JP2005083235A - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP2005083235A
JP2005083235A JP2003315043A JP2003315043A JP2005083235A JP 2005083235 A JP2005083235 A JP 2005083235A JP 2003315043 A JP2003315043 A JP 2003315043A JP 2003315043 A JP2003315043 A JP 2003315043A JP 2005083235 A JP2005083235 A JP 2005083235A
Authority
JP
Japan
Prior art keywords
scroll
orbiting
pressure
orbiting scroll
wrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003315043A
Other languages
Japanese (ja)
Inventor
Takao Fujita
隆男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003315043A priority Critical patent/JP2005083235A/en
Publication of JP2005083235A publication Critical patent/JP2005083235A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scroll compressor securing sufficient reliability and high performance even if carbon dioxide is used as working medium, without largely changing constitution of a compression mechanism part and lubricating structure of the related art. <P>SOLUTION: The scroll compressor has a working medium compression mechanism including: a fixed scroll 5 having a spiral lap; a swirl scroll 6 having a spiral lap meshed with the lap of the fixed scroll 5 to form a plurality of compression chambers 7; and a self-rotation prevention part preventing self-rotation of the swirl scroll 6 to make the swirl scroll 6 perform only swirling. The swirl scroll 6 is made of an aluminum alloy and its lap tip surfaces 6b are approximately the same flat surfaces. The fixed scroll 5 is made of cast iron material and the surface including at least the overall surface in slide-contact with the swirl scroll 6 is coated with metal nitride coating 26. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷凍・空調・加熱サイクルなどに適用されるスクロール圧縮機に関し、特に作動ガスとして二酸化炭素を用いた場合でも摺動部位の信頼性と高い性能が得られるスクロール圧縮機に関するものである。   The present invention relates to a scroll compressor that is applied to refrigeration, air conditioning, heating cycles, and the like, and more particularly, to a scroll compressor that provides high reliability and sliding performance even when carbon dioxide is used as a working gas. .

従来のスクロール圧縮機においても、旋回スクロールと固定スクロールとで形成される複数の圧縮室からの漏れを抑制し、高い圧縮効率を確保するため、圧縮機構部の構成と潤滑構造に種々の工夫が成されている。例えば、渦巻状ラップの幾何形状などについて精密な形状精度を機械加工により容易に確保することができるとともに摺動材としての組み合わせに優れて圧縮機の信頼性を確保することができるように旋回スクロールと固定スクロールをそれぞれアルミニウム系合金と鋳鉄材料とで形成し、さらに圧縮機の密閉容器内の高圧潤滑油を圧縮機構の各摺動面に供給し、圧縮室の密封と潤滑を確保するようにしたものが知られている(例えば、特許文献1参照。)。   Also in the conventional scroll compressor, in order to suppress leakage from a plurality of compression chambers formed by the orbiting scroll and the fixed scroll, and to ensure high compression efficiency, there are various devices in the structure of the compression mechanism and the lubrication structure. It is made. For example, orbital scrolls can be used to ensure precise shape accuracy for the spiral wrap geometry, etc. easily by machining, as well as excellent reliability as a combination of sliding materials. And the fixed scroll are made of aluminum alloy and cast iron material, respectively, and the high pressure lubricating oil in the compressor's sealed container is supplied to each sliding surface of the compression mechanism to ensure the compression chamber is sealed and lubricated. Is known (for example, see Patent Document 1).

従来のスクロール圧縮機の構成と作用を図4〜図6を参照して説明する。底部に潤滑油を溜める油溜104を有する吐出圧力雰囲気の密閉容器101の内部に、圧縮機構とこれを駆動する電動機102が収容配置されている。電動機102の固定子102aが密閉容器101に固定され、回転子102bに圧縮機構を駆動するクランク軸103が結合されている。圧縮機構は、固定スクロール105と、固定スクロール105と噛み合って複数個の圧縮室107を形成する旋回スクロール106と、旋回スクロール106の自転を防止して旋回のみさせる自転防止部品108にて構成されている。旋回スクロール106の反ラップ側には旋回駆動軸109が突設され、クランク軸103の主軸110に設けられた偏心軸受111にこの旋回駆動軸109が嵌入され、クランク軸103の回転によって旋回スクロール106が旋回駆動される。主軸110を回転自在に支承する主軸受112と、旋回スクロール106の背面の鏡板背面113との間に微小な隙間をあけて旋回スクロール106の軸方向の動きを制限する軸方向移動制限平面部114とを有する軸受部品115が固定スクロール105に固定されている。   The configuration and operation of a conventional scroll compressor will be described with reference to FIGS. A compression mechanism and an electric motor 102 for driving the compression mechanism are accommodated in an airtight container 101 having a discharge pressure atmosphere having an oil reservoir 104 for storing lubricating oil at the bottom. A stator 102a of the electric motor 102 is fixed to the hermetic container 101, and a crankshaft 103 that drives a compression mechanism is coupled to the rotor 102b. The compression mechanism includes a fixed scroll 105, a turning scroll 106 that meshes with the fixed scroll 105 to form a plurality of compression chambers 107, and a rotation prevention component 108 that prevents the turning scroll 106 from rotating and only turns. Yes. An orbiting drive shaft 109 is projected on the opposite side of the orbiting scroll 106, and the orbiting drive shaft 109 is fitted into an eccentric bearing 111 provided on the main shaft 110 of the crankshaft 103. Is driven to turn. Axial movement limiting plane part 114 that limits the axial movement of orbiting scroll 106 with a small gap between main bearing 112 that rotatably supports main axis 110 and end plate back surface 113 on the back of orbiting scroll 106. Are fixed to the fixed scroll 105.

軸方向移動制限平面部114には、鏡板背面113に作用する圧力を、中心部に作用する吐出圧力と外周部に作用する吐出圧力よりも低い圧力とに仕切る摺動仕切環116が配設されている。この摺動仕切環116の径方向外方の空間に形成された背圧室117は、旋回スクロール106の鏡板の内部に設けた絞り機構118を有する連絡通路119を介して、鏡板背面113の中心部の吐出圧力が作用する空間120に連通されている。また、この吐出圧力が作用する空間120は、連絡通路121を介して旋回スクロール106のラップ先端部に形成されたラップシール格納溝122にも連通されている。   A sliding partition ring 116 that divides the pressure acting on the end plate back surface 113 into a discharge pressure acting on the central portion and a pressure lower than the discharge pressure acting on the outer peripheral portion is disposed on the axial movement restriction plane portion 114. ing. The back pressure chamber 117 formed in the space radially outward of the sliding partition ring 116 is connected to the center of the back plate 113 through a communication passage 119 having a throttle mechanism 118 provided inside the end plate of the orbiting scroll 106. It communicates with the space 120 where the discharge pressure of the part acts. Further, the space 120 on which the discharge pressure acts is also communicated with a lap seal storage groove 122 formed at the lap tip of the orbiting scroll 106 via a communication passage 121.

さらに、クランク軸103にはその内部を貫通する給油通路123が設けられ、この給油通路123の反圧縮機構側の端部はオイルポンプ124を介して油溜104に連通され、圧縮機構側の端部は旋回スクロール106の鏡板背面113の中心部の吐出圧力が作用する空間120に連通されている。   Further, the crankshaft 103 is provided with an oil supply passage 123 penetrating the crankshaft 103, and an end portion of the oil supply passage 123 on the side opposite to the compression mechanism is communicated with the oil reservoir 104 via an oil pump 124, and an end on the compression mechanism side is provided. The portion communicates with a space 120 in which the discharge pressure at the center of the end plate back surface 113 of the orbiting scroll 106 acts.

このような構成により、油溜104からオイルポンプ124にて旋回スクロール106の鏡板背面113の中心部の吐出圧力が作用する空間120に導かれた潤滑油は、連絡通路119を通り、絞り機構118を介して最外周の圧縮室107に適量供給されるとともに、連絡通路121からチップシール格納溝122とチップシール125の背面の隙間に形成された空間にも充分供給されることによってチップシール格納溝122の長手方向に形成される低圧側への漏れ通路を遮断するとともにチップシール格納溝122から漏れ出る潤滑油によってその直角方向であるチップシール125を横断して外側のより低圧の圧縮室107への漏れ通路を遮断し、さらには圧縮室107を形成するラップ壁面にも潤滑油を供給し、圧縮室107の密封と摺動部位の潤滑を確保している。
特開2000−213477号公報
With such a configuration, the lubricating oil guided from the oil reservoir 104 to the space 120 where the discharge pressure at the center of the end plate back surface 113 of the orbiting scroll 106 acts by the oil pump 124 passes through the communication passage 119 and the throttle mechanism 118. The chip seal storage groove is supplied to the outermost compression chamber 107 through the communication passage 121 and sufficiently supplied to the space formed between the chip seal storage groove 122 and the back surface of the chip seal 125 from the communication passage 121. The leakage passage to the low pressure side formed in the longitudinal direction of 122 is blocked, and the lubricant leaking from the chip seal storage groove 122 crosses the chip seal 125 in the perpendicular direction to the outer lower pressure compression chamber 107. In addition, the lubricating oil is supplied to the wall surface of the wrap forming the compression chamber 107 so that the compression passage 107 is closed. It is to ensure the lubrication of the sliding portions with.
JP 2000-213477 A

ところで、近年、オゾン層保護および地球温暖化防止の環境保護の観点から、冷凍・空調・加熱などの分野において、HCFC系、HFC系の所謂フロン系冷媒に代わって自然系冷媒である二酸化炭素が注目されている。二酸化炭素を作動ガス(冷媒)として用いると、例えば空調用途では、その運転圧力が、高圧圧力が約12MPa程度、低圧圧力が4MPa程度にもなり、従来のフロン系冷媒使用時に比べ、高圧低圧の運転圧力そのものと、高圧低圧の圧力差が非常に大きくなる。このため、高運転圧力でも充分に実用しうる信頼性の高い圧縮機構部の構成や潤滑構造、また高差圧運転でも圧縮機効率の高い構造のスクロール圧縮機が強く望まれている。   By the way, in recent years, carbon dioxide, which is a natural refrigerant, has been used in place of HCFC-based and HFC-based so-called chlorofluorocarbon refrigerants in the fields of refrigeration, air conditioning, heating, etc., from the viewpoint of protecting the ozone layer and preventing environmental warming. Attention has been paid. When carbon dioxide is used as a working gas (refrigerant), for example, in air conditioning applications, the operating pressure is about 12 MPa, the high pressure is about 4 MPa, and the pressure is about 4 MPa. The pressure difference between the operating pressure itself and the high and low pressures becomes very large. For this reason, there is a strong demand for a highly reliable structure and lubricating structure of a compression mechanism that can be sufficiently put into practical use even at high operating pressures, and a scroll compressor having a structure with high compressor efficiency even at high differential pressure operation.

しかしながら、上記従来のスクロール圧縮機は、運転圧力が高圧圧力で数MPa程度と低く、また高圧低圧の圧力差も比較的小さいフロン系冷媒に対応する構造であり、この構造で二酸化炭素を冷媒として用いた場合、密閉容器は高強度材料の採用や部品の厚肉化で克服が可能であるが、非常に高い運転圧力に伴う摺動部位の面圧増加によって耐久性の著しい低下を来したり、高差圧運転に伴って旋回スクロールのラップ先端面でのチップシール収納溝に起因する圧縮室への高圧ガスと潤滑油の漏れが発生し、圧縮ロスの増加によって圧縮機性能の低下を来すことになり、充分な信頼性と性能の確保が困難であるという問題がある。   However, the conventional scroll compressor has a structure corresponding to a CFC-based refrigerant having a low operating pressure of about several MPa at a high pressure and a relatively small pressure difference between a high pressure and a low pressure. With this structure, carbon dioxide is used as a refrigerant. When used, closed containers can be overcome by using high-strength materials and increasing the thickness of parts. As a result of high differential pressure operation, high pressure gas and lubricating oil leak to the compression chamber due to the tip seal housing groove on the wrap tip of the orbiting scroll, and the compressor performance deteriorates due to increased compression loss. Therefore, there is a problem that it is difficult to ensure sufficient reliability and performance.

本発明は、上記従来の問題点に鑑み、二酸化炭素のように運転圧力及び高低圧力差の大きい作動ガスを用いる場合でも充分な信頼性と高い性能を確保できるスクロール圧縮機を提供することを課題とする。   In view of the above-described conventional problems, the present invention provides a scroll compressor that can ensure sufficient reliability and high performance even when working gas having a large operating pressure and high / low pressure difference such as carbon dioxide is used. And

本発明のスクロール圧縮機は、螺旋状のラップを有する固定スクロールと、固定スクロールのラップと噛み合い複数個の圧縮室を形成する螺旋状のラップを有する旋回スクロールと、旋回スクロールの自転を防止して旋回のみをさせる自転防止部品とを有する作動ガスの圧縮機構を備えたスクロール圧縮機において、前記旋回スクロールはアルミニウム合金系材料で形成するとともにそのラップ先端面を概ね同一の平坦面とし、前記固定スクロールは鋳鉄系材料で形成するとともに前記旋回スクロールと摺動接触する全面を少なくとも含む表面を金属窒化物被膜で被覆したものである。   The scroll compressor according to the present invention prevents the rotation of the orbiting scroll, the fixed scroll having the spiral wrap, the orbiting scroll having the spiral wrap that meshes with the wrap of the fixed scroll and forms a plurality of compression chambers. In the scroll compressor having a working gas compression mechanism having a rotation preventing part that only turns, the orbiting scroll is made of an aluminum alloy material, and its wrap tip surface is substantially the same flat surface. Is made of cast iron material and coated with a metal nitride coating on at least the entire surface in sliding contact with the orbiting scroll.

この構成によると、運転圧力が非常に高くかつ高圧低圧の圧力差が大きい運転状態でも、旋回スクロールと固定スクロールとの摺動部位の耐摩耗性が確保され、また圧縮室を区画形成する密封面である旋回スクロールのラップ先端面での、チップシールに起因する高圧の圧縮ガスと潤滑油漏れが無く、圧縮性能の低下を無くして充分な信頼性と高い性能を確保することができる。   According to this configuration, even in an operating state where the operating pressure is very high and the pressure difference between the high pressure and the low pressure is large, the wear resistance of the sliding portion between the orbiting scroll and the fixed scroll is ensured, and the sealing surface that defines the compression chamber There is no high-pressure compressed gas and lubricating oil leakage due to the tip seal at the wrap front end surface of the orbiting scroll, and sufficient reliability and high performance can be ensured without deterioration in compression performance.

また、圧縮機構部の構成及び潤滑構造は、底部に潤滑油を溜める油溜を有する密閉容器内に、電動機と圧縮機構と電動機の動力を旋回スクロールに伝達する旋回駆動手段とを配設し、旋回駆動手段は、電動機にて駆動されるクランク軸とその偏心係合部に係合するように旋回スクロールの反ラップ側の鏡板背面に設けられた旋回駆動係合部にて構成し、旋回駆動係合部の径方向外方位置で鏡板背面に作用する圧力を鏡板背面の中心部に作用する吐出圧力と鏡板背面の外周部に作用する吐出圧力より低い圧力とに仕切る摺動仕切環を鏡板背面に配設し、鏡板背面の中心部に油溜より高圧潤滑油を供給し、鏡板背面中心部と摺動仕切環の外方の空間に形成される背圧室を連通する絞り機構を有する通路を鏡板内部に形成した構造が好適である。   In addition, the structure and the lubrication structure of the compression mechanism portion are provided with an electric motor, a compression mechanism, and a turning drive means for transmitting the power of the electric motor to the orbiting scroll in a closed container having an oil reservoir for storing lubricating oil at the bottom. The orbiting drive means is constituted by an orbiting drive engaging portion provided on the back of the end plate on the side opposite to the orbiting of the orbiting scroll so as to engage with the crankshaft driven by the electric motor and its eccentric engaging portion. A sliding partition ring that divides the pressure acting on the back surface of the end plate at a radially outward position of the engaging portion into a discharge pressure acting on the center portion of the back surface of the end plate and a pressure lower than the discharge pressure acting on the outer peripheral portion of the back surface of the end plate A throttling mechanism is provided on the back, supplying high-pressure lubricating oil from the oil reservoir to the center of the back of the mirror plate, and communicating the back pressure chamber formed in the outer space of the center of the back of the mirror and the sliding partition ring. A structure in which the passage is formed inside the end plate is preferable.

また、金属窒化物被膜は、処理温度430〜490℃の低温塩浴窒化法で形成したものとすると、窒化処理によるラップ形状の変形と寸法変化を防止でき、面粗さの悪化を抑制することができるので好適である。   Further, when the metal nitride film is formed by a low temperature salt bath nitriding method at a processing temperature of 430 to 490 ° C., deformation of the lap shape and dimensional change due to nitriding treatment can be prevented, and deterioration of surface roughness can be suppressed. This is preferable.

また、作動ガスとして二酸化炭素を用いると、環境保護の観点から好ましく、かつ本発明のスクロール圧縮機において好適に使用することができる。   Further, when carbon dioxide is used as the working gas, it is preferable from the viewpoint of environmental protection and can be suitably used in the scroll compressor of the present invention.

本発明のスクロール圧縮機によれば、旋回スクロールをアルミニウム合金系で形成するとともにそのラップ先端面を概ね同一の平坦面とし、固定スクロールは鋳鉄系材料で形成するとともに要部の表面を金属窒化被膜で被覆したことで、運転圧力が高圧でかつ高差圧運転を行う作動ガスを用いても、摺動部位の耐摩耗性を確保でき、旋回スクロールのラップ先端面での高圧の圧縮ガスと潤滑油漏れを防止できて圧縮性能の低下を来さず、充分な信頼性と高い性能を確保することができる。   According to the scroll compressor of the present invention, the orbiting scroll is formed of an aluminum alloy system, and the wrap tip surface is formed to be substantially the same flat surface, the fixed scroll is formed of a cast iron material, and the surface of the main part is coated with a metal nitride film. With this coating, the wear resistance of the sliding part can be secured even when working gas with high operating pressure and high differential pressure operation is used, and high-pressure compressed gas and lubrication on the wrap end surface of the orbiting scroll Oil leakage can be prevented and compression performance is not lowered, and sufficient reliability and high performance can be ensured.

以下、本発明のスクロール圧縮機の一実施形態について、図1〜3を参照して説明する。   Hereinafter, an embodiment of a scroll compressor of the present invention will be described with reference to FIGS.

図1〜図3において、底部に潤滑油を溜める油溜4を有する吐出圧力雰囲気の密閉容器1の内部に、圧縮機構とこれを駆動する電動機2が収容配置されている。密閉容器1は二酸化炭素を冷媒として用いるに適切な設計圧力と設計温度を保証する高強度材料などにて構成されている。また、電動機2においても、二酸化炭素と潤滑油の共存下で、化学的・熱的に安定な樹脂、絶縁材料が採用されている。電動機2の固定子2aが密閉容器1に固定され、回転子2bに圧縮機構を駆動するクランク軸3が結合されている。   1 to 3, a compression mechanism and an electric motor 2 for driving the compression mechanism are accommodated and disposed in a sealed container 1 having a discharge pressure atmosphere having an oil reservoir 4 for storing lubricating oil at the bottom. The hermetic container 1 is made of a high-strength material that guarantees a design pressure and a design temperature suitable for using carbon dioxide as a refrigerant. The electric motor 2 also employs chemically and thermally stable resins and insulating materials in the presence of carbon dioxide and lubricating oil. A stator 2a of the electric motor 2 is fixed to the hermetic container 1, and a crankshaft 3 that drives a compression mechanism is coupled to the rotor 2b.

圧縮機構は、固定スクロール5と、固定スクロール5と噛み合って複数個の圧縮室7を形成する旋回スクロール6と、旋回スクロール6の自転を防止して旋回のみさせる自転防止部品8にて構成されている。旋回スクロール6は、精密な形状精度が機械加工により容易に得られる良好な被切削性を持ち、低熱膨張率で、鋳鉄材料との摺動特性に優れている、高シリコン系のアルミニウム合金材料にて構成され、その渦巻状ラップの先端面6bの全面が概ね同一の平坦面で形成されている。固定スクロール5は、精密な形状精度が機械加工により容易に得られる良好な被切削性を持ち、高シリコン系のアルミニウム合金との摺動特性に優れている鋳鉄材料にて構成されるとともに、機械加工仕上げ後旋回スクロール6と摺動接触する全面を少なくとも含む表面部を窒化処理することで、金属窒化物被膜26が形成されている。   The compression mechanism includes a fixed scroll 5, a turning scroll 6 that meshes with the fixed scroll 5 to form a plurality of compression chambers 7, and a rotation prevention component 8 that prevents the turning of the turning scroll 6 and only turns. Yes. The orbiting scroll 6 is a high silicon-based aluminum alloy material that has good machinability that can be easily obtained by machining, has a low thermal expansion coefficient, and has excellent sliding characteristics with cast iron materials. The entire front end surface 6b of the spiral wrap is formed with substantially the same flat surface. The fixed scroll 5 is made of a cast iron material that has a good machinability that can be easily obtained by machining and has excellent sliding characteristics with a high silicon-based aluminum alloy. The metal nitride film 26 is formed by nitriding the surface portion including at least the entire surface that is in sliding contact with the orbiting scroll 6 after finishing.

旋回スクロール6の反ラップ側には旋回駆動軸9が突設され、クランク軸3の主軸10に設けられた偏心軸受11にこの旋回駆動軸9が嵌入され、クランク軸3の回転によって旋回スクロール6が旋回駆動される。主軸10を回転自在に支承する主軸受12と、旋回スクロール6の背面の鏡板背面13との間に微小な隙間をあけて旋回スクロール6の軸方向の動きを制限する軸方向移動制限平面部14とを有する軸受部品15が固定スクロール5に固定されている。   An orbiting drive shaft 9 is provided on the opposite side of the orbiting scroll 6 so that the orbiting drive shaft 9 is fitted into an eccentric bearing 11 provided on the main shaft 10 of the crankshaft 3. Is driven to turn. Axial movement limiting plane portion 14 that limits the axial movement of orbiting scroll 6 by providing a minute gap between main bearing 12 that rotatably supports main shaft 10 and end plate rear surface 13 on the back of orbiting scroll 6. Are fixed to the fixed scroll 5.

軸方向移動制限平面部14には、鏡板背面13に作用する圧力を、中心部に作用する吐出圧力と外周部に作用する吐出圧力よりも低い圧力とに仕切る摺動仕切環16が配設されている。この摺動仕切環16の径方向外方の空間に形成された背圧室17は、旋回スクロール6の鏡板の内部に設けた絞り機構18を有する連絡通路19を介して、鏡板背面13の中心部の吐出圧力が作用する空間20に連通されている。   A sliding partition ring 16 that divides the pressure acting on the back plate 13 into a discharge pressure acting on the central portion and a pressure lower than the discharge pressure acting on the outer peripheral portion is disposed on the axial movement restriction plane portion 14. ing. A back pressure chamber 17 formed in a space radially outward of the sliding partition ring 16 is connected to the center of the back plate 13 through a communication passage 19 having a throttle mechanism 18 provided inside the end plate of the orbiting scroll 6. It communicates with the space 20 where the discharge pressure of the part acts.

さらに、クランク軸3にはその内部を貫通する給油通路23が設けられ、この給油通路23の反圧縮機構側の端部はオイルポンプ24を介して油溜4に連通され、圧縮機構側の端部は旋回スクロール6の鏡板背面13の中心部の吐出圧力が作用する空間20に連通されている。   Further, the crankshaft 3 is provided with an oil supply passage 23 penetrating through the crankshaft 3, and an end portion of the oil supply passage 23 on the side opposite to the compression mechanism is communicated with the oil reservoir 4 via an oil pump 24. The portion communicates with a space 20 in which the discharge pressure at the center portion of the end plate back surface 13 of the orbiting scroll 6 acts.

このような構成により、潤滑油は、油溜4からオイルポンプ24にて旋回スクロール6の鏡板背面13の中心部の吐出圧力が作用する空間20に導かれ、またこの空間20の潤滑油は連絡通路19を通り、絞り機構18を介して最外周の圧縮室7に適量供給され、圧縮室7を形成するラップ壁面に潤滑油を供給して圧縮室7の密封と摺動部位の潤滑を確保している。   With such a configuration, the lubricating oil is guided from the oil reservoir 4 to the space 20 where the discharge pressure at the center of the rear surface 13 of the orbiting scroll 6 acts by the oil pump 24, and the lubricating oil in this space 20 communicates. An appropriate amount is supplied to the compression chamber 7 on the outermost periphery through the passage 19 through the throttle mechanism 18, and lubricating oil is supplied to the wrap wall surface forming the compression chamber 7 to ensure the sealing of the compression chamber 7 and lubrication of the sliding portion. doing.

次に、鋳鉄材料から成る固定スクロール5の表面に形成する金属窒化物被膜26について詳しく説明する。一般に、鉄系材料の表面に硬質で耐摩耗性に富む被膜を形成する方法の一つとして塩浴軟窒化、ガス窒化、ガス軟窒化などの窒化処理が知られている。この窒化処理によって、硬度HV(ビッカース硬さ)1000程度の硬質で耐摩耗性に優れる被膜を厚く(〜1mm程度)得ることができるため、摺動部位の耐摩耗性向上に広く用いられている。しかし、その反面で処理温度が500〜600℃と高く、処理時間が数十時間と長く、また部品の変形、歪み、寸法変化が大きく、面粗さが悪化することも指摘されている。   Next, the metal nitride film 26 formed on the surface of the fixed scroll 5 made of cast iron material will be described in detail. In general, nitriding treatment such as salt bath soft nitriding, gas nitriding, gas soft nitriding or the like is known as one method for forming a hard and wear-resistant coating on the surface of an iron-based material. By this nitriding treatment, a hard coating having a hardness of about HV (Vickers hardness) of about 1000 and having excellent wear resistance can be obtained thickly (about 1 mm), so it is widely used for improving the wear resistance of sliding parts. . However, on the other hand, it has been pointed out that the processing temperature is as high as 500 to 600 ° C., the processing time is as long as several tens of hours, the deformation, distortion and dimensional change of parts are large, and the surface roughness deteriorates.

そこで、本実施形態の固定スクロール5の金属窒化物被膜26を形成する窒化処理法は、機械加工仕上げ後の窒化処理による複雑な渦巻状のラップ形状の変形と寸法変化を防止でき、面粗さの悪化を抑制することを主眼において決定している。つまり、処理後の変形が少なく、寸法変化が小さく、面粗さの悪化が少ない低温塩浴窒化法(処理温度430〜490℃、処理時間240分)を採用することで、圧縮室7の良好な密封性を確保している。圧縮室7は、固定スクロール5と旋回スクロール6のそれぞれのラップ先端面5a、6bを含むラップ壁面と、旋回スクロール6のラップ根元面6aと固定スクロール5のラップ根元面5bにて区画形成されており、それらの摺動接触面の密封性を確保することで、圧縮室7の良好な密封性が確保され、スクロール圧縮機の性能を確保することができる。さらに、低温塩浴窒化処理により得られる金属窒化物被膜26は、表面硬度650HV(ビッカース硬さ)程度、厚み6〜8μm程度の、高シリコン系アルミニウム合金との耐摩耗性に優れた被膜である。   Therefore, the nitriding treatment method for forming the metal nitride film 26 of the fixed scroll 5 according to the present embodiment can prevent the complicated spiral wrap shape deformation and dimensional change due to the nitriding treatment after the machining finish, and the surface roughness. The main objective is to suppress the deterioration of That is, by adopting a low-temperature salt bath nitriding method (treatment temperature 430 to 490 ° C., treatment time 240 minutes) with little deformation after treatment, small dimensional change, and little deterioration in surface roughness, the compression chamber 7 is good. Secures hermeticity. The compression chamber 7 is defined by a wrap wall surface including the wrap tip surfaces 5 a and 6 b of the fixed scroll 5 and the orbiting scroll 6, a wrap root surface 6 a of the orbiting scroll 6, and a wrap root surface 5 b of the fixed scroll 5. And by ensuring the sealing performance of those sliding contact surfaces, the favorable sealing performance of the compression chamber 7 is ensured, and the performance of the scroll compressor can be secured. Furthermore, the metal nitride film 26 obtained by the low-temperature salt bath nitriding treatment is a film having a surface hardness of about 650 HV (Vickers hardness) and a thickness of about 6 to 8 μm and excellent wear resistance with a high silicon-based aluminum alloy. .

また、旋回スクロール6と固定スクロール5とは、従来構成の圧縮機構部と同様に、それぞれの渦巻状のラップを内側に相対させて互いに噛み合わせて配設され、運転時に、鏡板背面13に作用する圧力を、その中心部に作用する吐出圧力と、その外周部に作用する吐出圧力よりも低い圧力とに仕切る摺動仕切環16などの従来構成と同様の背圧付与構造によって、固定スクロール5のラップ先端面5aと旋回スクロール6のラップ根元面6aが密封状態で旋回摺動する。一方、旋回スクロール6のラップ先端面6bと固定スクロール5のラップ根元面5bは、運転時に微小隙間が生じるように設定されている。この微小隙間は、運転に伴う温度上昇時の高シリコン系アルミニウム合金の旋回スクロール6と鋳鉄の固定スクロール5のラップ部の熱膨張差による旋回スクロール6のラップ先端面6bと固定スクロール5のラップ根元面5bとの接触による摩耗となの不具合を回避するために設定されるものである。   The orbiting scroll 6 and the fixed scroll 5 are arranged in such a manner that the respective spiral wraps are meshed with each other in the same manner as in the compression mechanism portion of the conventional configuration, and act on the back plate 13 during operation. The fixed scroll 5 has a back pressure application structure similar to that of the conventional configuration such as a sliding partition ring 16 that divides the pressure into a discharge pressure acting on the central portion and a pressure lower than the discharge pressure acting on the outer peripheral portion. The wrap tip surface 5a and the wrap root surface 6a of the orbiting scroll 6 are swung in a sealed state. On the other hand, the wrap tip surface 6b of the orbiting scroll 6 and the wrap root surface 5b of the fixed scroll 5 are set so that a minute gap is generated during operation. This small gap is caused by the difference in thermal expansion between the wrap portion of the high silicon-based aluminum alloy orbiting scroll 6 and the cast iron fixed scroll 5 when the temperature rises during operation, and the wrap root surface of the orbiting scroll 6 and the fixed scroll 5. It is set in order to avoid the problem of wear due to contact with the surface 5b.

ところで、二酸化炭素は単位質量当たりの能力がフロン系冷媒に対して格段に大きく、、例えば空調条件では理論値で約8倍の単位質量当たりの冷凍効果を有し、同一能力を達成する場合、従来の圧縮機容量に比べ、1/8程度の容量で同一の能力を得ることができる。スクロール圧縮機ではラップ部の高運転圧力下での強度確保と圧縮機の小容量化の手段として、従来のフロン系作動ガスの圧縮機でのラップ高さ寸法に比べ、大幅に低いラップ高さ寸法が可能となる。このラップ高さの減少に伴い、上記微小隙間をより小さく設定することができる。   By the way, the capacity per unit mass of carbon dioxide is much larger than that of chlorofluorocarbon refrigerants. For example, under the air conditioning conditions, the refrigeration effect per unit mass is about 8 times the theoretical value, and the same capability is achieved. The same capacity can be obtained with a capacity of about 1/8 compared to the conventional compressor capacity. In a scroll compressor, as a means of securing the strength of the lap section under high operating pressure and reducing the compressor capacity, the lap height is significantly lower than the lap height dimensions of conventional chlorofluorocarbon working gas compressors. Dimensions are possible. As the wrap height decreases, the minute gap can be set smaller.

かかる構成によれば、従来構成のフロン系冷媒用スクロール圧縮機では、その運転圧力が、二酸化炭素を冷媒とする場合に比べ格段に低い運転圧力でかつ高圧低圧の差圧が小さいが故に、圧縮室の作動ガス漏れ防止手段としてチップシール125を用いる方法は有効であったが、作動ガスを二酸化炭素とすると、著しい高い運転圧力で高圧低圧の差圧が非常に大きくなり、チップシール125が低圧から高圧までの複数の全圧縮室107にわたる作動ガスの漏れ通路として作用し、高圧低圧の差圧の増大に相応して漏れ量が格段に増大し、またチップシール125とチップシール格納溝122との隙間から各圧縮室107に漏れ出す作動ガスに含む高圧の潤滑油も格段に増大し、圧縮効率を低下させる。このように、作動ガスを二酸化炭素とする場合、かえって性能低下をもたらすチップシール125及びチップシール格納溝122を用いずに、旋回スクロール6のラップ先端面6bの全面を概ね同一の平坦面で形成し、固定スクロール5のラップ根元面5bと旋回スクロール6のラップ先端面6bは、上述の理由によるところのより微小な隙間を設けていることで、ラップ厚みの全幅が各圧縮室7の漏れガスを遮断するシール長さとして機能するので、ラップ先端面6bを横切っての圧縮ガスの漏れ量の低減が図られ、高い圧縮効率を達成することができる。   According to such a configuration, the conventional refrigerant scroll compressor has a lower operating pressure than the case where carbon dioxide is used as the refrigerant, and the differential pressure between the high pressure and the low pressure is small. The method using the tip seal 125 as a means for preventing the working gas leakage in the chamber was effective. However, when the working gas is carbon dioxide, the pressure difference between the high pressure and the low pressure becomes very large at a significantly high operating pressure, and the tip seal 125 has a low pressure. Acts as a leakage passage for the working gas across all the compression chambers 107 from the high pressure to the high pressure, and the amount of leakage increases dramatically in accordance with the increase in the differential pressure between the high pressure and the low pressure, and the tip seal 125 and the tip seal storage groove 122 The high-pressure lubricating oil contained in the working gas that leaks into the compression chambers 107 from the gaps also significantly increases, thereby reducing the compression efficiency. In this way, when the working gas is carbon dioxide, the entire surface of the wrap front end surface 6b of the orbiting scroll 6 is formed with substantially the same flat surface without using the tip seal 125 and the tip seal storage groove 122 that cause performance degradation. The wrap root surface 5b of the fixed scroll 5 and the wrap front end surface 6b of the orbiting scroll 6 are provided with a finer gap as described above, so that the entire width of the wrap thickness is a leakage gas in each compression chamber 7. Therefore, the amount of compressed gas leaking across the wrap tip surface 6b can be reduced, and high compression efficiency can be achieved.

さらに、この構成によれば、旋回スクロール6を固定スクロール5から主軸10の方向に離そうとするガス圧縮力に抗して、旋回スクロールのラップ根元面6aを固定スクロール5のラップ先端面5aに当接させて密封する背圧機構は、従来のフロン系冷媒を作動ガスとする場合と同様であるが、本実施形態では、固定スクロール5の旋回スクロール6と摺動接触する全面を少なくとも含む表面部を、機械加工仕上げ後低温塩浴窒化法による金属窒化物被膜26で被覆することにより、摺動密封面の充分な耐摩耗性を経済的に確保している。これにより、二酸化炭素を作動ガスとした場合、高い運転圧力に起因する通常運転での高い摺動面圧や、圧縮機始動時の液や湿りガス状態での圧縮に起因する非常に高い摺動面圧や、冷媒自体の低い潤滑性などによる潤滑不良、更には二酸化炭素を作動ガスとする場合の上述の圧縮機の小容量化に起因する冷凍・空調・加熱サイクルからの潤滑油の帰還遅れによる潤滑不良などの阻害要因に対抗して、摺動密封面の耐摩耗性を確保することができる。   Further, according to this configuration, the wrap root surface 6 a of the orbiting scroll is placed on the wrap tip surface 5 a of the fixed scroll 5 against the gas compression force that tries to separate the orbiting scroll 6 from the fixed scroll 5 in the direction of the main shaft 10. The back pressure mechanism that abuts and seals is the same as in the case of using a conventional chlorofluorocarbon refrigerant as the working gas, but in this embodiment, the surface includes at least the entire surface that is in sliding contact with the orbiting scroll 6 of the fixed scroll 5. The parts are covered with a metal nitride coating 26 formed by a low temperature salt bath nitriding method after machining finish, thereby sufficiently ensuring sufficient wear resistance of the sliding sealing surface. As a result, when carbon dioxide is used as the working gas, the high sliding surface pressure during normal operation due to high operating pressure, and the very high sliding due to compression in the liquid or wet gas state at the start of the compressor Lubrication feedback delay from refrigeration, air conditioning, and heating cycle due to poor lubrication due to surface pressure, low lubricity of the refrigerant itself, and the above-mentioned reduction in compressor capacity when using carbon dioxide as the working gas It is possible to secure the wear resistance of the sliding sealing surface against obstacles such as poor lubrication due to the above.

なお、上記低温塩浴窒化法の代わりに、塩浴軟窒化法、ガス窒化法やガス軟窒化法を用いても摺動密封面の耐摩耗性向上の効果を得ることができる。   Note that the effect of improving the wear resistance of the sliding sealing surface can be obtained by using a salt bath soft nitriding method, a gas nitriding method or a gas soft nitriding method instead of the low temperature salt bath nitriding method.

本発明のスクロール圧縮機は、運転圧力が高圧でかつ高差圧運転であっても、摺動部位の耐摩耗性を確保でき、また圧縮室からの高圧の圧縮ガスと潤滑油漏れを防止できて圧縮性能の低下を来さず、充分な信頼性と高い性能を確保することができるので、二酸化炭素などの運転圧力が高圧でかつ高差圧運転を行う作動ガスを用いる冷凍・空調・加熱サイクルなどにおけるスクロール圧縮機に有用である。   The scroll compressor of the present invention can ensure the wear resistance of the sliding portion even when the operating pressure is high and the high differential pressure operation, and can prevent high-pressure compressed gas and lubricating oil leakage from the compression chamber. Therefore, sufficient reliability and high performance can be ensured without degrading the compression performance, so that refrigeration, air conditioning and heating using working gas with high operating pressure and high differential pressure such as carbon dioxide can be ensured. Useful for scroll compressors in cycles.

本発明の一実施形態のスクロール圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the scroll compressor of one Embodiment of this invention. 同実施形態の圧縮機構部の拡大断面図である。It is an expanded sectional view of the compression mechanism part of the embodiment. 同実施形態のスクロールラップの噛み合わせ状態を示す拡大断面図である。It is an expanded sectional view which shows the meshing state of the scroll wrap of the embodiment. 従来例のスクロール圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the scroll compressor of a prior art example. 同従来例の圧縮機構部の拡大断面図である。It is an expanded sectional view of the compression mechanism part of the conventional example. 同従来例のスクロールラップの噛み合わせ状態を示す拡大断面図である。It is an expanded sectional view which shows the meshing state of the scroll wrap of the prior art example.

符号の説明Explanation of symbols

1 密閉容器
2 電動機
3 クランク軸
4 油溜
5 固定スクロール
6 旋回スクロール
7 圧縮室
8 自転防止部品
9 旋回駆動軸(偏心駆動係合部)
11 偏心軸受(偏心係合部)
13 鏡板背面
16 摺動仕切環
17 背圧室
18 絞り機構
19 連通通路
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Electric motor 3 Crankshaft 4 Oil sump 5 Fixed scroll 6 Orbiting scroll 7 Compression chamber 8 Anti-rotation component 9 Orbit drive shaft (eccentric drive engagement part)
11 Eccentric bearing (Eccentric engaging part)
13 Back of end plate 16 Sliding partition ring 17 Back pressure chamber 18 Throttle mechanism 19 Communication passage

Claims (4)

螺旋状のラップを有する固定スクロールと、固定スクロールのラップと噛み合い複数個の圧縮室を形成する螺旋状のラップを有する旋回スクロールと、旋回スクロールの自転を防止して旋回のみをさせる自転防止部品とを有する作動ガスの圧縮機構を備えたスクロール圧縮機において、前記旋回スクロールはアルミニウム合金系材料で形成するとともにそのラップ先端面を概ね同一の平坦面とし、前記固定スクロールは鋳鉄系材料で形成するとともに前記旋回スクロールと摺動接触する全面を少なくとも含む表面を金属窒化物被膜で被覆したことを特徴とするスクロール圧縮機。   A fixed scroll having a spiral wrap; a orbiting scroll having a spiral wrap that meshes with the fixed scroll wrap to form a plurality of compression chambers; and an anti-spinning component that prevents the orbiting scroll from rotating and only rotates. In the scroll compressor provided with a working gas compression mechanism, the orbiting scroll is formed of an aluminum alloy material, the wrap tip surface is substantially the same flat surface, and the fixed scroll is formed of a cast iron material. A scroll compressor characterized in that a surface including at least the entire surface in sliding contact with the orbiting scroll is coated with a metal nitride film. 底部に潤滑油を溜める油溜を有する密閉容器内に、電動機と圧縮機構と電動機の動力を旋回スクロールに伝達する旋回駆動手段とを配設し、旋回駆動手段は、電動機にて駆動されるクランク軸とその偏心係合部に係合するように旋回スクロールの反ラップ側の鏡板背面に設けられた旋回駆動係合部にて構成し、旋回駆動係合部の径方向外方位置で鏡板背面に作用する圧力を鏡板背面の中心部に作用する吐出圧力と鏡板背面の外周部に作用する吐出圧力より低い圧力とに仕切る摺動仕切環を鏡板背面に配設し、鏡板背面の中心部に油溜より高圧潤滑油を供給し、鏡板背面中心部と摺動仕切環の外方の空間に形成される背圧室を連通する絞り機構を有する通路を鏡板内部に形成したことを特徴とする請求項1記載のスクロール圧縮機。   An electric motor, a compression mechanism, and orbiting drive means for transmitting the power of the electric motor to the orbiting scroll are arranged in a closed container having an oil reservoir for accumulating lubricating oil at the bottom, and the orbiting drive means is a crank driven by the electric motor. Consists of a revolving drive engagement portion provided on the back surface of the orbiting scroll on the side opposite to the end of the orbiting scroll so as to engage with the shaft and its eccentric engagement portion, and at the radially outward position of the orbiting drive engagement portion A sliding partition ring that divides the pressure acting on the center of the back of the end plate and the pressure lower than the discharge pressure acting on the outer periphery of the back of the end plate is disposed on the back of the end plate, A high pressure lubricating oil is supplied from an oil reservoir, and a passage having a throttle mechanism that connects a back pressure chamber formed in a space outside the back of the end plate and the sliding partition ring is formed inside the end plate. The scroll compressor according to claim 1. 金属窒化物被膜は、処理温度430〜490℃の低温塩浴窒化法で形成したものであることを特徴とする請求項1記載のスクロール圧縮機。   The scroll compressor according to claim 1, wherein the metal nitride film is formed by a low temperature salt bath nitriding method at a processing temperature of 430 to 490 ° C. 作動ガスが二酸化炭素であることを特徴とする請求項1記載のスクロール圧縮機。
The scroll compressor according to claim 1, wherein the working gas is carbon dioxide.
JP2003315043A 2003-09-08 2003-09-08 Scroll compressor Pending JP2005083235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315043A JP2005083235A (en) 2003-09-08 2003-09-08 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315043A JP2005083235A (en) 2003-09-08 2003-09-08 Scroll compressor

Publications (1)

Publication Number Publication Date
JP2005083235A true JP2005083235A (en) 2005-03-31

Family

ID=34415419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315043A Pending JP2005083235A (en) 2003-09-08 2003-09-08 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2005083235A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247601A (en) * 2006-03-17 2007-09-27 Daikin Ind Ltd Scroll member for scroll compressor
WO2008114860A1 (en) * 2007-03-22 2008-09-25 Mitsubishi Heavy Industries, Ltd. Multistage compressor
JP2015078608A (en) * 2013-10-15 2015-04-23 日立アプライアンス株式会社 Scroll compressor and refrigeration cycle device including the same
WO2016166874A1 (en) * 2015-04-16 2016-10-20 三菱電機株式会社 Scroll compressor
CN109306957A (en) * 2017-07-27 2019-02-05 艾默生环境优化技术(苏州)有限公司 Compressor with a compressor housing having a plurality of compressor blades
US10316841B2 (en) 2014-10-27 2019-06-11 Hitachi Industrial Equipment Systems Co., Ltd. Compressor, oil-free screw compressor, and method of manufacturing casing used therefor
JP2020033881A (en) * 2018-08-27 2020-03-05 日立ジョンソンコントロールズ空調株式会社 Scroll compressor and refrigerating air conditioner
CN109306957B (en) * 2017-07-27 2024-05-10 谷轮环境科技(苏州)有限公司 Compressor with a compressor body having a rotor with a rotor shaft

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247601A (en) * 2006-03-17 2007-09-27 Daikin Ind Ltd Scroll member for scroll compressor
WO2008114860A1 (en) * 2007-03-22 2008-09-25 Mitsubishi Heavy Industries, Ltd. Multistage compressor
JP2015078608A (en) * 2013-10-15 2015-04-23 日立アプライアンス株式会社 Scroll compressor and refrigeration cycle device including the same
US10316841B2 (en) 2014-10-27 2019-06-11 Hitachi Industrial Equipment Systems Co., Ltd. Compressor, oil-free screw compressor, and method of manufacturing casing used therefor
WO2016166874A1 (en) * 2015-04-16 2016-10-20 三菱電機株式会社 Scroll compressor
CN106050655A (en) * 2015-04-16 2016-10-26 三菱电机株式会社 Scroll compressor
JPWO2016166874A1 (en) * 2015-04-16 2017-11-16 三菱電機株式会社 Scroll compressor
US10458407B2 (en) 2015-04-16 2019-10-29 Mitsubishi Electric Corporation Scroll compressor with different chamfered corners
CN109306957A (en) * 2017-07-27 2019-02-05 艾默生环境优化技术(苏州)有限公司 Compressor with a compressor housing having a plurality of compressor blades
CN109306957B (en) * 2017-07-27 2024-05-10 谷轮环境科技(苏州)有限公司 Compressor with a compressor body having a rotor with a rotor shaft
JP2020033881A (en) * 2018-08-27 2020-03-05 日立ジョンソンコントロールズ空調株式会社 Scroll compressor and refrigerating air conditioner

Similar Documents

Publication Publication Date Title
JP4440565B2 (en) Scroll compressor
JP2006299806A (en) Scroll compressor
JP2003206873A (en) Scroll compressor
JP2005083235A (en) Scroll compressor
JP4616140B2 (en) Hermetic compressor and water heater
US20050207926A1 (en) Scroll compressor
JP2008267149A (en) Fluid machine
JP2006226210A (en) Scroll compressor
JP2006307753A (en) Scroll expander
JP2004316592A (en) Scroll compressor
JPH10196562A (en) Scroll compressor
JP2016156297A (en) Scroll compressor
JP2008014283A (en) Scroll compressor
JP3413916B2 (en) Hermetic rotary compressor
WO2022054364A1 (en) Sliding members, and compressor and refrigeration apparatus using said sliding members
JPWO2020095903A1 (en) Refrigerant compressor and refrigeration equipment using it
JP7454786B2 (en) scroll compressor
WO2022054363A1 (en) Sliding member, and compressor and refrigeration device using sliding member
JP2009052462A (en) Scroll compressor
JP2012067712A (en) Scroll compressor
WO2004029461A1 (en) Scroll compressor
JP3566791B2 (en) Hermetic compressor
JP2012082714A (en) Scroll compressor
JP4020554B2 (en) Scroll compressor
JPH1113667A (en) Rotary compressor and refrigerant recovery machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Effective date: 20090303

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630