JP2005084607A - Manufacturing method of optical fiber multiplexing/demultiplexing element - Google Patents

Manufacturing method of optical fiber multiplexing/demultiplexing element Download PDF

Info

Publication number
JP2005084607A
JP2005084607A JP2003319566A JP2003319566A JP2005084607A JP 2005084607 A JP2005084607 A JP 2005084607A JP 2003319566 A JP2003319566 A JP 2003319566A JP 2003319566 A JP2003319566 A JP 2003319566A JP 2005084607 A JP2005084607 A JP 2005084607A
Authority
JP
Japan
Prior art keywords
optical fiber
core
shaped portion
branching
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319566A
Other languages
Japanese (ja)
Inventor
Hajime Tochitani
元 栃谷
Sadao Shirai
貞夫 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP2003319566A priority Critical patent/JP2005084607A/en
Publication of JP2005084607A publication Critical patent/JP2005084607A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem in the manufacture of an optical fiber multiplexing/demultiplexing element, the problem in which, in the case of connection between an optical fiber on the incident side and an elongation part of a branching optical fiber, the core of the incident optical fiber and the core/clad of the elongation part of the branching optical fiber are to correspond to each other, so that for example light from the incident optical fiber entering the branching optical fiber is simultaneously made incident to the clad part of the branching optical fiber, generating a clad mode in the branching optical fiber and causing an undesirable effect in transmitting light. <P>SOLUTION: The elongation part of the branching optical fiber 3 is cut off in a manner containing a core 1. As a result, no core at the cut part is separated by the clad, which, in the connection with the optical fiber 5, makes the core of the optical fiber 5 integrally connect to the core of the elongation part of the branching optical fiber 3. Thus, no clad mode is generated, eliminating leakage of the clad mode as well as a possibility of accidents. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバ合分波素子の製造方法に係り、特に入射光ファイバからの入射光がクラッドへ漏洩しないような光ファイバ合分波素子を製造する方法に関する。   The present invention relates to a method of manufacturing an optical fiber multiplexer / demultiplexer, and more particularly to a method of manufacturing an optical fiber multiplexer / demultiplexer so that incident light from an incident optical fiber does not leak into a cladding.

近年光ファイバ通信ネットワークの発展に伴い、種々の光ファイバ関連素子が使用されるようになってきている。その中でも光ファイバ合分波素子は、複数の異なる信号を1本の光ファイバに合波したり、一つの光信号を複数の光信号に分波したりするなど従来から多数用いられている。   In recent years, with the development of optical fiber communication networks, various optical fiber-related elements have been used. Among them, many optical fiber multiplexing / demultiplexing elements are conventionally used, such as multiplexing a plurality of different signals into one optical fiber or demultiplexing one optical signal into a plurality of optical signals.

従来から光ファイバ合分波素子あるいは光ファイバ合分波素子の製造方法としては図2に示すようにいくつか知られている。即ち、図2(a)は2本の光ファイバ21、22を用意し、これら2本の光ファイバ21、22を整列させた後にその中間部23を加熱しながら融着一体化して伸張し光ファイバ合分波素子を製造する方法である(例えば、特許文献1参照)。   Conventionally, several optical fiber multiplexing / demultiplexing devices or optical fiber multiplexing / demultiplexing device manufacturing methods are known as shown in FIG. That is, in FIG. 2A, two optical fibers 21 and 22 are prepared, and after aligning the two optical fibers 21 and 22, the intermediate portion 23 is fused and integrated while being heated and stretched. This is a method of manufacturing a fiber multiplexing / demultiplexing device (see, for example, Patent Document 1).

また図2(b)は、複数の光ファイバ、21、22を整列させ、その整列させた中間部23を加熱融着した後に融着部分で切断してその切断箇所に他の光ファイバ24を融着接続した光ファイバ合分波素子である(例えば、特許文献2参照)。   FIG. 2B shows the arrangement of a plurality of optical fibers 21 and 22, and the aligned intermediate portion 23 is heat-sealed and then cut at the fused portion to place another optical fiber 24 at the cut portion. This is an optical fiber multiplexing / demultiplexing element that is fusion spliced (for example, see Patent Document 2).

さらに図2(c)は、図2(b)と同様に複数の光ファイバ21、22を整列させ、その整列させた中間部23を加熱融着した後に融着部分で切断してその切断箇所に他の光ファイバ24を融着接続する際に切断箇所と融着接続する光ファイバとの間にミキサロッド25を配設した光ファイバ合分波素子である(例えば、特許文献3参照)。   Further, FIG. 2 (c) is similar to FIG. 2 (b), in which a plurality of optical fibers 21 and 22 are aligned, and the aligned intermediate portion 23 is heat-fused and then cut at the fused portion to obtain the cut portion. The optical fiber multiplexing / demultiplexing element has a mixer rod 25 disposed between the cut portion and the optical fiber to be fusion-bonded when another optical fiber 24 is fusion-connected (for example, see Patent Document 3).

また図2(d)は、図2(a)に示す方法で製造した光ファイバ合分波素子の入射側の光ファイバ21、22のうちの1本を切断した光ファイバ合分波素子である(例えば、特許文献4参照)。   FIG. 2D is an optical fiber multiplexing / demultiplexing device obtained by cutting one of the optical fibers 21 and 22 on the incident side of the optical fiber multiplexing / demultiplexing device manufactured by the method shown in FIG. (For example, refer to Patent Document 4).

上記したような従来の光ファイバ合分波素子においては、複数本の光ファイバを整列させた後にその中間部を加熱融着して伸張するが、その伸張部分は融着する他の光ファイバの外径と同一となるためコア径も同様に細くなる。しかし、いくら細くなったとしてもコア及びその周囲のクラッドからなる構成は変わらない。 In the conventional optical fiber multiplexer / demultiplexer as described above, a plurality of optical fibers are aligned and then stretched by heating and fusing the intermediate portion, but the stretched portion of other optical fibers to be fused is stretched. Since it is the same as the outer diameter, the core diameter is similarly reduced. However, no matter how thin it is, the configuration consisting of the core and the surrounding clad does not change.

従って、図3に示すように、前記伸張部分の断面はコア31a、31b及びコアの周囲のクラッド32から構成されることになる。図3(a)はコア31a、31bが円形の場合、図3(b)はコア31a、31bが半円形の場合を示している。   Therefore, as shown in FIG. 3, the cross section of the extended portion is composed of the cores 31a and 31b and the cladding 32 around the core. FIG. 3A shows a case where the cores 31a and 31b are circular, and FIG. 3B shows a case where the cores 31a and 31b are semicircular.

特開平5−307128号公報JP-A-5-307128 実開昭64−36805号公報Japanese Utility Model Publication No. 64-36805 実開昭63−107404号公報Japanese Utility Model Publication No. 63-107404 特開平7−198987号公報JP-A-7-198987

ところで、上記のような従来の技術には、次のような解決すべき課題があった。   By the way, the conventional techniques as described above have the following problems to be solved.

即ち、従来は上記したように複数本の光ファイバを整列させた後にその中間部を加熱融着して伸張し、伸張部分を切断してその切断箇所に他の光ファイバを融着接続するが、入射側の光ファイバと分岐用光ファイバの前記した伸張部分とを接続した場合には、入射光ファイバのコアと分岐用光ファイバの伸張部分のコア及びクラッドが対応することになる。このことは、例えば入射光ファイバからの光が分岐用光ファイバに入射する時に分岐用光ファイバのクラッド部分にも光が入射することになる。   That is, conventionally, as described above, after aligning a plurality of optical fibers, the intermediate portion is heated and fused to be stretched, the stretched portion is cut, and another optical fiber is fused and connected to the cut portion. When the incident side optical fiber is connected to the extension portion of the branching optical fiber, the core of the incident optical fiber corresponds to the core and cladding of the extension portion of the branching optical fiber. This means that, for example, when light from the incident optical fiber enters the branching optical fiber, the light also enters the cladding portion of the branching optical fiber.

それ故分岐用光ファイバにクラッドモードが発生することになり、光を伝送する上で好ましくない。特にYAGレーザ等の高出力の光を入射する場合はクラッドモードも高出力になるために、もしクラッドモードが外部へ漏洩するようなことがあると、漏洩の比率が低くても事故に繋がる虞が懸念される。   Therefore, a cladding mode is generated in the branching optical fiber, which is not preferable for transmitting light. Especially when high power light such as YAG laser is incident, the clad mode also becomes high power. If the clad mode leaks to the outside, it may lead to an accident even if the leak rate is low. Is concerned.

上記のような状況から、YAGレーザ加工等の高出力のレーザ光の分岐は従来はミラーとレンズを組み合わせたシステムにより行われていた。   From the above situation, branching of high-power laser light such as YAG laser processing has been conventionally performed by a system combining a mirror and a lens.

本発明は以上の点に着目してなされたもので、入射光を合分波する光ファイバ素子において、クラッドモードの発生や漏洩の虞のない光ファイバ合分波素子を製造できる方法を提供するものである。   The present invention has been made paying attention to the above points, and provides a method capable of manufacturing an optical fiber multiplexing / demultiplexing element that does not cause generation of a cladding mode or leakage in an optical fiber element that multiplexes / demultiplexes incident light. Is.

〈構成1〉
屈折率の高いコアとその周囲の屈折率の低いクラッドとからなる1本の光ファイバをU字形に曲げ分岐用光ファイバとし、上記分岐用光ファイバのU字形に曲げたU字部にガラスロッドを融着接続し、上記ガラスロッドにより上記U字部を伸張した後、上記伸張されたU字部を上記U字部のコアがクラッドにより隔てられていない箇所で切断し、しかる後上記切断箇所に他の光ファイバを融着接続することを特徴とする光ファイバ合分波素子の製造方法。
<Configuration 1>
One optical fiber composed of a core having a high refractive index and a clad having a low refractive index around it is bent into a U-shape to form an optical fiber for branching, and a glass rod is attached to the U-shaped portion bent into the U-shape of the optical fiber for branching. And the U-shaped portion is stretched by the glass rod, and then the stretched U-shaped portion is cut at a location where the core of the U-shaped portion is not separated by the cladding, and then the cut location. A method of manufacturing an optical fiber multiplexing / demultiplexing device, wherein another optical fiber is fused and connected to the optical fiber.

ガラスロッドを融着接続したU字部を伸張すると、コアがクラッドにより隔てられていない箇所ができる。ここに、他の光ファイバを融着接続すると、クラッドを挟まない接続部が形成される。故に、クラッドモードの影響を低減した光ファイバ合分波素子を製造することができる。   When the U-shaped portion where the glass rod is fusion-bonded is extended, a portion where the core is not separated by the clad is formed. Here, when other optical fibers are fusion-connected, a connection portion that does not sandwich the clad is formed. Therefore, an optical fiber multiplexing / demultiplexing device in which the influence of the cladding mode is reduced can be manufactured.

〈構成2〉
分岐用光ファイバ3のU字部3C以外の、直線部分3Aと3Bがほぼ平行になるように整形し、ガラスロッド4が、上記分岐用光ファイバ3の直線部分3A、3Bとほぼ平行になるようにその向きを選定し、ガラスロッド4の端面をU字部3Cのほぼ中央側面に融着接続し、ガラスロッド4の向きとほぼ平行な方向に引っ張り力を与えながら上記U字部3Cを加熱して、上記U字部3Cの側面のクラッド2と上記U字部3Cのコア1を松葉状に折り曲げて、コアがクラッドにより隔てられていない箇所を設けることを特徴とする構成1記載の光ファイバ合分波素子の製造方法。
<Configuration 2>
The straight portions 3A and 3B other than the U-shaped portion 3C of the branching optical fiber 3 are shaped so as to be substantially parallel, and the glass rod 4 is substantially parallel to the straight portions 3A and 3B of the branching optical fiber 3. The end of the glass rod 4 is fusion bonded to the substantially central side surface of the U-shaped portion 3C, and the U-shaped portion 3C is applied while applying a tensile force in a direction substantially parallel to the direction of the glass rod 4. The structure according to the first aspect, wherein the clad 2 on the side surface of the U-shaped portion 3C and the core 1 of the U-shaped portion 3C are bent into a pine needle shape by heating to provide a portion where the core is not separated by the clad. Manufacturing method of optical fiber multiplexing / demultiplexing element.

加熱して引っ張り力を与えたときに、U字部3Cの断面がほぼ真円で歪みの無い松葉状に整形できるように、直線部分3Aと3Bをほぼ平行に保持する。また、ガラスロッド4も、分岐用光ファイバ3の直線部分3A、3Bとほぼ平行になるようにその向きを選定する。そして、ガラスロッド4の向きとほぼ平行な方向に引っ張り力を加えてU字部3Cを伸張すると、理想的な整形加工が可能になる。   The straight portions 3A and 3B are held substantially in parallel so that when a tensile force is applied by heating, the cross-section of the U-shaped portion 3C can be shaped into a pine needle shape with a substantially perfect circle and no distortion. The orientation of the glass rod 4 is also selected so that it is substantially parallel to the straight portions 3A, 3B of the branching optical fiber 3. When a U-shaped portion 3C is extended by applying a pulling force in a direction substantially parallel to the direction of the glass rod 4, ideal shaping can be performed.

〈構成3〉
上記分岐用光ファイバのU字部のコア径と上記U字部に接続される他の光ファイバのコア径とが一致するように上記U字部の切断箇所と光ファイバとを融着接続することを特徴とする構成1記載の光ファイバ合分波素子の製造方法。
<Configuration 3>
The cut portion of the U-shaped portion and the optical fiber are fusion-bonded so that the core diameter of the U-shaped portion of the branching optical fiber matches the core diameter of another optical fiber connected to the U-shaped portion. A method of manufacturing an optical fiber multiplexer / demultiplexer according to Configuration 1, wherein:

分岐用光ファイバの切断箇所、即ち分岐用光ファイバと他の光ファイバとの接続箇所において、コア径が一致し、かつ、コアがクラッドにより隔てられていないので、クラッドモードの影響がなくなる。   Since the core diameters coincide at the cut portion of the branching optical fiber, that is, at the connection point between the branching optical fiber and another optical fiber, and the core is not separated by the cladding, the influence of the cladding mode is eliminated.

〈構成4〉
接続されるべき他の光ファイバ5のコア径と、U字部3Cの切断面のコア1の径とがほぼ同一になる箇所であって、上記切断面のコア1の断面がほぼ円形の部分を、切断箇所に選択することを特徴とする光ファイバ合分波素子の製造方法。
<Configuration 4>
A portion in which the core diameter of the other optical fiber 5 to be connected and the diameter of the core 1 of the cut surface of the U-shaped portion 3C are substantially the same, and the cross section of the core 1 of the cut surface is substantially circular Is selected as a cutting point. A method for manufacturing an optical fiber multiplexer / demultiplexer.

上記のような整形加工により、U字部3Cの、切断面のコア1の断面がほぼ円形の部分を形成して、その部分にコア径がほぼ一致するように他の光ファイバ5を接続することで、きわめて特性のよい光ファイバ合分波素子を製造することができる。   By the shaping process as described above, the section of the core 1 of the cut surface of the U-shaped portion 3C is formed with a substantially circular portion, and another optical fiber 5 is connected to the portion so that the core diameter is substantially matched. Thus, it is possible to manufacture an optical fiber multiplexing / demultiplexing device having extremely good characteristics.

以下、本発明の実施の形態について具体例を用いて説明する。   Hereinafter, embodiments of the present invention will be described using specific examples.

図1に本発明の光ファイバ合分波素子の製造方法を示す。即ち、図1(a)に示すように、屈折率の高いコア1及びその周囲を取り巻き、コア1よりも屈折率の低いクラッド2からなる1本の光ファイバ3を用意する。この光ファイバ3のほぼ中央をU字形に曲げ、分岐用光ファイバとする。次いで、図1(b)に示すように、U字形に曲げた部分(以下、U字部3Cと呼ぶことにする)にガラスロッド4の一方の端面を融着接続する。その後図1(c)に示すように、ガラスロッド4を融着接続した部分とU字部3C近傍とを加熱しながら、ガラスロッド4を引っ張り、分岐用光ファイバ3のU字部3Cを伸張する。そして図1(d)に示すように、前記伸張部分を破線部分で切断する。最後に図1(e)に示すように、前記切断箇所と他の1本の光ファイバ5とを融着接続する。   FIG. 1 shows a method for manufacturing an optical fiber multiplexer / demultiplexer according to the present invention. That is, as shown in FIG. 1A, a single optical fiber 3 is prepared that includes a core 1 having a high refractive index and its periphery, and includes a clad 2 having a refractive index lower than that of the core 1. The center of the optical fiber 3 is bent into a U shape to form a branching optical fiber. Next, as shown in FIG. 1B, one end face of the glass rod 4 is fused and connected to a portion bent into a U shape (hereinafter referred to as a U-shaped portion 3C). Thereafter, as shown in FIG. 1C, the glass rod 4 is pulled while the portion where the glass rod 4 is fused and the vicinity of the U-shaped portion 3C is heated, and the U-shaped portion 3C of the branching optical fiber 3 is extended. To do. And as shown in FIG.1 (d), the said expansion | extension part is cut | disconnected by a broken-line part. Finally, as shown in FIG. 1 (e), the cut portion and another optical fiber 5 are fusion-spliced.

上記の作業において、分岐用光ファイバ3の両端部、即ち、U字部3C以外の直線部分3Aと3Bは、ほぼ平行になるように整形し適当な治具で固定しておく。さらに、ガラスロッド4は、上記分岐用光ファイバ3の直線部分3A、3Bとほぼ平行になるようにその向きを選定し、ガラスロッド4の端面をU字部3Cのほぼ中央側面に融着接続する。引っ張り方向は、ガラスロッド4と上記分岐用光ファイバ3の直線部分3Aと3Bの方向にほぼ平行な方向になる。こうして、分岐用光ファイバ3のU字部3Cの側面を引っ張り力を与えながら伸張すると、U字部3Cが松葉状に折れ曲がる。U字部3Cの側面のクラッド2が引っ張られると、コア1も折り曲げられながら同じ方向に引っ張られる。   In the above operation, both end portions of the branching optical fiber 3, that is, the straight portions 3A and 3B other than the U-shaped portion 3C are shaped so as to be substantially parallel and fixed with an appropriate jig. Further, the direction of the glass rod 4 is selected so as to be substantially parallel to the straight portions 3A and 3B of the branching optical fiber 3, and the end surface of the glass rod 4 is fusion-bonded to the substantially central side surface of the U-shaped portion 3C. To do. The pulling direction is substantially parallel to the directions of the glass rod 4 and the straight portions 3A and 3B of the branching optical fiber 3. Thus, when the side surface of the U-shaped portion 3C of the branching optical fiber 3 is stretched while applying a pulling force, the U-shaped portion 3C is bent into a pine needle shape. When the clad 2 on the side surface of the U-shaped portion 3C is pulled, the core 1 is also pulled in the same direction while being bent.

その結果は図1の(f)に示すように、分岐用光ファイバ3のU字部3Cの、松葉状に折り曲げられた場所において、ガラスロッド4の端面と平行な、破線を通る面Wで切断をしたとき、その断面形状が図1の(g)に示すようになる。即ち、コア1が中央に存在し、その外周をクラッド2の層が取り巻いており、コアがクラッドによって隔てられていない。このように、コアがクラッドによって隔てられていない箇所であって、その切断箇所に接続されるべき他の光ファイバのコア径と、切断面のコア1の径とがほぼ同一になる箇所で、断面がほぼ円形の部分を、切断箇所に選択するとよい。   As shown in FIG. 1 (f), the result is a plane W passing through a broken line parallel to the end face of the glass rod 4 in the U-shaped portion 3C of the branching optical fiber 3 bent in a pine needle shape. When cut, the cross-sectional shape is as shown in FIG. That is, the core 1 exists in the center, the layer of the clad 2 surrounds the outer periphery thereof, and the core is not separated by the clad. As described above, the core is not separated by the clad, and the core diameter of the other optical fiber to be connected to the cut portion is substantially the same as the diameter of the core 1 of the cut surface. A portion having a substantially circular cross section may be selected as a cutting portion.

以上のようにして、この切断面に他の光ファイバ5を接続した場合でも、光ファイバ5のコアと分岐用光ファイバ3の伸張部分のコアは一体のコアとして光学的に連続するように接続されることになる。すなわち、クラッド層を挟まない。また、前記した伸張部分を切断する際に、切断箇所のコア径を融着接続する光ファイバのコア径とほぼ同一になるようにすると、接続後にコア径の不一致から入射光がクラッドに入射することがなく、よってクラッドモードが発生しないのでクラッドモードの漏洩もなく事故等の生じる虞がなくなる。   As described above, even when another optical fiber 5 is connected to the cut surface, the core of the optical fiber 5 and the core of the extending portion of the branching optical fiber 3 are connected so as to be optically continuous as an integral core. Will be. That is, the cladding layer is not sandwiched. Further, when cutting the above-described extension portion, if the core diameter of the cut portion is made to be substantially the same as the core diameter of the optical fiber to be spliced, incident light enters the clad after the connection due to the mismatch of the core diameters. Therefore, the clad mode does not occur, and there is no possibility of an accident or the like without the clad mode leakage.

本発明の実施の形態を表した図である。It is a figure showing embodiment of this invention. 従来の光ファイバ合分波素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the conventional optical fiber multiplexing / demultiplexing element. 従来の光ファイバ合分波素子の分岐部の断面を表した図である。It is a figure showing the cross section of the branch part of the conventional optical fiber multiplexing / demultiplexing element.

符号の説明Explanation of symbols

1 コア
2 クラッド
3 分岐用光ファイバ
4 ガラスロッド
5 光ファイバ
1 core 2 clad 3 branching optical fiber 4 glass rod 5 optical fiber

Claims (4)

屈折率の高いコアとその周囲の屈折率の低いクラッドとからなる1本の光ファイバをU字形に曲げ分岐用光ファイバとし、前記分岐用光ファイバのU字形に曲げたU字部にガラスロッドを融着接続し、前記ガラスロッドにより前記U字部を伸張した後、前記伸張されたU字部を前記U字部のコアがクラッドにより隔てられていない箇所で切断し、しかる後前記切断箇所に他の光ファイバを融着接続することを特徴とする光ファイバ合分波素子の製造方法。   One optical fiber composed of a core having a high refractive index and a cladding having a low refractive index around the core is bent into a U-shape to form an optical fiber for branching, and a glass rod is placed on the U-shaped portion bent into the U-shape of the optical fiber for branching. And the U-shaped portion is stretched by the glass rod, and then the stretched U-shaped portion is cut at a location where the core of the U-shaped portion is not separated by the clad, and then the cut location. A method of manufacturing an optical fiber multiplexing / demultiplexing device, wherein another optical fiber is fused and connected to the optical fiber. 分岐用光ファイバ3のU字部3C以外の、直線部分3Aと3Bがほぼ平行になるように整形し、ガラスロッド4が、前記分岐用光ファイバ3の直線部分3A、3Bとほぼ平行になるようにその向きを選定し、ガラスロッド4の端面をU字部3Cのほぼ中央側面に融着接続し、ガラスロッド4の向きとほぼ平行な方向に引っ張り力を与えながら前記U字部3Cを加熱して、前記U字部3Cの側面のクラッド2と前記U字部3Cのコア1を松葉状に折り曲げて、コアがクラッドにより隔てられていない箇所を設けることを特徴とする請求項1記載の光ファイバ合分波素子の製造方法。   The straight portions 3A and 3B other than the U-shaped portion 3C of the branching optical fiber 3 are shaped so as to be substantially parallel, and the glass rod 4 is substantially parallel to the straight portions 3A and 3B of the branching optical fiber 3. The end of the glass rod 4 is fused and connected to the substantially central side surface of the U-shaped portion 3C, and the U-shaped portion 3C is applied while applying a tensile force in a direction substantially parallel to the direction of the glass rod 4. The clad 2 on the side surface of the U-shaped part 3C and the core 1 of the U-shaped part 3C are bent into a pine needle shape by heating, and a portion where the core is not separated by the clad is provided. Manufacturing method of the optical fiber multiplexing / demultiplexing device. 前記分岐用光ファイバのU字部のコア径と前記U字部に接続される他の光ファイバのコア径とが一致するように前記U字部の切断箇所と光ファイバとを融着接続することを特徴とする請求項1記載の光ファイバ合分波素子の製造方法。   The cut portion of the U-shaped portion and the optical fiber are fusion-spliced so that the core diameter of the U-shaped portion of the branching optical fiber matches the core diameter of another optical fiber connected to the U-shaped portion. The method of manufacturing an optical fiber multiplexer / demultiplexer according to claim 1. 接続されるべき他の光ファイバ5のコア径と、U字部3Cの切断面のコア1の径とがほぼ同一になる箇所であって、前記切断面のコア1の断面がほぼ円形の部分を、切断箇所に選択することを特徴とする光ファイバ合分波素子の製造方法。   A portion where the core diameter of the other optical fiber 5 to be connected and the diameter of the core 1 of the cut surface of the U-shaped portion 3C are substantially the same, and the cross section of the core 1 of the cut surface is substantially circular Is selected as a cutting point. A method for manufacturing an optical fiber multiplexer / demultiplexer.
JP2003319566A 2003-09-11 2003-09-11 Manufacturing method of optical fiber multiplexing/demultiplexing element Pending JP2005084607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319566A JP2005084607A (en) 2003-09-11 2003-09-11 Manufacturing method of optical fiber multiplexing/demultiplexing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319566A JP2005084607A (en) 2003-09-11 2003-09-11 Manufacturing method of optical fiber multiplexing/demultiplexing element

Publications (1)

Publication Number Publication Date
JP2005084607A true JP2005084607A (en) 2005-03-31

Family

ID=34418477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319566A Pending JP2005084607A (en) 2003-09-11 2003-09-11 Manufacturing method of optical fiber multiplexing/demultiplexing element

Country Status (1)

Country Link
JP (1) JP2005084607A (en)

Similar Documents

Publication Publication Date Title
US6652163B2 (en) Splice joint and process for joining a microstructured optical fiber and a conventional optical fiber
JP7371828B2 (en) Optical waveguide adapter assembly
KR100288445B1 (en) Method for coupling two optical fibers one of which has cladding diameter different from the other
JP2002131575A (en) Coaxial optical coupler and manufacturing method
WO2005124409A1 (en) Connecting method and structure of photonic crystal fiber
JPH03100603A (en) Method of manufacturing fused optical fiber coupler
JP2001108859A (en) Small bent-splicing of optical fiber, and its forming method
KR20030013324A (en) Optical fiber having a light converging function and method of manufacturing the same
JP2005284150A (en) Method of manufacturing core-expanded optical fiber, optical fiber, and optical connector
JP2002040290A (en) Fiber array part and its manufacturing method
JP2005084607A (en) Manufacturing method of optical fiber multiplexing/demultiplexing element
JP2003156662A (en) Optical fiber array and method for manufacturing the same
JP2006017816A (en) Joint structure of optical fiber, optical fiber component and dispersion-compensated fiber module
JP2619130B2 (en) Single Mode Optical Fiber Interconnection Method
JPH06250042A (en) Wide wavelength region optical fiber type coupler and its production
JPH01227108A (en) Optical branching circuit
JP3940066B2 (en) Fusion splicing method of photonic crystal fiber
JP2006276081A (en) Connection structure of waveguide and optical branching/coupling element
JP2007322581A (en) Optical fiber coupler
US6839490B2 (en) Method of making sequential coupler arrangements and resulting devices
JP2003107256A (en) Manufacturing method for core diffusion optical fiber
JP2002243986A (en) Optical fiber arranging member
JP2007264312A (en) Optical coupler
JP2007322582A (en) Optical fiber coupler
JPH0815556A (en) Broad band optical fiber coupler and its production