JP2005087961A - Method and apparatus for separating charged impurity in fluid - Google Patents

Method and apparatus for separating charged impurity in fluid Download PDF

Info

Publication number
JP2005087961A
JP2005087961A JP2003328325A JP2003328325A JP2005087961A JP 2005087961 A JP2005087961 A JP 2005087961A JP 2003328325 A JP2003328325 A JP 2003328325A JP 2003328325 A JP2003328325 A JP 2003328325A JP 2005087961 A JP2005087961 A JP 2005087961A
Authority
JP
Japan
Prior art keywords
fluid
impurities
impurity
chargeable
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003328325A
Other languages
Japanese (ja)
Inventor
Kenji Fujihata
健二 藤畑
Kazuya Yamada
和矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003328325A priority Critical patent/JP2005087961A/en
Publication of JP2005087961A publication Critical patent/JP2005087961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus of simple construction for separating charged impurities in a fluid that can separate charged impurities contained in a liquid or gas. <P>SOLUTION: The apparatus is equipped with an electrophoresis vessel 7a where a fluid 1 to be treated containing charged impurities 3, 4, 5 and 6 is introduced and a treated fluid 2 free from the above impurities is generated, while separation fluids 41, 42, 43 and 44 containing the only impurities among the above impurities that have either positive or negative charge polarity and a specified range of at least one of particle size and electrophoretic velocity thereof, are formed. The above electrophoresis vessel is comprised of a treated-fluid chamber 30 where the above fluid to be treated is introduced and the above treated fluid is generated as well as separation-fluid chambers 31, 32, 33 and 34 that are located adjacent to the above treated-fluid chamber with diffusion layers 11, 12, 25 and 26 which is permeable to fluid components of the fluid to be treated to suppress a diffusion of the above impurities positioned between them, equipped with electrodes 8 and 9 to form an electric field acting on the above impurities, and form the above separation fluid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液体あるいは気体に含まれる帯電性の不純物を分離する流体中の帯電性不純物の分離方法および装置に関する。   The present invention relates to a method and an apparatus for separating chargeable impurities in a fluid for separating chargeable impurities contained in a liquid or gas.

帯電性の不純物としては、液体中ではイオンあるいはコロイド等として多くのものが存在しており、他方、気体中では分子ガスあるいは粉塵粒子等としての存在がある。
液体において、まず、イオン等の溶解成分の分離には、イオン交換樹脂塔の適用が最も多い(下記特許文献1参照)。これは有機物の樹脂にイオン交換基を付与したイオン交換樹脂の粒子を、通水可能な管体(樹脂塔)に充填して使用するものである。しかし、有機物の樹脂とイオン交換基の結合は決して十分な強度を持っておらず、容易に分解に至るため二次的な不純物の発生原因となり得る。
As the chargeable impurities, many ions exist as ions or colloids in the liquid, and on the other hand, they exist as molecular gas or dust particles in the gas.
In the liquid, first, ion-exchange resin towers are most often used to separate dissolved components such as ions (see Patent Document 1 below). In this method, ion exchange resin particles in which an ion exchange group is added to an organic resin are filled in a water-permeable tube (resin tower) and used. However, the bond between the organic resin and the ion exchange group never has sufficient strength and easily decomposes, which may cause generation of secondary impurities.

また、有機物である樹脂は本質的に熱や薬品等に対する耐久性に劣る。このようにイオン交換樹脂を使用してイオンの分離を行うが、これによって可能なことは負帯電不純物と正帯電不純物を分離することのみであり、負帯電不純物と正帯電不純物を別々に類似種毎に分離することはできない。   In addition, organic resin is essentially inferior in durability to heat, chemicals and the like. In this way, ion separation is performed using an ion exchange resin, but this can only separate negatively charged impurities from positively charged impurities. It cannot be separated every time.

液体中のコロイド等の粒子成分の分離には、精密濾過法が古くから適用されている(特許文献2参照)。これはコロイド粒子を補足できる微小な孔径の孔を持つ濾布によって物理的なふるいを行うものである。しかし、この精密濾過による分離で可能なことは粒子を補足することのみであり、帯電性の不純物とそれ以外とを分離することはできない。   A microfiltration method has long been applied to the separation of particle components such as colloids in a liquid (see Patent Document 2). In this method, physical sieving is performed by a filter cloth having pores having a minute pore size capable of capturing colloidal particles. However, this microfiltration separation can only capture the particles and cannot separate the chargeable impurities from the others.

気体において、分子ガス等の成分を分離するには、特殊な吸着材や特殊な透過フィルタを用いる方法がある(特許文献3参照)。吸着材では分子ガスとの間で吸着力の働くような材料が用いられるが、これによって可能なことは、単一分子ガスの補足だけである。他方、透過フィルタはフィルタの孔径によって物理的なふるいを行うものであるが、分子ガスを補足するのみであり、帯電性の不純物とそれ以外とを分離することはできない。   In order to separate components such as molecular gas in gas, there is a method using a special adsorbent or a special transmission filter (see Patent Document 3). The adsorbent uses a material that exerts an adsorbing force with the molecular gas, but this can only supplement the single molecular gas. On the other hand, the transmission filter performs physical sieving according to the pore size of the filter, but only supplements the molecular gas and cannot separate the chargeable impurities from the others.

気体中の粉塵等の粒子成分の分離には、液体中のコロイドの分離と同様に精密濾過法(特許文献4参照)の適用が多いが、最近では放電分離法(特許文献5参照)も用いられつつある。精密濾過法は粉塵粒子を補足できるような微小な孔径の孔を持つ濾布によって物理的なふるいを行うものであり、帯電性の不純物とそれ以外とを分離できない。他方、放電分離法は陰極と陽極を持つ放電槽の電極間に放電領域の電場を与え、それぞれの帯電電位に従って電極方向に分離するものであり、負帯電不純物と正帯電不純物を別々に類似種毎に分離することはできない。
特開2003−181303号公報 特開2003−145150号公報 特開2003−190782号公報 特開2003−191404号公報 特開2003−190835号公報
For separation of particulate components such as dust in the gas, the microfiltration method (see Patent Document 4) is often applied, as is the case with the separation of colloids in liquids. Recently, however, the discharge separation method (see Patent Document 5) is also used. It is being In the microfiltration method, physical sieving is performed by a filter cloth having fine pores that can capture dust particles, and the chargeable impurities cannot be separated from the others. On the other hand, the discharge separation method applies an electric field in the discharge region between the electrodes of the discharge tank having the cathode and the anode, and separates the negatively charged impurities and the positively charged impurities separately into similar species separately according to the respective charging potentials. It cannot be separated every time.
JP 2003-181303 A JP 2003-145150 A JP 2003-190782 A JP 2003-191404 A JP 2003-190835 A

本発明は、簡単な構成により液体あるいは気体に含まれる帯電性の不純物を分離することのできる流体中の帯電性不純物の分離方法および装置を提供することを目的とする。   An object of the present invention is to provide a method and an apparatus for separating chargeable impurities in a fluid that can separate chargeable impurities contained in a liquid or gas with a simple configuration.

請求項1の発明は流体中の帯電性不純物の分離装置であり、帯電性の不純物を含む被処理流体が導入されて前記不純物を含まない処理流体を生成するとともに前記不純物のうち正または負のいずれか一方の帯電極性を有し粒径または電気泳動速度の少なくともいずれか一方が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽を備え、前記電気泳動槽は、前記被処理流体が導入されて前記処理流体を生成する処理流体室と、前記被処理流体の流体成分を透過し前記不純物の拡散を抑制する拡散層を介して前記処理流体室に接して設けられ前記不純物に対して電気力を作用する電場を形成する電極を備えて前記分離流体を生成する分離流体室とを備えている構成とする。   The invention of claim 1 is an apparatus for separating a chargeable impurity in a fluid, wherein a treatment fluid containing a chargeable impurity is introduced to produce a treatment fluid that does not contain the impurity, and positive or negative of the impurities. An electrophoresis tank that generates a separation fluid that includes only impurities having at least one of a charged polarity and a particle size or an electrophoresis speed within a predetermined range; The processing fluid chamber into which the processing fluid is introduced to generate the processing fluid, and the impurities provided in contact with the processing fluid chamber through a diffusion layer that transmits a fluid component of the processing target fluid and suppresses diffusion of the impurities And a separation fluid chamber that generates the separation fluid by including an electrode that forms an electric field that acts on the electric force.

請求項2の発明は、前記粒径が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽から得られる分離流体を前記電気泳動速度が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽に導入される被処理流体とした構成とする。   According to a second aspect of the present invention, a separation fluid obtained from an electrophoresis tank that generates a separation fluid containing only impurities having a particle size within a predetermined range includes only impurities having an electrophoresis speed within a predetermined range. It is set as the process fluid introduced into the electrophoresis tank which produces | generates a separation fluid.

請求項3の発明は、前記電気泳動速度が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽から得られる分離流体を前記粒径が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽に導入される被処理流体とした構成とする。   According to a third aspect of the present invention, a separation fluid obtained from an electrophoresis tank that generates a separation fluid containing only impurities whose electrophoresis speed is within a predetermined range includes only impurities whose particle size is within a predetermined range. It is set as the process fluid introduced into the electrophoresis tank which produces | generates a separation fluid.

請求項4の発明は、前記拡散層の材質は、ステンレス鋼、チタンのような金属材料、またはセラミック材料、またはポリイミド、セルロースのような高分子材料、またはポリプロピレン、フルオロカーボンのような有機材料である構成とする。   According to a fourth aspect of the present invention, the material of the diffusion layer is a metal material such as stainless steel or titanium, a ceramic material, a polymer material such as polyimide or cellulose, or an organic material such as polypropylene or fluorocarbon. The configuration.

請求項5の発明は、前記電極は、少なくとも表面が白金である構成とする。
請求項6の発明は、前記電気泳動槽の材質は、ステンレス鋼、チタンのような金属材料、または塩化ビニル、アクリルのような有機材料である構成とする。
According to a fifth aspect of the present invention, at least the surface of the electrode is platinum.
According to a sixth aspect of the present invention, the material of the electrophoresis tank is a metal material such as stainless steel or titanium, or an organic material such as vinyl chloride or acrylic.

請求項7の発明は、前記電気泳動槽の内面にフルオロカーボンのような内張りが施されている構成とする。
請求項8の発明は、前記電気泳動槽の形状は前記電極の方向に頂点を有する円錐形である構成とする。
According to a seventh aspect of the invention, the inner surface of the electrophoresis tank is provided with a lining such as fluorocarbon.
According to an eighth aspect of the present invention, the electrophoresis tank has a conical shape having a vertex in the direction of the electrode.

請求項9の発明は、前記拡散層は容器状をなし、前記容器の内部に前記電極が配置されている構成とする。
請求項10の発明は、前記流体は液体または気体であり、前記不純物は金属または有機物または無機物である構成とする。
According to a ninth aspect of the present invention, the diffusion layer has a container shape, and the electrode is disposed inside the container.
According to a tenth aspect of the present invention, the fluid is a liquid or a gas, and the impurity is a metal, an organic substance, or an inorganic substance.

請求項11の発明は流体中の帯電性不純物の分離方法であり、前記処理流体室に充填材が充填されている構成とする。
請求項12の発明は、帯電性の不純物を含む被処理流体に前記被処理流体の流体成分を透過し前記不純物の拡散を抑制する拡散層を介して電界を印加し、前記拡散層の上流側に前記不純物を含まない処理流体を生成するとともに、前記拡散層の下流側に前記不純物のうち正または負のいずれか一方の帯電極性を有し粒径または電気泳動速度の少なくともいずれか一方が所定の範囲内にある不純物のみを含む分離流体を生成する方法とする。
An eleventh aspect of the invention is a method for separating a chargeable impurity in a fluid, wherein the processing fluid chamber is filled with a filler.
According to a twelfth aspect of the present invention, an electric field is applied to a fluid to be treated containing a chargeable impurity through a diffusion layer that transmits a fluid component of the fluid to be treated and suppresses diffusion of the impurity, and upstream of the diffusion layer. And a processing fluid that does not contain the impurities, and has a positive or negative charging polarity of the impurities on the downstream side of the diffusion layer, and at least one of a particle size and an electrophoresis speed is predetermined. A method for producing a separation fluid containing only impurities within the range of.

本発明によれば、簡単な構成により液体あるいは気体に含まれる帯電性の不純物を分離することのできる流体中の帯電性不純物の分離方法および装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the separation method and apparatus of the charging impurity in the fluid which can isolate | separate the charging impurity contained in the liquid or gas by simple structure can be provided.

以下に図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は第1の実施例の流体中の帯電性不純物の分離方法および装置を示す図である。この実施例の流体中の帯電性不純物の分離装置は、電気泳動槽7aの両極端に陰極および陽極(電極)8,9が設けられ、中央から電極8,9に向かって複数の拡散層10,11,25,26が配置され、被処理流体1が充填材12を充填した処理流体室30の一方から流入し、その反対側から処理流体2が流出するとともに、電極8,9および拡散層10,11間の分離流体室31,32,33,34からそれぞれ分離流体41,42,43,44が流出する構成となっている。   FIG. 1 is a diagram showing a method and an apparatus for separating chargeable impurities in a fluid according to a first embodiment. The apparatus for separating chargeable impurities in the fluid of this embodiment is provided with cathodes and anodes (electrodes) 8 and 9 at both extremes of the electrophoresis tank 7a, and a plurality of diffusion layers 10, 11, 25, 26 are arranged, and the fluid 1 to be processed flows in from one of the processing fluid chambers 30 filled with the filler 12, the processing fluid 2 flows out from the opposite side, and the electrodes 8, 9 and the diffusion layer 10. , 11, the separation fluids 41, 42, 43, and 44 flow out from the separation fluid chambers 31, 32, 33, and 34, respectively.

ここで、正帯電性不純物3の粒径は正帯電性不純物4の粒径よりも大きく、負帯電性不純物5の粒径は負帯電性不純物6の粒径よりも大きいものとする。拡散層10,11,25,26は多数の微細な連通孔を有する膜や焼成物からなる。拡散層10の有する孔の径は拡散層11の有する孔の径より大きく、拡散層25の孔の径は拡散層26の孔の径よりも大きい。   Here, the particle diameter of the positively chargeable impurity 3 is larger than the particle diameter of the positively chargeable impurity 4, and the particle diameter of the negatively chargeable impurity 5 is larger than the particle diameter of the negatively chargeable impurity 6. The diffusion layers 10, 11, 25, and 26 are made of a film having a large number of fine communication holes or a fired product. The diameter of the hole of the diffusion layer 10 is larger than the diameter of the hole of the diffusion layer 11, and the diameter of the hole of the diffusion layer 25 is larger than the diameter of the hole of the diffusion layer 26.

この電気泳動槽7aにおいて、帯電性不純物3,4,5,6を含む被処理流体1を処理流体室30に流入させて、その両極端に設置された正・負の電極9,8から電場を与え、帯電性不純物3,4,5,6をその帯電の極性に従ってそれぞれ電位方向に電気泳動させるとともに、配置された拡散層10,11,25,26によって粒径の大小で分ける物理的なふるいを行うことで、被処理流体1に含まれる帯電性不純物3,4,5,6を正・負別にその粒径が所定の範囲内にある種毎にろ過して、電極8,9および拡散層10,11,25,26間の分離流体室31,32,33,34からそれぞれ分離流体41,42,43,44として流出させる。   In this electrophoresis tank 7a, the fluid 1 to be treated containing the chargeable impurities 3, 4, 5, 6 is caused to flow into the treatment fluid chamber 30, and an electric field is generated from the positive and negative electrodes 9, 8 installed at both extremes thereof. The physical sieves that cause the chargeable impurities 3, 4, 5, and 6 to be electrophoresed in the potential direction according to the polarity of the charge and that are divided according to the size of the particle size by the arranged diffusion layers 10, 11, 25, and 26. Is performed to filter the charged impurities 3, 4, 5, 6 contained in the fluid 1 to be treated positively or negatively for each species whose particle size is within a predetermined range, and to diffuse the electrodes 8, 9 and diffusion. The separated fluids 41, 42, 43, and 44 flow out from the separated fluid chambers 31, 32, 33, and 34 between the layers 10, 11, 25, and 26, respectively.

ここで被処理流体1としては、液体および気体を対象とすることができ、対象となる不純物3,4,5,6としては、それら液体や気体に含まれる無機成分、金属成分、有機成分などがあり、液体ではこれらがイオン等の溶解成分あるいはコロイド等の粒子成分として存在しているものがある。同様に、気体では分子ガス等の成分あるいは粉塵等の粒子成分として存在しているものがある。   Here, as the fluid 1 to be treated, liquid and gas can be targeted, and as the target impurities 3, 4, 5 and 6, inorganic components, metal components, organic components, etc. contained in these liquids and gases Some liquids exist as dissolved components such as ions or particle components such as colloids. Similarly, some gases exist as components such as molecular gas or particle components such as dust.

すなわち、被処理流体1は、第1の例として液体中に帯電性の無機物の不純物を含むものであり、不純物としては塩化物イオンやナトリウムイオンなどの単元素、またはアンモニウムイオンや硫酸イオンなどの複数元素化合物のイオン成分、あるいはこれらのコロイド状の粒子状成分等がある。あるいは被処理流体1は、液体中に帯電性の金属の不純物を有するものであってもよく、不純物としては鉄イオンなどのイオン成分、あるいは水酸化鉄などのコロイド状の粒子状成分等がある。または、不純物は液体中に帯電性の有機成分として存在するものであってもよく、酢酸などを始め、DNA成分あるいはたんぱく質などの巨大分子のイオンまたは粒子状成分等がある。   That is, the fluid 1 to be treated includes, as a first example, a charged inorganic impurity in the liquid, and the impurity is a single element such as chloride ion or sodium ion, or ammonium ion or sulfate ion. There are ionic components of multi-element compounds, or colloidal particulate components thereof. Or the to-be-processed fluid 1 may have a chargeable metal impurity in a liquid, and there exist ionic components, such as an iron ion, or colloidal particulate components, such as iron hydroxide, as an impurity. . Alternatively, the impurities may be present as a chargeable organic component in the liquid, and include acetic acid and the like, macromolecular ions such as DNA components or proteins, or particulate components.

さらに、不純物が気体中に帯電性の無機成分として存在する構成であってもよく、これには硝酸化合物(NOx)や硫酸化合物(SOx)などがある。あるいはさらに、気体中に金属成分として存在するものであってもよく、揮発性の金属成分などがある。または、気体中に帯電性の有機成分として存在するものであってもよく、揮発性の有機成分などがある。   Furthermore, the structure may be such that impurities are present as a chargeable inorganic component in the gas, such as nitric acid compound (NOx) and sulfuric acid compound (SOx). Alternatively, it may be present as a metal component in the gas, such as a volatile metal component. Alternatively, it may be present as a chargeable organic component in the gas, such as a volatile organic component.

被処理流体1の温度は100℃以上であっても問題なく処理することが可能で、これは装置全体を耐熱性の高い材料で構成することができるためであり、したがって、適用可能な最高温度はその構成材料の耐熱温度と同じとなる。
また、処理流体室30に充填材12を充填することによって、被処理流体1に含まれる不純物のうち、充填材12と相互作用がある成分を選択的に吸着し分離することができる。
Even if the temperature of the fluid 1 to be processed is 100 ° C. or higher, it can be processed without any problem, and this is because the entire apparatus can be composed of a material having high heat resistance, and therefore the maximum applicable temperature. Is the same as the heat-resistant temperature of the constituent material.
In addition, by filling the processing fluid chamber 30 with the filler 12, it is possible to selectively adsorb and separate components that interact with the filler 12 among the impurities contained in the fluid 1 to be processed.

充填材12は電気に対して絶縁性があって、材質はセラミック材料、有機物材料などを処理条件に応じて選択的に用いることができる。構造は多孔質構造であることが望ましいが、無孔であっても使用でき、形状は強度に対する観点から球状あるいは角状であることが望ましい。   The filler 12 is insulative to electricity, and a material such as a ceramic material or an organic material can be selectively used according to processing conditions. The structure is preferably a porous structure, but it can be used even if it is non-porous, and the shape is preferably spherical or angular in terms of strength.

拡散層10,11,25,26は液体あるいは気体の移動を遅延させる機能があるものであって、処理条件に応じて選択された材質の多孔質体や有孔布を複数枚重ねたものなどによって構成される。   The diffusion layers 10, 11, 25, 26 have a function of delaying the movement of the liquid or gas, and a plurality of porous bodies or perforated cloths of a material selected according to the processing conditions, etc. Consists of.

拡散層10,11,25,26は、その材質をステンレス鋼、チタンのような金属材料とすることにより、耐熱性、耐強度性、耐薬品性等に優れ、材料からの二次溶出を抑制することができる。また、セラミック材料とすることにより、金属材料と同様に、耐熱性、耐強度性、耐薬品性に優れ、材料からの二次溶出を抑制することができる。あるいは、ポリイミド、セルロースのような高分子材料とすることにより、原子レベルの微小な孔径を持たせることができる。または、ポリプロピレン、フルオロカーボンのような有機材料とすることにより、安価なものとすることができる。   Diffusion layers 10, 11, 25, 26 are made of a metal material such as stainless steel or titanium, so they have excellent heat resistance, strength resistance, chemical resistance, etc., and suppress secondary elution from the material. can do. Moreover, by using a ceramic material, it is excellent in heat resistance, strength resistance, and chemical resistance similarly to a metal material, and secondary elution from the material can be suppressed. Alternatively, by using a polymer material such as polyimide or cellulose, a minute pore size at an atomic level can be provided. Alternatively, an inexpensive organic material such as polypropylene or fluorocarbon can be used.

例えば、拡散層として処理流体室30側から精密膜(孔径10μm以上)および限外膜と逆浸透膜を配置し、分離流体が正極側と負極側に3系統ずつ排出されるようにした電気泳動槽において、海水を処理した場合、正極側および負極側からそれぞれおよそ10μm〜0.2μm、およそ0.2μm〜0.005μm、およそ0.005μm以下の帯電性の不純物が分離流体として排出される。   For example, electrophoresis with a precision membrane (pore diameter 10 μm or more), an ultrafiltration membrane, and a reverse osmosis membrane arranged as a diffusion layer from the processing fluid chamber 30 side, so that the separation fluid is discharged by three lines to the positive electrode side and the negative electrode side. When seawater is treated in the tank, charged impurities of approximately 10 μm to 0.2 μm, approximately 0.2 μm to 0.005 μm, and approximately 0.005 μm or less are discharged as separation fluid from the positive electrode side and the negative electrode side, respectively.

電気泳動槽7aの材質は、ステンレス鋼、チタンのような金属材料、塩化ビニル、アクリルのような有機材料などからその用途に応じて選択することができ、例えば、被処理流体1が100℃でれば耐熱性が高い金属材料を、あるいは、安価なものとするには有機材料が選ばれる。または、耐腐性や耐薬品性を向上させたい場合には、フルオロカーボンのようなものを電気泳動槽7a内面に内張りすることも可能である。電気泳動槽7aの形状を電極方向を頂点とした円錐形とすることは、電気泳動槽7a内に均一な電場を与えることができるようになるため、分離効率を向上させることに寄与する。   The material of the electrophoresis tank 7a can be selected according to the use from metal materials such as stainless steel and titanium, organic materials such as vinyl chloride and acrylic. For example, the fluid 1 to be treated is 100 ° C. In this case, a metal material having high heat resistance is selected, or an organic material is selected to make it inexpensive. Alternatively, when it is desired to improve the corrosion resistance and chemical resistance, it is possible to line a material such as fluorocarbon on the inner surface of the electrophoresis tank 7a. Making the shape of the electrophoresis tank 7a conical with the electrode direction as the apex can provide a uniform electric field in the electrophoresis tank 7a, which contributes to improving the separation efficiency.

電極8,9は、その表面に白金を表着させると電場による劣化を抑制でき、電極自体の耐久性を向上させることができる。また、電極8,9の形状を棒状とし、その極面を拡散層10,11,25,26に向けて設置するようにしてもよく、これは電極間が十分な距離を持っていれば、電極の面積によらずに電気泳動槽7aの内部の電場がおおよそ均一となることによるものである。   The electrodes 8 and 9 can suppress deterioration due to an electric field when platinum is deposited on the surface thereof, and can improve the durability of the electrodes themselves. Alternatively, the electrodes 8 and 9 may be rod-shaped, and the pole faces thereof may be placed toward the diffusion layers 10, 11, 25, 26, as long as there is a sufficient distance between the electrodes, This is because the electric field inside the electrophoresis tank 7a becomes substantially uniform regardless of the area of the electrode.

その他、本実施例は、図2のように拡散層10,11,25,26を容器状とし、その内部に電極8,9を配置した電気泳動槽7bでも不純物3,4,5,6を分離することができる。この場合には、電極8,9に対する拡散層10,11,25,26の表面積が大きくなるため分離効率が向上する。   In addition, in this embodiment, as shown in FIG. 2, the diffusion layers 10, 11, 25, and 26 are formed in a container shape, and even in the electrophoresis tank 7b in which the electrodes 8 and 9 are arranged, the impurities 3, 4, 5, and 6 are removed. Can be separated. In this case, since the surface areas of the diffusion layers 10, 11, 25, 26 with respect to the electrodes 8, 9 are increased, the separation efficiency is improved.

本実施例によれば、帯電極性と粒径の異なる帯電性不純物3,4,5,6を含む被処理流体1から不純物を含まない処理流体2と、帯電極性および粒径がそれぞれそろった不純物を含む分離流体41,42,43,44を得ることができる。   According to the present embodiment, the processing fluid 1 containing the chargeable impurities 3, 4, 5 and 6 having different charging polarities and particle sizes from the processing fluid 2 containing no impurities, and the impurities having the same charging polarity and particle size. Can be obtained.

つぎに本発明の第2の実施例を説明する。
この実施例の流体中の帯電性不純物の分離装置は、図3に示すように、電気泳動槽7cの両極端に電極8,9が設けられ、中央から電極8,9に向かって複数の拡散層17a,17b,17c,17dが配置され、被処理流体1が充填材12を充填した処理流体室30の一方から流入し、その反対側から処理流体2が流出するとともに、拡散層17a,17b,17c,17d間の分離流体室31,32,33,34からそれぞれ分離流体46,47,48,49が流出する構成となっている。
Next, a second embodiment of the present invention will be described.
As shown in FIG. 3, the apparatus for separating chargeable impurities in the fluid of this embodiment is provided with electrodes 8 and 9 at both extremes of the electrophoresis tank 7c, and a plurality of diffusion layers from the center toward the electrodes 8 and 9. 17a, 17b, 17c, and 17d are disposed, the fluid 1 to be processed flows in from one of the processing fluid chambers 30 filled with the filler 12, the processing fluid 2 flows out from the opposite side, and the diffusion layers 17a, 17b, The separation fluids 46, 47, 48, 49 flow out from the separation fluid chambers 31, 32, 33, 34 between 17c and 17d, respectively.

ここで、正帯電性不純物14の電気泳動速度は正帯電性不純物13の電気泳動速度よりも大きく、負正帯電性不純物16の電気泳動速度は負帯電性不純物15の電気泳動速度よりも大きいものとする。拡散層17a,17b,17c,17dは同じ構成を有し、多数の微細な連通孔を有する膜や焼成物からなる。   Here, the electrophoretic speed of the positively chargeable impurity 14 is higher than the electrophoretic speed of the positively chargeable impurity 13, and the electrophoretic speed of the negatively positively chargeable impurity 16 is higher than the electrophoretic speed of the negatively chargeable impurity 15. And The diffusion layers 17a, 17b, 17c, and 17d have the same configuration, and are made of a film having a large number of fine communication holes or a fired product.

この電気泳動槽7cにおいて、帯電性不純物13,14,15,16を含む被処理流体1を処理流体30に流入させて、その両極端に設置された正・負の電極8,9から電場を与え、帯電性不純物13,14,15,16をその帯電の極性に従ってそれぞれ電位方向に電気泳動させるとともに、配置された拡散層17a,17b,17c,17dによって物理的なふるいを行うことで、被処理流体1に含まれる帯電性不純物13,14,15,16を正・負別にその電気泳動速度が類似した種毎にろ過して、電極8,9および拡散層17a,17b,17c,17d間の分離流体室31,32,33,34からそれぞれ分離流体46,47,48,49として流出させる。   In the electrophoresis tank 7 c, the fluid 1 to be processed containing the chargeable impurities 13, 14, 15, 16 is caused to flow into the processing fluid 30, and an electric field is applied from the positive and negative electrodes 8, 9 installed at both extremes thereof. The charged impurities 13, 14, 15 and 16 are electrophoresed in the potential direction according to the polarity of the charge, and physical sieving is performed by the arranged diffusion layers 17a, 17b, 17c and 17d. The charged impurities 13, 14, 15, 16 contained in the fluid 1 are filtered for each species having a similar electrophoretic velocity, positive or negative, and between the electrodes 8, 9 and the diffusion layers 17 a, 17 b, 17 c, 17 d. The separated fluid chambers 31, 32, 33, and 34 are discharged as separated fluids 46, 47, 48, and 49, respectively.

この第2の実施例においては、被処理流体1に含まれる不純物13,14,15,16はその電気泳動の速度に依存して電界方向に移動する。したがって、これらの不純物の分離は、処理流体室30から分離流体室31,32,33,34までの距離と印加される電場の大きさによって制御される。   In the second embodiment, the impurities 13, 14, 15, 16 contained in the fluid 1 to be processed move in the direction of the electric field depending on the speed of the electrophoresis. Therefore, the separation of these impurities is controlled by the distance from the processing fluid chamber 30 to the separation fluid chambers 31, 32, 33, and 34 and the magnitude of the applied electric field.

被処理流体1の種類、不純物13,14,15,16の種類と構成、電気泳動槽7cおよび電極8,9の構成は、前記第1の実施の形態と同じである。   The type of the fluid 1 to be processed, the types and configurations of the impurities 13, 14, 15 and 16, and the configurations of the electrophoresis tank 7c and the electrodes 8 and 9 are the same as those in the first embodiment.

その他、この第2の実施例は、図4のように拡散層17a,17b,17c,17dを容器状とし、その内部に電極8,9を配置した電気泳動槽7dでも不純物を分離することができる。この場合、電極8,9に対する拡散層17a,17b,17c,17dの表面積が大きくなるため分離効率が向上する。   In addition, in the second embodiment, as shown in FIG. 4, the diffusion layers 17a, 17b, 17c and 17d are formed in a container shape, and impurities can be separated even in the electrophoresis tank 7d in which the electrodes 8 and 9 are arranged. it can. In this case, since the surface areas of the diffusion layers 17a, 17b, 17c, and 17d with respect to the electrodes 8 and 9 are increased, the separation efficiency is improved.

本実施例によれば、帯電極性と電気泳動速度の異なる帯電性不純物13,14,15,16を含む被処理流体1から不純物を含まない処理流体2と、帯電極性および電気泳動速度がそれぞれそろった不純物を含む分離流体46,47,48,49を得ることができる。   According to the present embodiment, the processing fluid 1 containing the charging impurities 13, 14, 15, and 16 having different charging polarity and electrophoresis speed, the processing fluid 2 containing no impurities, the charging polarity and the electrophoresis speed are aligned. Separation fluids 46, 47, 48, and 49 containing impurities can be obtained.

つぎに図5を参照して第3の実施例を説明する。
この第3の実施例は前記第1の実施例と第2の実施例を組合せたものである。すなわち、両極端に陰極および陽極(電極)8,9が設けられ、中央から電極8,9に向かって複数の拡散層10,11,25,26が配置され、被処理流体1が充填材12を充填した処理流体室30の一方から流入し、その反対側から処理流体2が流出するとともに、電極8,9および拡散層10,11,25,26間の分離流体室からそれぞれ分離流体41,42,43,44が流出する構成となった第1段の電気泳動槽7aと、両極端に電極8,9が設けられ、中央から電極8,9に向かって複数の拡散層17a,17b,17c,17dが配置され、第1段の電気泳動槽7aより流出する分離流体42が充填材12を充填した処理流体室30の一方から流入し、その反対側から処理流体50が流出するとともに、拡散層17a,17b,17c,17d間の室からそれぞれ分離流体51,52,53,54が流出する構成となった第2段の電気泳動槽7cを備えている。
Next, a third embodiment will be described with reference to FIG.
The third embodiment is a combination of the first embodiment and the second embodiment. That is, cathodes and anodes (electrodes) 8 and 9 are provided at both extremes, a plurality of diffusion layers 10, 11, 25 and 26 are arranged from the center toward the electrodes 8 and 9, and the fluid 1 to be processed passes through the filler 12. The processing fluid 2 flows in from one side of the filled processing fluid chamber 30 and the processing fluid 2 flows out from the opposite side, and the separation fluids 41 and 42 from the separation fluid chamber between the electrodes 8 and 9 and the diffusion layers 10, 11, 25 and 26, respectively. , 43, and 44, the first-stage electrophoresis tank 7a and the electrodes 8 and 9 are provided at both extremes, and a plurality of diffusion layers 17a, 17b, 17c, 17d is disposed, the separation fluid 42 flowing out from the first-stage electrophoresis tank 7a flows in from one of the processing fluid chambers 30 filled with the filler 12, and the processing fluid 50 flows out from the opposite side, and the diffusion layer 17a, 17 , 17c, respectively separated fluid 51, 52, 53 from the chamber between 17d is provided with an electrophoresis tank 7c of the second stage which is configured to flow out.

図示A,Bにも電気泳動槽7cが設けられ、第1段の電気泳動槽7aによる分離流体41,42,43,44もそれぞれ同様の第2段の電気泳動槽7cに導入され、それぞれ処理流体18等と分離流体19,20,21,22等を生じる。   A and B shown in the figure are also provided with an electrophoresis tank 7c, and separation fluids 41, 42, 43, and 44 from the first-stage electrophoresis tank 7a are also introduced into the same second-stage electrophoresis tank 7c, respectively. A fluid 18 or the like and a separation fluid 19, 20, 21, 22 or the like are generated.

このような構成によって、まず、第1段の電気泳動槽7aにおいて、帯電性不純物3,4,5,6を含む被処理流体1を処理流体室30に流入させて、その両極端に設置された正・負の電極8,9から電場を与え、帯電性不純物3,4,5,6をその帯電の極性に従ってそれぞれ電位方向に電気泳動させるとともに、配置された拡散層10,11,25,26によって粒径の大小で分ける物理的なふるいを行うことで、被処理流体1に含まれる不純物3,4,5,6を正・負の帯電別にその粒径が類似した種毎にろ過して、それぞれの拡散層10,11,25,26間の室からそれぞれ分離流体41,42,43,44として流出させる。   With such a configuration, first, in the first-stage electrophoresis tank 7a, the fluid 1 to be processed containing the chargeable impurities 3, 4, 5, and 6 is introduced into the processing fluid chamber 30 and installed at both extremes thereof. An electric field is applied from the positive and negative electrodes 8 and 9, and the chargeable impurities 3, 4, 5, and 6 are electrophoresed in the potential direction according to the polarity of the charge, respectively, and the diffusion layers 10, 11, 25, and 26 disposed. By performing physical sieving according to the particle size according to the particle size, impurities 3, 4, 5, and 6 contained in the fluid to be treated 1 are filtered for each species having similar particle sizes according to positive and negative charges. , And are allowed to flow out as separation fluids 41, 42, 43, 44 from the chambers between the respective diffusion layers 10, 11, 25, 26.

次いで、第2段の電気泳動槽7cにおいて、第1段の電気泳動槽7aから出たそれぞれの分離流体41,42,43,44を処理流体室30に流入させて、その両極端に設置された正・負の電極8,9から電場を与え、分離流体41,42,43,44に含まれる不純物3,4,5,6を、その帯電の極性に従ってそれぞれ電位方向にその電気泳動速度に従って移動させ、正・負別に電気泳動速度が類似した種毎に拡散層17a,17b,17c,17d間の室から分離流体19,20,21,22,51,52,53,54として排出させる。   Next, in the second-stage electrophoresis tank 7c, the separation fluids 41, 42, 43, 44 exiting from the first-stage electrophoresis tank 7a are caused to flow into the processing fluid chamber 30 and installed at both extremes thereof. An electric field is applied from the positive and negative electrodes 8 and 9, and the impurities 3, 4, 5, and 6 contained in the separation fluids 41, 42, 43, and 44 are moved in accordance with the electrophoretic velocity in the potential direction according to the polarity of the charge. Then, for each species having a similar electrophoretic velocity, positive and negative, the separated fluids 19, 20, 21, 22, 51, 52, 53, 54 are discharged from the chamber between the diffusion layers 17a, 17b, 17c, 17d.

なおこの第3の実施例は、不純物の帯電極性および電気泳動速度によって分離する電気泳動槽7cを第1段とし、不純物の帯電極性および粒径によって分離する電気泳動槽7cを第2段階としてもよい。   In the third embodiment, the electrophoresis tank 7c that separates according to the charge polarity of the impurities and the electrophoresis speed is the first stage, and the electrophoresis tank 7c that separates according to the charge polarity and the particle diameter of the impurities is the second stage. Good.

本実施例によれば、被処理流体1に含まれる不純物3,4,5,6は、正・負別で、粒径および電気泳動速度が同様な種毎に分離される。すなわち、帯電極性と粒径と電気泳動速度の異なる帯電性不純物3,4,5,6を含む被処理流体1から不純物を含まない処理流体2,18,50等と、帯電極性、および粒径がそれぞれそろった不純物を含む分離流体19,20,21,22,51,52,53,54等を得ることができる。   According to the present embodiment, the impurities 3, 4, 5, and 6 contained in the fluid 1 to be treated are separated for each species having the same particle size and electrophoresis speed, depending on whether they are positive or negative. That is, the treatment fluid 1 containing the chargeable impurities 3, 4, 5, 6 having different charge polarity, particle size, and electrophoresis speed, the treatment fluids 2, 18, 50, etc. containing no impurities, the charge polarity, and the particle size Can be obtained as the separation fluids 19, 20, 21, 22, 51, 52, 53, 54 and the like containing the respective impurities.

本発明の第1の実施例の流体中の帯電性不純物の分離装置を示す図。The figure which shows the separation apparatus of the chargeable impurity in the fluid of the 1st Example of this invention. 本発明の第1の実施例の変形例の流体中の帯電性不純物の分離装置を示す図。The figure which shows the separation apparatus of the chargeable impurity in the fluid of the modification of the 1st Example of this invention. 本発明の第2の実施例の流体中の帯電性不純物の分離装置を示す図。The figure which shows the separation apparatus of the chargeable impurity in the fluid of the 2nd Example of this invention. 本発明の第2の実施例の変形例の流体中の帯電性不純物の分離装置を示す図。The figure which shows the separation apparatus of the chargeable impurity in the fluid of the modification of the 2nd Example of this invention. 本発明の第3の実施例の流体中の帯電性不純物の分離装置を示す図。The figure which shows the separation apparatus of the chargeable impurity in the fluid of the 3rd Example of this invention.

符号の説明Explanation of symbols

1…被処理流体、2…処理流体、3,4…正帯電性不純物、5、6…負帯電性不純物、7a,7b,7c,7d…電気泳動槽、8…陰極、9…陽極、10,11…拡散層、12…充填材、13,14…正帯電性不純物、15,16…負帯電性不純物、17a,17b,17c,17d…拡散層、18,50…処理流体、25,26…拡散層、30…処理流体室、31,32,33,34…分離流体室、19,20,21,22,41,42,43,44,46,47,48,49,51,52,53,54…分離流体。   DESCRIPTION OF SYMBOLS 1 ... Fluid to be processed, 2 ... Processing fluid, 3, 4 ... Positively charged impurity, 5, 6 ... Negatively charged impurity, 7a, 7b, 7c, 7d ... Electrophoresis tank, 8 ... Cathode, 9 ... Anode, 10 , 11 ... diffusion layer, 12 ... filler, 13, 14 ... positively charged impurity, 15, 16 ... negatively charged impurity, 17a, 17b, 17c, 17d ... diffusion layer, 18, 50 ... processing fluid, 25, 26 ... diffusion layer, 30 ... treatment fluid chamber, 31, 32, 33, 34 ... separation fluid chamber, 19, 20, 21, 22, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54: separation fluid.

Claims (12)

帯電性の不純物を含む被処理流体が導入されて前記不純物を含まない処理流体を生成するとともに前記不純物のうち正または負のいずれか一方の帯電極性を有し粒径または電気泳動速度の少なくともいずれか一方が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽を備え、前記電気泳動槽は、前記被処理流体が導入されて前記処理流体を生成する処理流体室と、前記被処理流体の流体成分を透過し前記不純物の拡散を抑制する拡散層を介して前記処理流体室に接して設けられ前記不純物に対して電気力を作用する電場を形成する電極を備えて前記分離流体を生成する分離流体室とを備えていることを特徴とする流体中の帯電性不純物の分離装置。   A treatment fluid containing a chargeable impurity is introduced to produce a treatment fluid that does not contain the impurity, and has either a positive or negative charge polarity among the impurities, and has at least either a particle size or an electrophoresis speed. An electrophoresis tank that generates a separation fluid containing only impurities that are within a predetermined range, the electrophoresis tank including a processing fluid chamber in which the processing fluid is introduced and the processing fluid is generated; The separation is provided with an electrode that is provided in contact with the processing fluid chamber through a diffusion layer that transmits a fluid component of the fluid to be processed and suppresses diffusion of the impurity, and that forms an electric field that acts an electric force on the impurity. An apparatus for separating a chargeable impurity in a fluid, comprising: a separation fluid chamber for generating a fluid. 前記粒径が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽から得られる分離流体を前記電気泳動速度が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽に導入される被処理流体としたことを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   Electrophoresis for generating a separation fluid containing only impurities whose electrophoretic velocity is within a predetermined range from a separation fluid obtained from an electrophoresis tank that generates a separation fluid containing only impurities having a particle size within the predetermined range 2. The apparatus for separating chargeable impurities in a fluid according to claim 1, wherein the fluid to be treated is introduced into the tank. 前記電気泳動速度が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽から得られる分離流体を前記粒径が所定の範囲内にある不純物のみを含む分離流体を生成する電気泳動槽に導入される被処理流体としたことを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   Electrophoresis for generating a separation fluid containing only impurities having a particle diameter within a predetermined range from a separation fluid obtained from an electrophoresis tank that generates a separation fluid containing only impurities having an electrophoresis speed within a predetermined range 2. The apparatus for separating chargeable impurities in a fluid according to claim 1, wherein the fluid to be treated is introduced into the tank. 前記拡散層の材質は、ステンレス鋼、チタンのような金属材料、またはセラミック材料、またはポリイミド、セルロースのような高分子材料、またはポリプロピレン、フルオロカーボンのような有機材料であることを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   The material of the diffusion layer is a metal material such as stainless steel or titanium, a ceramic material, a polymer material such as polyimide or cellulose, or an organic material such as polypropylene or fluorocarbon. 2. The apparatus for separating chargeable impurities in fluid according to 1. 前記電極は、少なくとも表面が白金からなることを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   2. The apparatus for separating chargeable impurities in a fluid according to claim 1, wherein at least the surface of the electrode is made of platinum. 前記電気泳動槽の材質は、ステンレス鋼、チタンのような金属材料、または塩化ビニル、アクリルのような有機材料であることを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   2. The apparatus for separating charged impurities in a fluid according to claim 1, wherein the material of the electrophoresis tank is a metal material such as stainless steel or titanium, or an organic material such as vinyl chloride or acrylic. 前記電気泳動槽の内面にフルオロカーボンのような内張りが施されていることを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   2. The apparatus for separating a chargeable impurity in a fluid according to claim 1, wherein the inner surface of the electrophoresis tank is lined with fluorocarbon. 前記電気泳動槽の形状は前記電極の方向に頂点を有する円錐形であることを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   2. The apparatus for separating chargeable impurities in fluid according to claim 1, wherein the electrophoresis tank has a conical shape having a vertex in the direction of the electrodes. 前記拡散層は容器状をなし、前記容器の内部に前記電極が配置されていることを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   2. The apparatus for separating a chargeable impurity in a fluid according to claim 1, wherein the diffusion layer has a container shape, and the electrode is disposed inside the container. 前記流体は液体または気体であり、前記不純物は金属または有機物または無機物であることを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   2. The apparatus for separating charged impurities in a fluid according to claim 1, wherein the fluid is a liquid or a gas, and the impurities are a metal, an organic substance, or an inorganic substance. 前記処理流体室に充填材が充填されていることを特徴とする請求項1記載の流体中の帯電性不純物の分離装置。   2. The apparatus for separating charged impurities in a fluid according to claim 1, wherein the processing fluid chamber is filled with a filler. 帯電性の不純物を含む被処理流体に前記被処理流体の流体成分を透過し前記不純物の拡散を抑制する拡散層を介して電界を印加し、前記拡散層の上流側に前記不純物を含まない処理流体を生成するとともに、前記拡散層の下流側に前記不純物のうち正または負のいずれか一方の帯電極性を有し粒径または電気泳動速度の少なくともいずれか一方が所定の範囲内にある不純物のみを含む分離流体を生成することを特徴とする流体中の帯電性不純物の分離方法。

An electric field is applied to a fluid to be treated containing a chargeable impurity through a diffusion layer that transmits a fluid component of the fluid to be treated and suppresses the diffusion of the impurity, and the treatment does not contain the impurity upstream of the diffusion layer. Only an impurity that generates a fluid and has either a positive or negative charge polarity among the impurities on the downstream side of the diffusion layer and at least one of the particle size and the electrophoresis speed is within a predetermined range. A method for separating a chargeable impurity in a fluid, comprising:

JP2003328325A 2003-09-19 2003-09-19 Method and apparatus for separating charged impurity in fluid Pending JP2005087961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328325A JP2005087961A (en) 2003-09-19 2003-09-19 Method and apparatus for separating charged impurity in fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328325A JP2005087961A (en) 2003-09-19 2003-09-19 Method and apparatus for separating charged impurity in fluid

Publications (1)

Publication Number Publication Date
JP2005087961A true JP2005087961A (en) 2005-04-07

Family

ID=34457940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328325A Pending JP2005087961A (en) 2003-09-19 2003-09-19 Method and apparatus for separating charged impurity in fluid

Country Status (1)

Country Link
JP (1) JP2005087961A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043580A (en) * 2004-08-04 2006-02-16 Toshiba Corp Impurity removal apparatus and impurity removal method
CN104307631A (en) * 2014-08-22 2015-01-28 成都代代吉前瞻科技股份有限公司 Novel electrostatic-DEP deduster
CN104307631B (en) * 2014-08-22 2017-01-04 成都代代吉前瞻科技股份有限公司 A kind of electrostatic-DEP cleaner unit
CN111608121A (en) * 2020-04-30 2020-09-01 中青建安建设集团有限公司 Building construction ground dust collecting equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043580A (en) * 2004-08-04 2006-02-16 Toshiba Corp Impurity removal apparatus and impurity removal method
JP4599113B2 (en) * 2004-08-04 2010-12-15 株式会社東芝 Impurity removal equipment
CN104307631A (en) * 2014-08-22 2015-01-28 成都代代吉前瞻科技股份有限公司 Novel electrostatic-DEP deduster
CN104307631B (en) * 2014-08-22 2017-01-04 成都代代吉前瞻科技股份有限公司 A kind of electrostatic-DEP cleaner unit
CN111608121A (en) * 2020-04-30 2020-09-01 中青建安建设集团有限公司 Building construction ground dust collecting equipment

Similar Documents

Publication Publication Date Title
Wang et al. Mechanism of selective ion removal in membrane capacitive deionization for water softening
CN102167463B (en) Water disposal facility and method
CN104524976B (en) A kind of electric nanofiltration device for one/multivalent ion Selective Separation
US20080057398A1 (en) Non-faraday based systems, devices and methods for removing ionic species from liquid
US20080035548A1 (en) Multi-functional filtration and ultra-pure water generator
US20100270161A1 (en) Apparatus for physically separating polar substance
JP6199001B1 (en) Water treatment apparatus and water treatment method
JP2007175647A (en) Electric deionized water production apparatus and deionized water production method
JP2014533605A (en) Desalination system and method
US8143471B2 (en) Electrochemical capacitive concentration and deactivation of actinide nuclear materials
CN109095631A (en) The mixing sewerage system overflow and non-point pollution source processing system of oil removal, phosphorus and heavy metal can be removed simultaneously
JP2005087961A (en) Method and apparatus for separating charged impurity in fluid
CN110550698B (en) Membrane method water treatment process based on micro-flow field-micro-electric field coupling
WO2013019427A1 (en) Method for generating biocide
JP2018146583A5 (en)
JP4599113B2 (en) Impurity removal equipment
Bowen Electrochemical aspects of microfiltration and ultrafiltration
CN212942311U (en) Separation device and industrial or domestic water treatment equipment
JP6895040B2 (en) Equipment, systems and methods for removing total dissolved solids from fluids
KR20150007070A (en) Capacitive deionization unit cell and preparation method thereof
KR20170117963A (en) Capacitive Deionization Device and Capacitive Deionization Module
RU2357927C2 (en) Device for electrochemical water treatment
KR20210083570A (en) Multi-channel desalination battery system
KR102591796B1 (en) Capacitive seawater desalination system using ion-drive, and methdo thereof
US20230149856A1 (en) Reverse electro-osmotic filtration system and uses thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060830