JP2005085557A - Manufacturing method of slurry composition for secondary lithium-ion battery electrode - Google Patents

Manufacturing method of slurry composition for secondary lithium-ion battery electrode Download PDF

Info

Publication number
JP2005085557A
JP2005085557A JP2003314841A JP2003314841A JP2005085557A JP 2005085557 A JP2005085557 A JP 2005085557A JP 2003314841 A JP2003314841 A JP 2003314841A JP 2003314841 A JP2003314841 A JP 2003314841A JP 2005085557 A JP2005085557 A JP 2005085557A
Authority
JP
Japan
Prior art keywords
slurry composition
electrode
active material
water
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003314841A
Other languages
Japanese (ja)
Other versions
JP4608862B2 (en
Inventor
Tetsuo Seto
哲夫 瀬戸
Takao Suzuki
隆雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2003314841A priority Critical patent/JP4608862B2/en
Publication of JP2005085557A publication Critical patent/JP2005085557A/en
Application granted granted Critical
Publication of JP4608862B2 publication Critical patent/JP4608862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a slurry composition for a lithium-ion secondary battery electrode in which the smoothness of the electrode surface is attained in the electrode and the solid content is sufficiently dispersed. <P>SOLUTION: This is the manufacturing method of a slurry composition for the lithium-ion secondary battery electrode which has a process (I) of obtaining a kneaded product of funicular state by kneading a water soluble polymer, an electrode active material, a conductivity donating material, and water and a process (II) of mixing the kneaded product, a water dispersion solution of an acrylic polymer having a glass transition temperature of 20°C or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池電極用スラリー組成物および該スラリー組成物を用いるリチウムイオン二次電池用電極の製造方法に関する。   The present invention relates to a slurry composition for a lithium ion secondary battery electrode and a method for producing an electrode for a lithium ion secondary battery using the slurry composition.

近年普及が著しいノート型パソコンや携帯電話、PDAなどの携帯端末の電源には、リチウムイオン二次電池などの二次電池が多用されている。   Secondary batteries such as lithium ion secondary batteries are frequently used as power sources for portable terminals such as notebook personal computers, mobile phones, and PDAs, which have been widely used in recent years.

リチウムイオン二次電池用の電極は、通常、電極用バインダー(以下、単に「バインダー」ということがある。)を水または有機溶媒に溶解または分散させ、これに活物質や導電付与材などを混合して得られるリチウムイオン二次電池電極用スラリー組成物(以下、単に「スラリー組成物」ということがある。)を集電体に塗布、乾燥して製造される。しかし、スラリー組成物中で活物質や導電付与材などの固形分が均一に分散しない場合があった。固形分の分散が不十分なスラリー組成物を用いると、集電体への塗工性が悪化して電極が不均一になったり、電極表面に凝集塊が残って電池作成時に短絡する場合があった。   In an electrode for a lithium ion secondary battery, an electrode binder (hereinafter sometimes simply referred to as “binder”) is dissolved or dispersed in water or an organic solvent, and an active material, a conductivity imparting material, or the like is mixed therewith. The slurry composition for a lithium ion secondary battery electrode obtained in this manner (hereinafter sometimes simply referred to as “slurry composition”) is applied to a current collector and dried. However, in some cases, solid contents such as an active material and a conductivity imparting material are not uniformly dispersed in the slurry composition. If a slurry composition with insufficient solid content is used, the coating property on the current collector may deteriorate and the electrode may become non-uniform, or agglomerates may remain on the electrode surface and short circuit during battery creation. there were.

スラリー組成物の分散媒が水である場合は、スラリー組成物に流動性を付与し、集電体への塗工性を改良する目的でカルボキシメチルセルロースなどの増粘剤を添加するのが通常である。固形分が均一に分散されたスラリー組成物を得る方法として、活物質と導電付与材とに、増粘剤を少なくとも2回以上に分割して添加して混練し、ついでポリテトラフルオロエチレン(PTFE)などのバインダーを添加して混練する方法が提案されている(特許文献1参照)。   When the dispersion medium of the slurry composition is water, it is usual to add a thickener such as carboxymethylcellulose for the purpose of imparting fluidity to the slurry composition and improving the coating property to the current collector. is there. As a method for obtaining a slurry composition in which the solid content is uniformly dispersed, a thickener is added to the active material and the conductivity-imparting material at least twice and kneaded, followed by polytetrafluoroethylene (PTFE). A method of adding a binder such as) and kneading has been proposed (see Patent Document 1).

また、バインダーの添加前の混合工程で強い剪断力で混合処理して固形分の一次粒子化を促進し、バインダーの添加後の混合工程で弱い剪断力で混合処理してバインダーの凝集を防止する方法も提案されている(特許文献2参照)。   Also, mixing treatment with a strong shearing force is performed in the mixing step before the addition of the binder to promote primary particle formation of solids, and a mixing treatment is performed with a weak shearing force in the mixing step after the addition of the binder to prevent the binder from aggregating. A method has also been proposed (see Patent Document 2).

特開2000−348713号公報JP 2000-348713 A 特開平11−213990号公報Japanese Patent Laid-Open No. 11-213990

しかしながら、バインダーとしてPTFEを用いるこれらの方法では、調整条件の変動により電極の表面平滑性が影響を受けることがあった。また、得られる電極の結着力も十分ではなかった。かかる状況のもとで、本発明の目的は、電極表面平滑性が良好な電極を与える、固形分が高度に分散したリチウムイオン二次電池電極用スラリー組成物の製造方法を提供することである。   However, in these methods using PTFE as a binder, the surface smoothness of the electrode may be affected by fluctuations in adjustment conditions. Further, the binding force of the obtained electrode was not sufficient. Under such circumstances, an object of the present invention is to provide a method for producing a slurry composition for a lithium ion secondary battery electrode with a highly dispersed solid content, which gives an electrode with good electrode surface smoothness. .

本発明者らは上記課題を解決すべく鋭意検討した結果、水溶性ポリマーと、電極活物質と、導電付与材と、水とを混練してファニキュラー状態とし、次いでガラス転移温度が20℃以下のアクリレート系ポリマーの水分散液を混合することにより、固形分が高度に分散し、凝集物のないスラリー組成物が得られることを見出した。さらにこのスラリー組成物を用いて電極を製造すると表面平滑性に優れ、結着強度の高い電極が得られることを見出し、これらの知見に基づき本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention kneaded a water-soluble polymer, an electrode active material, a conductivity-imparting material, and water into a funicular state, and then a glass transition temperature of 20 ° C. or lower. It was found that a slurry composition in which the solid content was highly dispersed and no agglomerates was obtained by mixing an aqueous dispersion of the acrylate polymer. Furthermore, when manufacturing an electrode using this slurry composition, it discovered that an electrode excellent in surface smoothness and high binding strength was obtained, and came to complete this invention based on these knowledge.

かくして本発明によれば、水溶性ポリマーと、電極活物質と、導電付与材と、水とを混練してファニキュラー状態の混練物を得る工程(I)および、該混練物と、ガラス転移温度が20℃以下のアクリレート系ポリマーの水分散液とを混合する工程(II)とを有するリチウムイオン二次電池電極用スラリー組成物の製造方法が提供される。
前記工程(I)は、水溶性ポリマーと、導電付与材と、水とを混合して導電付与材分散液を得る工程(I−1)および、該導電付与材分散液に電極活物質を添加して混練する工程(I−2)を有することが好ましい。
Thus, according to the present invention, the step (I) of kneading a water-soluble polymer, an electrode active material, a conductivity-imparting material, and water to obtain a kneaded product in a funicular state, the kneaded product, and the glass transition temperature And a method for producing a slurry composition for a lithium ion secondary battery electrode, comprising a step (II) of mixing an aqueous dispersion of an acrylate polymer at 20 ° C. or lower.
In the step (I), a water-soluble polymer, a conductivity-imparting material, and water are mixed to obtain a conductivity-imparting material dispersion (I-1), and an electrode active material is added to the conductivity-imparting material dispersion And kneading (I-2).

また、前記工程(II)は、混練物を希釈し、次いで周速度が0.5〜200m/秒の分散機で分散処理する工程(II−1)および、得られた分散液と前記アクリレート系ポリマーの水分散液とを混合する工程(II−2)を有することが好ましい。
さらに、該工程(II−2)においては、周速度0.5m/秒未満で混合することが好ましい。
得られるリチウムイオン二次電池電極用スラリー組成物中の電極活物質の平均粒子径は、一次粒子径の1.3倍以下であることが好ましい。
The step (II) includes a step (II-1) of diluting the kneaded material and then dispersing the mixture with a disperser having a peripheral speed of 0.5 to 200 m / sec, and the obtained dispersion and the acrylate system. It is preferable to have the process (II-2) which mixes with the polymer aqueous dispersion.
Furthermore, in the step (II-2), it is preferable to mix at a peripheral speed of less than 0.5 m / sec.
The average particle size of the electrode active material in the obtained slurry composition for lithium ion secondary battery electrodes is preferably 1.3 times or less of the primary particle size.

本発明によれば、電極活物質や導電付与材などの固形分が高度に分散し、凝集物のないリチウムイオン二次電池電極用スラリー組成物を得ることができる。本発明の方法により得られたスラリー組成物は塗工性に優れるので、該スラリー組成物を用いてリチウムイオン二次電池用電極を作成すると、電極層の表面平滑性に優れ、結着強度の大きい電極を得ることができる。   According to the present invention, it is possible to obtain a slurry composition for a lithium ion secondary battery electrode in which solid contents such as an electrode active material and a conductivity-imparting material are highly dispersed and free from aggregates. Since the slurry composition obtained by the method of the present invention is excellent in coating properties, when an electrode for a lithium ion secondary battery is prepared using the slurry composition, the surface smoothness of the electrode layer is excellent, and the binding strength is high. Large electrodes can be obtained.

以下、本発明を工程毎に詳しく説明する。
工程(I):
本発明のリチウムイオン二次電池電極用スラリー組成物の製造方法は、水溶性ポリマーと、電極活物質と、導電付与材と、水とを混練してファニキュラー状態の混練物を得る工程(I)を有する。
Hereinafter, the present invention will be described in detail for each process.
Step (I):
The method for producing a slurry composition for a lithium ion secondary battery electrode of the present invention comprises a step of kneading a water-soluble polymer, an electrode active material, a conductive material, and water to obtain a kneaded product in a funicular state (I ).

本発明で用いられる水溶性ポリマーとしては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩ならびにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩ならびにアルカリ金属塩;(メタ)アクリル酸、マレイン酸及びフマル酸等の不飽和カルボン酸とビニルエステルとの共重合体の鹸化物;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられる。
中でも、セルロース系ポリマーおよびその塩、ならびにポリ(メタ)アクリル酸が好ましく、カルボキシメチルセルロースのアルカリ金属塩がより好ましく、カルボキシメチルセルロースのリチウム塩が特に好ましい。これらの水溶性ポリマーの使用量は、電極活物質100重量部に対して通常0.1〜15重量部、好ましくは0.1〜10重量部、より好ましくは0.1〜8重量部である。水溶性ポリマーは増粘剤として作用し、スラリー組成物の塗工性向上に寄与するとともに、電極活物質や導電付与材の分散剤としても働く。
Examples of the water-soluble polymer used in the present invention include cellulosic polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkalis thereof. Metal salts; Saponification products of copolymers of unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid and fumaric acid and vinyl esters; (Modification) Copolymerization of polyvinyl alcohol, acrylic acid or acrylate and vinyl alcohol Polyvinyl alcohols such as copolymers, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified polyacrylic acid, oxidized starch, Phosphate starch, casein, various modified starch.
Among these, cellulose polymers and salts thereof, and poly (meth) acrylic acid are preferable, alkali metal salts of carboxymethyl cellulose are more preferable, and lithium salts of carboxymethyl cellulose are particularly preferable. The amount of these water-soluble polymers used is usually 0.1 to 15 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.1 to 8 parts by weight with respect to 100 parts by weight of the electrode active material. . The water-soluble polymer acts as a thickener, contributes to improving the coating properties of the slurry composition, and also acts as a dispersant for the electrode active material and the conductivity-imparting material.

本発明で用いられる電極活物質は、電極の種類により適宜選択される。本発明の製造方法で得られるスラリー組成物は、正極、負極のいずれにも使用することができるが、正極に使用するのが好ましい。電極活物質は、通常のリチウムイオン二次電池で使用されるものであれば、いずれであっても用いることができる。リチウムイオン二次電池の正極用の電極活物質としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO−P、MoO、V、V13などの遷移金属酸化物;が例示される。さらに、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子を用いることもできる。 The electrode active material used in the present invention is appropriately selected depending on the type of electrode. The slurry composition obtained by the production method of the present invention can be used for both the positive electrode and the negative electrode, but is preferably used for the positive electrode. Any electrode active material can be used as long as it is used in a normal lithium ion secondary battery. As an electrode active material for a positive electrode of a lithium ion secondary battery, lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 ; TiS 2 , TiS 3 , non Transition metal sulfides such as crystalline MoS 3 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 ; Illustrated. Further, a conductive polymer such as polyacetylene or poly-p-phenylene can be used.

また、リチウムイオン二次電池の負極用の電極活物質としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性高分子などが挙げられる。電極活物質は、機械的改質法により表面に導電付与材を付着させたものも使用できる。   Examples of the electrode active material for the negative electrode of the lithium ion secondary battery include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers, and conductive materials such as polyacene. Examples thereof include polymers. As the electrode active material, a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method can also be used.

電極活物質の一次粒子径は、通常0.5〜50μmである。ここで、一次粒子径は、電極活物質を水に分散させ、超音波処理して得られる分散液について、レーザ回折式粒度分布測定装置を用いて測定される平均粒子径である。   The primary particle diameter of the electrode active material is usually 0.5 to 50 μm. Here, the primary particle size is an average particle size measured using a laser diffraction particle size distribution measuring device for a dispersion obtained by dispersing an electrode active material in water and performing ultrasonic treatment.

本発明で用いられる導電付与材としては、グラファイト、活性炭、アセチレンブラック、ケッチェンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレン類などの炭素質材料や、導電性ポリマー、金属粉末などが用いられる。中でも、アセチレンブラック、ファーネスブラックが好ましい。導電付与材の使用量は、電極活物質100重量部に対し、通常0.5〜20重量部、好ましくは1〜10重量部である。   As the conductivity-imparting material used in the present invention, carbonaceous materials such as graphite, activated carbon, acetylene black, ketjen black, furnace black, graphite, carbon fiber, fullerenes, conductive polymers, metal powders, and the like are used. Of these, acetylene black and furnace black are preferable. The usage-amount of a conductive provision material is 0.5-20 weight part normally with respect to 100 weight part of electrode active materials, Preferably it is 1-10 weight part.

本発明の方法では、上記の水溶性ポリマー、電極活物質および導電付与材と、水とを混練してファニキュラー状態の混練物を得る。ファニキュラー状態とは、固体・液体混合系の充填状態において、固相および液相がともに連続相である状態のことである。ファニキュラー状態において気相は連続相であっても不連続相であってもよく、気相が連続相である場合がファニキュラーI状態、気相が不連続相である場合がファニキュラーII状態と称される。
本発明の工程(I)で得られる混練物は、ファニキュラーI状態およびファニキュラーII状態のいずれであってもよいが、混練時に強い剪断力を付与でき、固形分がより均一に分散できるので、ファニキュラーI状態となるよう固形分濃度を調整することが好ましい。
In the method of the present invention, the water-soluble polymer, the electrode active material, the conductivity-imparting material, and water are kneaded to obtain a kneaded product in a funicular state. The funicular state is a state in which the solid phase and the liquid phase are both continuous phases in the filled state of the solid / liquid mixed system. In the funicular state, the gas phase may be a continuous phase or a discontinuous phase. When the gas phase is a continuous phase, the funicular I state, and when the gas phase is a discontinuous phase, the funicular II state It is called.
The kneaded product obtained in the step (I) of the present invention may be in either the funicular I state or the funicular II state, but can impart a strong shearing force during kneading and can disperse the solid content more uniformly. It is preferable to adjust the solid content concentration so that a funicular I state is obtained.

混練に用いられる混合機としては、高い剪断力を付与することができる混合機が好ましい。具体的には、プラネタリーミキサー、ニーダーなどのブレード型攪拌機;単軸または二軸の押出機;などを挙げることができる。中でも、ブレード型攪拌機が好ましく、プラネタリーミキサーがより好ましい。プラネタリーミキサーとしては、ディスパーなどの高速回転可能な撹拌羽根を備えた3軸型のものを用いると、得られた混練物を他の容器に移すことなく後述する工程(II−1)にも使用できるので特に好ましい。   As a mixer used for kneading, a mixer capable of imparting a high shearing force is preferable. Specific examples include blade-type stirrers such as planetary mixers and kneaders; single-screw or twin-screw extruders, and the like. Among these, a blade type stirrer is preferable, and a planetary mixer is more preferable. As a planetary mixer, if a triaxial type equipped with a stirring blade capable of high-speed rotation such as a disper is used, the obtained kneaded material is also transferred to another container (II-1) described later without being transferred to another container. Since it can be used, it is especially preferable.

混練条件は、用いる各成分の種類や粒子径によっても異なるが、固形分濃度は通常50〜90重量%、好ましくは70〜90重量%、より好ましくは75〜90重量%である。また、ブレード型攪拌機を用いる場合、攪拌翼の周速度は通常0.1〜2m/秒、好ましくは0.1〜1m/秒であり、混練時間は通常20〜60分、好ましくは30〜60分である。混練時の温度や圧力は特に限定されず、通常は常温、常圧でよい。   The kneading conditions vary depending on the type and particle size of each component used, but the solid content concentration is usually 50 to 90% by weight, preferably 70 to 90% by weight, more preferably 75 to 90% by weight. When a blade type stirrer is used, the peripheral speed of the stirring blade is usually 0.1 to 2 m / second, preferably 0.1 to 1 m / second, and the kneading time is usually 20 to 60 minutes, preferably 30 to 60. Minutes. The temperature and pressure at the time of kneading are not particularly limited, and may be ordinary temperature or normal pressure.

本発明では、上記各成分を一括して混合し、混練してもよいが、水溶性ポリマーと、導電付与材と、水とを混合して導電付与材分散液を得る工程(I−1)および、該導電付与材分散液に電極活物質を添加して混練する工程(I−2)の2段階で混合を行うことが好ましい。2段階で混合を行うことにより、導電付与材をより均一に分散することができる。工程(I−1)で得られる導電付与材分散液における、導電付与材の平均粒子径は、好ましくは1μm以下である。   In the present invention, each of the above components may be mixed and kneaded together, but a step (I-1) of obtaining a conductive material dispersion by mixing a water-soluble polymer, a conductive material, and water. And it is preferable to mix in two steps of the process (I-2) of adding and kneading an electrode active material to this electrically conductive provision material dispersion liquid. By conducting the mixing in two stages, the conductivity-imparting material can be more uniformly dispersed. The average particle diameter of the conductivity-imparting material in the conductivity-imparting material dispersion obtained in the step (I-1) is preferably 1 μm or less.

工程(I−1)における固形分濃度は、通常25〜50重量%、好ましくは27〜40重量%である。混合方法は特に限定されず、例えばプラネタリーミキサーを用いて、周速度0.1〜1m/秒で30〜60分混合することにより導電付与材分散液が得られる。   The solid content concentration in the step (I-1) is usually 25 to 50% by weight, preferably 27 to 40% by weight. The mixing method is not particularly limited, and for example, by using a planetary mixer and mixing at a peripheral speed of 0.1 to 1 m / sec for 30 to 60 minutes, a conductivity imparting material dispersion can be obtained.

工程(II):
本発明のリチウムイオン二次電池電極用スラリー組成物の製造方法は、上記工程(I)で得られた混練物と、ガラス転移温度が20℃以下のアクリレート系ポリマーの水分散液とを混合する工程(II)を有する。この工程(II)において、前記混練物が希釈され、バインダーであるアクリレート系ポリマーの水分散液が均一に混合されてスラリー組成物とされる。得られるスラリー組成物の粘度は、通常2〜13Pa・sである。
Step (II):
The manufacturing method of the slurry composition for lithium ion secondary battery electrodes of this invention mixes the kneaded material obtained at the said process (I), and the aqueous dispersion of the acrylate polymer whose glass transition temperature is 20 degrees C or less. It has process (II). In this step (II), the kneaded product is diluted and an aqueous dispersion of an acrylate polymer as a binder is uniformly mixed to obtain a slurry composition. The viscosity of the resulting slurry composition is usually 2 to 13 Pa · s.

本発明で用いられるアクリレート系ポリマーは、アクリル酸エステルおよび/またはメタクリル酸エステル由来の単量体単位を含有するポリマーであり、好ましくはアクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシルなどのアクリル酸アルキルエステル単位を主成分とするポリマーである。アクリル酸アルキルエステル単位の含有量は通常50重量%以上、好ましくは60〜95重量%、より好ましくは65〜90重量%である。アクリレート系ポリマーは、親水性を有するのでスラリー組成物中での分散性に優れる。   The acrylate polymer used in the present invention is a polymer containing a monomer unit derived from an acrylate ester and / or a methacrylic acid ester, and preferably an acrylic such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc. It is a polymer mainly composed of an acid alkyl ester unit. The content of the acrylic acid alkyl ester unit is usually 50% by weight or more, preferably 60 to 95% by weight, more preferably 65 to 90% by weight. Since the acrylate polymer has hydrophilicity, it is excellent in dispersibility in the slurry composition.

アクリレート系ポリマーには、アクリル酸エステルまたはメタクリル酸エステルと共重合可能な他の単量体単位を含んでいてもよい。共重合可能な他の単量体としては、アクリロニトリル、メタクリロニトリルなどのα,β−不飽和ニトリル化合物;アクリル酸、メタクリル酸、イタコン酸などのエチレン性不飽和カルボン酸;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートなどの多官能エチレン性不飽和単量体;などが挙げられる。中でも、エチレン性不飽和カルボン酸単位を0.1〜10重量%、特に1〜7重量%有すると、電極活物質の分散性に優れるので好ましい。また、多官能エチレン性不飽和単量体を0.3〜5重量%、特に0.5〜4重量%共重合させて架橋重合体とすると、結着性、耐電解液性に優れるので好ましい。   The acrylate polymer may contain other monomer units copolymerizable with an acrylic ester or a methacrylic ester. Other copolymerizable monomers include α, β-unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid; ethylene glycol dimethacrylate, And polyfunctional ethylenically unsaturated monomers such as diethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; Among these, it is preferable to have an ethylenically unsaturated carboxylic acid unit of 0.1 to 10% by weight, particularly 1 to 7% by weight, because the dispersibility of the electrode active material is excellent. Further, it is preferable to copolymerize a polyfunctional ethylenically unsaturated monomer in an amount of 0.3 to 5% by weight, particularly 0.5 to 4% by weight, because it is excellent in binding properties and electrolyte resistance. .

本発明で用いられるアクリレート系ポリマーの好ましい具体例としては、アクリル酸2−エチルヘキシル・メタクリル酸・アクリロニトリル・エチレングリコールジメタクリレート共重合体、アクリル酸2−エチルヘキシル・メタクリル酸・メタクリロニトリル・ジエチレングリコールジメタクリレート共重合体、アクリル酸ブチル・アクリロニトリル・ジエチレングリコールジメタクリレート共重合体、アクリル酸ブチル・アクリル酸・トリメチロールプロパントリメタクリレート共重合体などが挙げられる。   Preferable specific examples of the acrylate polymer used in the present invention include 2-ethylhexyl acrylate / methacrylic acid / acrylonitrile / ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate / methacrylic acid / methacrylonitrile / diethylene glycol dimethacrylate. Examples include copolymers, butyl acrylate / acrylonitrile / diethylene glycol dimethacrylate copolymers, butyl acrylate / acrylic acid / trimethylolpropane trimethacrylate copolymers, and the like.

本発明で用いられるアクリレート系ポリマーのガラス転移温度(Tg)は20℃以下、好ましくは−80℃〜0℃、より好ましくは−50℃〜−10℃である。Tgが高すぎると、電極の柔軟性、結着性が低下し、電極層の集電体からの剥離が起きやすくなる。   The glass transition temperature (Tg) of the acrylate polymer used in the present invention is 20 ° C. or less, preferably −80 ° C. to 0 ° C., more preferably −50 ° C. to −10 ° C. When Tg is too high, the flexibility and binding properties of the electrode are lowered, and peeling of the electrode layer from the current collector tends to occur.

本発明の製造方法におけるアクリレート系ポリマーの使用量は、電極活物質に対して、好ましくは0.1〜20重量%、より好ましくは0.5〜10重量%である。アクリレート系ポリマー量が少なすぎると電極から電極活物質が脱落しやすくなり、逆に多すぎると電極活物質がアクリレート系ポリマーに覆い隠されて電極の内部抵抗が増大するおそれがある。   The usage-amount of the acrylate type polymer in the manufacturing method of this invention becomes like this. Preferably it is 0.1-20 weight% with respect to an electrode active material, More preferably, it is 0.5-10 weight%. If the amount of the acrylate polymer is too small, the electrode active material tends to fall off from the electrode. Conversely, if the amount is too large, the electrode active material may be covered with the acrylate polymer and the internal resistance of the electrode may increase.

本発明の製造方法では、上記のアクリレート系ポリマーを水分散体として用いる。アクリレート系ポリマーを乳化重合法により製造すると、アクリレート系ポリマーをラテックス状の水分散体として得ることができるので好ましい。得られたラテックスは、ポリマーを単離せずにそのまま、または必要に応じて濃縮、希釈などにより濃度を調整して本発明の製造方法に用いることができる。アクリレート系ポリマーの水中での濃度(固形分量)は、通常20〜70重量%、好ましくは30〜60重量%である。   In the production method of the present invention, the acrylate polymer is used as an aqueous dispersion. It is preferable to produce an acrylate polymer by an emulsion polymerization method because the acrylate polymer can be obtained as a latex aqueous dispersion. The obtained latex can be used in the production method of the present invention as it is without isolating the polymer or after adjusting the concentration by concentration, dilution or the like, if necessary. The concentration (solid content) of the acrylate polymer in water is usually 20 to 70% by weight, preferably 30 to 60% by weight.

混合条件は、電極活物質および導電付与材が均一に分散し、かつアクリレート系ポリマーが凝集しないよう適宜調節すればよい。分散が不十分であると、電極活物質が凝集して二次粒子化し、電極表面の平滑性が低下する場合がある。本発明の製造方法で得られるスラリー組成物中の、電極活物質の平均粒子径は、一次粒子径に対し好ましくは1.3倍以下、より好ましくは1.2倍以下、特に好ましくは1.1倍以下である。ここで、スラリー組成物中の電極活物質の平均粒子径は、凝集により二次粒子化した粒子も含む見かけの粒子径であり、スラリー組成物1部を水20部に分散させて得られる分散液について、レーザ回折式粒度分布測定装置を用いて測定される平均粒子径である。   The mixing conditions may be adjusted as appropriate so that the electrode active material and the conductivity-imparting material are uniformly dispersed and the acrylate polymer does not aggregate. If the dispersion is insufficient, the electrode active material may aggregate to form secondary particles, which may reduce the smoothness of the electrode surface. The average particle diameter of the electrode active material in the slurry composition obtained by the production method of the present invention is preferably 1.3 times or less, more preferably 1.2 times or less, particularly preferably 1. 1 time or less. Here, the average particle diameter of the electrode active material in the slurry composition is an apparent particle diameter including particles that are secondary particles by aggregation, and is obtained by dispersing 1 part of the slurry composition in 20 parts of water. It is an average particle diameter measured using a laser diffraction type particle size distribution measuring device.

各成分が均一に分散されたスラリー組成物を得るとの観点から、工程(II)は、工程(I)で得られた混練物を希釈し、次いで周速度0.5〜200m/秒で分散処理する工程(II−1)および、得られた分散液と前記アクリレート系重合体の水分散液とを混合する工程(II−2)の2段階で行うことが好ましい。   From the viewpoint of obtaining a slurry composition in which each component is uniformly dispersed, in the step (II), the kneaded material obtained in the step (I) is diluted and then dispersed at a peripheral speed of 0.5 to 200 m / sec. It is preferable to carry out in two steps, the treatment step (II-1) and the step (II-2) of mixing the obtained dispersion and the aqueous dispersion of the acrylate polymer.

工程(II−1)では、まず、工程(I)で得られた混練物を水で希釈する。固形分濃度は、通常30〜75重量%、好ましくは35〜70重量%に調整する。次いで、攪拌機を用いて、周速度0.5〜200m/秒、好ましくは1〜180m/秒、より好ましくは2〜170m/秒で攪拌することにより分散処理を行う。分散処理の時間は、通常5〜30分、好ましくは15〜30分である。攪拌機としては、高速回転可能な撹拌羽根を備えたものであればいずれも用いることができるが、ディスパー、ホモジナイザーなどが好ましい。また、前記のディスパー付きプラネタリーミキサーを用いて、プラネタリー混合部とディスパーを併用すると、短時間の分散処理で均一に分散できるのでより好ましい。この工程により工程(I)で生成した微小凝集塊が解体され、電極活物質および導電付与材が高度に分散したスラリー組成物を得ることができる。   In step (II-1), first, the kneaded material obtained in step (I) is diluted with water. The solid content concentration is usually adjusted to 30 to 75% by weight, preferably 35 to 70% by weight. Subsequently, using a stirrer, the dispersion treatment is performed by stirring at a peripheral speed of 0.5 to 200 m / sec, preferably 1 to 180 m / sec, more preferably 2 to 170 m / sec. The time for the dispersion treatment is usually 5 to 30 minutes, preferably 15 to 30 minutes. Any stirrer can be used as long as it has a stirring blade capable of rotating at high speed, but a disper, a homogenizer, or the like is preferable. Further, it is more preferable to use a planetary mixer with a disper together with a planetary mixing section and a disper, since uniform dispersion can be achieved with a short dispersion process. By this step, the fine agglomerates generated in step (I) are disassembled, and a slurry composition in which the electrode active material and the conductivity-imparting material are highly dispersed can be obtained.

工程(II−2)では、工程(II−1)で得られた分散液と、前記アクリレート系重合体の水分散液とを混合する。混合機としては、弱い剪断力で均一に混合することが可能なものが好ましい。具体的には、プラネタリーミキサーが好ましく用いられる。また、ディスパーなどの回転翼を備えた分散機を用いてもよい。混合時の混合機の周速度は通常0.5m/秒未満、好ましくは0.1〜0.3m/秒である。混合時間は、通常5〜30分、好ましくは15〜30分である。前記工程(II−1)において、分散液中の電極活物質および導電付与材は高度に分散されているので、工程(II−2)では弱い剪断力で混合しても、アクリレート系重合体は容易に均一分散される。剪断力が強すぎると、アクリレート系重合体が凝集してスラリー組成物が不均一になるおそれがある。   In step (II-2), the dispersion obtained in step (II-1) and the aqueous dispersion of the acrylate polymer are mixed. As the mixer, one that can be uniformly mixed with a weak shearing force is preferable. Specifically, a planetary mixer is preferably used. Moreover, you may use the disperser provided with rotary blades, such as a disper. The peripheral speed of the mixer during mixing is usually less than 0.5 m / sec, preferably 0.1 to 0.3 m / sec. The mixing time is usually 5 to 30 minutes, preferably 15 to 30 minutes. In the step (II-1), since the electrode active material and the conductivity-imparting material in the dispersion liquid are highly dispersed, even in the step (II-2), even if they are mixed with a weak shearing force, the acrylate polymer is Easily uniformly dispersed. If the shearing force is too strong, the acrylate polymer may aggregate and the slurry composition may become non-uniform.

上記本発明の方法により得られたスラリー組成物を、常法に従い集電体に塗布、乾燥してリチウムイオン二次電池用電極を得ることができる。集電体としては、導電性材料が用いられ、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属が好ましい。集電体の形状は特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものが好ましい。   The slurry composition obtained by the method of the present invention can be applied to a current collector and dried according to a conventional method to obtain an electrode for a lithium ion secondary battery. As the current collector, a conductive material is used, and metals such as iron, copper, aluminum, nickel, and stainless steel are preferable. The shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.

スラリー組成物の集電体への塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、ハケ塗り法などの方法が挙げられる。塗布するスラリー組成物量も特に制限されないが、乾燥後に形成される、電極活物質、バインダーなどからなる電極層の厚さが、通常、0.005〜5mm、好ましくは0.01〜2mmになる量が一般的である。乾燥方法も特に制限されず、例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥速度は、通常は応力集中によって電極層に亀裂が入ったり、電極層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ早く液状媒体が除去できるように調整する。更に、乾燥後の集電体をプレスすることにより電極の活物質の密度を高めてもよい。プレス方法は、金型プレスやロールプレスなどの方法が挙げられる。   The method for applying the slurry composition to the current collector is not particularly limited. Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, and a brush coating method. The amount of the slurry composition to be applied is not particularly limited, but the amount of the electrode layer formed after drying and made of an electrode active material, a binder, etc. is usually 0.005 to 5 mm, preferably 0.01 to 2 mm. Is common. The drying method is not particularly limited, and examples thereof include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying speed is adjusted so that the liquid medium can be removed as quickly as possible within a speed range in which the electrode layer is not cracked due to stress concentration or the electrode layer does not peel from the current collector. Furthermore, you may raise the density of the active material of an electrode by pressing the collector after drying. Examples of the pressing method include a mold press and a roll press.

以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、実施例、比較例における部、%およびppmは、特に断りがない限り重量基準である。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. In the examples and comparative examples, parts,% and ppm are based on weight unless otherwise specified.

実施例および比較例中の試験および評価は以下の方法で行った。
(1)ガラス転移温度(Tg)
アクリレート系ポリマーのTgは、示差走査型熱量計(DSC)により、10℃/分で昇温して測定した。
(2)電極活物質の粒子径の測定
電極活物質の一次粒子径は、電極活物質を5%の濃度で水に分散させ、2分間超音波処理して得られた分散液を1000倍に希釈して、レーザ回折式粒度分布測定装置(SALD2000:島津製作所社製)を用いて測定した。
また、スラリー組成物中の電極活物質の平均粒子径は、スラリー組成物1部を水20部に分散させて得られた分散液について上記と同様に測定した。
The tests and evaluations in the examples and comparative examples were performed by the following methods.
(1) Glass transition temperature (Tg)
The Tg of the acrylate polymer was measured by raising the temperature at 10 ° C./min with a differential scanning calorimeter (DSC).
(2) Measurement of the particle diameter of the electrode active material The primary particle diameter of the electrode active material is 1000 times the dispersion obtained by dispersing the electrode active material in water at a concentration of 5% and sonicating for 2 minutes. It diluted and measured using the laser diffraction type particle size distribution measuring apparatus (SALD2000: Shimadzu Corp. make).
Further, the average particle size of the electrode active material in the slurry composition was measured in the same manner as described above for a dispersion obtained by dispersing 1 part of the slurry composition in 20 parts of water.

(3)ピール強度
正極用電極の製造
正極用スラリー組成物をアルミニウム箔(厚さ20μm)の片面にドクターブレード法によって均一に塗布し、まず60℃で10分間、次いで120℃で20分間乾燥機で乾燥した後、二軸のロールプレスによって電極密度が3.3g/cmとなるように圧縮して正極を得た。
負極用電極の製造
負極用スラリー組成物を銅箔(厚さ18μm)の片面にドクターブレード法によって均一に塗布し、正極と同様の条件で乾燥した。二軸のロールプレスによって電極密度が1.4g/cmとなるように圧縮して負極を得た。
ピール強度の測定
上記の方法で得た電極(正極または負極)を幅2.5cm×長さ10cmの矩形に切って試験片とし、電極層面を上にして固定する。試験片の電極層表面にセロハンテープを貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定した。測定を10回行い、その平均値を求めてこれをピール強度とした。ピール強度が大きいほど電極層の集電体への結着力が大きいことを示す。
(3) Peel strength
Production of electrode for positive electrode A slurry composition for positive electrode was uniformly applied to one side of an aluminum foil (thickness 20 μm) by a doctor blade method, first dried at 60 ° C. for 10 minutes, and then 120 ° C. for 20 minutes. The positive electrode was obtained by compressing the electrode density to 3.3 g / cm 3 by a biaxial roll press.
Production of Electrode for Negative Electrode The slurry composition for negative electrode was uniformly applied to one side of a copper foil (thickness 18 μm) by a doctor blade method and dried under the same conditions as those for the positive electrode. The negative electrode was obtained by compressing with a biaxial roll press so that the electrode density was 1.4 g / cm 3 .
Measurement of Peel Strength The electrode (positive electrode or negative electrode) obtained by the above method is cut into a rectangle having a width of 2.5 cm and a length of 10 cm to form a test piece, and fixed with the electrode layer surface facing up. After the cellophane tape was attached to the electrode layer surface of the test piece, the stress was measured when the cellophane tape was peeled from the one end of the test piece in the direction of 180 ° at a speed of 50 mm / min. The measurement was performed 10 times, the average value was obtained, and this was taken as the peel strength. The higher the peel strength, the greater the binding force of the electrode layer to the current collector.

(4)表面平滑性
上記(3)に記す方法で得た電極を幅1cm×長さ8cmの矩形に切り、接触式表面試験機で表面粗さRaを測定した。
(4) Surface smoothness The electrode obtained by the method described in (3) above was cut into a rectangle having a width of 1 cm and a length of 8 cm, and the surface roughness Ra was measured with a contact-type surface tester.

[製造例1]
撹拌機付きのオートクレーブに、イオン交換水150部、アクリル酸2−エチルヘキシル80部、アクリル酸5部、メタクリロニトリル14部、エチレングリコールジメタクリレート1部、ドデシルベンゼンスルホン酸ナトリウム3部および過硫酸カリウム3部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。10時間重合を行い、固形分濃度41%のアクリレート系ポリマーの水分散液(ラテックスB−1)を得た。固形分濃度から求めた重合転化率はほぼ99%であった。得られたアクリレート系ポリマーのTgは−50℃であった。
[Production Example 1]
In an autoclave with a stirrer, 150 parts of ion exchange water, 80 parts of 2-ethylhexyl acrylate, 5 parts of acrylic acid, 14 parts of methacrylonitrile, 1 part of ethylene glycol dimethacrylate, 3 parts of sodium dodecylbenzenesulfonate and potassium persulfate After 3 parts were added and stirred sufficiently, the polymerization was started by heating to 60 ° C. Polymerization was performed for 10 hours to obtain an aqueous dispersion (latex B-1) of an acrylate polymer having a solid content concentration of 41%. The polymerization conversion rate determined from the solid content concentration was approximately 99%. The obtained acrylate polymer had a Tg of -50 ° C.

[製造例2]
撹拌機付きのオートクレーブに、イオン交換水150部、アクリル酸ブチル80部、アクリル酸5部、アクリロニトリル13部、エチレングリコールジメタクリレート2部、ドデシルベンゼンスルホン酸ナトリウム3部および過硫酸カリウム3部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。10時間重合を行い、固形分濃度41%のアクリレート系ポリマーの水分散液(ラテックスB−2)を得た。固形分濃度から求めた重合転化率はほぼ99%であった。得られたアクリレート系ポリマーのTgは−34℃であった。
[Production Example 2]
In an autoclave equipped with a stirrer, 150 parts of ion exchange water, 80 parts of butyl acrylate, 5 parts of acrylic acid, 13 parts of acrylonitrile, 2 parts of ethylene glycol dimethacrylate, 3 parts of sodium dodecylbenzenesulfonate and 3 parts of potassium persulfate After sufficiently stirring, the polymerization was started by heating to 60 ° C. Polymerization was carried out for 10 hours to obtain an aqueous dispersion (latex B-2) of an acrylate polymer having a solid content concentration of 41%. The polymerization conversion rate determined from the solid content concentration was approximately 99%. The obtained acrylate polymer had a Tg of -34 ° C.

[実施例1](正極用スラリー組成物の製造)
プラネタリーミキサーに導電付与材としてアセチレンブラック(電気化学社製)3部、増粘剤としてセロゲンWSC(第一工業製薬社製)2.5%水溶液8部を仕込み、プラネタリーミキサーを周速度0.3m/秒で回転させて、固形分濃度29%で60分間混合した。その後、セロゲンWSC2.5%水溶液8部を添加して15分混合し、更にセロゲンWSC水溶液を8部添加し15分混合して、導電付与材分散液を調製した。
ディスパー付きのプラネタリーミキサーに電極活物質として平均粒子径7.1μmのコバルト酸リチウム100部、前記導電付与材分散液27部を仕込み、プラネタリーミキサーのみを周速度0.3m/秒で回転させて、固形分濃度81.5%で60分混練した。その後、水を加えて固形分濃度70%とし、周速度0.3m/秒のプラネタリーミキサーと周速度50m/秒のディスパーを併用して20分間分散処理した。この分散液にラテックスB−1を固形分基準で1.7部加え、プラネタリーミキサーのみを周速度0.2m/秒で回転させて30分混合して固形分濃度69.2%の正極用スラリー組成物を得た。このスラリー組成物中の電極活物質の平均粒子径は7.2μmであった。このスラリー組成物を用いて作製した正極用電極のピール強度は4g/cm、Raは0.9μmであった。
[Example 1] (Production of positive electrode slurry composition)
A planetary mixer is charged with 3 parts of acetylene black (manufactured by Denki Kagaku) as a conductivity-imparting material, and 8 parts of a 2.5% aqueous solution of Serogen WSC (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a thickener. Rotated at 3 m / sec and mixed for 60 minutes at a solids concentration of 29%. Thereafter, 8 parts of a 2.5% aqueous solution of Serogen WSC was added and mixed for 15 minutes, and further 8 parts of a Serogen WSC aqueous solution was added and mixed for 15 minutes to prepare a conductivity imparting material dispersion.
A planetary mixer with a disper is charged with 100 parts of lithium cobalt oxide having an average particle size of 7.1 μm as an electrode active material and 27 parts of the conductive material dispersion liquid, and only the planetary mixer is rotated at a peripheral speed of 0.3 m / sec. The mixture was kneaded for 60 minutes at a solid concentration of 81.5%. Thereafter, water was added to obtain a solid content concentration of 70%, and dispersion treatment was carried out for 20 minutes using a planetary mixer with a peripheral speed of 0.3 m / sec and a disper with a peripheral speed of 50 m / sec. To this dispersion, 1.7 parts of latex B-1 is added based on the solid content, and only the planetary mixer is rotated at a peripheral speed of 0.2 m / second and mixed for 30 minutes to obtain a solid content of 69.2% for the positive electrode. A slurry composition was obtained. The average particle diameter of the electrode active material in this slurry composition was 7.2 μm. The peel strength of the positive electrode produced using this slurry composition was 4 g / cm, and Ra was 0.9 μm.

[実施例2]
アクリレート系重合体としてラテックスB−2を用い、ラテックスB−2添加前のディスパーの周速度を120m/秒としたほかは実施例1と同様にして正極用スラリー組成物を得た。このスラリー組成物中の電極活物質の平均粒子径は6.9μmであった。このスラリー組成物を用いて作製した正極用電極のピール強度は4g/cm、Raは0.8μmであった。
[Example 2]
A slurry composition for positive electrode was obtained in the same manner as in Example 1 except that latex B-2 was used as the acrylate polymer and the peripheral speed of the disperser before addition of latex B-2 was 120 m / sec. The average particle diameter of the electrode active material in this slurry composition was 6.9 μm. The peel strength of the positive electrode produced using this slurry composition was 4 g / cm, and Ra was 0.8 μm.

[比較例1]
プラネタリーミキサーに電極活物質として平均粒子径7.1μmのコバルト酸リチウム100部と、実施例1で得た導電付与材分散液27部とを仕込み、プラネタリーミキサーを周速度0.3m/秒で回転させて、固形分濃度81.5%で60分混練した。その後、水を加えて固形分濃度70%としてさらに20分間混練した。得られた分散液にPTFEの50%水分散液を固形分基準で7.5部加え、プラネタリーミキサーを周速度0.3m/秒で回転させて30分混合して固形分濃度66.6%の正極用スラリー組成物を得た。このスラリー組成物中の電極活物質の平均粒子径は8.0μmであった。このスラリー組成物を用いて作製した正極用電極のピール強度は3g/cm、Raは1.2μmであった。
[Comparative Example 1]
A planetary mixer was charged with 100 parts of lithium cobalt oxide having an average particle diameter of 7.1 μm as an electrode active material and 27 parts of the conductivity-imparting material dispersion obtained in Example 1, and the planetary mixer was rotated at a peripheral speed of 0.3 m / second. And kneaded for 60 minutes at a solid content concentration of 81.5%. Thereafter, water was added to achieve a solid content concentration of 70%, and kneading was continued for another 20 minutes. 7.5 parts of a 50% aqueous PTFE dispersion was added to the obtained dispersion based on the solid content, and the planetary mixer was rotated at a peripheral speed of 0.3 m / second and mixed for 30 minutes to obtain a solid content concentration of 66.6. % Slurry composition for positive electrode was obtained. The average particle diameter of the electrode active material in this slurry composition was 8.0 μm. The peel strength of the positive electrode produced using this slurry composition was 3 g / cm, and Ra was 1.2 μm.

[比較例2]
ディスパー付きのプラネタリーミキサーに平均粒子径7.1μmのコバルト酸リチウム100部、アセチレンブラック3部、セロゲンWSC2.5%水溶液24部およびラテックスB−1を固形分基準で1.7部仕込み、プラネタリーミキサーのみを周速度0.3m/秒で回転させて、固形分濃度75%で60分間混練した。その後、水を加えて固形分濃度70%とし、周速度0.3m/秒のプラネタリーミキサーと周速度50m/秒のディスパーを併用して20分間分散処理した。さらにプラネタリーミキサーのみを周速度0.25m/秒で回転させて30分混合して固形分濃度70%の正極用スラリー組成物を得た。このスラリー組成物中の電極活物質の平均粒子径は10.1μmであった。このスラリー組成物を用いて作製した正極用電極のピール強度は3g/cm、Raは2.1μmであった。
[Comparative Example 2]
A planetary mixer with a disperser is charged with 100 parts of lithium cobaltate having an average particle diameter of 7.1 μm, 3 parts of acetylene black, 24 parts of a 2.5% aqueous solution of serogen WSC and 1.7 parts of latex B-1 on a solid basis, Only the Lee mixer was rotated at a peripheral speed of 0.3 m / sec and kneaded for 60 minutes at a solid concentration of 75%. Thereafter, water was added to obtain a solid content concentration of 70%, and dispersion treatment was carried out for 20 minutes using a planetary mixer with a peripheral speed of 0.3 m / sec and a disper with a peripheral speed of 50 m / sec. Furthermore, only the planetary mixer was rotated at a peripheral speed of 0.25 m / sec and mixed for 30 minutes to obtain a slurry composition for positive electrode having a solid content concentration of 70%. The average particle diameter of the electrode active material in this slurry composition was 10.1 μm. The peel strength of the positive electrode produced using this slurry composition was 3 g / cm, and Ra was 2.1 μm.

[実施例3](負極用スラリー組成物の製造)
ディスパー付きのプラネタリーミキサーに電極活物質として平均粒子径25.5μmの人造黒鉛100部、実施例1で得た導電付与材分散液35部、水17.6部を仕込み、プラネタリーミキサーのみを周速度0.3m/秒で回転させて、固形分濃度68%で60分混練した。その後、水を加えて固形分濃度55%とし、周速度0.3m/秒のプラネタリーミキサーと周速度50m/秒のディスパーを併用して20分間分散処理した。この分散液にラテックスB−1を固形分基準で2部加え、プラネタリーミキサーのみを周速度0.25m/秒で回転させて30分混合して固形分濃度54.7%の負極用スラリー組成物を得た。このスラリー組成物中の電極活物質の平均粒子径は25.7μmであった。このスラリー組成物を用いて作製した負極用電極のピール強度は6g/cm、Raは2.5μmであった。
[Example 3] (Production of slurry composition for negative electrode)
A planetary mixer with a disper was charged with 100 parts of artificial graphite having an average particle diameter of 25.5 μm as an electrode active material, 35 parts of the conductivity imparting material dispersion obtained in Example 1, and 17.6 parts of water. The mixture was rotated at a peripheral speed of 0.3 m / sec and kneaded at a solid content concentration of 68% for 60 minutes. Thereafter, water was added to obtain a solid concentration of 55%, and a dispersion treatment was carried out for 20 minutes using a planetary mixer with a peripheral speed of 0.3 m / second and a disper with a peripheral speed of 50 m / second. To this dispersion, 2 parts of latex B-1 is added based on the solid content, and only the planetary mixer is rotated at a peripheral speed of 0.25 m / second and mixed for 30 minutes to obtain a slurry composition for negative electrode having a solid content concentration of 54.7%. I got a thing. The average particle diameter of the electrode active material in this slurry composition was 25.7 μm. The peel strength of the negative electrode produced using this slurry composition was 6 g / cm, and Ra was 2.5 μm.

[比較例3]
ディスパー付きのプラネタリーミキサーに平均粒子径25.5μmの人造黒鉛100部、アセチレンブラック3.9部、セロゲンWSC2.5%水溶液31部およびラテックスB−1を固形分基準で2部仕込み、プラネタリーミキサーのみを周速度0.3m/秒で回転させて、固形分濃度68%で60分間混練した。その後、水を加えて固形分濃度55%とし、周速度0.3m/秒のプラネタリーミキサーと周速度50m/秒のディスパーを併用して20分間分散処理した。さらにプラネタリーミキサーのみを周速度0.25m/秒で回転させて30分混合して固形分濃度55%の負極用スラリー組成物を得た。このスラリー組成物中の電極活物質の平均粒子径は35.0μmであった。このスラリー組成物を用いて作製した正極用電極のピール強度は4g/cm、Raは3.5μmであった。
[Comparative Example 3]
A planetary mixer with a disperser is charged with 100 parts of artificial graphite having an average particle diameter of 25.5 μm, 3.9 parts of acetylene black, 31 parts of a selegen WSC 2.5% aqueous solution and 2 parts of latex B-1 on a solid basis. Only the mixer was rotated at a peripheral speed of 0.3 m / sec and kneaded for 60 minutes at a solid content of 68%. Thereafter, water was added to obtain a solid concentration of 55%, and a dispersion treatment was carried out for 20 minutes using a planetary mixer with a peripheral speed of 0.3 m / second and a disper with a peripheral speed of 50 m / second. Further, only the planetary mixer was rotated at a peripheral speed of 0.25 m / sec and mixed for 30 minutes to obtain a slurry composition for negative electrode having a solid content concentration of 55%. The average particle diameter of the electrode active material in this slurry composition was 35.0 μm. The peel strength of the positive electrode produced using this slurry composition was 4 g / cm, and Ra was 3.5 μm.

以上より明らかなように、本発明の製造方法で得られたスラリー組成物を用いると、表面平滑性に優れ、結着力が大きい電極を得ることができた(実施例1〜3)。これに対し、バインダーとしてPTFEを用いて製造した電極(比較例1)、および全成分を一括で混合して得られたスラリー組成物を用いて製造した電極(比較例2,3)は、いずれも表面平滑性、結着性に劣る結果であった。   As apparent from the above, when the slurry composition obtained by the production method of the present invention was used, electrodes having excellent surface smoothness and large binding force could be obtained (Examples 1 to 3). In contrast, an electrode manufactured using PTFE as a binder (Comparative Example 1) and an electrode manufactured using a slurry composition obtained by mixing all components at once (Comparative Examples 2 and 3) Was also inferior in surface smoothness and binding properties.

Claims (5)

水溶性ポリマーと、電極活物質と、導電付与材と、水とを混練してファニキュラー状態の混練物を得る工程(I)および、該混練物と、ガラス転移温度が20℃以下のアクリレート系ポリマーの水分散液とを混合する工程(II)とを有するリチウムイオン二次電池電極用スラリー組成物の製造方法。 A step (I) of kneading a water-soluble polymer, an electrode active material, a conductivity imparting material, and water to obtain a kneaded material in a funicular state, and the kneaded material and an acrylate system having a glass transition temperature of 20 ° C. or less The manufacturing method of the slurry composition for lithium ion secondary battery electrodes which has process (II) which mixes with the aqueous dispersion liquid of a polymer. 工程(I)が、水溶性ポリマーと、導電付与材と、水とを混合して導電付与材分散液を得る工程(I−1)および、該導電付与材分散液に電極活物質を添加して混練する工程(I−2)を有する請求項1記載の製造方法。 Step (I) is a step (I-1) of mixing a water-soluble polymer, a conductivity-imparting material, and water to obtain a conductivity-imparting material dispersion, and adding an electrode active material to the conductivity-imparting material dispersion The manufacturing method of Claim 1 which has the process (I-2) knead | mixed. 工程(II)が、混練物を希釈し、次いで周速度が0.5〜200m/秒の分散機で分散処理する工程(II−1)および、得られた分散液と前記アクリレート系ポリマーの水分散液とを混合する工程(II−2)を有する請求項1または2に記載の製造方法。 Step (II) is a step (II-1) in which the kneaded material is diluted and then dispersed with a disperser having a peripheral speed of 0.5 to 200 m / sec, and the obtained dispersion and water of the acrylate polymer are used. The manufacturing method of Claim 1 or 2 which has the process (II-2) which mixes a dispersion liquid. 工程(II−2)において、周速度0.5m/秒未満で混合する請求項3記載の製造方法。 The manufacturing method according to claim 3, wherein the mixing is performed at a peripheral speed of less than 0.5 m / sec in the step (II-2). リチウムイオン二次電池電極用スラリー組成物中の電極活物質の平均粒子径が、一次粒子径の1.3倍以下である請求項1〜4に記載の製造方法。 The production method according to claim 1, wherein the average particle diameter of the electrode active material in the slurry composition for a lithium ion secondary battery electrode is 1.3 times or less of the primary particle diameter.
JP2003314841A 2003-09-05 2003-09-05 Method for producing slurry composition for lithium ion secondary battery electrode Expired - Fee Related JP4608862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314841A JP4608862B2 (en) 2003-09-05 2003-09-05 Method for producing slurry composition for lithium ion secondary battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314841A JP4608862B2 (en) 2003-09-05 2003-09-05 Method for producing slurry composition for lithium ion secondary battery electrode

Publications (2)

Publication Number Publication Date
JP2005085557A true JP2005085557A (en) 2005-03-31
JP4608862B2 JP4608862B2 (en) 2011-01-12

Family

ID=34415275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314841A Expired - Fee Related JP4608862B2 (en) 2003-09-05 2003-09-05 Method for producing slurry composition for lithium ion secondary battery electrode

Country Status (1)

Country Link
JP (1) JP4608862B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116327A (en) * 2003-10-07 2005-04-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2006236658A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Manufacturing method of electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte battery
JP2009048921A (en) * 2007-08-22 2009-03-05 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
JP2010092601A (en) * 2008-10-03 2010-04-22 Nippon Zeon Co Ltd Material for formation of electrochemical element electrode, its manufacturing method, and electrochemical element electrode
JP2011181387A (en) * 2010-03-02 2011-09-15 Toyo Ink Sc Holdings Co Ltd Manufacturing method of electrode mixture for electrochemical element
WO2012029839A1 (en) * 2010-09-01 2012-03-08 日本ゼオン株式会社 Aqueous binder composition for secondary battery cathode, slurry composition for secondary battery cathode, secondary battery cathode, and secondary battery
JP2012204061A (en) * 2011-03-24 2012-10-22 Toppan Printing Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, production method of positive electrode ink for nonaqueous electrolyte secondary battery, positive electrode ink for nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
JP2014041782A (en) * 2012-08-23 2014-03-06 Jtekt Corp Device and method for kneading electricity storage material
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
WO2015151440A1 (en) * 2014-04-01 2015-10-08 住友精化株式会社 Binder for electric double-layer capacitor electrode, electric double-layer capacitor electrode comprising same binder, electric double-layer capacitor using same electrode, and electric apparatus
JP2019507464A (en) * 2016-01-18 2019-03-14 ジーアールエスティー・インターナショナル・リミテッド Method of manufacturing cathode for secondary battery
KR102299715B1 (en) * 2020-11-25 2021-09-09 주식회사 토바 Method to dry a roll-to-roll printed electrode
CN114824156A (en) * 2021-01-27 2022-07-29 泰星能源解决方案有限公司 Electrode material and electrode comprising wet powder, method for producing the same, and secondary battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012001A (en) * 1998-04-21 2000-01-14 Japan Energy Corp Manufacture of slurry for lithium secondary battery electrode
JP2000344838A (en) * 1999-06-01 2000-12-12 Hitachi Chem Co Ltd Acrylic resin, non-aqueous solvent-based binder composition, manufacture of electrode, electrode, and non-aqueous solvent-based secondary cell
JP2000348713A (en) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd Manufacture of positive electrode mix for battery and positive electrode plate for battery using positive electrode mix
JP2003151560A (en) * 2001-09-03 2003-05-23 Nippon Zeon Co Ltd Binder composite for electrode, slurry for electrode, electrode, and battery
JP2003223895A (en) * 2002-01-31 2003-08-08 Nippon Zeon Co Ltd Slurry composition for secondary cell electrode, secondary cell electrode and secondary cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012001A (en) * 1998-04-21 2000-01-14 Japan Energy Corp Manufacture of slurry for lithium secondary battery electrode
JP2000344838A (en) * 1999-06-01 2000-12-12 Hitachi Chem Co Ltd Acrylic resin, non-aqueous solvent-based binder composition, manufacture of electrode, electrode, and non-aqueous solvent-based secondary cell
JP2000348713A (en) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd Manufacture of positive electrode mix for battery and positive electrode plate for battery using positive electrode mix
JP2003151560A (en) * 2001-09-03 2003-05-23 Nippon Zeon Co Ltd Binder composite for electrode, slurry for electrode, electrode, and battery
JP2003223895A (en) * 2002-01-31 2003-08-08 Nippon Zeon Co Ltd Slurry composition for secondary cell electrode, secondary cell electrode and secondary cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116327A (en) * 2003-10-07 2005-04-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2006236658A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Manufacturing method of electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte battery
JP4632809B2 (en) * 2005-02-23 2011-02-16 三洋電機株式会社 Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP2009048921A (en) * 2007-08-22 2009-03-05 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
JP2010092601A (en) * 2008-10-03 2010-04-22 Nippon Zeon Co Ltd Material for formation of electrochemical element electrode, its manufacturing method, and electrochemical element electrode
JP2011181387A (en) * 2010-03-02 2011-09-15 Toyo Ink Sc Holdings Co Ltd Manufacturing method of electrode mixture for electrochemical element
WO2012029839A1 (en) * 2010-09-01 2012-03-08 日本ゼオン株式会社 Aqueous binder composition for secondary battery cathode, slurry composition for secondary battery cathode, secondary battery cathode, and secondary battery
JP2012204061A (en) * 2011-03-24 2012-10-22 Toppan Printing Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, production method of positive electrode ink for nonaqueous electrolyte secondary battery, positive electrode ink for nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
JP2014041782A (en) * 2012-08-23 2014-03-06 Jtekt Corp Device and method for kneading electricity storage material
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
JP5686332B2 (en) * 2012-10-12 2015-03-18 独立行政法人産業技術総合研究所 Binder for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery containing this binder, lithium ion secondary battery and electric equipment using this positive electrode
JPWO2014057627A1 (en) * 2012-10-12 2016-08-25 国立研究開発法人産業技術総合研究所 Binder for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery containing this binder, lithium ion secondary battery and electric equipment using this positive electrode
US10164259B2 (en) 2012-10-12 2018-12-25 National Institute Of Advanced Industrial Science And Technology Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
WO2015151440A1 (en) * 2014-04-01 2015-10-08 住友精化株式会社 Binder for electric double-layer capacitor electrode, electric double-layer capacitor electrode comprising same binder, electric double-layer capacitor using same electrode, and electric apparatus
US10068717B2 (en) 2014-04-01 2018-09-04 Sumitomo Seika Chemicals Co., Ltd. Binder for electric double-layer capacitor electrode, electric double-layer capacitor electrode comprising same binder, electric double-layer capacitor using same electrode, and electric apparatus
JP2019507464A (en) * 2016-01-18 2019-03-14 ジーアールエスティー・インターナショナル・リミテッド Method of manufacturing cathode for secondary battery
KR102299715B1 (en) * 2020-11-25 2021-09-09 주식회사 토바 Method to dry a roll-to-roll printed electrode
CN114824156A (en) * 2021-01-27 2022-07-29 泰星能源解决方案有限公司 Electrode material and electrode comprising wet powder, method for producing the same, and secondary battery comprising the same

Also Published As

Publication number Publication date
JP4608862B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP6015649B2 (en) Binder resin composition for secondary battery electrode, slurry for secondary battery electrode, electrode for secondary battery, lithium ion secondary battery
JP4736804B2 (en) Binder for lithium ion secondary battery electrode
JP4687458B2 (en) Method for producing electrode for electrochemical device
JP5195749B2 (en) Method for producing slurry for lithium ion secondary battery electrode
JP4311002B2 (en) Slurry composition for electrode, electrode and secondary battery
KR102408332B1 (en) Conductive resin composition and electrode composition for electrode, electrode and lithium ion battery using same
JP4608862B2 (en) Method for producing slurry composition for lithium ion secondary battery electrode
JP4645778B2 (en) Electrode for lithium ion secondary battery
TWI709275B (en) Binder for negative electrode of lithium ion secondary battery, slurry composition for negative electrode and negative electrode, and lithium ion secondary battery
JP2000299109A (en) Binder composition for electrode for lithium ion secondary battery and its utilization
JPH09320604A (en) Conductive-binded composition for secondary battery electrode and manufacture thereof
JP2017069108A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery electrode and lithium ion secondary battery
JP2013004229A (en) Binder for lithium secondary battery electrode, method for producing binder for lithium secondary battery electrode, lithium secondary battery electrode, and lithium secondary battery
JP2012119078A (en) Method for manufacturing electrode mixture for power storage device
JP2018006333A (en) Binder solution for lithium ion battery positive electrode, powdery binder for lithium ion battery positive electrode, slurry for lithium ion battery positive electrode, positive electrode for lithium ion battery, and lithium ion battery
CN116462792B (en) Lithium battery carbon-coated foil conductive slurry, modified acrylic composite resin emulsion and preparation method thereof
JP2022177116A (en) Nonaqueous secondary battery
JP2004227974A (en) Slurry composition for electrode, electrode and secondary battery
TWI681589B (en) Viscosity stabilizer for non-aqueous electrolyte battery electrode, binder composition containing the same, slurry composition for non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery
JP2010282979A (en) Slurry composition for nonaqueous electrolyte secondary battery positive electrode
JPWO2012043763A1 (en) ELECTRODE MIXTURE FOR ELECTRIC STORAGE DEVICE AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR ELECTRIC STORAGE DEVICE USING THE SAME, AND LITHIUM ION SECONDARY BATTERY
JP6693101B2 (en) Non-aqueous secondary battery functional layer composition, method for producing non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6145638B2 (en) Water-soluble binder composition for secondary battery, mixture for secondary battery electrode, electrode for secondary battery, lithium ion secondary battery
JP4470735B2 (en) Method for producing slurry composition for secondary battery electrode
JP6487369B2 (en) Conductive paste for preparing positive electrode of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090914

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4608862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees