JP2005088441A - Liquid injection head and device - Google Patents

Liquid injection head and device Download PDF

Info

Publication number
JP2005088441A
JP2005088441A JP2003326705A JP2003326705A JP2005088441A JP 2005088441 A JP2005088441 A JP 2005088441A JP 2003326705 A JP2003326705 A JP 2003326705A JP 2003326705 A JP2003326705 A JP 2003326705A JP 2005088441 A JP2005088441 A JP 2005088441A
Authority
JP
Japan
Prior art keywords
lower electrode
film
piezoelectric layer
piezoelectric
pressure generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003326705A
Other languages
Japanese (ja)
Inventor
Akihito Tsuda
昭仁 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003326705A priority Critical patent/JP2005088441A/en
Publication of JP2005088441A publication Critical patent/JP2005088441A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • B41J2002/14241Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm having a cover around the piezoelectric thin film element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14419Manifold

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid injection head and a liquid injection device that can prevent a decrease in the displacement of a vibrating plate and can prevent a breakage of a piezoelectric element attributed to an external environment. <P>SOLUTION: The liquid injection head is structured so as to form a lower electrode 60 of the area facing a pressure generation chamber 12 as one smaller in width than the pressure generation chamber 12, cover the top face and end of the lower electrode 60 of the area corresponding to the pressure generation chamber 12 with a piezoelectric body layer 70, and cover the top face and end of the piezoelectric body layer 70 with an upper electrode 80 provided on the piezoelectric body layer 70. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液体噴射ヘッド及び液体噴射装置に関し、特に、インク滴を吐出するノズル開口と連通する圧力発生室の一部を振動板で構成し、この振動板の表面に圧電素子を形成して、圧電素子の変位によりインク滴を吐出させるインクジェット式記録ヘッド及びインクジェット式記録装置に関する。   The present invention relates to a liquid ejecting head and a liquid ejecting apparatus, and in particular, a part of a pressure generating chamber communicating with a nozzle opening for ejecting ink droplets is configured by a vibration plate, and a piezoelectric element is formed on the surface of the vibration plate. The present invention relates to an ink jet recording head and an ink jet recording apparatus that eject ink droplets by displacement of a piezoelectric element.

インク滴を吐出するノズル開口と連通する圧力発生室の一部を振動板で構成し、この振動板を圧電素子により変形させて圧力発生室のインクを加圧してノズル開口からインク滴を吐出させるインクジェット式記録ヘッドには、圧電素子の軸方向に伸長、収縮する縦振動モードの圧電アクチュエータを使用したものと、たわみ振動モードの圧電アクチュエータを使用したものの2種類が実用化されている。   A part of the pressure generation chamber communicating with the nozzle opening for discharging ink droplets is constituted by a vibration plate, and the vibration plate is deformed by a piezoelectric element to pressurize the ink in the pressure generation chamber to discharge ink droplets from the nozzle opening. Two types of ink jet recording heads have been put into practical use: those using a longitudinal vibration mode piezoelectric actuator that extends and contracts in the axial direction of the piezoelectric element, and those using a flexural vibration mode piezoelectric actuator.

前者は圧電素子の端面を振動板に当接させることにより圧力発生室の容積を変化させることができて、高密度印刷に適したヘッドの製作が可能である反面、圧電素子をノズル開口の配列ピッチに一致させて櫛歯状に切り分けるという困難な工程や、切り分けられた圧電素子を圧力発生室に位置決めして固定する作業が必要となり、製造工程が複雑であるという問題がある。   The former can change the volume of the pressure generation chamber by bringing the end face of the piezoelectric element into contact with the vibration plate, and it is possible to manufacture a head suitable for high-density printing, while the piezoelectric element is arranged in an array of nozzle openings. There is a problem that the manufacturing process is complicated because a difficult process of matching the pitch into a comb-like shape and an operation of positioning and fixing the cut piezoelectric element in the pressure generating chamber are necessary.

これに対して後者は、圧電材料のグリーンシートを圧力発生室の形状に合わせて貼付し、これを焼成するという比較的簡単な工程で振動板に圧電素子を作り付けることができるものの、たわみ振動を利用する関係上、ある程度の面積が必要となり、高密度配列が困難であるという問題がある。   On the other hand, the latter can flexibly vibrate, although a piezoelectric element can be built on the diaphragm by a relatively simple process of sticking a green sheet of piezoelectric material according to the shape of the pressure generation chamber and firing it. There is a problem that a certain amount of area is required for the use of, and high-density arrangement is difficult.

一方、後者の記録ヘッドの不都合を解消すべく、振動板の表面全体に亙って成膜技術により均一な圧電材料層を形成し、この圧電材料層をリソグラフィ法により圧力発生室に対応する形状に切り分けて各圧力発生室毎に独立するように圧電素子を形成したものがある。また、このような圧電素子は、例えば、湿気等の外部環境に起因して破壊され易いという問題がある。この問題を解決するために、例えば、圧電素子の外周面に絶縁体からなる保護膜を設けたものがある(例えば、特許文献1参照)。   On the other hand, in order to eliminate the disadvantages of the latter recording head, a uniform piezoelectric material layer is formed over the entire surface of the diaphragm by a film forming technique, and this piezoelectric material layer is shaped to correspond to the pressure generating chamber by lithography. In some cases, the piezoelectric element is formed so as to be independent for each pressure generating chamber. Further, such a piezoelectric element has a problem that it is easily destroyed due to an external environment such as moisture. In order to solve this problem, for example, there is one in which a protective film made of an insulator is provided on the outer peripheral surface of a piezoelectric element (see, for example, Patent Document 1).

しかしながら、このように圧電素子を絶縁膜で覆ってしまうと、圧電素子の外部環境に起因する破壊を防止することができたとしても、圧電素子の駆動による振動板の変位量が低下するという問題がある。また、上記特許文献1には、保護膜の厚さを部分的に薄くして振動板の変位量の低下を抑えた構造が開示されている。確かに、この構造と、圧電素子の表面を均一な厚さの保護膜によって覆ったものとを比較すると、振動板の変位量の低下は抑えられているが、保護膜を設けていない構造と比較すると、変位量の低下は十分に抑えられているとは言えない。なお、このような問題は、インク滴を吐出するインクジェット式記録ヘッドだけではなく、勿論、インク以外の液滴を吐出する他の液体噴射ヘッドにおいても、同様に存在する。   However, if the piezoelectric element is covered with an insulating film in this way, the displacement of the diaphragm due to the driving of the piezoelectric element is reduced even if the piezoelectric element can be prevented from being damaged due to the external environment. There is. Further, Patent Document 1 discloses a structure in which the thickness of the protective film is partially reduced to suppress a decrease in the amount of displacement of the diaphragm. Certainly, when this structure is compared with a piezoelectric element whose surface is covered with a uniform protective film, a decrease in the amount of displacement of the diaphragm is suppressed, but a structure without a protective film is provided. In comparison, it cannot be said that the decrease in displacement is sufficiently suppressed. Such a problem exists not only in an ink jet recording head that ejects ink droplets, but also in other liquid ejecting heads that eject droplets other than ink.

特開2001−260357号公報(特許請求の範囲)JP 2001-260357 A (Claims)

本発明は、このような事情に鑑み、振動板の変位量の低下を防止でき且つ圧電素子の外部環境に起因する破壊を防止できる液体噴射ヘッド及び液体噴射装置を提供することを課題とする。   In view of such circumstances, it is an object of the present invention to provide a liquid ejecting head and a liquid ejecting apparatus that can prevent a decrease in the amount of displacement of a diaphragm and prevent breakage due to an external environment of a piezoelectric element.

上記課題を解決する本発明の第1の態様は、液滴を吐出するノズル開口にそれぞれ連通する圧力発生室が形成される流路形成基板と、該流路形成基板の一方面側に振動板を介して設けられる下電極、圧電体層及び上電極からなる圧電素子とを具備する液体噴射ヘッドであって、前記圧力発生室に対向する領域の前記下電極が当該圧力発生室よりも狭い幅で形成されると共に当該圧力発生室に対応する領域の前記下電極の上面及び端面が前記圧電体層によって覆われており、且つ前記圧電体層の上面及び端面が、当該圧電体層上に設けられた前記上電極によって覆われていることを特徴とする液体噴射ヘッドにある。
かかる第1の態様では、圧電体層が上電極によって覆われているため、圧電素子(圧電体層)の水分(湿気)に起因する破壊を防止することができる。また、圧電素子とは別に保護膜を設ける必要がないため、圧電素子及び変位の低下も抑えられる。
According to a first aspect of the present invention for solving the above problems, a flow path forming substrate in which pressure generation chambers communicating with nozzle openings for discharging droplets are formed, and a vibration plate on one side of the flow path forming substrate are provided. A liquid ejecting head comprising a lower electrode, a piezoelectric layer, and an upper electrode provided via the upper electrode, wherein the lower electrode in a region facing the pressure generating chamber is narrower than the pressure generating chamber. The upper surface and the end surface of the lower electrode in the region corresponding to the pressure generating chamber are covered with the piezoelectric layer, and the upper surface and the end surface of the piezoelectric layer are provided on the piezoelectric layer. The liquid ejecting head is covered with the upper electrode formed.
In the first aspect, since the piezoelectric layer is covered with the upper electrode, it is possible to prevent the piezoelectric element (piezoelectric layer) from being damaged due to moisture (humidity). In addition, since it is not necessary to provide a protective film separately from the piezoelectric element, a decrease in the piezoelectric element and displacement can be suppressed.

本発明の第2の態様は、第1の態様において、前記圧力発生室の長手方向の端部近傍に対応する領域の前記下電極上の一部に絶縁膜が設けられ、前記圧電体層の前記下電極上の端部が前記絶縁膜上に設けられていることを特徴とする液体噴射ヘッドにある。
かかる第2の態様では、下電極と上電極とを短絡させることなく、上電極によって圧電体層の表面を容易に覆うことができる。
According to a second aspect of the present invention, in the first aspect, an insulating film is provided on a part of the lower electrode in a region corresponding to the vicinity of the end in the longitudinal direction of the pressure generating chamber, An end of the lower electrode is provided on the insulating film.
In the second aspect, the surface of the piezoelectric layer can be easily covered with the upper electrode without short-circuiting the lower electrode and the upper electrode.

本発明の第3の態様は、第1の態様において、前記下電極が各圧力発生室に対向する領域内に形成されてその上面及び端面が前記圧電体層によって覆われ、且つ当該下電極が、前記振動板を構成する複数の絶縁膜の間に設けられる接続配線と、当該下電極の前記圧電体層とは反対側の面で接続されていることを特徴とする液体噴射ヘッドにある。
かかる第3の態様では、振動板上に圧電素子とは別の層を設けることなく、圧電体層の表面を上電極によって覆うことができる。
According to a third aspect of the present invention, in the first aspect, the lower electrode is formed in a region facing each pressure generating chamber, and an upper surface and an end surface thereof are covered with the piezoelectric layer, and the lower electrode is In the liquid jet head, the connection wiring provided between the plurality of insulating films constituting the diaphragm is connected to the surface of the lower electrode opposite to the piezoelectric layer.
In the third aspect, the surface of the piezoelectric layer can be covered with the upper electrode without providing a layer different from the piezoelectric element on the diaphragm.

本発明の第4の態様は、第1〜3の何れかの態様において、前記上電極が複数の圧電素子に対向する領域に連続的に設けられていることを特徴とする液体噴射ヘッドにある。
かかる第4の態様では、上電極を容易にパターニングすることができ、製造工程を簡略化できる。
According to a fourth aspect of the present invention, in the liquid jet head according to any one of the first to third aspects, the upper electrode is continuously provided in a region facing the plurality of piezoelectric elements. .
In the fourth aspect, the upper electrode can be easily patterned, and the manufacturing process can be simplified.

本発明の第5の態様は、第1〜4の何れかの態様の液体噴射ヘッドを具備することを特徴とする液体噴射装置にある。
かかる第5の態様では、耐久性及び信頼性を向上した液体噴射装置を実現することができる。
A fifth aspect of the present invention is a liquid ejecting apparatus including the liquid ejecting head according to any one of the first to fourth aspects.
In the fifth aspect, it is possible to realize a liquid ejecting apparatus with improved durability and reliability.

以下に本発明を実施形態に基づいて詳細に説明する。
(実施形態1)
図1は、本発明の実施形態1に係るインクジェット式記録ヘッドを示す分解斜視図であり、図2は、図1の平面図及び断面図である。図示するように、流路形成基板10は、本実施形態では面方位(110)のシリコン単結晶基板からなり、その一方の面には予め熱酸化により形成した二酸化シリコンからなる、厚さ1〜2μmの弾性膜50が形成されている。流路形成基板10には、複数の圧力発生室12がその幅方向に並設されている。また、流路形成基板10の圧力発生室12の長手方向外側の領域には連通部13が形成され、連通部13と各圧力発生室12とが、各圧力発生室12毎に設けられたインク供給路14を介して連通されている。なお、連通部13は、後述する保護基板のリザーバ部と連通して各圧力発生室12の共通のインク室となるリザーバの一部を構成する。インク供給路14は、圧力発生室12よりも狭い幅で形成されており、連通部13から圧力発生室12に流入するインクの流路抵抗を一定に保持している。
Hereinafter, the present invention will be described in detail based on embodiments.
(Embodiment 1)
FIG. 1 is an exploded perspective view showing an ink jet recording head according to Embodiment 1 of the present invention, and FIG. 2 is a plan view and a cross-sectional view of FIG. As shown in the figure, the flow path forming substrate 10 is made of a silicon single crystal substrate having a plane orientation (110) in the present embodiment, and one surface thereof is made of silicon dioxide previously formed by thermal oxidation. A 2 μm elastic film 50 is formed. A plurality of pressure generating chambers 12 are arranged in parallel in the width direction of the flow path forming substrate 10. In addition, a communication portion 13 is formed in a region outside the longitudinal direction of the pressure generation chamber 12 of the flow path forming substrate 10, and the communication portion 13 and each pressure generation chamber 12 are provided for each pressure generation chamber 12. Communication is made via a supply path 14. The communication part 13 constitutes a part of a reservoir that communicates with a reservoir part of a protective substrate, which will be described later, and serves as a common ink chamber for the pressure generating chambers 12. The ink supply path 14 is formed with a narrower width than the pressure generation chamber 12, and maintains a constant flow path resistance of ink flowing into the pressure generation chamber 12 from the communication portion 13.

また、流路形成基板10の開口面側には、圧力発生室12を形成する際のマスクとして用いられた絶縁膜51を介して、各圧力発生室12のインク供給路14とは反対側の端部近傍に連通するノズル開口21が穿設されたノズルプレート20が接着剤や熱溶着フィルム等を介して固着されている。なお、ノズルプレート20は、厚さが例えば、0.01〜1mmで、線膨張係数が300℃以下で、例えば2.5〜4.5[×10-6/℃]であるガラスセラミックス、シリコン単結晶基板又は不錆鋼などからなる。 Further, on the opening surface side of the flow path forming substrate 10, an insulating film 51 used as a mask when forming the pressure generating chambers 12 is interposed on the side opposite to the ink supply path 14 of each pressure generating chamber 12. A nozzle plate 20 having a nozzle opening 21 communicating in the vicinity of the end is fixed through an adhesive, a heat-welded film, or the like. The nozzle plate 20 has a thickness of, for example, 0.01 to 1 mm, a linear expansion coefficient of 300 ° C. or less, for example, 2.5 to 4.5 [× 10 −6 / ° C.], glass ceramics, silicon It consists of a single crystal substrate or non-rust steel.

一方、このような流路形成基板10の開口面とは反対側には、上述したように、厚さが例えば約1.0μmの弾性膜50が形成され、この弾性膜50上には、厚さが例えば、約0.4μmの絶縁体膜55が形成されている。さらに、この絶縁体膜55上には、厚さが例えば、約0.2μmの下電極膜60と、厚さが例えば、約1.0μmの圧電体層70と、厚さが例えば、約0.05μmの上電極膜80とが、後述するプロセスで積層形成されて、圧電素子300を構成している。ここで、圧電素子300は、下電極膜60、圧電体層70及び上電極膜80を含む部分をいう。一般的には、圧電素子300の何れか一方の電極を共通電極とし、他方の電極及び圧電体層70を各圧力発生室12毎にパターニングして構成する。そして、ここではパターニングされた何れか一方の電極及び圧電体層70から構成され、両電極への電圧の印加により圧電歪みが生じる部分を圧電体能動部という。本実施形態では、下電極膜60は圧電素子300の共通電極とし、上電極膜80を圧電素子300の個別電極としているが、駆動回路や配線の都合でこれを逆にしても支障はない。何れの場合においても、各圧力発生室毎に圧電体能動部が形成されていることになる。また、ここでは、圧電素子300と当該圧電素子300の駆動により変位が生じる振動板とを合わせて圧電アクチュエータと称する。   On the other hand, as described above, the elastic film 50 having a thickness of, for example, about 1.0 μm is formed on the side opposite to the opening surface of the flow path forming substrate 10. For example, an insulator film 55 having a thickness of about 0.4 μm is formed. Further, on the insulator film 55, a lower electrode film 60 having a thickness of, for example, about 0.2 μm, a piezoelectric layer 70 having a thickness of, for example, about 1.0 μm, and a thickness of, for example, about 0 The upper electrode film 80 having a thickness of 0.05 μm is laminated by a process described later to constitute the piezoelectric element 300. Here, the piezoelectric element 300 refers to a portion including the lower electrode film 60, the piezoelectric layer 70, and the upper electrode film 80. In general, one electrode of the piezoelectric element 300 is used as a common electrode, and the other electrode and the piezoelectric layer 70 are patterned for each pressure generating chamber 12. In addition, here, a portion that is configured by any one of the patterned electrodes and the piezoelectric layer 70 and in which piezoelectric distortion is generated by applying a voltage to both electrodes is referred to as a piezoelectric active portion. In this embodiment, the lower electrode film 60 is a common electrode of the piezoelectric element 300, and the upper electrode film 80 is an individual electrode of the piezoelectric element 300. However, there is no problem even if this is reversed for the convenience of the drive circuit and wiring. In either case, a piezoelectric active part is formed for each pressure generating chamber. Further, here, the piezoelectric element 300 and the vibration plate that is displaced by driving the piezoelectric element 300 are collectively referred to as a piezoelectric actuator.

ここで、本実施形態に係る圧電素子300の構造について詳しく説明する。図3に示すように、圧電素子300を構成する下電極膜60は、各圧力発生室12に対向する領域毎に、圧力発生室12の幅よりも狭い幅で設けられている。また下電極膜60は、各圧力発生室12の長手方向一端部側から周壁上まで延設され、周壁上で連結されて各圧電素子300に共通する共通電極となっている。なお、本実施形態では、圧力発生室12の長手方向他端部側の下電極膜60の端部は、圧力発生室12に対向する領域内に位置している。   Here, the structure of the piezoelectric element 300 according to the present embodiment will be described in detail. As shown in FIG. 3, the lower electrode film 60 constituting the piezoelectric element 300 is provided with a width narrower than the width of the pressure generation chamber 12 in each region facing each pressure generation chamber 12. The lower electrode film 60 extends from one longitudinal end of each pressure generating chamber 12 to the peripheral wall and is connected on the peripheral wall to be a common electrode common to the piezoelectric elements 300. In the present embodiment, the end portion of the lower electrode film 60 on the other end side in the longitudinal direction of the pressure generation chamber 12 is located in a region facing the pressure generation chamber 12.

また、圧力発生室12の長手方向一端部に対応する領域の下電極膜60上には、例えば、二酸化シリコン(SiO)等からなる絶縁膜65が設けられている。この絶縁膜65は、本実施形態では、各圧力発生室12に対向する領域の下電極膜60上にそれぞれ設けられているが、複数の圧力発生室12に対向する領域の下電極膜60上に連続的に設けられていてもよい。 Further, an insulating film 65 made of, for example, silicon dioxide (SiO 2 ) is provided on the lower electrode film 60 in a region corresponding to one longitudinal end of the pressure generating chamber 12. In this embodiment, the insulating film 65 is provided on the lower electrode film 60 in a region facing each pressure generating chamber 12, but on the lower electrode film 60 in a region facing the plurality of pressure generating chambers 12. May be provided continuously.

圧電体層70は、本実施形態では、圧力発生室12に対向する領域内に、下電極膜60の幅よりも広い幅で設けられている。また、圧力発生室12の一端部側の圧電体層70の端部は、絶縁膜65上に位置し、圧力発生室12の他端側の端部は、下電極膜60の端部よりも外側に位置している。すなわち、圧電体層70は、圧力発生室12に対応する領域の下電極膜60の上面及び端面を完全に覆うように設けられている。   In the present embodiment, the piezoelectric layer 70 is provided in a region facing the pressure generation chamber 12 with a width wider than the width of the lower electrode film 60. The end of the piezoelectric layer 70 on one end side of the pressure generation chamber 12 is located on the insulating film 65, and the end on the other end side of the pressure generation chamber 12 is more than the end of the lower electrode film 60. Located on the outside. That is, the piezoelectric layer 70 is provided so as to completely cover the upper surface and the end surface of the lower electrode film 60 in a region corresponding to the pressure generation chamber 12.

上電極膜80は、本実施形態では、圧電体層70の幅よりも広い幅で、各圧力発生室12に対向する領域にそれぞれ独立して設けられている。そして、圧力発生室12の長手方向他端部側から周壁上まで延設されている。すなわち、上電極膜80は、圧電体層70の上面及び端面を完全に覆って設けられ、圧電体層70への大気中の水分(湿気)の浸透を防止する保護膜としての役割も果たしている。例えば、本実施形態では、上電極膜80は、イリジウム(Ir)等の金属からなるため、圧電体層70の表面を完全に覆うことによって大気中の水分(湿気)が圧電体層70に浸透するのを防止することができる。したがって、水分(湿気)に起因する圧電素子300(圧電体層70)の破壊を防止でき、圧電素子300の耐久性を著しく向上することができる。   In the present embodiment, the upper electrode film 80 has a width wider than the width of the piezoelectric layer 70 and is independently provided in a region facing each pressure generating chamber 12. And it is extended from the longitudinal direction other end part side of the pressure generation chamber 12 to the surrounding wall. That is, the upper electrode film 80 is provided so as to completely cover the upper surface and the end surface of the piezoelectric layer 70, and also serves as a protective film that prevents the penetration of moisture (humidity) in the atmosphere into the piezoelectric layer 70. . For example, in the present embodiment, since the upper electrode film 80 is made of a metal such as iridium (Ir), moisture (humidity) in the atmosphere permeates the piezoelectric layer 70 by completely covering the surface of the piezoelectric layer 70. Can be prevented. Accordingly, it is possible to prevent the piezoelectric element 300 (piezoelectric layer 70) from being damaged due to moisture (humidity), and the durability of the piezoelectric element 300 can be significantly improved.

また、上電極膜80は、圧電体層70の表面を覆って設けられているため、振動板(絶縁体膜55)上にも形成されることになるが、上電極膜80の厚さは、0.05μm程度と極めて薄いため、振動板の変位を妨げることはない。また、上電極膜80は、圧電素子300の一方の電極であり、圧電素子300自体の厚さは変わらないため、圧電素子300の変位特性が低下することもない。よって、本発明の構成としても圧電素子300及び振動板の変位量は低下することはなく、良好なインク吐出特性が得られる。   Further, since the upper electrode film 80 is provided so as to cover the surface of the piezoelectric layer 70, it is also formed on the diaphragm (insulator film 55), but the thickness of the upper electrode film 80 is Since it is very thin, about 0.05 μm, it does not disturb the displacement of the diaphragm. Further, the upper electrode film 80 is one electrode of the piezoelectric element 300, and the thickness of the piezoelectric element 300 itself does not change, so that the displacement characteristics of the piezoelectric element 300 are not deteriorated. Therefore, even with the configuration of the present invention, the displacement amount of the piezoelectric element 300 and the diaphragm does not decrease, and good ink ejection characteristics can be obtained.

なお、流路形成基板10上の圧電素子300側の面には、圧電素子300に対向する領域にその運動を阻害しない程度の空間を確保可能な圧電素子保持部31を有する保護基板30が接着剤35を介して接合されている。圧電素子300は、この圧電素子保持部31内に形成されているため、外部環境の影響を殆ど受けない状態で保護されている。また、保護基板30には、流路形成基板10の連通部13に対応する領域にリザーバ部32が設けられている。このリザーバ部32は、本実施形態では、保護基板30を厚さ方向に貫通して圧力発生室12の並設方向に沿って設けられており、上述したように流路形成基板10の連通部13と連通されて各圧力発生室12の共通のインク室となるリザーバ100を構成している。   A protective substrate 30 having a piezoelectric element holding portion 31 that can secure a space that does not hinder the movement of the region facing the piezoelectric element 300 is bonded to the surface of the flow path forming substrate 10 on the piezoelectric element 300 side. It is joined via the agent 35. Since the piezoelectric element 300 is formed in the piezoelectric element holding part 31, it is protected in a state hardly affected by the external environment. In addition, the protection substrate 30 is provided with a reservoir portion 32 in a region corresponding to the communication portion 13 of the flow path forming substrate 10. In this embodiment, the reservoir portion 32 is provided along the direction in which the pressure generating chambers 12 are arranged so as to penetrate the protective substrate 30 in the thickness direction, and as described above, the communication portion of the flow path forming substrate 10. The reservoir 100 is connected to the pressure generation chamber 12 and serves as a common ink chamber for the pressure generation chambers 12.

さらに、保護基板30の圧電素子保持部31とリザーバ部32との間の領域には、保護基板30を厚さ方向に貫通する貫通孔33が設けられ、下電極膜60及び上電極膜80の端部がこの貫通孔33内に露出されている。そして、図示しないが、これら下電極膜60及び上電極膜80は、貫通孔33内に延設される接続配線によって圧電素子300を駆動するための駆動IC等に接続される。
なお、保護基板30の材料としては、例えば、ガラス、セラミックス材料、金属、樹脂等が挙げられるが、流路形成基板10の熱膨張率と略同一の材料で形成されていることがより好ましく、本実施形態では、流路形成基板10と同一材料のシリコン単結晶基板を用いて形成した。
Further, a through hole 33 that penetrates the protective substrate 30 in the thickness direction is provided in a region between the piezoelectric element holding portion 31 and the reservoir portion 32 of the protective substrate 30, and the lower electrode film 60 and the upper electrode film 80 are formed. An end portion is exposed in the through hole 33. Although not shown, the lower electrode film 60 and the upper electrode film 80 are connected to a driving IC or the like for driving the piezoelectric element 300 by connection wiring extending in the through hole 33.
In addition, examples of the material of the protective substrate 30 include glass, ceramic material, metal, resin, and the like, but it is more preferable that the material is substantially the same as the thermal expansion coefficient of the flow path forming substrate 10. In this embodiment, the silicon single crystal substrate made of the same material as the flow path forming substrate 10 is used.

この保護基板30上には、さらに、封止膜41及び固定板42とからなるコンプライアンス基板40が接合されている。封止膜41は、剛性が低く可撓性を有する材料(例えば、厚さが6μmのポリフェニレンサルファイド(PPS)フィルム)からなり、この封止膜41によってリザーバ部32の一方面が封止されている。また、固定板42は、金属等の硬質の材料(例えば、厚さが30μmのステンレス鋼(SUS)等)で形成される。この固定板42のリザーバ100に対向する領域は、厚さ方向に完全に除去された開口部43となっているため、リザーバ100の一方面は可撓性を有する封止膜41のみで封止されている。   On the protective substrate 30, a compliance substrate 40 including a sealing film 41 and a fixing plate 42 is further bonded. The sealing film 41 is made of a material having low rigidity and flexibility (for example, a polyphenylene sulfide (PPS) film having a thickness of 6 μm), and one surface of the reservoir portion 32 is sealed by the sealing film 41. Yes. The fixing plate 42 is made of a hard material such as metal (for example, stainless steel (SUS) having a thickness of 30 μm). Since the region of the fixing plate 42 facing the reservoir 100 is an opening 43 that is completely removed in the thickness direction, one surface of the reservoir 100 is sealed only with a flexible sealing film 41. Has been.

このような本実施形態のインクジェット式記録ヘッドでは、図示しない外部インク供給手段からインクを取り込み、リザーバ100からノズル開口21に至るまで内部をインクで満たした後、図示しない駆動ICからの記録信号に従い、圧力発生室12に対応するそれぞれの下電極膜60と上電極膜80との間に電圧を印加し、弾性膜50、絶縁体膜55、下電極膜60及び圧電体層70をたわみ変形させることにより、各圧力発生室12内の圧力が高まりノズル開口21からインク滴が吐出する。   In such an ink jet recording head of this embodiment, ink is taken in from an external ink supply means (not shown), filled with ink from the reservoir 100 to the nozzle opening 21, and then in accordance with a recording signal from a drive IC (not shown). Then, a voltage is applied between each of the lower electrode film 60 and the upper electrode film 80 corresponding to the pressure generation chamber 12 to bend and deform the elastic film 50, the insulator film 55, the lower electrode film 60, and the piezoelectric layer 70. As a result, the pressure in each pressure generating chamber 12 increases and ink droplets are ejected from the nozzle openings 21.

ここで、このようなインクジェット式記録ヘッドの製造方法について、図4及び図5を参照して説明する。なお、図4及び図5は、圧力発生室12の長手方向の断面図である。まず、図4(a)に示すように、シリコン単結晶基板である流路形成基板10を約1100℃の拡散炉で熱酸化し、流路形成基板10の表面に弾性膜50及びマスク膜51を構成する二酸化シリコン膜52を形成する。次いで、図4(b)に示すように、弾性膜50(二酸化シリコン膜52)上に、ジルコニウム(Zr)層を形成後、例えば、500〜1200℃の拡散炉で熱酸化して酸化ジルコニウム(ZrO)からなる絶縁体膜55を形成する。次いで、図4(c)に示すように、例えば、白金とイリジウムとを絶縁体膜55上に積層することにより下電極膜60を形成後、この下電極膜60を所定形状にパターニングする。 Here, a method of manufacturing such an ink jet recording head will be described with reference to FIGS. 4 and 5 are cross-sectional views of the pressure generation chamber 12 in the longitudinal direction. First, as shown in FIG. 4A, the flow path forming substrate 10 which is a silicon single crystal substrate is thermally oxidized in a diffusion furnace at about 1100 ° C., and the elastic film 50 and the mask film 51 are formed on the surface of the flow path forming substrate 10. A silicon dioxide film 52 is formed. Next, as shown in FIG. 4B, a zirconium (Zr) layer is formed on the elastic film 50 (silicon dioxide film 52), and then thermally oxidized in a diffusion furnace at 500 to 1200 ° C., for example, to form zirconium oxide ( An insulator film 55 made of ZrO 2 ) is formed. Next, as shown in FIG. 4C, for example, after the lower electrode film 60 is formed by laminating platinum and iridium on the insulator film 55, the lower electrode film 60 is patterned into a predetermined shape.

次に、図4(d)に示すように、二酸化シリコンからなる絶縁膜65を、例えば、CVD法、あるいはスパッタリング法により流路形成基板10の全面に形成後、所定形状のマスクを介してエッチングすることにより、圧力発生室12の一端部側の端部に対応する領域の各下電極膜60上に絶縁膜65を形成する。次に、図5(a)に示すように、圧電体層70を流路形成基板10の全面に形成後、各圧力発生室12に対向する領域に、下電極膜60の表面を覆うようにパターニングする。この圧電体層70は、結晶が配向していることが好ましい。例えば、本実施形態では、金属有機物を触媒に溶解・分散したいわゆるゾルを塗布乾燥してゲル化し、さらに高温で焼成することで金属酸化物からなる圧電体層70を得る、いわゆるゾル−ゲル法を用いて形成することにより、結晶が配向している圧電体層70とした。圧電体層70の材料としては、チタン酸ジルコン酸鉛系の材料がインクジェット式記録ヘッドに使用する場合には好適である。なお、この圧電体層70の成膜方法は、特に限定されず、例えば、スパッタリング法で形成してもよい。   Next, as shown in FIG. 4D, an insulating film 65 made of silicon dioxide is formed on the entire surface of the flow path forming substrate 10 by, for example, CVD or sputtering, and then etched through a mask having a predetermined shape. Thus, the insulating film 65 is formed on each lower electrode film 60 in a region corresponding to the end portion on the one end portion side of the pressure generating chamber 12. Next, as shown in FIG. 5A, after the piezoelectric layer 70 is formed on the entire surface of the flow path forming substrate 10, the surface of the lower electrode film 60 is covered in a region facing each pressure generating chamber 12. Pattern. The piezoelectric layer 70 preferably has crystals oriented. For example, in the present embodiment, a so-called sol-gel method is obtained in which a so-called sol in which a metal organic material is dissolved and dispersed in a catalyst is applied and dried to be gelled, and further baked at a high temperature to obtain a piezoelectric layer 70 made of a metal oxide. Thus, the piezoelectric layer 70 in which the crystals are oriented is obtained. As a material of the piezoelectric layer 70, a lead zirconate titanate-based material is suitable when used for an ink jet recording head. In addition, the film-forming method of this piezoelectric material layer 70 is not specifically limited, For example, you may form by sputtering method.

さらに、ゾル−ゲル法又はスパッタリング法等によりチタン酸ジルコン酸鉛の前駆体膜を形成後、アルカリ水溶液中での高圧処理法にて低温で結晶成長させる方法を用いてもよい。何れにしても、このように成膜された圧電体層70は、バルクの圧電体とは異なり結晶が優先配向しており、且つ本実施形態では、圧電体層70は、結晶が柱状に形成されている。なお、優先配向とは、結晶の配向方向が無秩序ではなく、特定の結晶面がほぼ一定の方向に向いている状態をいう。また、結晶が柱状の薄膜とは、略円柱体の結晶が中心軸を厚さ方向に略一致させた状態で面方向に亘って集合して薄膜を形成している状態をいう。勿論、優先配向した粒状の結晶で形成された薄膜であってもよい。なお、このように薄膜工程で製造された圧電体層の厚さは、一般的に0.2〜5μmである。
次いで、図5(b)に示すように、例えば、イリジウムからなる上電極膜80を流路形成基板10の全面に形成後、各圧力発生室12に対応する領域毎に、圧電体層70の表面を覆う大きさでパターニングすることで圧電素子300を形成する。
Further, after forming a lead zirconate titanate precursor film by a sol-gel method or a sputtering method, a method of crystal growth at a low temperature by a high pressure treatment method in an alkaline aqueous solution may be used. In any case, the piezoelectric layer 70 thus formed has crystals preferentially oriented unlike the bulk piezoelectric body, and in this embodiment, the piezoelectric layer 70 is formed in a columnar shape. Has been. Note that the preferential orientation refers to a state in which the orientation direction of the crystal is not disordered and a specific crystal plane is oriented in a substantially constant direction. A columnar thin film refers to a state in which substantially cylindrical crystals are aggregated over the surface direction with the central axis substantially coincided with the thickness direction to form a thin film. Of course, it may be a thin film formed of preferentially oriented granular crystals. Note that the thickness of the piezoelectric layer manufactured in this way in the thin film process is generally 0.2 to 5 μm.
Next, as shown in FIG. 5B, for example, after the upper electrode film 80 made of iridium is formed on the entire surface of the flow path forming substrate 10, the piezoelectric layer 70 is formed in each region corresponding to each pressure generation chamber 12. The piezoelectric element 300 is formed by patterning with a size that covers the surface.

次に、図5(c)に示すように、流路形成基板10の圧電素子300側に保護基板30を所定の接着剤からなる接着層35を介して接合し、その後、所定形状にパターニングしたマスク膜51を介して流路形成基板10を異方性エッチングすることにより圧力発生室12等を形成する。なお、実際には、上述した一連の膜形成及び異方性エッチングによって一枚のウェハ上に多数のチップを同時に形成し、プロセス終了後、図1に示すような一つのチップサイズの流路形成基板10毎に分割する。
また、その後は、流路形成基板10にマスク膜51を介してノズルプレート20を接合すると共に、保護基板30上にコンプライアンス基板40を接合することにより本実施形態のインクジェット式記録ヘッドとなる。
Next, as shown in FIG. 5C, the protective substrate 30 is bonded to the piezoelectric element 300 side of the flow path forming substrate 10 via an adhesive layer 35 made of a predetermined adhesive, and then patterned into a predetermined shape. The pressure generating chamber 12 and the like are formed by anisotropically etching the flow path forming substrate 10 through the mask film 51. In practice, a large number of chips are simultaneously formed on a single wafer by the above-described series of film formation and anisotropic etching, and after the process is completed, a single chip-sized flow path is formed as shown in FIG. Divide each substrate 10.
Thereafter, the nozzle plate 20 is bonded to the flow path forming substrate 10 through the mask film 51 and the compliance substrate 40 is bonded to the protective substrate 30 to obtain the ink jet recording head of this embodiment.

(実施形態2)
図6は、実施形態2に係るインクジェット式記録ヘッドの平面図及び断面図である。図6に示すように、本実施形態では、下電極膜60が、各圧力発生室12に対向する領域内に形成されている。そして、下電極膜60の表面、すなわち、上面及び端面が、圧電体層70によって完全に覆われていると共に、圧電体層70の表面が上電極膜80によって完全に覆われている。
(Embodiment 2)
6A and 6B are a plan view and a cross-sectional view of the ink jet recording head according to the second embodiment. As shown in FIG. 6, in the present embodiment, the lower electrode film 60 is formed in a region facing each pressure generating chamber 12. The surface of the lower electrode film 60, that is, the upper surface and the end surface are completely covered with the piezoelectric layer 70, and the surface of the piezoelectric layer 70 is completely covered with the upper electrode film 80.

また、振動板を構成する複数の絶縁膜、すなわち、弾性膜50と絶縁体膜55との間には、絶縁体膜55に設けられた接点部131を介して下電極膜60に接続される接続配線130が設けられている。具体的には、弾性膜50と絶縁体膜55との間に第2の弾性膜53が設けられ、この第2の弾性膜53が除去された空間に接続配線130が形成されている。そして、接続配線130は、各圧力発生室12に対向する領域から圧力発生室12の長手方向一端部側の周壁に対向する領域まで延設され、周壁に対向する領域でそれぞれ連結されている。すなわち、本実施形態では、下電極膜60と接続配線130とで、各圧電素子300の共通電極が形成されている。なお、勿論、この接続配線130は、圧力発生室12の列方向に亘って連続的に設けられていてもよい。
このような構成としても、上電極膜80によって圧電体層70の表面を完全に覆うことができるため、実施形態1と同様に、圧電素子300及び振動板の変位の低下を防止でき且つ水分(湿気)に起因する圧電素子300の破壊を防止することができる。
Further, a plurality of insulating films constituting the diaphragm, that is, between the elastic film 50 and the insulating film 55 are connected to the lower electrode film 60 through contact portions 131 provided on the insulating film 55. Connection wiring 130 is provided. Specifically, the second elastic film 53 is provided between the elastic film 50 and the insulator film 55, and the connection wiring 130 is formed in the space from which the second elastic film 53 is removed. And the connection wiring 130 is extended from the area | region facing each pressure generation chamber 12 to the area | region facing the peripheral wall of the longitudinal direction one end part side of the pressure generation chamber 12, and is each connected in the area | region facing a peripheral wall. That is, in this embodiment, the lower electrode film 60 and the connection wiring 130 form a common electrode for each piezoelectric element 300. Of course, the connection wiring 130 may be provided continuously in the column direction of the pressure generating chambers 12.
Even in such a configuration, since the surface of the piezoelectric layer 70 can be completely covered by the upper electrode film 80, similarly to the first embodiment, it is possible to prevent the displacement of the piezoelectric element 300 and the diaphragm and prevent moisture ( The destruction of the piezoelectric element 300 due to moisture) can be prevented.

なお、このような接続配線130及び振動板の形成方法は、特に限定されないが、本実施形態では、以下の工程で形成している。すなわち、まず、図7(a)に示すように、流路形成基板10上に形成された弾性膜50(52)上に、例えば、二酸化シリコン(SiO)からなる第2の弾性膜53を形成する。そして、この第2の弾性膜53を所定形状にパターニングする。すなわち、接続配線130が形成される領域の第2の弾性膜53を除去して凹部54を形成する。次いで、図7(b)に示すように、第2の弾性膜53に形成された凹部54に、高融点の金属等の導電材料を充填して接続配線130を形成して表面を、例えば、CMP(化学的機械的研磨)法により平坦化する。次いで、図7(c)に示すように、絶縁体膜55を流路形成基板10の全面に形成した後、絶縁体膜55の接続配線130に対向する領域に接続孔56を形成する。そして、図7(d)に示すように、この接続孔56に上記導電材料をさらに充填して表面を平坦化することにより、接続配線130の下電極との接点部131が形成される。 In addition, although the formation method of such a connection wiring 130 and a diaphragm is not specifically limited, In this embodiment, it forms in the following processes. That is, first, as shown in FIG. 7A, a second elastic film 53 made of, for example, silicon dioxide (SiO 2 ) is formed on the elastic film 50 (52) formed on the flow path forming substrate 10. Form. Then, the second elastic film 53 is patterned into a predetermined shape. That is, the concave portion 54 is formed by removing the second elastic film 53 in the region where the connection wiring 130 is to be formed. Next, as shown in FIG. 7B, the concave portion 54 formed in the second elastic film 53 is filled with a conductive material such as a high melting point metal to form the connection wiring 130, and the surface is formed, for example, Planarization is performed by a CMP (Chemical Mechanical Polishing) method. Next, as illustrated in FIG. 7C, after the insulator film 55 is formed on the entire surface of the flow path forming substrate 10, a connection hole 56 is formed in a region facing the connection wiring 130 of the insulator film 55. Then, as shown in FIG. 7D, the contact hole 131 with the lower electrode of the connection wiring 130 is formed by further filling the connection hole 56 with the conductive material and flattening the surface.

(他の実施形態)
以上、本発明の各実施形態を説明したが、本発明は、上述した実施形態に限定されるものではない。例えば、上述の実施形態では、下電極膜60が、各圧電素子300に共通する共通電極となっているが、これに限定されず、勿論、上電極膜80が共通電極となっていてもよい。この場合には、上電極膜80を複数の圧力発生室12(圧電素子300)に対向する領域に連続的に設けるようにしてもよい。これにより、上電極膜80のパターニングが容易となり、製造効率を向上することができる。
(Other embodiments)
As mentioned above, although each embodiment of this invention was described, this invention is not limited to embodiment mentioned above. For example, in the above-described embodiment, the lower electrode film 60 is a common electrode common to the piezoelectric elements 300. However, the present invention is not limited to this, and the upper electrode film 80 may be a common electrode. . In this case, the upper electrode film 80 may be continuously provided in a region facing the plurality of pressure generating chambers 12 (piezoelectric elements 300). Thereby, the patterning of the upper electrode film 80 becomes easy and the manufacturing efficiency can be improved.

なお、上述した実施形態のインクジェット式記録ヘッドは、インクカートリッジ等と連通するインク流路を具備する記録ヘッドユニットの一部を構成して、インクジェット式記録装置に搭載される。図8は、そのインクジェット式記録装置の一例を示す概略図である。図8に示すように、インクジェット式記録ヘッドを有する記録ヘッドユニット1A及び1Bは、インク供給手段を構成するカートリッジ2A及び2Bが着脱可能に設けられ、この記録ヘッドユニット1A及び1Bを搭載したキャリッジ3は、装置本体4に取り付けられたキャリッジ軸5に軸方向移動自在に設けられている。この記録ヘッドユニット1A及び1Bは、例えば、それぞれブラックインク組成物及びカラーインク組成物を吐出するものとしている。そして、駆動モータ6の駆動力が図示しない複数の歯車およびタイミングベルト7を介してキャリッジ3に伝達されることで、記録ヘッドユニット1A及び1Bを搭載したキャリッジ3はキャリッジ軸5に沿って移動される。一方、装置本体4にはキャリッジ軸5に沿ってプラテン8が設けられており、図示しない給紙ローラなどにより給紙された紙等の記録媒体である記録シートSがプラテン8上を搬送されるようになっている。   The ink jet recording head according to the above-described embodiment constitutes a part of a recording head unit including an ink flow path communicating with an ink cartridge or the like, and is mounted on the ink jet recording apparatus. FIG. 8 is a schematic view showing an example of the ink jet recording apparatus. As shown in FIG. 8, in the recording head units 1A and 1B having the ink jet recording head, cartridges 2A and 2B constituting ink supply means are detachably provided, and a carriage 3 on which the recording head units 1A and 1B are mounted. Is provided on a carriage shaft 5 attached to the apparatus body 4 so as to be movable in the axial direction. The recording head units 1A and 1B, for example, are configured to eject a black ink composition and a color ink composition, respectively. The driving force of the driving motor 6 is transmitted to the carriage 3 via a plurality of gears and timing belt 7 (not shown), so that the carriage 3 on which the recording head units 1A and 1B are mounted is moved along the carriage shaft 5. The On the other hand, the apparatus body 4 is provided with a platen 8 along the carriage shaft 5, and a recording sheet S, which is a recording medium such as paper fed by a paper feed roller (not shown), is conveyed on the platen 8. It is like that.

なお、上述した実施形態においては、本発明の液体噴射ヘッドの一例としてインクジェット式記録ヘッドを説明したが、液体噴射ヘッドの基本的構成は上述したものに限定されるものではない。本発明は、広く液体噴射ヘッドの全般を対象としたものであり、インク以外の液体を噴射するものにも勿論適用することができる。その他の液体噴射ヘッドとしては、例えば、プリンタ等の画像記録装置に用いられる各種の記録ヘッド、液晶ディスプレー等のカラーフィルタの製造に用いられる色材噴射ヘッド、有機ELディスプレー、FED(面発光ディスプレー)等の電極形成に用いられる電極材料噴射ヘッド、バイオchip製造に用いられる生体有機物噴射ヘッド等が挙げられる。   In the above-described embodiment, the ink jet recording head has been described as an example of the liquid ejecting head of the present invention. However, the basic configuration of the liquid ejecting head is not limited to the above-described configuration. The present invention covers a wide range of liquid ejecting heads, and can naturally be applied to those ejecting liquids other than ink. Other liquid ejecting heads include, for example, various recording heads used in image recording apparatuses such as printers, color material ejecting heads used in the manufacture of color filters such as liquid crystal displays, organic EL displays, and FEDs (surface emitting displays). Examples thereof include an electrode material ejection head used for electrode formation, a bioorganic matter ejection head used for biochip production, and the like.

実施形態1に係る記録ヘッドの分解斜視図である。FIG. 3 is an exploded perspective view of the recording head according to the first embodiment. 実施形態1に係る記録ヘッドの平面図及び断面図である。2A and 2B are a plan view and a cross-sectional view of the recording head according to the first embodiment. 実施形態1に係る記録ヘッドの要部を示す平面図及び断面図である。2A and 2B are a plan view and a cross-sectional view illustrating a main part of the recording head according to Embodiment 1. 実施形態1に係る記録ヘッドの製造工程を示す断面図である。5 is a cross-sectional view illustrating a manufacturing process of the recording head according to Embodiment 1. FIG. 実施形態1に係る記録ヘッドの製造工程を示す断面図である。5 is a cross-sectional view illustrating a manufacturing process of the recording head according to Embodiment 1. FIG. 実施形態2に係る記録ヘッドの断面図である。6 is a cross-sectional view of a recording head according to Embodiment 2. FIG. 実施形態2に係る記録ヘッドの製造工程を示す断面図である。6 is a cross-sectional view illustrating a manufacturing process of a recording head according to Embodiment 2. FIG. 一実施形態に係る記録装置の概略図である。1 is a schematic diagram of a recording apparatus according to an embodiment.

符号の説明Explanation of symbols

10 流路形成基板、 12 圧力発生室、 20 ノズルプレート、 21 ノズル開口、 30 保護基板、 31 圧電素子保持部、 32 リザーバ部、 33 貫通孔、 40 コンプライアンス基板、 50 弾性膜、 53 第2の弾性膜 55 絶縁体膜、 60 下電極膜、 70 圧電体膜、 80 上電極膜、 100 リザーバ、 130 接続配線、 131 接点部、 300 圧電素子

DESCRIPTION OF SYMBOLS 10 Flow path formation board | substrate, 12 Pressure generation chamber, 20 Nozzle plate, 21 Nozzle opening, 30 Protection board, 31 Piezoelectric element holding | maintenance part, 32 Reservoir part, 33 Through hole, 40 Compliance board | substrate, 50 Elastic film, 53 2nd elasticity Film 55 Insulator film, 60 Lower electrode film, 70 Piezoelectric film, 80 Upper electrode film, 100 Reservoir, 130 Connection wiring, 131 Contact part, 300 Piezoelectric element

Claims (5)

液滴を吐出するノズル開口にそれぞれ連通する圧力発生室が形成される流路形成基板と、該流路形成基板の一方面側に振動板を介して設けられる下電極、圧電体層及び上電極からなる圧電素子とを具備する液体噴射ヘッドであって、
前記圧力発生室に対向する領域の前記下電極が当該圧力発生室よりも狭い幅で形成されると共に当該圧力発生室に対応する領域の前記下電極の上面及び端面が前記圧電体層によって覆われており、且つ前記圧電体層の上面及び端面が、当該圧電体層上に設けられた前記上電極によって覆われていることを特徴とする液体噴射ヘッド。
A flow path forming substrate in which pressure generating chambers communicating with nozzle openings for discharging droplets are formed, and a lower electrode, a piezoelectric layer, and an upper electrode provided on one surface side of the flow path forming substrate via a vibration plate A liquid ejecting head comprising a piezoelectric element comprising:
The lower electrode in the region facing the pressure generating chamber is formed with a width narrower than that of the pressure generating chamber, and the upper surface and the end surface of the lower electrode in the region corresponding to the pressure generating chamber are covered with the piezoelectric layer. And a top surface and an end surface of the piezoelectric layer are covered with the upper electrode provided on the piezoelectric layer.
請求項1において、前記圧力発生室の長手方向の端部近傍に対応する領域の前記下電極上の一部に絶縁膜が設けられ、前記圧電体層の前記下電極上の端部が前記絶縁膜上に設けられていることを特徴とする液体噴射ヘッド。 2. The insulating film according to claim 1, wherein an insulating film is provided on a part of the lower electrode in a region corresponding to the vicinity of an end in the longitudinal direction of the pressure generating chamber, and an end of the piezoelectric layer on the lower electrode is the insulating layer. A liquid ejecting head, wherein the liquid ejecting head is provided on a film. 請求項1において、前記下電極が各圧力発生室に対向する領域内に形成されてその上面及び端面が前記圧電体層によって覆われ、且つ当該下電極が、前記振動板を構成する複数の絶縁膜の間に設けられる接続配線と、当該下電極の前記圧電体層とは反対側の面で接続されていることを特徴とする液体噴射ヘッド。 2. The lower electrode according to claim 1, wherein the lower electrode is formed in a region facing each pressure generating chamber, and an upper surface and an end surface thereof are covered with the piezoelectric layer, and the lower electrode includes a plurality of insulations constituting the diaphragm. A liquid ejecting head, wherein a connection wiring provided between the films is connected to a surface of the lower electrode opposite to the piezoelectric layer. 請求項1〜3の何れかにおいて、前記上電極が複数の圧電素子に対向する領域に連続的に設けられていることを特徴とする液体噴射ヘッド。 The liquid ejecting head according to claim 1, wherein the upper electrode is continuously provided in a region facing the plurality of piezoelectric elements. 請求項1〜4の何れかの液体噴射ヘッドを具備することを特徴とする液体噴射装置。

A liquid ejecting apparatus comprising the liquid ejecting head according to claim 1.

JP2003326705A 2003-09-18 2003-09-18 Liquid injection head and device Pending JP2005088441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326705A JP2005088441A (en) 2003-09-18 2003-09-18 Liquid injection head and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326705A JP2005088441A (en) 2003-09-18 2003-09-18 Liquid injection head and device

Publications (1)

Publication Number Publication Date
JP2005088441A true JP2005088441A (en) 2005-04-07

Family

ID=34456810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326705A Pending JP2005088441A (en) 2003-09-18 2003-09-18 Liquid injection head and device

Country Status (1)

Country Link
JP (1) JP2005088441A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297657A (en) * 2005-04-18 2006-11-02 Fuji Photo Film Co Ltd Liquid ejecting head, its manufacturing method and image forming apparatus
JP2007106112A (en) * 2005-09-15 2007-04-26 Fujifilm Corp Liquid discharge head and its manufacturing process
JP2009172878A (en) * 2008-01-24 2009-08-06 Seiko Epson Corp Liquid injection head and liquid injection apparatus
JP2009196329A (en) * 2008-02-25 2009-09-03 Seiko Epson Corp Manufacturing method of liquid injection head
JP2010208138A (en) * 2009-03-10 2010-09-24 Seiko Epson Corp Liquid ejection head, method for manufacturing the same and liquid ejection apparatus
JP2011018723A (en) * 2009-07-08 2011-01-27 Seiko Epson Corp Piezoelectric element, method for manufacturing the same, piezoelectric actuator, liquid ejecting head, and liquid ejecting apparatus
US7891785B2 (en) 2008-03-03 2011-02-22 Seiko Epson Corporation Liquid jet head and a liquid jet apparatus
JP2011140153A (en) * 2010-01-06 2011-07-21 Seiko Epson Corp Liquid ejecting head and liquid ejecting apparatus
US8360558B2 (en) 2009-11-17 2013-01-29 Seiko Epson Corporation Liquid droplet discharging head and liquid droplet discharging apparatus
JP2013047014A (en) * 2012-12-07 2013-03-07 Seiko Epson Corp Liquid jet head, and liquid jet apparatus
US8449084B2 (en) 2010-01-13 2013-05-28 Seiko Epson Corporation Liquid ejection head and liquid ejection apparatus
JP2013162063A (en) * 2012-02-08 2013-08-19 Seiko Epson Corp Piezoelectric element, liquid injection head, and liquid injection device
JP2013220598A (en) * 2012-04-17 2013-10-28 Toshiba Tec Corp Ink jet head and method for manufacturing the same
US8567918B2 (en) 2009-08-21 2013-10-29 Seiko Epson Corporation Piezoelectric element, piezoelectric actuator, liquid ejecting head, liquid ejecting apparatus, and method for producing piezoelectric element
US8636341B2 (en) 2009-12-22 2014-01-28 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
US8752938B2 (en) 2009-12-21 2014-06-17 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
US8819903B2 (en) 2010-08-04 2014-09-02 Seiko Epson Corporation Manufacturing method of a piezoelectric element and a liquid ejecting head
US8876261B2 (en) 2009-11-26 2014-11-04 Seiko Epson Corporation Actuator, liquid ejecting head, and liquid ejecting apparatus
US8914955B2 (en) 2010-07-08 2014-12-23 Seiko Epson Corporation Method for manufacturing piezoelectric element and method for manufacturing liquid ejection head

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297657A (en) * 2005-04-18 2006-11-02 Fuji Photo Film Co Ltd Liquid ejecting head, its manufacturing method and image forming apparatus
JP4682678B2 (en) * 2005-04-18 2011-05-11 富士フイルム株式会社 Method for manufacturing liquid discharge head
JP2007106112A (en) * 2005-09-15 2007-04-26 Fujifilm Corp Liquid discharge head and its manufacturing process
US9533501B2 (en) 2008-01-24 2017-01-03 Seiko Epson Corporation Liquid jet head and a liquid jet apparatus including a piezoelectric material having an upper electrode and a lower electrode
JP2009172878A (en) * 2008-01-24 2009-08-06 Seiko Epson Corp Liquid injection head and liquid injection apparatus
US20110316938A1 (en) * 2008-01-24 2011-12-29 Seiko Epson Corporation Liquid jet head and a liquid jet apparatus
US8608292B2 (en) 2008-01-24 2013-12-17 Seiko Epson Corporation Liquid jet head and a liquid jet apparatus
US8029109B2 (en) 2008-01-24 2011-10-04 Seiko Epson Corporation Liquid jet head and a liquid jet apparatus
JP2009196329A (en) * 2008-02-25 2009-09-03 Seiko Epson Corp Manufacturing method of liquid injection head
US8057018B2 (en) 2008-02-25 2011-11-15 Seiko Epson Corporation Method of manufacturing a liquid jet head and a liquid jet apparatus
US8613498B2 (en) 2008-02-25 2013-12-24 Seiko Epson Corporation Method of manufacturing a liquid jet head and a liquid jet apparatus
US8991985B2 (en) 2008-02-25 2015-03-31 Seiko Epson Corporation Method of manufacturing a liquid jet head and a liquid jet apparatus
US7891785B2 (en) 2008-03-03 2011-02-22 Seiko Epson Corporation Liquid jet head and a liquid jet apparatus
JP2010208138A (en) * 2009-03-10 2010-09-24 Seiko Epson Corp Liquid ejection head, method for manufacturing the same and liquid ejection apparatus
JP2011018723A (en) * 2009-07-08 2011-01-27 Seiko Epson Corp Piezoelectric element, method for manufacturing the same, piezoelectric actuator, liquid ejecting head, and liquid ejecting apparatus
US8801152B2 (en) 2009-08-21 2014-08-12 Seiko Epson Corporation Piezoelectric element, piezoelectric actuator, liquid ejecting head, liquid ejecting apparatus, and method for producing piezoelectric element
US8567918B2 (en) 2009-08-21 2013-10-29 Seiko Epson Corporation Piezoelectric element, piezoelectric actuator, liquid ejecting head, liquid ejecting apparatus, and method for producing piezoelectric element
US8360558B2 (en) 2009-11-17 2013-01-29 Seiko Epson Corporation Liquid droplet discharging head and liquid droplet discharging apparatus
US8876261B2 (en) 2009-11-26 2014-11-04 Seiko Epson Corporation Actuator, liquid ejecting head, and liquid ejecting apparatus
US8752938B2 (en) 2009-12-21 2014-06-17 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
US9272507B2 (en) 2009-12-21 2016-03-01 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
US8636341B2 (en) 2009-12-22 2014-01-28 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
JP2011140153A (en) * 2010-01-06 2011-07-21 Seiko Epson Corp Liquid ejecting head and liquid ejecting apparatus
US8449084B2 (en) 2010-01-13 2013-05-28 Seiko Epson Corporation Liquid ejection head and liquid ejection apparatus
US8914955B2 (en) 2010-07-08 2014-12-23 Seiko Epson Corporation Method for manufacturing piezoelectric element and method for manufacturing liquid ejection head
US8819903B2 (en) 2010-08-04 2014-09-02 Seiko Epson Corporation Manufacturing method of a piezoelectric element and a liquid ejecting head
JP2013162063A (en) * 2012-02-08 2013-08-19 Seiko Epson Corp Piezoelectric element, liquid injection head, and liquid injection device
JP2013220598A (en) * 2012-04-17 2013-10-28 Toshiba Tec Corp Ink jet head and method for manufacturing the same
US9150008B2 (en) 2012-04-17 2015-10-06 Toshiba Tec Kabushiki Kaisha Ink jet head and manufacturing method of the same
US9415593B2 (en) 2012-04-17 2016-08-16 Toshiba Tec Kabushiki Kaisha Ink jet head and manufacturing method of the same
JP2013047014A (en) * 2012-12-07 2013-03-07 Seiko Epson Corp Liquid jet head, and liquid jet apparatus

Similar Documents

Publication Publication Date Title
JP4868118B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2005088441A (en) Liquid injection head and device
JP2009255529A (en) Liquid ejecting head, liquid ejecting apparatus and actuator
JP4645831B2 (en) Liquid ejecting head, manufacturing method thereof, and liquid ejecting apparatus
JP3812658B2 (en) Inkjet recording head, method for manufacturing the same, and inkjet recording apparatus
JP2009143002A (en) Liquid jet head and liquid jet apparatus
JP2009016625A (en) Actuator, liquid injection head, and liquid injection apparatus
JP4340048B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP4614068B2 (en) Liquid ejecting head, manufacturing method thereof, and liquid ejecting apparatus
JP2009255530A (en) Liquid ejecting head, liquid ejecting apparatus and actuator
JP5999301B2 (en) Piezoelectric element, liquid ejecting head, and liquid ejecting apparatus
JP2009255531A (en) Liquid ejecting head, liquid ejecting apparatus and actuator
JP2009051104A (en) Liquid jetting head and liquid jetting device
JP4344929B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2010221434A (en) Liquid jetting head, method for manufacturing the same, and liquid jetting apparatus
JP3879842B2 (en) Method for manufacturing liquid jet head
JP2005119199A (en) Liquid jetting head and liquid jetting apparatus
JP4120761B2 (en) Inkjet recording head and inkjet recording apparatus
JP2012011615A (en) Liquid discharge head, liquid discharge head unit and liquid discharge device
JP5790919B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP5447786B2 (en) Liquid ejecting head, liquid ejecting apparatus, and actuator device
JP5849407B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2002187271A (en) Ink jet recording head and ink jet recording device
JP2004330567A (en) Liquid injection head and liquid injector
JP2006264044A (en) Manufacturing method for actuator device, actuator device, and liquid jet head and liquid jet apparatus