JP2005087035A - Method for producing hydrogen with microorganism - Google Patents

Method for producing hydrogen with microorganism Download PDF

Info

Publication number
JP2005087035A
JP2005087035A JP2003322154A JP2003322154A JP2005087035A JP 2005087035 A JP2005087035 A JP 2005087035A JP 2003322154 A JP2003322154 A JP 2003322154A JP 2003322154 A JP2003322154 A JP 2003322154A JP 2005087035 A JP2005087035 A JP 2005087035A
Authority
JP
Japan
Prior art keywords
hydrogen
microorganism
solution
hydrogen generation
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003322154A
Other languages
Japanese (ja)
Other versions
JP4409893B2 (en
Inventor
Naoto Torata
直人 虎太
Akito Yoshida
章人 吉田
Masayuki Inui
将行 乾
Hideaki Yugawa
英明 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Sharp Corp
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Research Institute of Innovative Technology for the Earth RITE filed Critical Sharp Corp
Priority to JP2003322154A priority Critical patent/JP4409893B2/en
Publication of JP2005087035A publication Critical patent/JP2005087035A/en
Application granted granted Critical
Publication of JP4409893B2 publication Critical patent/JP4409893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing hydrogen with a microorganism, by which the hydrogen useful for operating, for example, fuel batteries can profitably be produced at a practically sufficient rate substantially without accompanying the by-production of injurious CO. <P>SOLUTION: This method for producing the hydrogen with the microorganism is characterized by culturing the microorganism having a formate dehydrogenation enzyme gene and a hydrogenase gene in a formate-containing culture solution under an aerobic condition, adding a reduced state solution for producing the hydrogen to the culture solution, and then supplying an organic substrate to the solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微生物による水素製造方法に係わり、さらに詳しくは有機性基質を炭素源とする嫌気性微生物による高効率な水素製造方法に関する。本発明の方法で製造される水素は燃料電池等の燃料として好適に使用することができる。   The present invention relates to a method for producing hydrogen by microorganisms, and more particularly to a highly efficient method for producing hydrogen by anaerobic microorganisms using an organic substrate as a carbon source. Hydrogen produced by the method of the present invention can be suitably used as a fuel for fuel cells and the like.

水素は化石燃料と異なり、燃焼しても炭酸ガスや硫黄酸化物など環境問題より懸念される物質を発生しない究極のクリーンエネルギー源として注目され、単位質量当たりの熱量は石油の3倍以上あり、燃料電池に供給すれば電気エネルギーおよび熱エネルギーに高い効率で変換できる。   Unlike fossil fuels, hydrogen is attracting attention as the ultimate clean energy source that does not generate substances of concern due to environmental problems such as carbon dioxide and sulfur oxides even when burned. The amount of heat per unit mass is more than three times that of petroleum, If supplied to the fuel cell, it can be converted into electric energy and heat energy with high efficiency.

水素の製造は従来より化学的製法として、天然ガスやナフサの熱分解水蒸気改質法などの技術が提案されている。この方法は高温高圧の反応条件を必要とすること、そして製造される合成ガスにはCO(一酸化炭素)が含まれるため燃料電池用燃料として使用する場合には燃料電池電極触媒劣化防止のため、技術的課題解決難度の高いCO除去を行うことが必要となる。
一方、微生物による生物的水素製造方法は常温常圧の反応条件であること、そして発生するガスにはCOが含まれないためその除去も不要である。
このような観点から、微生物による生物的水素製造は燃料電池用燃料供給方法としてより好ましい方法となる。
Conventionally, hydrogen production has been proposed as a chemical production method, such as pyrolysis steam reforming of natural gas or naphtha. This method requires high-temperature and high-pressure reaction conditions, and since the produced synthesis gas contains CO (carbon monoxide), it is used to prevent deterioration of the fuel cell electrode catalyst when used as fuel for fuel cells. Therefore, it is necessary to perform CO removal with a high degree of technical problem resolution.
On the other hand, the biological hydrogen production method using microorganisms is a reaction condition at normal temperature and pressure, and the generated gas does not contain CO, so that removal thereof is unnecessary.
From such a viewpoint, biological hydrogen production by microorganisms is a more preferable method as a fuel supply method for fuel cells.

生物的水素製造方法がこのような優れた特長を有するにもかかわらず燃料電池用燃料供給方法としてこれまで大きな進展が無かったのは水素製造の生産性、特に単位容積当たりの水素発生速度(STY;Space Time Yield)が低く経済的に実用性が無かったためである。
生物的水素製造方法には大別して光合成微生物を使用する方法と非光合成微生物(主に嫌気性微生物)を使用する方法に分けられる。前者の方法は水素発生に光エネルギーを用いるため、その低い光エネルギー利用効率により広大な集光面積を要する水素発生装置の価格問題や維持管理の難しさ等解決しなければならない課題が多く実用的なレベルではない。
Despite the excellent features of biological hydrogen production methods, there has been no significant progress in fuel cell fuel supply methods so far. The productivity of hydrogen production, particularly the rate of hydrogen generation per unit volume (STY) ; Space Time Yield) is low and economically impractical.
Biological hydrogen production methods are roughly classified into a method using a photosynthetic microorganism and a method using a non-photosynthetic microorganism (mainly anaerobic microorganisms). Since the former method uses light energy for hydrogen generation, there are many practical issues that need to be solved, such as the price problem of hydrogen generators that require a large light collection area due to its low light energy utilization efficiency and the difficulty of maintenance. It ’s not the right level.

後者の嫌気性微生物を使用する従来の水素製造方法は、これら嫌気性微生物の分裂増殖に依存したものであることから、増殖が極めて遅く(特許文献1、非特許文献1)、そして嫌気性微生物の分裂増殖は他の微生物のそれに比して、その理由は明らかにされていないが、分裂増殖の際に必要な自由空間(培養に必要な「場」即ち反応器容積に比例する)がより大きく必要であるため、一定の大きさの培養の「場」における嫌気性微生物が水素発生に必要な嫌気条件の培養で到達できる定常状態の菌体濃度は他の微生物のそれに比較して絶対的に低い等の事により水素発生速度(STY)が十分ではなく、この点に関して一段の向上が求められている。   Since the conventional hydrogen production method using the latter anaerobic microorganisms is dependent on the division and growth of these anaerobic microorganisms, the growth is extremely slow (Patent Document 1, Non-Patent Document 1), and the anaerobic microorganisms. The reason for the mitotic growth of other microorganisms has not been clarified, but the free space required for mitotic growth (proportional to the "field" or reactor volume required for culture) is greater. Because of the large need, the steady-state cell concentration that anaerobic microorganisms can reach in an anaerobic culture that is necessary for hydrogen generation is absolute compared to that of other microorganisms. For example, the hydrogen generation rate (STY) is not sufficient due to the fact that it is low, and further improvement is required in this respect.

これまでに発明者らは、特願2003−046095において、蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する微生物を好気的条件で培養し、得られた菌体を嫌気的条件で蟻酸類含有培養液中で培養した後、還元状態にある水素発生溶液を加え、該溶液に有機性基質を供給する生物的水素製造方法を提供した。本発明はさらに効率的な生物的水素製造方法を提供するものである。   So far, the inventors have cultivated a microorganism having a formate dehydrogenase gene and a hydrogenase gene under aerobic conditions in Japanese Patent Application No. 2003-046095, and cultured the resulting cells under anaerobic conditions. A biological hydrogen production method was provided in which a hydrogen generation solution in a reduced state was added after culturing in, and an organic substrate was supplied to the solution. The present invention provides a more efficient method for producing biological hydrogen.

また、生物的製造方法により製造される水素が一定の電気容量の燃料電池に供給される場合には、水素源となる有機性基質の水素発生反応容器への供給と電流の発生の迅速な応答が実用上必要である。この点に関しても本発明は実用上充分な迅速応答性を有する技術となる。
米国特許第5,834,264号 R.Nandi et al.、 Enzyme and Microbial Technology 19:20-25、1996
In addition, when hydrogen produced by a biological production method is supplied to a fuel cell having a certain electric capacity, a rapid response to supply of an organic substrate serving as a hydrogen source to a hydrogen generation reaction vessel and generation of electric current. Is practically necessary. With respect to this point as well, the present invention is a technique having a practically sufficient quick response.
U.S. Pat.No. 5,834,264 R. Nandi et al., Enzyme and Microbial Technology 19: 20-25, 1996

嫌気性微生物の分裂増殖に依存した従来の水素製造方法の上記の問題は、換言すれば、従来の技術では水素発生反応器内で高密度の嫌気性微生物の獲得及び嫌気性微生物の水素発生機能の獲得を短時間で同時に実現する方法を見出せなかったことによる。
この点に関して、本発明者らによる前記提案技術(特願2003−046095)は従来の嫌気性微生物による水素製造方法の課題を解決する有力な方法であるが、本発明は水素発生機能を有する嫌気性微生物をさらに効率的に獲得できる方法を
提案するものである。
The above-mentioned problems of the conventional hydrogen production method depending on the division and growth of anaerobic microorganisms are, in other words, the acquisition of high-density anaerobic microorganisms in the hydrogen generation reactor and the hydrogen generation function of the anaerobic microorganisms. This is because we have not found a way to achieve the acquisition of
In this regard, the proposed technique (Japanese Patent Application No. 2003-046095) by the present inventors is an effective method for solving the problems of the conventional hydrogen production method using anaerobic microorganisms, but the present invention is anaerobic having a hydrogen generation function. The present invention proposes a method that can more efficiently acquire sex microorganisms.

すなわち、本発明は嫌気性微生物による水素製造方法に関するこれら技術的課題を解決することを目的として、前記米国特許公報に記載されているような実用上不十分な低い水素発生速度問題や嫌気性微生物が定常濃度に達するまでに200時間もの長時間の分裂増殖に依存しなければならない方法の問題を解決し、水素発生速度が反応初期から充分に高く、実用的レベルで燃料電池を稼動させることのできる方法を提供するものである。   That is, the present invention aims to solve these technical problems relating to a method for producing hydrogen by anaerobic microorganisms, such as the problem of an insufficiently low hydrogen generation rate and anaerobic microorganisms as described in the above-mentioned US Patent Publication. To solve the problem of the method that has to depend on 200 hours of mitotic growth to reach a steady concentration, and the hydrogen generation rate is sufficiently high from the beginning of the reaction to operate the fuel cell at a practical level It provides a possible method.

嫌気性微生物内における水素発生に関する代謝経路は色々な経路が知られている(グルコースのピルビン酸への分解経路における代謝産物としての水素発生、ピルビン酸がアセチルCoAをへて酢酸が生成する経路での代謝産物としての水素発生そしてピルビン酸由来の蟻酸より水素が発生する経路等)。本発明は微生物細胞内の蟻酸より水素が生成する代謝経路を主として利用する生物的水素製造方法に関する。   Various metabolic pathways are known for hydrogen generation in anaerobic microorganisms (hydrogen generation as a metabolite in the degradation pathway of glucose to pyruvate, and pathway in which acetic acid is generated by pyruvate through acetyl-CoA. Generation of hydrogen as a metabolite and pathway of hydrogen generation from formic acid derived from pyruvic acid). The present invention relates to a biological hydrogen production method mainly using a metabolic pathway in which hydrogen is generated from formic acid in a microbial cell.

従来より、嫌気性微生物の水素生成機能の発現には、嫌気的条件で培養して蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を発現させることが必要と考えられていたが、本発明者らは驚くべきことに、好気的培養条件でも蟻酸類が存在していれば嫌気性微生物が水素生成機能を発現することを見出し、本発明に到達した。   Conventionally, in order to express the hydrogen generation function of anaerobic microorganisms, it was thought that it was necessary to culture under anaerobic conditions to express the formate dehydrogenase gene and the hydrogenase gene. In particular, the present inventors have found that anaerobic microorganisms express a hydrogen generation function if formic acids are present even under aerobic culture conditions.

本発明により、嫌気的条件の遅い分裂増殖を多数回繰り返す必要が無く、分裂増殖の早い好気的条件下でも短期間で水素生成能力を発現することが可能となる。また、好気的条件下での培養のため、高密度の水素生成能力を有する微生物の獲得も可能となる。
好気的条件下で蟻酸類含有培養液中で培養し、その後、さらに付加的に嫌気的条件下で蟻酸類含有培養液中で培養すれば、水素発生能力が、一段と向上させることも可能である。
According to the present invention, it is not necessary to repeat mitotic growth that is slow in anaerobic conditions many times, and it is possible to develop hydrogen generation ability in a short period even under aerobic conditions where mitotic growth is fast. In addition, since microorganisms are cultured under aerobic conditions, it is possible to obtain microorganisms having a high-density hydrogen production ability.
If the cells are cultured in a formic acid-containing culture medium under aerobic conditions and then further cultured in a formic acid-containing culture medium under anaerobic conditions, the hydrogen generation capacity can be further improved. is there.

また、本発明の技術を用いて、燃料電池が実用的なレベルで稼働できる。
すなわち、本発明は
(1)蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する微生物を、好気的条件下の蟻酸類含有培養液中で培養後、還元状態にある水素発生用溶液に加え、該溶液に有機性基質を供給することを特徴とする生物的水素製造方法、
(2)微生物が、好気的条件下で培養後、さらに嫌気的条件で蟻酸類含有培養液中で培養され、還元状態にある水素発生用溶液に加えられることを特徴とする上記(1)に記載の生物的水素製造方法、
(3)上記(1)、(2)のいずれかに記載の方法で製造される水素の燃料電池用燃料ガスとしての使用、
に関する。
In addition, the fuel cell can be operated at a practical level by using the technique of the present invention.
That is, the present invention includes (1) culturing a microorganism having a formate dehydrogenase gene and a hydrogenase gene in a formic acid-containing culture solution under aerobic conditions, and then adding the solution to a hydrogen generation solution in a reduced state. A biological hydrogen production method characterized by supplying an organic substrate to
(2) The above (1), wherein the microorganism is cultured under an aerobic condition, further cultured in a formic acid-containing culture solution under an anaerobic condition, and added to the hydrogen generation solution in a reduced state. Biological hydrogen production method according to
(3) Use of hydrogen produced by the method according to any one of (1) and (2) as a fuel gas for a fuel cell,
About.

本発明によって、例えば燃料電池を稼動させるのに有用な水素を有害なCOの発生を実質的に伴うことなく実用上十分な速度で工業的に有利に製造することができる。   According to the present invention, hydrogen useful for operating a fuel cell, for example, can be industrially advantageously produced at a practically sufficient speed without substantially generating harmful CO.

本発明で使用される微生物は蟻酸脱水素酵素遺伝子(F.Zinoni,et al., Proc.Natl.Acad.Sci.USA, Vol.83, pp4650-4654, July 1986 Biochemistry)およびヒドロゲナーゼ遺伝子(R.Boehm, et al., Molecular Microbiology (1990) 4(2), 231-243)を有する微生物で主として嫌気性微生物である。   The microorganism used in the present invention includes formate dehydrogenase gene (F. Zinoni, et al., Proc. Natl. Acad. Sci. USA, Vol. 83, pp4650-4654, July 1986 Biochemistry) and hydrogenase gene (R. Boehm, et al., Molecular Microbiology (1990) 4 (2), 231-243) and mainly anaerobic microorganisms.

本発明で使用される具体的な嫌気性微生物の例としては、エシェリキア(Escherichia)属微生物―例えばエシェリキア コリ(Escherichia coli ATCC9637、ATCC11775、ATCC4157等)、クレブシェラ(Klebsiella)属微生物―例えばクレブシェラ ニューモニエ(Klebsiella pneumoniae ATCC13883、ATCC8044等)、エンテロバクター(Enterobacter)属微生物―例えばエンテロバクター アエロギネス(Enterobacter aerogenes ATCC13048、ATCC29007等)そしてクロストリジウム(Clostridium)属微生物―例えばクロストリジウム ベイエリンキイ(Clostridium beijerinckii ATCC25752、ATCC17795等)等が挙げられる。   Examples of specific anaerobic microorganisms used in the present invention include microorganisms belonging to the genus Escherichia, such as Escherichia coli ATCC 9637, ATCC 11775, ATCC 4157, etc., microorganisms belonging to the genus Klebsiella, such as Klebsiella. pneumoniae ATCC 13883, ATCC 8044, etc.), Enterobacter microorganisms, such as Enterobacter aerogenes ATCC 13048, ATCC 29007, etc. and Clostridium microorganisms, such as Clostridium beijerinck25 .

これらの嫌気性微生物は先ず好気的条件で培養されるが、その意味で偏性嫌気性微生物より通性嫌気性微生物が好適に使用される。上記微生物の内ではエシェリキア コリ(Escherichia coli)、エンテロバクター アエロギネス(Enterobacter aerogenes)等が好適に使用される。   These anaerobic microorganisms are first cultured under aerobic conditions. In this sense, facultative anaerobic microorganisms are preferably used rather than obligate anaerobic microorganisms. Among the above microorganisms, Escherichia coli, Enterobacter aerogenes and the like are preferably used.

本発明では好気条件下の培養液に蟻酸類が含まれていることが必須の要件である。ここで蟻酸類とは、化学官能基〔HCOO〕を有する物質である。蟻酸、蟻酸亜鉛、蟻酸ナトリウム、蟻酸カリウム、蟻酸セシウム、蟻酸ニッケル、蟻酸バリウム、蟻酸カルシウム、蟻酸マンガン、蟻酸アンモニウムなどから選ばれる化合物である。水に対する溶解度の面から蟻酸、蟻酸ナトリウム、蟻酸カリウム、蟻酸カルシウム、および蟻酸アンモニウムが好ましい。さらに、蟻酸、蟻酸ナトリウムおよび蟻酸アンモニウムがより好ましい。蟻酸類は単独で用いてもあるいは複数種の蟻酸類混合培養液を使用してもよい。 In the present invention, it is an essential requirement that formic acids are contained in the culture solution under aerobic conditions. Here, formic acids are substances having a chemical functional group [HCOO ]. It is a compound selected from formic acid, zinc formate, sodium formate, potassium formate, cesium formate, nickel formate, barium formate, calcium formate, manganese formate, ammonium formate, and the like. From the viewpoint of solubility in water, formic acid, sodium formate, potassium formate, calcium formate, and ammonium formate are preferred. Furthermore, formic acid, sodium formate and ammonium formate are more preferred. Formic acids may be used alone or a mixed culture solution of plural types of formic acids may be used.

蟻酸類含有溶液中の蟻酸類濃度は、1mM(ミリモーラ:ミリモル/リットル)以下では好気培養時の水素生成機能の発現が低く、また300mMを超えると水素生成機能の発現は可能であるが、分裂増殖速度が低下するために、培養時間が長くなる。高度の水素生成機能を発現するためには、10mMから300mMであることが好ましい。   Formic acid concentration in the formic acid-containing solution is less than 1 mM (millimolar: millimol / liter), the expression of hydrogen generation function during aerobic culture is low, and if it exceeds 300 mM, the expression of hydrogen generation function is possible. The culture time is increased because the division and growth rate is reduced. In order to express a high hydrogen generation function, the concentration is preferably 10 mM to 300 mM.

好気的条件下の分裂増殖を蟻酸類含有培養液中で行うことにより、水素生成機能を発現でき、同時に高濃度の培養が可能となる。
好気的な菌体の培養方法としては、炭素源、窒素源、ミネラル源等を含む通常の栄養培地を用いて行うことが出来る。炭素源としては、例えばグルコース、フルクトース、廃糖蜜等を、窒素源としては、無機態窒素源では、例えばアンモニア、アンモニウム塩、硝酸塩等、有機態窒素源では、例えば尿素、アミノ酸類、タンパク質等をそれぞれ単独もしくは混合して用いることができる。無機態、有機態ともに同様に利用することが可能である。またミネラル源として、おもにK、P、Mg、Sなどを含む、例えばリン酸一水素カリウム、硫酸マグネシウム等を用いることができる。この他にも必要に応じて、ペプトン、肉エキス、酵母エキス、コーンスティープリカー、カザミノ酸、ビオチン、チアミン等各種ビタミン等の栄養素を培地に添加することもできる。
By performing division growth under aerobic conditions in a formic acid-containing culture solution, a hydrogen production function can be expressed, and at the same time, culture at a high concentration is possible.
As an aerobic cell culture method, a normal nutrient medium containing a carbon source, a nitrogen source, a mineral source and the like can be used. Examples of the carbon source include glucose, fructose, molasses, etc., and examples of the nitrogen source include inorganic nitrogen sources such as ammonia, ammonium salts, and nitrates, and organic nitrogen sources such as urea, amino acids, and proteins. Each can be used alone or in combination. Both inorganic and organic forms can be used in the same manner. Further, as the mineral source, for example, potassium monohydrogen phosphate, magnesium sulfate, etc., mainly containing K, P, Mg, S and the like can be used. In addition to these, nutrients such as various vitamins such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, biotin and thiamine can be added to the medium as necessary.

好気的培養の条件としては、通常、通気攪拌、振盪等の条件下、温度は、20℃〜45℃、好ましくは25℃〜40℃で培養を行うことが好ましい。PHは、PH5〜10、好ましくは6〜8の範囲で行うことが好ましい。同時にPHを制御することが好ましく、酸、アルカリを用いてPHの調整を行うことも可能である。温度域、PH域ともに、上記の範囲内が微生物にとって最適な温度域、PH域である。通常、培養開始時の炭素源濃度は0.1〜20%(W/V)が好ましく、さらに好ましくは1〜5%(W/V)である。また、培養期間は、0.5日〜7日間である。   As aerobic culture conditions, it is usually preferable to carry out the culture at a temperature of 20 ° C. to 45 ° C., preferably 25 ° C. to 40 ° C. under conditions such as aeration and stirring. The pH is preferably 5 to 10, preferably 6 to 8. It is preferable to control PH at the same time, and it is also possible to adjust PH using acid or alkali. In the temperature range and the PH range, the above range is the optimum temperature range and PH range for the microorganism. Usually, the carbon source concentration at the start of the culture is preferably 0.1 to 20% (W / V), more preferably 1 to 5% (W / V). The culture period is 0.5 to 7 days.

蟻酸脱水素酵素およびヒドロゲナーゼからなる水素発生機能の発現のためには培養液中に微量の金属成分を含むことが好ましい。微量金属成分は微生物種により異なるが、鉄、モリブデン、セレン、ニッケル等が挙げられる。なお、これらの微量金属成分は酵母エキスなどの天然栄養源には相当程度含まれていることもあるため、そのような場合には必ずしも添加を必要とはしない。
好気的条件で培養された菌体をそのまま還元状態下の水素発生反応に供することも出来るが、好気的培養された菌体を一度分離し、還元状態の水素発生溶液に菌体を移すことが好ましい。分離の方法としては、遠心分離や膜分離等の方法を用いることができる。
In order to develop a hydrogen generation function consisting of formate dehydrogenase and hydrogenase, it is preferable to contain a trace amount of metal components in the culture solution. The trace metal component varies depending on the microorganism species, and examples thereof include iron, molybdenum, selenium, and nickel. In addition, since these trace metal components may be contained to some extent in natural nutrient sources such as yeast extract, in such cases, addition is not necessarily required.
Bacteria cultured under aerobic conditions can be directly subjected to a hydrogen generation reaction under reduced conditions, but once aerobically cultured cells are separated, the cells are transferred to a reduced hydrogen generation solution. It is preferable. As a separation method, methods such as centrifugation and membrane separation can be used.

また、分離した菌体を付加的に嫌気的条件でさらに培養後、水素発生反応に供することは、微生物の水素生成能力をさらに向上させることが出来るので好ましい方法となる。
付加的に実施される嫌気的条件下の培養液中には蟻酸類が存在していることが好ましいが限界的ではない。蟻酸類を使用する場合には、前記の好気的培養時に使用されるものと同様のものが使用される。嫌気的条件の培養液中に存在する蟻酸類の濃度は1〜100mMが好ましい。1mMより低い濃度では蟻酸類の存在効果が現れなく、100mMより高い濃度ではそれ以上の高濃度で実施することの効果が認められない。
菌体の水素生成能力を向上するために実施される嫌気条件下の培養時には微生物の分裂増殖が起こるが、好ましい分裂増殖の細胞数変化は適宜定めることが出来る。長時間の分裂増殖は水素生成機能を有する菌体の獲得に効率的ではなく、また短すぎる分裂増殖では効果がない。その時間はおよそ0.5時間〜6時間である。そのときの細胞数変化は菌体光学密度測定などにより容易に知ることができる。
微生物の菌体細胞が分裂増殖するには、炭素源も必要である。これにはグルコース等の糖類、有機酸、アルコール類等の通常の炭素源が用いられる。
Further, it is preferable to subject the separated cells to further hydrogenation reaction after further culturing under anaerobic conditions because the ability of microorganisms to generate hydrogen can be further improved.
It is preferable that formic acids are present in the culture solution under anaerobic conditions additionally carried out, but this is not limitative. When formic acids are used, the same ones used during aerobic culture are used. The concentration of formic acid present in the culture solution under anaerobic conditions is preferably 1 to 100 mM. The presence effect of formic acids does not appear at a concentration lower than 1 mM, and the effect of carrying out at a higher concentration is not observed at a concentration higher than 100 mM.
Microorganisms divide and grow during culturing under anaerobic conditions to improve the hydrogen production ability of the cells, but a preferable change in the number of cells for mitotic growth can be determined as appropriate. Prolonged divisional growth is not efficient for obtaining cells having a hydrogen generating function, and divisional growth that is too short has no effect. The time is approximately 0.5 to 6 hours. The change in the number of cells at that time can be easily known by measuring the bacterial optical density.
A carbon source is also necessary for the microbial cell to divide and proliferate. For this, a normal carbon source such as a saccharide such as glucose, an organic acid, or an alcohol is used.

好気的条件下の蟻酸類含有培養液中で培養され、あるいは、付加的に嫌気的条件で培養された本発明の微生物は還元状態にある水素発生用溶液に加えられ、有機性基質を供給することにより、水素を発生させる。
ここで云う還元状態とは、水素発生用溶液の酸化還元電位が−100mV(ミリボルト)〜−500mV(ミリボルト)で規定されるものであり、好ましくは−200mV〜−500mVで規定される還元状態である。本発明の還元状態を実現する方法としては、加熱処理や減圧処理することにより溶存ガスを除去する方法があげられる。具体的には水素発生溶液中の溶存ガス、特に溶存酸素の除去を行う方法として、約13.33×10Pa以下、好ましくは約6.67×10Pa以下、より好ましくは約4.00×10Pa以下の減圧下で約1〜60分間、好ましくは5〜60分間程度、処理することにより、還元条件の水素発生溶液を得ることができる。また、必要に応じて還元剤を水溶液に添加して還元状態の水溶液を調整することができる。用いる還元剤としては、チオグリコール酸、アスコルビン酸、システィン塩酸塩、メルカプト酢酸、チオール酢酸、グルタチオンそして硫化ソーダ等が挙げられる。これらの一種、あるいは数種類を組み合わせて用いることも可能である、
The microorganism of the present invention cultured in a formic acid-containing culture solution under aerobic conditions or additionally under anaerobic conditions is added to the hydrogen generation solution in a reduced state to supply an organic substrate. By doing so, hydrogen is generated.
The reduction state referred to here is a reduction state in which the oxidation-reduction potential of the hydrogen generating solution is defined by −100 mV (millivolt) to −500 mV (millivolt), and preferably a reduction state defined by −200 mV to −500 mV. is there. Examples of the method for realizing the reduced state of the present invention include a method of removing dissolved gas by heat treatment or reduced pressure treatment. Specifically, as a method for removing dissolved gas, particularly dissolved oxygen in the hydrogen generating solution, about 13.33 × 10 2 Pa or less, preferably about 6.67 × 10 2 Pa or less, more preferably about 4. By performing the treatment under reduced pressure of 00 × 10 2 Pa or less for about 1 to 60 minutes, preferably about 5 to 60 minutes, a hydrogen generating solution under reducing conditions can be obtained. Further, if necessary, a reducing agent can be added to the aqueous solution to adjust the reduced aqueous solution. Examples of the reducing agent used include thioglycolic acid, ascorbic acid, cysteine hydrochloride, mercaptoacetic acid, thiolacetic acid, glutathione, and sodium sulfide. It is also possible to use one of these or a combination of several types.

水素発生の方法としては、連続的にあるいは間欠的に有機性基質を供給することで実施される。有機性基質の供給方式としては、蟻酸類を直接に供給する方式(直接的供給方法)、あるいは菌体内代謝経路において蟻酸類に変換される糖類(例えば、グルコース、フラクース、キシロースやアラビノース等の単糖類そしてスクロース、マルトース等の二糖類および糖蜜である。)を供給すること方式(間接的供給方法)が挙げられる。直接的供給方法と間接的供給方法の併用も可能である。   The hydrogen generation method is carried out by supplying an organic substrate continuously or intermittently. As a method for supplying organic substrates, a method for directly supplying formic acids (direct supply method) or a saccharide (for example, glucose, fructose, xylose, arabinose, etc.) that is converted into formic acids in the metabolic pathway of the microbial cell. Saccharides and disaccharides such as sucrose and maltose and molasses.) (Indirect supply method). A direct supply method and an indirect supply method can be used in combination.

有機性基質の供給速度としては、水素発生溶液のPHが5.0〜9.0の範囲で制御される限り特に制限はない。
水素の発生反応の反応温度は、用いる微生物種にもよるが、20℃〜45℃の条件が好ましく、さらに好ましくは30℃〜40℃の範囲である。
菌体濃度は、0.1%(w/w)〜80%(w/w)(湿潤状態菌体質量基準)濃度範囲で実施される。水素発生溶液の粘性が高くなるという観点から、菌体濃度は0.1%(w/w)〜70%(w/w)(湿潤状態菌体質量基準)が好ましい。さらに好ましくは、菌体濃度は10%(w/w)〜70%(w/w)(湿潤状態菌体質量基準)である。
本発明では水素発生速度が高いので、水素発生の際には、反応溶液中に消泡剤を加えることが好ましい。消泡剤については、公知なものが用いられる。具体的にはシリコーン系、ポリエーテル系の消泡剤が用いられる。
本発明で製造される水素は燃料電池用燃料ガスとして使用される。
The supply rate of the organic substrate is not particularly limited as long as the pH of the hydrogen generating solution is controlled in the range of 5.0 to 9.0.
The reaction temperature of the hydrogen generation reaction is preferably 20 ° C. to 45 ° C., more preferably 30 ° C. to 40 ° C., although it depends on the microorganism species used.
The microbial cell concentration is carried out in the concentration range of 0.1% (w / w) to 80% (w / w) (wet state microbial mass standard). From the viewpoint of increasing the viscosity of the hydrogen generating solution, the bacterial cell concentration is preferably 0.1% (w / w) to 70% (w / w) (wet cell mass standard). More preferably, the bacterial cell concentration is 10% (w / w) to 70% (w / w) (wet cell mass standard).
In the present invention, since the hydrogen generation rate is high, it is preferable to add an antifoaming agent to the reaction solution during hydrogen generation. About an antifoamer, a well-known thing is used. Specifically, silicone-based and polyether-based antifoaming agents are used.
Hydrogen produced in the present invention is used as fuel gas for fuel cells.

本発明の微生物を用いた水素製造方法では主に水素と二酸化炭素からなるガスを生成する。一般的に、天然ガス等の分解ガスを固体高分子型燃料電池の燃料として用いる場合には、高価な電極触媒劣化防止の為、分解ガス中の一酸化炭素(CO)を除去するシステム(CO変成器、CO除去器等)を用いて、COは10ppm程度にまで低下させる必要がある。本発明の水素製造方法を燃料電池の燃料として用いたシステムでは、COを除去するシステムが不要であり、装置を簡易化することができる。また、本発明により得られる発生ガスは、天然ガス等の分解ガスがCO変性器を経たものと異なり、反応溶液中の蒸気を含んだ状態であるため、燃料電池の高分子電解質膜の燃料極側の特別の加湿を行うことが不要となる等本発明の水素製造方法を用いた燃料電池システムは優れたシステムを実現させることができる。   In the hydrogen production method using the microorganism of the present invention, a gas mainly composed of hydrogen and carbon dioxide is generated. Generally, when a cracked gas such as natural gas is used as a fuel for a polymer electrolyte fuel cell, a system for removing carbon monoxide (CO) in the cracked gas (CO) in order to prevent expensive electrode catalyst deterioration. Using a transformer, a CO remover, etc.), the CO needs to be reduced to about 10 ppm. In the system using the hydrogen production method of the present invention as fuel for a fuel cell, a system for removing CO is unnecessary, and the apparatus can be simplified. Further, the generated gas obtained by the present invention is different from the case where the cracked gas such as natural gas passes through the CO modifier, and is in a state containing the vapor in the reaction solution. The fuel cell system using the hydrogen production method of the present invention, such as eliminating the need for special humidification on the side, can realize an excellent system.

以下実施例により具体的に本発明を説明するが、本発明はこれによりなんら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

〔実施例1〕
エシェリキア コリ株(Escherichia coli W strain;ATCC9637)による生物的水素製造方法。
本菌株を下表1で示される組成の培養液500ml(ミリリットル)に加え、好気的条件下、37℃で一晩振盪培養(前培)を行った。

Figure 2005087035
[Example 1]
Biological hydrogen production method using Escherichia coli strain (ATCC9637).
This strain was added to 500 ml (milliliter) of a culture solution having the composition shown in Table 1 below, followed by shaking culture (preculture) overnight at 37 ° C. under aerobic conditions.
Figure 2005087035

次に好気的条件下、一晩振盪培養(前培)を行った培養液を一部採取し、蟻酸ナトリウムを含む下表2で示される組成の培養液に加え、37℃で12時間の振盪培養(本培)を行った。

Figure 2005087035
Next, a portion of the culture solution which has been subjected to overnight shaking culture (pre-culture) under aerobic conditions is collected and added to the culture solution having the composition shown in Table 2 below and containing sodium formate for 12 hours at 37 ° C. Shaking culture (main culture) was performed.
Figure 2005087035

ついで、本培養液を遠心分離機にかけ(5000回転、15分)、上澄み液を除去し、水素発生機能を有する菌体を得た。
本菌体を遠心分離により分離後、下表3の組成で示される還元状態下の水素発生用溶液100mlに懸濁調製した(菌体濃度約40% 湿潤状態菌体質量基準)。

Figure 2005087035
Subsequently, the main culture solution was centrifuged (5000 rpm, 15 minutes), and the supernatant was removed to obtain bacterial cells having a hydrogen generation function.
The bacterial cells were separated by centrifugation and then suspended in 100 ml of a hydrogen generation solution under reduced conditions shown in the composition of Table 3 below (bacterial cell concentration: about 40% wet cell mass standard).
Figure 2005087035

水素発生用反応容器は、蟻酸供給ノズル、攪拌装置、pH調整装置、温度維持装置および酸化還元電位測定装置を備え付け、37℃に設定されている恒温水槽内に載置されている。
10M(モル)/L(リットル)濃度の蟻酸水溶液をマイクロポンプを用いて25ml/hrのフィード速度で連続的に反応容器に供給して発生するガス量を測定した。
蟻酸の供給と同時にガス発生が起こり、蟻酸の連続的供給の間(実験時間約6時間の間)ガス発生が継続した。捕集されたガスをガスクロマトグラフィーにより分析したところ、発生ガス中には50%の水素と残余の炭酸ガスを含んでいた。ガス流量計より測定された水素発生速度は実験時間の間、ほぼ一定の45L(H)/hr/L(反応容積)であった。
The reaction vessel for hydrogen generation is equipped with a formic acid supply nozzle, a stirring device, a pH adjusting device, a temperature maintaining device, and an oxidation-reduction potential measuring device, and is placed in a constant temperature water tank set at 37 ° C.
A 10 M (mol) / L (liter) concentration formic acid aqueous solution was continuously supplied to the reaction vessel at a feed rate of 25 ml / hr using a micropump, and the amount of gas generated was measured.
Gas generation occurred simultaneously with the supply of formic acid, and gas generation continued during the continuous supply of formic acid (for the experiment time of about 6 hours). The collected gas was analyzed by gas chromatography. As a result, the generated gas contained 50% hydrogen and the remaining carbon dioxide gas. The hydrogen generation rate measured by the gas flow meter was approximately constant 45 L (H 2 ) / hr / L (reaction volume) during the experiment time.

〔比較例1〕
実施例1における好気的培養培地に蟻酸ナトリウムが含まれていない(表2)ことを除いて、実施例1と同様の方法、条件により実験を行なったところ、水素発生溶液からはガスの発生は殆ど認められなかった。
実施例1、比較例1の結果により、好気的条件下で蟻酸類を含む培養液中培養することが水素生成機能を発現できる微生物の獲得に必須であることが明白である。
[Comparative Example 1]
An experiment was carried out under the same method and conditions as in Example 1 except that the aerobic culture medium in Example 1 did not contain sodium formate (Table 2). As a result, gas was generated from the hydrogen generating solution. Was hardly recognized.
From the results of Example 1 and Comparative Example 1, it is clear that culturing in a culture solution containing formic acid under aerobic conditions is essential for obtaining a microorganism capable of expressing a hydrogen generating function.

〔実施例2〕
実施例1と同様の条件、方法による好気的条件下での培養後、菌体を遠心分離機にかけ(5000回転、15分)、上澄み液を除去し、菌体を得た。この菌体を前記表2で示される実施例1で使用されたものと同一組成の嫌気的条件下にある誘導培地に懸濁した。
誘導培地溶液は、予め、120℃で10分間加熱後、直ちに減圧条件(〜約4.00×10Pa)にて20分間溶解している酸素の除去を行い、窒素雰囲気下にある攪拌装置、温度維持装置および酸化還元電位測定装置を備えた内容積10L(リットル)のガラス製容器に導入されている。
上記の分離した菌体の菌体濃度が2%(湿潤状態菌体質量基準)になるように懸濁調製を行い、6時間の嫌気条件下の誘導培養を行った(本発明の付加的な蟻酸類存在下の嫌気条件での水素発生機能発現の向上化)。培養後、遠心分離機にかけ(5000回転、15分)、上澄み液を除去し、菌体を得た。得られた水素発生機能を有する菌体を水素発生溶液に導入して実施例1と同様の条件、方法により水素発生機能を調べた。
実施例1と同様にして水素発生速度を測定したところ、55L(H2)/hr/L(反応容積)であった。
実施例1と実施例2の結果により、好気的条件下で培養した後に、さらに嫌気的条件下での誘導培養を行うことにより、微生物の水素生成機能の発現が向上し、反応容積あたりの水素発生速度が増大することが明らかとなった。
[Example 2]
After culturing under aerobic conditions according to the same conditions and methods as in Example 1, the cells were centrifuged (5000 rpm, 15 minutes), and the supernatant was removed to obtain cells. The cells were suspended in an induction medium under anaerobic conditions having the same composition as that used in Example 1 shown in Table 2 above.
The induction medium solution was previously heated at 120 ° C. for 10 minutes, and immediately after that, the dissolved oxygen was removed for 20 minutes under reduced pressure conditions (up to about 4.00 × 10 2 Pa), and a stirring apparatus under a nitrogen atmosphere And introduced into a glass container having an internal volume of 10 L (liter) equipped with a temperature maintaining device and an oxidation-reduction potential measuring device.
The suspension was prepared so that the cell concentration of the separated cells was 2% (wet cell mass standard), and induction culture was performed under anaerobic conditions for 6 hours (additional addition of the present invention). Improved hydrogen generation function under anaerobic conditions in the presence of formic acid). After culturing, it was centrifuged (5000 rpm, 15 minutes), and the supernatant was removed to obtain bacterial cells. The obtained microbial cells having a hydrogen generation function were introduced into a hydrogen generation solution, and the hydrogen generation function was examined under the same conditions and methods as in Example 1.
The hydrogen generation rate was measured in the same manner as in Example 1. As a result, it was 55 L (H 2) / hr / L (reaction volume).
According to the results of Example 1 and Example 2, after culturing under aerobic conditions, further induction culture under anaerobic conditions improves the expression of the hydrogen generation function of the microorganism, It was revealed that the hydrogen generation rate increased.

〔実施例3〜実施例7〕
エシェリキア コリ株(Escherichia coli W strain;ATCC9637)による生物的水素製造方法。
好気的条件下で培養を行う培地の蟻酸ナトリウムの濃度が、それぞれ0.5mM(実施例3)、1mM(実施例4)、100mM(実施例5)、300mM(実施例6)、500mM(実施例7)であること以外は、実施例2と同様の方法、条件により水素発生速度の測定を行った。これらの結果を図1に示した。
図1は、蟻酸類存在下の好気的水素生成機能発現方法に関して、蟻酸類濃度と水素発生速度の相関を示している。
蟻酸類濃度が1mM以上の濃度の好気的条件下で培養することで、水素発生速度が大きく向上することが明らかである。
また、蟻酸類濃度が高すぎても、濃度に比例した水素生成機能の発現効果が認められなくなることも示している。
[Examples 3 to 7]
Biological hydrogen production method using Escherichia coli strain (ATCC9637).
The concentration of sodium formate in the medium cultured under aerobic conditions is 0.5 mM (Example 3), 1 mM (Example 4), 100 mM (Example 5), 300 mM (Example 6), 500 mM ( Except for Example 7), the hydrogen generation rate was measured by the same method and conditions as in Example 2. These results are shown in FIG.
FIG. 1 shows the correlation between the formic acid concentration and the hydrogen generation rate with respect to the aerobic hydrogen generation function expression method in the presence of formic acid.
It is apparent that the hydrogen generation rate is greatly improved by culturing under aerobic conditions where the formic acid concentration is 1 mM or more.
Moreover, it is shown that even if the formic acid concentration is too high, the expression effect of the hydrogen generation function proportional to the concentration is not recognized.

本発明によって製造される水素は、例えば燃料電池を稼動させるクリーンエネルギーとして有用である。   Hydrogen produced by the present invention is useful as clean energy for operating a fuel cell, for example.

好気的水素生成機能発現法での蟻酸類濃度と水素発生速度の関係。Relationship between formic acid concentration and hydrogen generation rate in aerobic hydrogen generation function expression method.

Claims (3)

蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する微生物を、好気的条件下の蟻酸類含有培養液中で培養後、還元状態にある水素発生用溶液に加え、該溶液に有機性基質を供給することを特徴とする生物的水素製造方法。   After culturing a microorganism having a formate dehydrogenase gene and a hydrogenase gene in a formic acid-containing culture solution under aerobic conditions, the microorganism is added to the hydrogen generation solution in a reduced state, and an organic substrate is supplied to the solution. A biological hydrogen production method. 微生物が、好気的条件下で培養後、さらに嫌気的条件で蟻酸類含有培養液中で培養され、還元状態にある水素発生用溶液に加えられることを特徴とする請求項1に記載の生物的水素製造方法。   The organism according to claim 1, wherein the microorganism is cultured in an aerobic condition, further cultured in a formic acid-containing culture solution under an anaerobic condition, and added to the hydrogen generation solution in a reduced state. Hydrogen production method. 請求項1、2のいずれかに記載の方法で製造される水素の燃料電池用燃料ガスとしての使用。
Use of hydrogen produced by the method according to claim 1 as fuel gas for a fuel cell.
JP2003322154A 2003-09-12 2003-09-12 Hydrogen production method using microorganisms Expired - Fee Related JP4409893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322154A JP4409893B2 (en) 2003-09-12 2003-09-12 Hydrogen production method using microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322154A JP4409893B2 (en) 2003-09-12 2003-09-12 Hydrogen production method using microorganisms

Publications (2)

Publication Number Publication Date
JP2005087035A true JP2005087035A (en) 2005-04-07
JP4409893B2 JP4409893B2 (en) 2010-02-03

Family

ID=34453613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322154A Expired - Fee Related JP4409893B2 (en) 2003-09-12 2003-09-12 Hydrogen production method using microorganisms

Country Status (1)

Country Link
JP (1) JP4409893B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062130A1 (en) * 2004-12-08 2006-06-15 Research Institute Of Innovative Technology For The Earth Microorganism having improved gene participating in hydrogen production ability and method of producing hydrogen by using the microorganism
JP2006333767A (en) * 2005-06-01 2006-12-14 Research Institute Of Innovative Technology For The Earth Method and system for producing hydrogen
JP2009273372A (en) * 2008-05-12 2009-11-26 Sharp Corp Method and device for producing hydrogen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062130A1 (en) * 2004-12-08 2006-06-15 Research Institute Of Innovative Technology For The Earth Microorganism having improved gene participating in hydrogen production ability and method of producing hydrogen by using the microorganism
JP2006333767A (en) * 2005-06-01 2006-12-14 Research Institute Of Innovative Technology For The Earth Method and system for producing hydrogen
JP4588541B2 (en) * 2005-06-01 2010-12-01 財団法人地球環境産業技術研究機構 Hydrogen production method and hydrogen production apparatus
JP2009273372A (en) * 2008-05-12 2009-11-26 Sharp Corp Method and device for producing hydrogen
US8846358B2 (en) 2008-05-12 2014-09-30 Sharp Kabushiki Kaisha Method and device for producing hydrogen

Also Published As

Publication number Publication date
JP4409893B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4275666B2 (en) Highly efficient hydrogen production method using microorganisms
Kanai et al. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1
He et al. One-step production of C6–C8 carboxylates by mixed culture solely grown on CO
JP2019506165A (en) Integrated fermentation electrolysis process
Nanninga et al. Amino acid fermentation and hydrogen transfer in mixed cultures
EA030282B1 (en) Fermentation method
CN112771170A (en) Carbon dioxide bioconversion process
US7816109B2 (en) Microorganism having the improved gene for hydrogen-generating capability, and process for producing hydrogen using the same
JP4409893B2 (en) Hydrogen production method using microorganisms
JP4574375B2 (en) Hydrogen production apparatus using microorganisms and fuel cell system using the same
JP4440732B2 (en) Apparatus for culturing microorganisms having hydrogen production ability and biological hydrogen production method
JP5159710B2 (en) Microbial culture method and culture apparatus, biological hydrogen production method and fuel cell system
JP4476285B2 (en) Microbial culture apparatus, hydrogen production apparatus and fuel cell system using the same
JP4860659B2 (en) Hydrogen generating method and hydrogen generating apparatus
JP4588541B2 (en) Hydrogen production method and hydrogen production apparatus
JP2006055127A (en) Method and apparatus for culturing microorganism, biological method for producing hydrogen and fuel cell system
JP4773045B2 (en) Energy recovery system
JP4790505B2 (en) Continuous hydrogen production method using microorganisms
TWI835833B (en) Carbon dioxide bioconversion process
JP4652124B2 (en) Method for culturing microorganisms having hydrogen-producing ability and method for producing hydrogen
JP4827763B2 (en) Hydrogen production method using microorganisms
EP4097241A1 (en) Process for controlling organic acid ratios in a carbon dioxide bioconversion process
KR101736485B1 (en) Thermococcus mutant having improved hydrogen production from formate and methods of hydrogen production by using thereof
JP2007209269A (en) Microorganism having gene with improved hydrogen producing potential, method for cultivation of the microorganism and hydrogen producing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees