることが可能となる。 Incidentally, conventionally, the upper limit of the amount of waste used in cement production is about 20% in the raw material, but by using the production method of the present invention, the amount of waste in the cement raw material is not adversely affected. It becomes possible to increase the amount of waste used up to about 70% in terms of quantity.
上記のように、多量の廃棄物、副産物の処理を可能とする本発明は、工業的見地のみならず、地球環境問題の観点からも極めて価値の高いものである。 As described above, the present invention capable of processing a large amount of waste and by-products is extremely valuable not only from an industrial standpoint but also from the viewpoint of global environmental problems.
以下、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明において、高Al含有無機廃棄物は、アルミニウムを高濃度、例えば、酸化アルミニウム(Al2O3)換算で、5重量%以上、一般には、10〜50重量%の割合で含有する無機廃棄物をいう。また、高Al含有無機廃棄物には、上記アルミニウム成分の他に、カルシウム成分、ケイ素成分が含有されているものが好ましい。 In the present invention, the high Al-containing inorganic waste is an inorganic waste containing aluminum at a high concentration, for example, 5 wt% or more, generally 10 to 50 wt% in terms of aluminum oxide (Al 2 O 3 ). Say things. The high Al-containing inorganic waste preferably contains a calcium component and a silicon component in addition to the aluminum component.
上記高Al含有無機廃棄物を具体的に例示すれば、石炭灰、都市ゴミ焼却灰、高炉水砕スラグ、高炉徐冷スラグなどが挙げられ、これらの一種又は二種以上が組み合わせて使用される。 Specific examples of the high Al-containing inorganic waste include coal ash, municipal waste incineration ash, blast furnace granulated slag, blast furnace slow-cooled slag, and the like, and one or more of these are used in combination. .
上記高Al含有無機廃棄物のAl2O3含有量は、石炭灰は10重量%以上、特に14〜36重量%のものが、都市ゴミ焼却灰は10重量%以上、特に12〜30重量%のものが、高炉水砕スラグは10重量%以上、特に12〜16重量%のものが、高炉徐冷スラグは10重量%以上、特に12〜16重量%のものが好適である。 The Al 2 O 3 content of the high Al-containing inorganic waste is 10% by weight or more, especially 14 to 36% by weight for coal ash, and 10% by weight or more, especially 12 to 30% by weight for municipal waste incineration ash. The blast furnace granulated slag is preferably 10% by weight or more, particularly 12 to 16% by weight, and the blast furnace slow-cooled slag is preferably 10% by weight or more, particularly 12 to 16% by weight.
本発明において、高Al含有無機廃棄物を焼成せしめて、組成式CaO・Al2O3・2SiO2(以下CAS2と略記する)で表される鉱物を20重量%以上含有する焼成物(以下、特定焼成物ともいう。)を製造する方法は、特に制限されない。 In the present invention, a high Al content inorganic waste is fired, and a fired product (hereinafter referred to as 20% by weight or more) containing a mineral represented by a composition formula CaO.Al 2 O 3 .2SiO 2 (hereinafter abbreviated as CAS 2 ). The method for producing the specific fired product is not particularly limited.
一般には、高Al含有無機廃棄物単独、二種以上の高Al含有無機廃棄物の組み合わせ、或いは、これらの高Al含有無機廃棄物とカルシウム成分及び/又はケイ素成分の組み合わせにより、組成を調整し、1000〜1600℃、好ましくは、1100〜1500℃で焼成する方法が好適である。 In general, the composition is adjusted by a high Al content inorganic waste alone, a combination of two or more types of high Al content inorganic waste, or a combination of these high Al content inorganic waste and calcium component and / or silicon component. , 1000-1600 ° C., preferably 1100-1500 ° C.
上記カルシウム成分を含む物質としては、石灰石、生石灰、消石灰等が、ケイ素成分を含む物質としては、けい石、けい砂等が挙げられる。また、上記装置としては、セメントキルン等の高温加熱が可能な装置が好適に利用できる。 Examples of the substance containing the calcium component include limestone, quicklime, slaked lime, and the like, and examples of the substance containing the silicon component include quartzite and silica sand. Moreover, as the device, a device capable of high-temperature heating such as a cement kiln can be suitably used.
また、上記特定焼成物には、前記CAS2の他に、CaO、Al2O3及びSiO2等の酸化物、CaO、Al2O3及びSiO2の2種以上からなる化合物、SiO2、Al2O3、Fe2O3、CaO、MgO、Na2O、K2OやTiO2等からなるガラス相、あるいはこれら以外の化合物が存在する場合があるが、これらは、前記CAS2を20重量%以上含有する。本発明では、CAS2を50重量%以上、特に、70重量%以上含有する範囲を満足することが好ましく、他の化合物は、本発明の効果を著しく阻害しない量で存在していてもよい。 The aforementioned specific fired product, in addition to the CAS 2, CaO, oxides such as Al 2 O 3 and SiO 2, CaO, Al 2 O 3 and compounds comprising two or more of SiO 2, SiO 2, al 2 O 3, Fe 2 O 3, CaO, MgO, Na 2 O, the glass phase consists of K 2 O and TiO 2, etc., or there is a case where compounds other than these are present, they, the CAS 2 Contains 20% by weight or more. In the present invention, it is preferable that the content of CAS 2 is 50% by weight or more, particularly 70% by weight or more, and other compounds may be present in an amount that does not significantly inhibit the effects of the present invention.
前記CAS2以外の化合物として、具体的には、CaO・SiO2、3CaO・SiO2、2CaO・SiO2、CaO・Al2O3、3CaO・Al2O3、3Al2O3・2SiO2、2CaO・Fe2O3、3CaO・Fe2O3、2CaO・Al2O3・SiO2、Na2O・Al2O3・6SiO2、K2O・Al2O3・6SiO2等が挙げられる。 The CAS as two other compounds, specifically, CaO · SiO 2, 3CaO · SiO 2, 2CaO · SiO 2, CaO · Al 2 O 3, 3CaO · Al 2 O 3, 3Al 2 O 3 · 2SiO 2, 2CaO · Fe 2 O 3, 3CaO · Fe 2 O 3, 2CaO · Al 2 O 3 · SiO 2, Na 2 O · Al 2 O 3 · 6SiO 2, K 2 O · Al 2 O 3 · 6SiO 2 and the like can be mentioned It is done.
本発明において、上記特定焼成物は、セメントクリンカー成分及び石膏に添加してセメント組成物としたとき、その硬化特性に著しい影響を与えることが無い。 In the present invention, when the above-mentioned specific fired product is added to the cement clinker component and gypsum to form a cement composition, it does not significantly affect the curing characteristics.
即ち、特定組成物は、これを混合して得られるセメント組成物を水と混練後の反応性が低く、硬化特性にほとんど関与しない。そのため、該特定焼成物はセメント組成物中に多量に含有せしめることができる。 That is, the specific composition has low reactivity after kneading the cement composition obtained by mixing it with water, and hardly participates in the curing characteristics. Therefore, the specific fired product can be contained in a large amount in the cement composition.
本発明において、特定焼成物が、得られるセメント組成物中に占める割合は特に制限されるものではないが、セメント組成物のAl2O3含有量が15重量%以下、より好ましくは12重量%以下となるように添加することが好ましい。 In the present invention, the ratio of the specific calcined product in the obtained cement composition is not particularly limited, but the Al 2 O 3 content of the cement composition is 15% by weight or less, more preferably 12% by weight. It is preferable to add so that it may become the following.
本発明において、前記特定焼成物と混合されるセメントクリンカー成分は、特に制限されるものではなく、公知の組成よりなるものであればよいが、一般には、組成式3CaO・SiO2(以下C3Sと略記する)、2CaO・SiO2(以下C2Sと略記する)、3CaO・Al2O3(以下C3Aと略記する)、4CaO・Al2O3・Fe2O3(以下C4AFと略記する)より選ばれた少なくとも一種の鉱物を主成分とするものが好ましい。 In the present invention, the cement clinker component to be mixed with the specific fired product is not particularly limited and may be any composition having a known composition. Generally, the composition formula 3CaO · SiO 2 (hereinafter referred to as C 3) is used. 2CaO · SiO 2 (hereinafter abbreviated as C 2 S), 3CaO · Al 2 O 3 (hereinafter abbreviated as C 3 A), 4CaO · Al 2 O 3 · Fe 2 O 3 (hereinafter referred to as C) 4 ) (Abbreviated as 4AF) is preferred as the main component.
これら以外の鉱物あるいは化合物が含有される場合があるが、本発明の効果を阻害しない範囲であれば特に問題とならない。 Minerals or compounds other than these may be contained, but there is no particular problem as long as the effects of the present invention are not impaired.
上記組成を有するセメントクリンカー成分を有するセメントクリンカーを具体的に例示すれば、普通、早強、超早強、中庸熱、低熱等の各種ポルトランドセメントクリンカーが好適に使用される。 Specific examples of cement clinker having a cement clinker component having the above-described composition include various portland cement clinkers such as normal strength, super early strength, moderate heat, and low heat.
本発明において、上記セメントクリンカー成分を製造する際、前記高Al含有無機廃棄物をその原料の一部又は全部として使用することにより、該高Al含有無機廃棄物をセメント組成物中に、より大量に使用することができ好ましい。 In the present invention, when producing the cement clinker component, by using the high Al content inorganic waste as a part or all of the raw material, the high Al content inorganic waste in the cement composition in a larger amount. It can be used for this.
因みに、従来のように、セメントクリンカー成分の原料としてのみに高Al含有無機廃棄物を使用した場合に対して、更に、セメント組成物中にも高Al含有無機廃棄物を前記焼成物として混合することにより、該高Al含有無機廃棄物の使用量を230%程度向上せしめることができ、しかも、セメント組成物の硬化特性については特に問題とはならず、高Al含有無機廃棄物の処理量を飛躍的に増加せしめることが可能となる。 本発明のセメント組成物の製造方法において、上述した特定焼成物及びセメントクリンカー成分と共に、石膏が混合される。かかる石膏としては、二水石膏、半水石膏及び無水石膏の1種以上を使用することができる。該石膏の使用量は特に制限されるものではないが、セメントのSO3含有量が1.5〜10重量%となるように調整することが望ましい。上記SO3含有量が1.5重量%未満では、急結等の異常凝結が生じる事があり好ましくない。また、SO3含有量が10重量%を超えると、硬化体の強度発現性や寸法安定性が低下するため好ましくない。 Incidentally, in contrast to the case where a high Al content inorganic waste is used only as a raw material for the cement clinker component as in the prior art, the high Al content inorganic waste is further mixed in the cement composition as the fired product. Thus, the amount of the high Al-containing inorganic waste used can be improved by about 230%, and the curing characteristics of the cement composition are not particularly problematic. It becomes possible to increase dramatically. In the method for producing a cement composition of the present invention, gypsum is mixed together with the above-mentioned specific fired product and cement clinker component. As such gypsum, one or more of dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum can be used. The amount of gypsum used is not particularly limited, but it is desirable to adjust the cement so that the SO 3 content is 1.5 to 10% by weight. If the SO 3 content is less than 1.5% by weight, abnormal condensation such as rapid setting may occur, which is not preferable. Further, when the SO 3 content exceeds 10 wt% is not preferable because the strength development and dimensional stability of the cured product is reduced.
本発明のセメント組成物は、本発明の効果を阻害しない範囲で、上述した成分以外に少量成分を含有しても構わない。かかる少量成分を例示すれば、高炉水砕スラグ、高炉徐冷スラグ、フライアッシュ、石炭灰、石灰石微粉末等の無機質物質が挙げられる。 The cement composition of the present invention may contain a small amount of components in addition to the components described above as long as the effects of the present invention are not impaired. Examples of such minor components include inorganic substances such as blast furnace granulated slag, blast furnace slow-cooled slag, fly ash, coal ash, and fine limestone powder.
これらの少量成分の添加量は、一般に、セメント組成物中に、10重量%以下の割合となるように調整することが好ましい。 In general, the amount of these small components added is preferably adjusted so as to be a ratio of 10% by weight or less in the cement composition.
本発明において、各成分の混合方法は、特に制限されないが、セメントクリンカー成分と石膏を混合後、粉砕し、これと前記特定焼成物を粉砕したものとを混合する方法が好適である。 In the present invention, the mixing method of each component is not particularly limited. However, a method of mixing a cement clinker component and gypsum and then pulverizing the mixture and pulverizing the specific fired product is preferable.
また、それぞれを個別に粉砕した後混合する方法、任意の2成分を同時に粉砕し、別途粉砕した残りの成分と混合する方法、3成分を同時に粉砕する方法等が挙げられる。また、他の方法として、個別に粉砕された3成分をペースト、モルタル及びコンクリートの製造時に混合する方法等も採用することができる。 In addition, a method of individually pulverizing and mixing each of them, a method of simultaneously pulverizing two arbitrary components and mixing them with the remaining components separately pulverized, a method of simultaneously pulverizing three components, and the like. In addition, as another method, a method of mixing individually pulverized three components at the time of manufacturing paste, mortar and concrete can be employed.
本発明において、得られるセメント組成物のブレーン比表面積は、2000〜10000cm2/g、より好適には2500〜5000cm2/gであることが望ましい。 In the present invention, the specific cement surface area of the obtained cement composition is preferably 2000 to 10,000 cm 2 / g, more preferably 2500 to 5000 cm 2 / g.
上述した方法によって得られる本発明のセメント組成物は、主としてペースト、モルタル又はコンクリートの状態で使用される。また、使用に際して、通常これらの調整に使用される水、細骨材、粗骨材、セメント分散剤をはじめとする各種の化学混和材、セメント混和材、無機質添加剤、有機質添加剤等を使用することが可能である。 The cement composition of the present invention obtained by the above-described method is mainly used in the state of paste, mortar or concrete. In use, various chemical admixtures such as water, fine aggregates, coarse aggregates, cement dispersants, cement admixtures, inorganic additives, organic additives, etc. that are usually used for these adjustments are used. Is possible.
ところで、CAS2を20重量%以上含有する特定焼成物は、セメント組成物の流動性を向上させる効果が高く、セメント混和材として好適に使用できる。CAS2成分は、一般に陶磁器原料として利用されており、従来、セメント混和材へ適用されることはなかったが、本発明者らは、CAS2のセメント混合材としての挙動を研究した結果、これを多量に混合してもセメント組成物の物性に悪影響を与えず、しかも、セメント組成物の流動性が向上することを見出した。 By the way, the specific fired product containing 20% by weight or more of CAS 2 has a high effect of improving the fluidity of the cement composition, and can be suitably used as a cement admixture. The CAS 2 component is generally used as a ceramic raw material and has not been conventionally applied to cement admixtures. However, the present inventors have studied the behavior of CAS 2 as a cement admixture. It has been found that even if a large amount of is mixed, the physical properties of the cement composition are not adversely affected, and the fluidity of the cement composition is improved.
さらに、該セメント混和材を使用したコンクリート組成物は、硬化過程における自己収縮が小さく、寸法安定性に優れることをも見出した。 Furthermore, the present inventors have also found that a concrete composition using the cement admixture has small self-shrinkage during the curing process and is excellent in dimensional stability.
即ち、本発明によれば、CAS2を主成分とするセメント混和材をも提供される。 That is, according to the present invention is also provided a cement admixture composed mainly of CAS 2.
尚、本発明のCAS2を主成分とするセメント混和材は、前記高Al含有無機廃棄物を原料とした前記方法に限定されるものではなく、天然に産出されるCAS2を使用する方法、CaO質、Al2O3質及びSiO2質を含有する原料を所定の割合に混合し焼成する方法等が任意に使用される。 In addition, the cement admixture mainly composed of CAS 2 of the present invention is not limited to the above method using the high Al-containing inorganic waste as a raw material, and a method using CAS 2 produced in nature, A method of mixing a raw material containing CaO, Al 2 O 3 and SiO 2 at a predetermined ratio and baking is arbitrarily used.
本発明において、CAS2を主成分とするセメント混和材中のCAS2含有量は、20重量%以上、特に、50重量%以上である事が望ましい。 In the present invention, the CAS 2 content in the cement admixture containing CAS 2 as a main component is preferably 20% by weight or more, and particularly preferably 50% by weight or more.
本発明において、セメント混和材としてのブレーン比表面積は、2000〜10000cm2/gであることが望ましい。 In the present invention, the specific surface area of the brane as the cement admixture is desirably 2000 to 10000 cm 2 / g.
本発明のセメント混和材は、本発明のセメント組成物の一成分として使用される以外に、各種セメントと混合使用することができる。具体的には、普通、早強、超早強、中庸熱及び低熱等の各種ポルトランドセメント、これらポルトランドセメントに高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石微粉末を混合したフィラーセメント、アルミナセメント、エコセメント等が挙げられ、これらの1種又は2種以上が使用可能である。 The cement admixture of the present invention can be mixed with various cements in addition to being used as one component of the cement composition of the present invention. Specifically, various Portland cements such as normal, early strength, ultra-early strength, moderate heat and low heat, various mixed cements in which blast furnace slag, fly ash, or silica is mixed with these Portland cements, and fillers in which limestone fine powder is mixed. A cement, an alumina cement, an eco-cement, etc. are mentioned, These 1 type (s) or 2 or more types can be used.
上記セメント混和材の混合割合は、特に制限されないが、セメント100重量部に対して3〜300重量部、好ましくは5〜150重量部であることが望ましい。 The mixing ratio of the cement admixture is not particularly limited, but is 3 to 300 parts by weight, preferably 5 to 150 parts by weight, with respect to 100 parts by weight of cement.
本発明のセメント混和材は、他のセメント混和材と混合使用できる。具体的には、高炉スラグ微粉末、フライアッシュ、シリカフューム、石灰石微粉末等が挙げられる。 The cement admixture of the present invention can be mixed with other cement admixtures. Specific examples include blast furnace slag fine powder, fly ash, silica fume, and limestone fine powder.
これらセメントと本発明のセメント混和材との混合方法は、特に制限されるものではない。個別に調整されたセメント混和材とセメントを混合する方法、セメントの製造工程においてセメント混和材を混合する方法、ペースト、モルタル及びコンクリートの製造時に混合する方法等が挙げられる。 The mixing method of these cements and the cement admixture of the present invention is not particularly limited. A method of mixing cement admixture and cement prepared individually, a method of mixing cement admixture in the cement manufacturing process, a method of mixing at the time of manufacturing paste, mortar and concrete, and the like can be mentioned.
本発明において、セメント混和材を使用したコンクリート組成物の水粉体重量比は特に制限されるものではないが、0.20〜0.60であることが望ましい。 In the present invention, the water powder weight ratio of the concrete composition using the cement admixture is not particularly limited, but is preferably 0.20 to 0.60.
本発明において、コンクリート組成物に含まれる水の量は、特に制限されるものではないが、コンクリート組成物1m3あたり140〜185kgであることが望ましい。 In the present invention, the amount of water contained in the concrete composition is not particularly limited, but is preferably 140 to 185 kg per 1 m 3 of the concrete composition.
本発明において、セメント分散剤は、セメントを分散させる効果を有するものであれば特に限定されない。上記セメント分散剤を具体的に例示すれば、減水剤、AE減水剤、高性能減水剤、流動化剤、高性能AE減水剤等が挙げられる。 In the present invention, the cement dispersant is not particularly limited as long as it has an effect of dispersing cement. Specific examples of the cement dispersant include water reducing agents, AE water reducing agents, high performance water reducing agents, fluidizing agents, high performance AE water reducing agents, and the like.
本発明において、上記セメント分散剤の配合量は特に制限されるものではない。好適な組成を例示すれば、セメントとセメント混和材との合計量に対して0.1〜10.0重量%、好ましくは0.1〜5.0重量%である。 In the present invention, the blending amount of the cement dispersant is not particularly limited. If a suitable composition is illustrated, it will be 0.1-10.0 weight% with respect to the total amount of a cement and a cement admixture, Preferably it is 0.1-5.0 weight%.
本発明において、細骨材および粗骨材は、一般にコンクリートに使用されるものであれば、特に制限なく使用できる。上記細骨材を具体的に例示すれば、川砂、海砂、山砂、砕砂等が挙げられる。また、上記粗骨材を具体的に例示すれば、川砂利、硬質砂岩砕石、石灰岩砕石等が挙げられる。 In the present invention, the fine aggregate and coarse aggregate can be used without particular limitation as long as they are generally used for concrete. Specific examples of the fine aggregate include river sand, sea sand, mountain sand, crushed sand, and the like. Specific examples of the coarse aggregate include river gravel, hard sandstone crushed stone, and limestone crushed stone.
本発明のコンクリート組成物は、本発明を構成するセメント、セメント混和材、細骨材、粗骨材、セメント分散剤および水の他に、本発明の効果を著しく阻害しない範囲で、空気量調製剤、凝結遅延剤、凝結促進剤、防錆剤、分離低減剤、増粘剤、収縮低減剤、膨張材、鉱物質微粉末等を添加配合しても構わない。 In addition to the cement, cement admixture, fine aggregate, coarse aggregate, cement dispersant and water that constitute the present invention, the concrete composition of the present invention can control the amount of air within a range that does not significantly impair the effects of the present invention. Preparations, setting retarders, setting accelerators, rust inhibitors, separation reducing agents, thickeners, shrinkage reducing agents, expanding materials, mineral fine powders, and the like may be added and blended.
以下、実施例により本発明の構成および効果を説明するが、本発明が実施例に限定されるというものではない。 Hereinafter, although an example explains composition and an effect of the present invention, the present invention is not limited to an example.
(1)流動性の評価方法
セメント組成物あるいはセメント混和材を使用したセメントペーストの練り混ぜ直後から15分あるいは30分までの流動性の経時変化を測定した。流動性は、JASS 15 M−103「セルフレベリング材の品質基準」の流動性試験に基づきペーストフロー値を測定し評価した。
(1) Evaluation method of fluidity The time-dependent change in fluidity was measured from 15 minutes to 30 minutes immediately after kneading of the cement paste using the cement composition or cement admixture. The fluidity was evaluated by measuring the paste flow value based on the fluidity test of JASS 15 M-103 “Quality Standard for Self-Leveling Material”.
(2)コンクリートの圧縮強度の評価方法
コンクリートの圧縮強度はJIS A 1108「コンクリートの圧縮強度試験方法」により測定した。
(2) Evaluation Method of Compressive Strength of Concrete The compressive strength of concrete was measured according to JIS A 1108 “Method for testing compressive strength of concrete”.
(3)コンクリートの自己収縮の評価方法
自己収縮は「超流動コンクリート研究委員会報告書(II)[付録1]高流動コンクリートの自己収縮試験方法」(日本コンクリート工学協会、1994年5月発行)により測定した。
(3) Evaluation method of self-shrinkage of concrete Self-shrinkage is “Superfluid Concrete Research Committee Report (II) [Appendix 1] Self-shrinkage test method of high-fluidity concrete” (Japan Concrete Institute, May 1994) It was measured by.
実施例1〜3及び比較例1及び2
石炭灰(Al2O3含有量30.0重量%)と炭酸カルシウムを重量比が石炭灰:炭酸カルシウム=5:1となるよう配合し、1150℃で2時間焼成して、ブレーン比表面積3300cm2/gに粉砕してCAS2を83重量%含有する特定焼成物を得た。
Examples 1-3 and Comparative Examples 1 and 2
Coal ash (Al 2 O 3 content: 30.0% by weight) and calcium carbonate are blended so that the weight ratio is coal ash: calcium carbonate = 5: 1, calcined at 1150 ° C. for 2 hours, and Blaine specific surface area 3300 cm A specific fired product containing 83% by weight of CAS 2 was obtained by grinding to 2 / g.
一方、セメントクリンカー成分として、セメント製造設備にて、上記石炭灰、高炉徐冷スラグ(Al2O3含有量14.1重量%)を原料の14.2重量%使用して製造された普通ポルトランドセメントクリンカーを製造し、該セメントクリンカー成分に対して石膏を3.4重量%混合後、ブレーン比表面積3300cm2/gとなるように粉砕してセメントを製造した。 On the other hand, ordinary Portland cement produced using 14.2% by weight of the raw material of the above coal ash and blast furnace slow-cooled slag (Al 2 O 3 content: 14.1% by weight) as a cement clinker component. Tont clinker was produced, and 3.4 wt% of gypsum was mixed with the cement clinker component, and then pulverized to a Blaine specific surface area of 3300 cm 2 / g to produce a cement.
次いで、該セメントと前記特定焼成物とを、得られるセメント組成物中に該特定焼成物が表1の割合となるように混合し、セメント組成物を得た。 Next, the cement and the specific fired product were mixed in the obtained cement composition so that the specific fired product had a ratio shown in Table 1, thereby obtaining a cement composition.
一方、比較例1として、前記特定焼成物を混合しないセメントを使用した。また、比較例2として、石炭灰、高炉徐冷スラグを原料として使用し、C3A含有量を15重量%としたセメントクリンカーを製造し、これに石膏を6.6重量%の使用量となるように混合し、ブレーン比表面積は3100cm2/gとなるように粉砕して得られたセメント(以下高C3Aセメントと略記する)を使用した。 On the other hand, as Comparative Example 1, a cement not mixed with the specific fired product was used. In addition, as Comparative Example 2, a cement clinker was manufactured using coal ash and blast furnace chilled slag as raw materials, and a C 3 A content of 15% by weight, and gypsum was used at a usage amount of 6.6% by weight. Cement obtained by pulverizing to a specific surface area of 3100 cm 2 / g (hereinafter abbreviated as high C 3 A cement) was used.
上記セメント組成物及びセメントについて、流動性の評価を行った。尚、実施例、比較例共にセメントペーストの水粉体重量比は0.50とした。その結果を表1に示す。 The fluidity of the cement composition and cement was evaluated. In both examples and comparative examples, the weight ratio of cement paste to water powder was 0.50. The results are shown in Table 1.
実施例1〜3及び比較例1、2において、セメントペーストの水粉体重量比は0.27とし、ポリエチレングリコール鎖を有する化合物を主成分とするポリカルボン酸系セメント分散剤を、添加量がセメント組成物重量の1.5重量%となるよう添加した以外は同様にして、流動性の評価を行った。その結果を表2に示す。
In Examples 1 to 3 and Comparative Examples 1 and 2, the weight ratio of the cement paste to water powder is 0.27, and the amount of the polycarboxylic acid-based cement dispersant mainly composed of a compound having a polyethylene glycol chain is added. The fluidity was evaluated in the same manner except that it was added to 1.5% by weight of the cement composition. The results are shown in Table 2.
CaO、Al2O3及びSiO2を原料とし、重量比がCaO:Al2O3:SiO2=1:1:2となるよう配合し、1350℃で2時間焼成した後、ブレーン比表面積3150cm2/gに粉砕して、CAS2を95重量%含有する焼成物を製造した。
Using CaO, Al 2 O 3 and SiO 2 as raw materials, blended so that the weight ratio is CaO: Al 2 O 3 : SiO 2 = 1: 1: 2, baked at 1350 ° C. for 2 hours, and then has a Blaine specific surface area of 3150 cm A baked product containing 95% by weight of CAS 2 was produced by grinding to 2 / g.
この焼成物よりなるセメント混和材として実施例1〜3で使用したセメントに、得られるセメント組成物中の割合が、10、20、30、40重量%となるよう配合した。 The cement used in Examples 1 to 3 as a cement admixture made of this fired product was blended so that the proportion in the resulting cement composition was 10, 20, 30, 40% by weight.
上記セメント組成物及びセメントについて、流動性の評価を行った。尚、実施例7〜10のセメントペーストの水粉体重量比は0.50とした。実施例11〜14は、セメントペーストの水粉体重量比は0.27とし、ポリエチレングリコール鎖を有する化合物を主成分とするポリカルボン酸系セメント分散剤を、添加量がセメントとセメント混和材の合計重量の1.5重量%となるよう添加した。その結果を表3に示す。 The fluidity of the cement composition and cement was evaluated. In addition, the water powder weight ratio of the cement pastes of Examples 7 to 10 was 0.50. In Examples 11 to 14, the weight ratio of the cement paste to water powder is 0.27, and the polycarboxylic acid-based cement dispersant mainly composed of a compound having a polyethylene glycol chain is added to the cement and the cement admixture. It added so that it might become 1.5 weight% of a total weight. The results are shown in Table 3.
石炭灰(Al2O3含有量24.0重量%)と高炉徐冷スラグ(Al2O3含有量14.0重量%)を原料とし、重量比が石炭灰:高炉徐冷スラグ=60:40となるよう配合し、1150℃で1時間30分焼成した後、ブレーン比表面積3450cm2/gに粉砕し、CAS2を81重量%含有する特定焼成物を得た。
Coal ash (Al 2 O 3 content 24.0% by weight) and blast furnace slow-cooled slag (Al 2 O 3 content 14.0% by weight) are used as raw materials, and the weight ratio is coal ash: blast furnace slow-cooled slag = 60: The resulting mixture was baked at 1150 ° C. for 1 hour 30 minutes, and then pulverized to a Blaine specific surface area of 3450 cm 2 / g to obtain a specific fired product containing 81% by weight of CAS 2 .
この特定焼成物をセメント混和材として、実施例1〜3で使用したセメントに内割で10、20、30、40重量%となるよう配合した。 This specific fired product was used as a cement admixture, and was blended in the cement used in Examples 1 to 3 so that it would be 10, 20, 30, 40% by weight.
上記セメント組成物について、流動性の評価を行った。尚、実施例15〜18のセメントペーストの水粉体重量比は0.50とした。実施例19〜22は、セメントペーストの水粉体重量比は0.27とし、ポリエチレングリコール鎖を有する化合物を主成分とするポリカルボン酸系セメント分散剤を、添加量がセメントとセメント混和材の合計重量の1.5重量%となるよう添加した。その結果を表4に示す。 The fluidity of the cement composition was evaluated. In addition, the water powder weight ratio of the cement pastes of Examples 15 to 18 was 0.50. In Examples 19 to 22, the weight ratio of the cement paste to water powder is 0.27, and the polycarboxylic acid-based cement dispersant mainly composed of a compound having a polyethylene glycol chain is added to the cement and the cement admixture. It added so that it might become 1.5 weight% of a total weight. The results are shown in Table 4.
〈使用材料〉
普通ポルトランドセメント(ブレーン値:3320cm2/g)
高炉スラグ微粉末(ブレーン値:5970cm2/g)
石灰石微粉末(ブレーン値:5100 cm2/g)
細骨材:海砂(最大寸法:5mm、表乾密度:2.61g/cm3)
粗骨材:硬質砂岩砕石(最大寸法:20mm、表乾密度:2.71g/cm3)
セメント分散剤:ポリカルボン酸系高性能AE減水剤
水(水道水)。
<Materials used>
Ordinary Portland cement (Brain value: 3320 cm 2 / g)
Blast furnace slag fine powder (Blaine value: 5970 cm 2 / g)
Limestone fine powder (Brain value: 5100 cm 2 / g)
Fine aggregate: sea sand (maximum dimension: 5 mm, surface dry density: 2.61 g / cm 3 )
Coarse aggregate: hard sandstone crushed stone (maximum dimension: 20 mm, surface dry density: 2.71 g / cm 3 )
Cement dispersant: polycarboxylic acid-based high-performance AE water reducing agent water (tap water).
実施例23〜25
水粉体重量比を0.30、セメント混和材の混合割合をセメントとセメント混和材との合計量の10、30及び40重量%とし、水、セメント、セメント混和材、細骨材、粗骨材およびセメント分散剤を表5に示す割合で配合したコンクリート組成物の圧縮強度と自己収縮を測定した。結果を表6に示す。
Examples 23-25
The water powder weight ratio is 0.30, the mixing ratio of cement admixture is 10, 30 and 40% by weight of the total amount of cement and cement admixture, and water, cement, cement admixture, fine aggregate, coarse bone The compressive strength and self-shrinkage of the concrete composition containing the materials and the cement dispersant in the proportions shown in Table 5 were measured. The results are shown in Table 6.
実施例26〜27
水粉体重量比を0.32、セメント、セメント混和材及び高炉スラグ微粉末の混合割合を50:10:40及び50:30:20とし、水、セメント、セメント混和材、高炉スラグ微粉末、細骨材、粗骨材およびセメント分散剤を表5に示す割合で配合したコンクリート組成物を調整し、実施例23〜25と同様な試験を実施した。結果を表6に示す。
Examples 26-27
The water powder weight ratio is 0.32, the mixing ratio of cement, cement admixture and blast furnace slag fine powder is 50:10:40 and 50:30:20, water, cement, cement admixture, blast furnace slag fine powder, The concrete composition which mix | blended the fine aggregate, the coarse aggregate, and the cement dispersing agent in the ratio shown in Table 5 was adjusted, and the test similar to Examples 23-25 was implemented. The results are shown in Table 6.
比較例5
セメント混和材を使用せず、水、セメント、細骨材、粗骨材およびセメント分散剤を表5に示す割合で配合したコンクリート組成物を調整し、実施例23〜25と同様な試験を実施した。結果を表6に示す。
Comparative Example 5
A concrete composition containing water, cement, fine aggregate, coarse aggregate and cement dispersant in the proportions shown in Table 5 was prepared without using cement admixture, and the same tests as in Examples 23 to 25 were performed. did. The results are shown in Table 6.
比較例6
セメント混和材を使用せず、水、セメント、高炉スラグ微粉末、細骨材、粗骨材およびセメント分散剤を表5に示す割合で配合したコンクリート組成物を調整し、実施例23〜25と同様な試験を実施した。結果を表6に示す。
Comparative Example 6
A concrete composition containing water, cement, blast furnace slag fine powder, fine aggregate, coarse aggregate and cement dispersant in the proportions shown in Table 5 was prepared without using cement admixture, and Examples 23 to 25 and A similar test was conducted. The results are shown in Table 6.
比較例7
セメント混和材を使用せず、水、セメント、高炉スラグ微粉末、石灰石微粉末、細骨材、粗骨材およびセメント分散剤を表5に示す割合で配合したコンクリート組成物を調整し、実施例23〜25と同様な試験を実施した。結果を表6に示す。
Comparative Example 7
A concrete composition in which water, cement, fine powder of blast furnace slag, fine powder of limestone, fine aggregate, coarse aggregate and cement dispersant were blended in the proportions shown in Table 5 without using a cement admixture. Tests similar to 23-25 were performed. The results are shown in Table 6.
Claims (6)
The concrete composition according to claim 5, which contains fine blast furnace slag powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003324275A JP4494743B2 (en) | 2002-12-25 | 2003-09-17 | Method for producing cement composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002373572 | 2002-12-25 | ||
JP2003207310 | 2003-08-12 | ||
JP2003324275A JP4494743B2 (en) | 2002-12-25 | 2003-09-17 | Method for producing cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005089232A true JP2005089232A (en) | 2005-04-07 |
JP4494743B2 JP4494743B2 (en) | 2010-06-30 |
Family
ID=34468236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003324275A Expired - Lifetime JP4494743B2 (en) | 2002-12-25 | 2003-09-17 | Method for producing cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4494743B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007210838A (en) * | 2006-02-09 | 2007-08-23 | Ube Ind Ltd | Hydraulic composition and its manufacturing method |
JP2008013426A (en) * | 2006-06-05 | 2008-01-24 | Denki Kagaku Kogyo Kk | Low activation cement and its manufacturing process |
JP2010037119A (en) * | 2008-08-04 | 2010-02-18 | Ube Ind Ltd | Cement admixture and cement composition |
US7828098B2 (en) | 2005-08-31 | 2010-11-09 | Honda Giken Kogyo Kabushiki Kaisha | Battery arrangement structure of a vehicle |
JP2012232866A (en) * | 2011-04-28 | 2012-11-29 | Tokuyama Corp | Fired material production apparatus |
JP2012232867A (en) * | 2011-04-28 | 2012-11-29 | Tokuyama Corp | METHOD FOR PRODUCING FIRED MATERIAL INCLUDING CAO-Al2O3-2SiO2 |
JP2012236731A (en) * | 2011-05-11 | 2012-12-06 | Tokuyama Corp | Method for manufacturing fired material containing anorthite |
JP2013023422A (en) * | 2011-07-25 | 2013-02-04 | Tokuyama Corp | Method of manufacturing burned product |
JP2015110502A (en) * | 2013-10-31 | 2015-06-18 | 太平洋セメント株式会社 | Cement additional material, and cement composition |
JP2015143163A (en) * | 2014-01-31 | 2015-08-06 | 株式会社トクヤマ | Effective utilization method of sapphire machining waste |
JP2016153357A (en) * | 2014-08-07 | 2016-08-25 | 太平洋セメント株式会社 | Cement curing body and manufacturing method therefor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5137293B1 (en) * | 1968-01-26 | 1976-10-14 | ||
JPH05147985A (en) * | 1991-11-29 | 1993-06-15 | Denki Kagaku Kogyo Kk | Quick hardening cement composition |
JP2001340830A (en) * | 2000-06-01 | 2001-12-11 | Osamu Ikeda | Method for crystallizing refuse molten slug |
JP2002234757A (en) * | 2001-02-06 | 2002-08-23 | Taiheiyo Cement Corp | Cement clinker and cement composition |
-
2003
- 2003-09-17 JP JP2003324275A patent/JP4494743B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5137293B1 (en) * | 1968-01-26 | 1976-10-14 | ||
JPH05147985A (en) * | 1991-11-29 | 1993-06-15 | Denki Kagaku Kogyo Kk | Quick hardening cement composition |
JP2001340830A (en) * | 2000-06-01 | 2001-12-11 | Osamu Ikeda | Method for crystallizing refuse molten slug |
JP2002234757A (en) * | 2001-02-06 | 2002-08-23 | Taiheiyo Cement Corp | Cement clinker and cement composition |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7828098B2 (en) | 2005-08-31 | 2010-11-09 | Honda Giken Kogyo Kabushiki Kaisha | Battery arrangement structure of a vehicle |
JP2007210838A (en) * | 2006-02-09 | 2007-08-23 | Ube Ind Ltd | Hydraulic composition and its manufacturing method |
JP4728829B2 (en) * | 2006-02-09 | 2011-07-20 | 宇部興産株式会社 | Hydraulic composition and method for producing the same |
JP2008013426A (en) * | 2006-06-05 | 2008-01-24 | Denki Kagaku Kogyo Kk | Low activation cement and its manufacturing process |
JP2010037119A (en) * | 2008-08-04 | 2010-02-18 | Ube Ind Ltd | Cement admixture and cement composition |
JP2012232866A (en) * | 2011-04-28 | 2012-11-29 | Tokuyama Corp | Fired material production apparatus |
JP2012232867A (en) * | 2011-04-28 | 2012-11-29 | Tokuyama Corp | METHOD FOR PRODUCING FIRED MATERIAL INCLUDING CAO-Al2O3-2SiO2 |
JP2012236731A (en) * | 2011-05-11 | 2012-12-06 | Tokuyama Corp | Method for manufacturing fired material containing anorthite |
JP2013023422A (en) * | 2011-07-25 | 2013-02-04 | Tokuyama Corp | Method of manufacturing burned product |
JP2015110502A (en) * | 2013-10-31 | 2015-06-18 | 太平洋セメント株式会社 | Cement additional material, and cement composition |
JP2015143163A (en) * | 2014-01-31 | 2015-08-06 | 株式会社トクヤマ | Effective utilization method of sapphire machining waste |
JP2016153357A (en) * | 2014-08-07 | 2016-08-25 | 太平洋セメント株式会社 | Cement curing body and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP4494743B2 (en) | 2010-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3559274B2 (en) | Cement admixture | |
TW201904910A (en) | Concrete composition and method of manufacturing same | |
JP4494743B2 (en) | Method for producing cement composition | |
EP3875444B1 (en) | Cement admixture, expansion material, and cement composition | |
JP2007055843A (en) | Cement additive | |
WO2020203490A1 (en) | Cement composition and method for producing cement composition | |
JPH06100338A (en) | Highly fluid cement | |
KR20040091145A (en) | Cement admixture | |
JP2020001954A (en) | Cement composition | |
JP2010168256A (en) | Cement additive and cement composition | |
JP5135127B2 (en) | Calcium aluminate | |
JP2008290926A (en) | Fired product, cement additive, and cement composition | |
JP7181779B2 (en) | Cement admixture and concrete using it | |
JP2012140295A (en) | Early expansive cement composition | |
JP2009001449A (en) | Expansive composition | |
JP2008222475A (en) | Fired product, cement additive and cement composition | |
JP6207992B2 (en) | Cement admixture and cement composition-hardened cement using the same | |
JP7260998B2 (en) | Expansive composition, cement composition and cement-concrete | |
JP2014185042A (en) | Cement composition | |
JP7198604B2 (en) | Firing products, cement additives, and cement compositions | |
JP2006151759A (en) | Quick hardening high-strength admixture for steam curing | |
JP2001163655A (en) | Hydraulic composition | |
JP2024118509A (en) | Hydraulic composition and method for producing hardened cementitious material using the same | |
JP2023136532A (en) | cement admixture | |
JPH07305047A (en) | Static crushing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100323 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100408 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4494743 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160416 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |