JP2005081353A - Detonated pressure forming method and its apparatus - Google Patents

Detonated pressure forming method and its apparatus Download PDF

Info

Publication number
JP2005081353A
JP2005081353A JP2003312874A JP2003312874A JP2005081353A JP 2005081353 A JP2005081353 A JP 2005081353A JP 2003312874 A JP2003312874 A JP 2003312874A JP 2003312874 A JP2003312874 A JP 2003312874A JP 2005081353 A JP2005081353 A JP 2005081353A
Authority
JP
Japan
Prior art keywords
water
detonation
detonated
molding
detonation pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003312874A
Other languages
Japanese (ja)
Inventor
Shigeru Ito
繁 伊東
Masa Fujita
雅 藤田
Tadashi Otani
忠司 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003312874A priority Critical patent/JP2005081353A/en
Publication of JP2005081353A publication Critical patent/JP2005081353A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Press Drives And Press Lines (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detonated pressure forming method by which the damage on the surface of a forming material caused by over-heating at detonation time, is prevented and also, a high strain formation can be realized, and the restraint of using gunpowder quantity and cost reduction according to the minimization of a facility, are contrived. <P>SOLUTION: When a material to be difficult to form, is formed by using the detonated pressure in water, the formation is performed by separating from a propagating medium for impulse wave and exploding the gunpowder set under opening state to the atmosphere and then, by using the impulse wave in the water generated with this detonated pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、爆轟圧を用いた難成形材料板の成形方法および装置に係り、とくに、難成形材料の高ひずみ速度成形の開発技術に関するものである。   The present invention relates to a molding method and apparatus for a difficult-to-mold material plate using detonation pressure, and more particularly to a development technique for high strain rate molding of a difficult-to-mold material.

自動車用ボディシート等のプレス成形においては、伸びが小さい難成形性の合金系材料を良好に成形する方法が種々開発されている(例えば、特許文献1参照)。また、このような方法においては、例えば、火薬を空気中で爆発させる方法や、火薬を完全に水中に浸す水中爆発成形法などが提案されている。さらに、高圧パルス電源を用いて、それを水中で急激に開放することによって生ずる水中衝撃波を利用した水中電磁成形法も提案されている。   In press molding of automobile body sheets and the like, various methods have been developed to satisfactorily mold difficult-to-form alloy materials with low elongation (see, for example, Patent Document 1). Moreover, in such a method, for example, a method of explosive explosives in the air, an underwater explosion molding method in which explosives are completely immersed in water, and the like have been proposed. Furthermore, an underwater electromagnetic forming method using an underwater shock wave generated by using a high-voltage pulse power supply and abruptly opening it in water has been proposed.

これらの各方法の中で、火薬を空気中で爆発させる場合には、火薬と被成形物とを対向する位置に配置し、被成形物に対して火薬とは反対側に被成形物に当接した状態で金型等を配置する方法が採用されている。このような方法では、火薬を起爆させると爆轟波が発生し、これが空気中に伝播して被成形物に作用し、被成形物に変形量を与えることができる。また、上記した火薬を完全に水中に浸す水中爆発成形法においては、火薬と被成形物との間を完全に水で充填し、被成形物に対して火薬と反対側の位置に、上記した空気中の場合と同様に金型等を配置する。この場合、金型に当接する被成形物は、大気または真空ポンプによって減圧されている。このような方法では、水中で火薬が起爆すると爆轟波が発生し、これが水中に伝播して水中衝撃波が発生する。そして、この水中衝撃波がさらに水中を伝播し、被成形物に衝撃カを作用させる。また、水中衝撃波に続いて爆轟ガスの膨脹による圧縮力が水に作用し、これにより水を押す力が発生し、これが被成形物に作用して被成形物にさらなる変形を与える。この場合、火薬が完全に水中に没しているため、爆轟ガスの膨張によって発生する力は被成形物に作用する。また、被成形物に作用する荷重速度は、水中衝撃波の速度の1/100〜1/1000程度と極めて小さい。このため、水中衝撃波に起因する力を緩やかに作用させることができ、優れた金型転写性が実現される。   In each of these methods, when explosives are exploded in the air, the explosives and the molded product are placed at positions facing each other, and the molded product is opposed to the molded product on the opposite side of the molded product. A method of arranging a mold or the like in a state of contact is adopted. In such a method, when explosives are detonated, a detonation wave is generated, which propagates in the air and acts on the molded article, thereby imparting a deformation amount to the molded article. Further, in the underwater explosion molding method in which the above-mentioned explosive is completely immersed in water, the space between the explosive and the molding is completely filled with water, and the above-mentioned position is opposite to the explosive with respect to the molding. A mold or the like is arranged in the same manner as in the air. In this case, the workpiece to be in contact with the mold is decompressed by the atmosphere or a vacuum pump. In such a method, when explosives detonate in water, detonation waves are generated, which propagate into the water and generate underwater shock waves. And this underwater shock wave further propagates in the water and causes the shock to act on the molding. In addition, a compressive force due to expansion of detonation gas acts on the water following the underwater shock wave, thereby generating a force that pushes the water, which acts on the molding and further deforms the molding. In this case, since the explosive is completely submerged in water, the force generated by the expansion of the detonation gas acts on the molding. Moreover, the load speed which acts on a to-be-molded object is as very small as about 1/100-1/1000 of the speed of an underwater shock wave. For this reason, the force resulting from the underwater shock wave can be applied gently, and excellent mold transferability is realized.

次に、上記水中電磁成形法では、電源コンデンサの両端を水中に浸し、その両端に所望のギャップを与えるか、またはその両端を金属細線で締結する。次いで、電源コンデンサに対して被成形物を対向させて配置し、被成形物に対して電源コンデンサとは反対の位置に金型等を被成形物に当接配置する。金型に当接配置された被成形物は、大気または減圧された気体に面している。このような方法では、両電極間のコンデンサに蓄えられた電気を一気に開放することにより、水中に衝撃波を発生させ、これが被成形物に衝撃力として作用し、所要の変形量が与えられる。   Next, in the underwater electromagnetic forming method, both ends of the power capacitor are immersed in water, and a desired gap is given to the both ends, or both ends are fastened with a thin metal wire. Next, the object to be molded is arranged facing the power capacitor, and a mold or the like is placed in contact with the object to be molded at a position opposite to the power capacitor. The object to be molded that is in contact with the mold faces the air or the decompressed gas. In such a method, the electricity stored in the capacitor between the two electrodes is released at once, thereby generating a shock wave in the water, which acts as an impact force on the object to be molded and gives a required amount of deformation.

特開平5−329694号公報(特許請求の範囲)JP-A-5-329694 (Claims)

しかしながら、火薬を空気中で起爆させる方法では、起爆時に高温となって被成形物に過大な熱が加わり、被成形物が焼けるなどによってその表面が損傷する。また、火薬を空気中で起爆させた場合には、発生した爆轟波は空気中を伝播する際、その強度が急激に減衰するため、使用する火薬量も大量とせざるを得ず、実用コストの増加を招く。   However, in the method in which explosives are detonated in the air, the surface becomes damaged due to, for example, the molding being heated due to excessive heat applied to the molding due to a high temperature during the explosion. In addition, when explosives are detonated in the air, the generated detonation wave decays rapidly when propagating in the air, so the amount of explosives used must be large, and the practical cost Increase.

また、水中爆発法では、水中衝撃波により被成形物が高速変形するが、爆轟によって発生した大きなバブルエネルギーが拡散消費されないため、バブルエネルギー開放によって生ずる水を押す力が大きい。このため、高ひずみ成形が困難であり、ひずみ速度依存性の高い5000系、6000系、7000系アルミニウム合金、Ti合金、およびMg合金等の材料においては、十分な変形量を得ることができない。   In the underwater explosion method, the molded object is deformed at high speed by an underwater shock wave. However, since the large bubble energy generated by detonation is not diffused and consumed, the force pushing the water generated by releasing the bubble energy is large. For this reason, high strain forming is difficult, and a sufficient amount of deformation cannot be obtained in materials such as 5000 series, 6000 series, 7000 series aluminum alloys, Ti alloys, and Mg alloys that are highly strain rate dependent.

さらに、水中電磁成形法では、発生する水中衝撃波の強度は電圧とコンデンサ容量とに依存する。実験によれば、40kv−0.125μF(80KAの瞬間電流)で、10〜30MPa程度の水中衝撃波しか得られず、強い衝撃波を得ようとすれば大型設備が必要となる。このため、初期コストやランニングコスト等の上昇を招き、実用上、非経済的である。なお、この水中電磁成形法による方式では、高圧電力を水中に浸した状態で作業を行うため、漏電事故の可能性も極めて高く、作業安全上の問題もある。   Further, in the underwater electromagnetic forming method, the intensity of the generated underwater shock wave depends on the voltage and the capacitor capacity. According to experiments, only an underwater shock wave of about 10 to 30 MPa can be obtained at 40 kv-0.125 μF (80 KA instantaneous current), and a large facility is required to obtain a strong shock wave. For this reason, the initial cost and running cost are increased, which is practically uneconomical. In this underwater electromagnetic forming method, work is performed in a state in which high-voltage power is immersed in water, so there is a very high possibility of an electric leakage accident and there is a problem in work safety.

以上のように、いずれの従来技術においても、それぞれ解決すべき問題を有するのが現状である。   As described above, each of the conventional techniques has a problem to be solved.

本発明は、上記事情に鑑みてなされたものであり、起爆させた際に被成形物の過熱によるその表面の損傷を防止するだけでなく、高ひずみ成形が実現でき、使用する火薬量の抑制や設備の小型化に伴うコスト低減を図った爆轟圧成形方法およびその装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and not only prevents damage to the surface due to overheating of the molded object when detonated, but also realizes high strain molding and suppresses the amount of explosive used. Another object of the present invention is to provide a detonation pressure forming method and apparatus for reducing the cost associated with downsizing of facilities.

すなわち、本発明の爆轟圧成形方法は、起爆させた際に被成形物の過熱によるその表面の損傷を防止するため、火薬を起爆させて水中衝撃波を利用することを前提としており、水中の爆轟圧を用いて難成形材料板を成形するにあたり、衝撃波伝播媒体から離間させ、かつ、大気解放状態に設置した火薬を起爆し、その爆轟圧により発生した水中衝撃波を用いて成形加工することを特徴としている。   That is, the detonation pressure forming method of the present invention is based on the premise that explosives are detonated and underwater shock waves are used in order to prevent damage to the surface due to overheating of the molded object when detonated. When forming a difficult-to-mold material plate using detonation pressure, explode the explosives that are separated from the shock wave propagation medium and open to the atmosphere, and form using the underwater shock wave generated by the detonation pressure It is characterized by that.

このような爆轟圧成形方法においては、上記爆轟圧の第1波を選択的に利用して成形加工に用いることが望ましい。これは、とくに、金型として形状転写用のメス型を用いない自由成形においては、伝播速度の速い爆轟波によって被成形物の成形がなされた後に、バブルエネルギーの開放により発生した、伝播速度の遅い水流や二次波以降の衝撃波なとによって被成形物に力が作用し、それがさらに成形を進行させ、場合によっては被成形物を破断させてしまうこともあるためである。   In such a detonation pressure forming method, it is desirable to selectively use the first wave of detonation pressure for forming. This is especially true in free molding that does not use a shape transfer female die as a mold, and the propagation speed generated by the release of bubble energy after the molded object was formed by detonation waves with a high propagation speed. This is because a force acts on the molded article due to a slow water flow or a shock wave after the secondary wave, which further advances the molding, and in some cases, the molded article may be broken.

次に、本発明の爆轟圧成形装置は、上述した爆轟圧成形方法を好適に実施するための装置であり、水中の爆轟圧を用いて難成形材料板を成形する装置であって、火薬を衝撃波伝播媒体から離間させ、あるいは火薬の少なくとも一部を上記媒体に水没させ、かつ、大気開放状態に設置したことを特徴としている。   Next, a detonation pressure forming apparatus of the present invention is an apparatus for suitably carrying out the detonation pressure forming method described above, and is an apparatus for forming a difficult-to-form material plate using detonation pressure in water. The gunpowder is separated from the shock wave propagation medium, or at least a part of the gunpowder is submerged in the medium and installed in an open atmosphere state.

本発明の爆轟圧成形方法によれば、上述したように、水中で成形加工がなされるため、起爆させた際に被成形物の過熱によるその表面の損傷は発生しない。よって、被成形物の表面を極めて滑らかとすることができる。また、火薬の水中爆轟によって発生する大きな衝撃力を成形に用いるに際し、爆轟によって発生した大きなバブルエネルギーが空中で拡散消費されるため、水中衝撃波に続く水を押す力が大きく低減される。このため、高速の水中衝撃波のみが被成形物の成形に寄与し、高ひずみ加工を達成することができる。よって、ひずみ速度依存性の高い5000系、6000系、7000系アルミニウム合金、Ti合金、Mg合金等の材料においても十分な変形量を得ることができる。   According to the detonation pressure forming method of the present invention, as described above, since the forming process is performed in water, the surface is not damaged due to overheating of the object to be molded when the explosion is initiated. Therefore, the surface of the molding can be made extremely smooth. In addition, when a large impact force generated by an underwater detonation of gunpowder is used for molding, a large bubble energy generated by the detonation is diffused and consumed in the air, so that the force pushing the water following the underwater shock wave is greatly reduced. For this reason, only a high-speed underwater shock wave contributes to shaping | molding of a to-be-molded object, and can achieve high distortion processing. Therefore, a sufficient amount of deformation can be obtained even in materials such as 5000 series, 6000 series, 7000 series aluminum alloys, Ti alloys, and Mg alloys having high strain rate dependency.

また、本発明の爆轟圧成形装置によれば、爆轟波は水中を伝播することから、その強度は急激に減衰しない。このため、使用する火薬量を従来技術に比して抑制することができる。また、本装置によれば、従来の水中電磁成形法に比して得られる水中衝撃波の強度が大きい。よって、設備の小型化を図ることができ、ひいてはコスト等の低減を図ることができる。なお、本装置の使用に際し、高圧電力を水中に浸す必要はないので、漏電事故を防止して作業安全性を確保することもできる。
以上のように、本発明の装置によれば、本発明の爆轟圧成形方法を好適に実施することができ、起爆時に被成形物の過熱による表面の損傷を防止することができるとともに、高ひずみ成形が実現でき、しかも使用する火薬量の抑制や設備の小型化に伴うコスト低減を図ることができる。
In addition, according to the detonation pressure forming apparatus of the present invention, detonation waves propagate in water, so that the strength is not rapidly attenuated. For this reason, the amount of explosives to be used can be suppressed as compared with the prior art. Moreover, according to this apparatus, the intensity | strength of the underwater shock wave obtained compared with the conventional underwater electromagnetic forming method is large. Therefore, downsizing of the facility can be achieved, and as a result, cost and the like can be reduced. In addition, since it is not necessary to immerse high-voltage power in water when using this apparatus, it is possible to prevent electrical leakage accidents and ensure work safety.
As described above, according to the apparatus of the present invention, the detonation pressure molding method of the present invention can be suitably carried out, the surface damage due to overheating of the molding can be prevented at the time of initiation, and Strain molding can be realized, and furthermore, the amount of explosives to be used can be suppressed and the cost can be reduced due to downsizing of the equipment.

以下、本発明を好適な実施形態により、詳細に説明する。
図1は、本発明の爆轟圧成形装置の一例を示す側面図である。すなわち、同図中1は金型、2は金型1の上方に配置された開放型圧力容器、3は開放型圧力容器2の上方を閉塞する仕切板、4は火薬収納部4aと筒部4bとを備え、仕切板3の隙間に配置された雷管、5は雷管4の火薬収納部4aに配置された火薬、6は開放型圧力容器2に充填された衝撃波伝播媒体としての水、7は金型1と開放型圧力容器2との間に配置された板押さえをそれぞれ示す。本発明の爆轟圧成形装置は、以上に示した符号1〜7に対応する各部材を含むものである。なお、雷管4中に配置された火薬5は、衝撃波伝播媒体である水6から離間させ、かつ、図1中上方には大気開放状態に設置してある。また、金型1は通常のものを使用することができることはもちろんのこと、形状転写用のメス型を使用することもできる。なお、火薬5は、図1においては、水6から離間されているが、その少なくとも一部を水没させることもできる。
Hereinafter, the present invention will be described in detail with reference to preferred embodiments.
FIG. 1 is a side view showing an example of a detonation pressure forming apparatus of the present invention. That is, in the figure, 1 is a mold, 2 is an open pressure vessel disposed above the mold 1, 3 is a partition plate for closing the upper portion of the open pressure vessel 2, and 4 is an explosive container 4a and a cylinder portion. 4b, a detonator arranged in the gap of the partition plate 3, 5 an explosive arranged in the explosive container 4a of the detonator 4, 6 a water as a shock wave propagation medium filled in the open pressure vessel 2, 7 Indicates a plate presser disposed between the mold 1 and the open-type pressure vessel 2. The detonation pressure forming apparatus of the present invention includes members corresponding to the reference numerals 1 to 7 shown above. In addition, the explosive 5 arrange | positioned in the detonator 4 is spaced apart from the water 6 which is a shock wave propagation medium, and is installed in the open state in the upper part in FIG. In addition, the mold 1 can be a normal one, and can also be a shape transfer female die. In addition, although the gunpowder 5 is spaced apart from the water 6 in FIG. 1, at least one part can also be submerged.

次に、上述した構成の爆轟圧成形装置を使用して図1中符号8で示す被成形物8を成形加工する場合について説明する。
難成形材料である板状の被成形物8を、金型1と開放型圧力容器2との間に配置するとともに、被成形物8の加工位置付近以外の箇所、すなわち図1では2カ所を板押さえ7により金型1に固定する。この状態で、火薬5が衝撃波伝播媒体である水6から離間していることおよび大気解放状態に設置されていることを確認した後、起爆する。
Next, the case where the molding object 8 shown by the code | symbol 8 in FIG. 1 is shape | molded using the detonation pressure shaping | molding apparatus of the structure mentioned above is demonstrated.
A plate-shaped object 8 that is a difficult-to-mold material is placed between the mold 1 and the open pressure vessel 2 and at places other than the processing position of the object 8, that is, two places in FIG. It is fixed to the mold 1 with a plate holder 7. In this state, the explosive 5 is detonated after confirming that the explosive 5 is separated from the water 6 that is the shock wave propagation medium and that the explosive 5 is installed in an air release state.

このように起爆を行うと、雷管4中の火薬5によって爆轟波が発生し、この爆轟圧が水6を伝播して被成形物8に伝わり、被成形物が所望の形状に変形する。この際、爆轟によって発生した大きなバブルエネルギーが上方の空気中で拡散消費されるため、バブルエネルギー開放によって生ずる水を押す力は極めて小さい。このため、衝撃波の作用のみによる高ひずみ成形が容易であり、ひずみ速度依存性の高い5000系、6000系、7000系アルミニウム合金、Ti合金およびMg合金等の材料においても十分な変形量を得ることができる。また、図1に示す装置を用いた場合には、発生した爆轟波は主に水中を伝播するため、急激にその強度が減衰することはない。よって、使用する火薬量も従来に比して抑制することができ、実用コストを低減することができる。また、同図に示す装置によれば、従来の水中電磁成形法のように、コスト等の上昇や漏電事故等の不具合もない。   When detonation is performed in this manner, a detonation wave is generated by the explosive 5 in the detonator 4, and this detonation pressure propagates through the water 6 and is transmitted to the molded object 8, which deforms the molded object into a desired shape. . At this time, since the large bubble energy generated by detonation is diffused and consumed in the air above, the force pushing the water generated by opening the bubble energy is extremely small. For this reason, high strain forming only by the action of shock waves is easy, and sufficient deformation amount can be obtained even in materials such as 5000 series, 6000 series, 7000 series aluminum alloys, Ti alloys and Mg alloys having high strain rate dependence. Can do. In addition, when the apparatus shown in FIG. 1 is used, the generated detonation wave mainly propagates in water, so that its intensity is not abruptly attenuated. Therefore, the amount of explosives to be used can be suppressed as compared with the conventional case, and the practical cost can be reduced. Moreover, according to the apparatus shown in the figure, unlike the conventional underwater electromagnetic forming method, there is no inconvenience such as an increase in cost and an electric leakage accident.

このように、図1に示す装置は、従来技術の不具合を解消することができる。すなわち、当該装置は、起爆時に被成形物の過熱による表面の損傷を防止することができるとともに、高ひずみ成形が実現でき、しかも使用する火薬量の抑制や設備の小型化に伴うコスト低減を図ることができる。さらに、上記装置においては、爆轟圧の第1波を選択的に利用して成形加工に用いることができ、このような場合には、被成形物8の素材に応じて、また同じ素材であっても所望の加工度によって、水中の衝撃波の強度を選択的に変更することができるため好適である。   As described above, the apparatus shown in FIG. 1 can solve the problems of the prior art. In other words, the apparatus can prevent surface damage due to overheating of the workpiece at the time of detonation, achieve high strain molding, and further reduce the cost associated with controlling the amount of explosive used and downsizing the equipment. be able to. Furthermore, in the above apparatus, the first wave of detonation pressure can be selectively used for forming processing. In such a case, the same material is used according to the material of the article 8 to be molded. Even if it exists, since the intensity | strength of the shock wave in water can be selectively changed with the desired degree of processing, it is suitable.

以下、本発明を実施例により、さらに具体的に説明する。
図2は、本発明の爆轟圧成形装置の一例を示す側面図である。同図に示す装置は、図1に示す装置において、開放型圧力容器2を紙製とするとともに、仕切板3を厚紙で構成し、開放型圧力容器2と板押さえ7との間を粘土で密閉した以外は、図1に示す装置と同じ構造である。なお、図2に示す装置において、金型は内径100mmの円筒抜き型とした。
Hereinafter, the present invention will be described more specifically with reference to examples.
FIG. 2 is a side view showing an example of a detonation pressure forming apparatus of the present invention. In the apparatus shown in FIG. 1, the open pressure vessel 2 is made of paper, the partition plate 3 is made of cardboard, and the gap between the open pressure vessel 2 and the plate presser 7 is made of clay. Except for sealing, it has the same structure as the apparatus shown in FIG. In the apparatus shown in FIG. 2, the mold was a cylindrical punch having an inner diameter of 100 mm.

一方、被成形物にはアルミニウム合金板(A5052-0、板圧1.0mm)を用いた。また、衝撃波伝播媒体としては水を用い、水深を30mmとするとともに、上部を開放した。さらに、火薬には、粉末状のペンスリット形火薬をパラフィン系のバインダで固めた、旭化成(株)製のSEPを10g使用し、これを火薬収納部内の水面直上に設置した。以上の条件の下、火薬を起爆させて成形加工を行った。   On the other hand, an aluminum alloy plate (A5052-0, plate pressure 1.0 mm) was used as the molding. Moreover, water was used as the shock wave propagation medium, the water depth was 30 mm, and the upper part was opened. Furthermore, 10 g of SEP manufactured by Asahi Kasei Co., Ltd., in which a powdered pen slit type gunpowder was hardened with a paraffin binder, was used as the gunpowder, and this was installed directly above the water surface in the gunpowder storage unit. Under the above conditions, explosives were detonated to perform molding.

成形加工の結果、アルミニウム合金板の張り出し高さは42mmであった。すなわち、この値は、伸びに換算すると40%である。また、このアルミニウム合金板を球頭ポンチによるプレス張り出し成形装置でプレス成形加工した場合は、張り出し高さは28〜29mmであったが、高張力鋼板(SPFC340H)を同じくプレス成形加工した場合は、張り出し高さは42mmであった。よって、本発明の装置を使用することで、難成形性のアルミニウム合金板に鋼板と同等以上の加工性を付与することができるといえる。なお、図3は、成形品の外観写真である。同図に示すように、成形品の表面性状は爆轟による熱の影響を受けないため、極めて良好である。   As a result of the forming process, the overhang height of the aluminum alloy plate was 42 mm. That is, this value is 40% in terms of elongation. Moreover, when this aluminum alloy plate was press-molded by a press-extrusion molding apparatus using a ball head punch, the overhang height was 28 to 29 mm. The overhang height was 42 mm. Therefore, it can be said that by using the apparatus of the present invention, workability equivalent to or higher than that of a steel plate can be imparted to a hard-to-form aluminum alloy plate. FIG. 3 is a photograph of the appearance of the molded product. As shown in the figure, the surface property of the molded product is very good because it is not affected by heat from detonation.

本発明の爆轟圧成形方法および装置は、近年、自動車用ボディシートの軽量化の要請によりその適用が切望されている難成形性のアルミニウム合金板の成形加工に好適である。   The detonation pressure forming method and apparatus of the present invention are suitable for forming difficult-to-form aluminum alloy plates that are desired to be applied in recent years due to demands for weight reduction of automobile body sheets.

本発明の爆轟圧成形装置の一例を示す側面図である。It is a side view which shows an example of the detonation pressure forming apparatus of this invention. 本発明の実施例で使用した爆轟圧成形装置を示す側面図である。It is a side view which shows the detonation pressure forming apparatus used in the Example of this invention. 実施例で得た成形品の外観写真である。It is an external appearance photograph of the molded product obtained in the Example.

符号の説明Explanation of symbols

1…金型
2…開放型圧力容器
3…仕切板
4…雷管
5…火薬
6…水
7…板押さえ
8…被成形物
DESCRIPTION OF SYMBOLS 1 ... Mold 2 ... Open type pressure vessel 3 ... Partition plate 4 ... Detonator 5 ... Gunpowder 6 ... Water 7 ... Board presser 8 ... Molding object

Claims (3)

水中の爆轟圧を用いて難成形材料板を成形するにあたり、
衝撃波伝播媒体から離間させ、かつ、大気解放状態に設置した火薬を起爆し、その爆轟圧により発生した水中衝撃波を用いて成形加工することを特徴とする爆轟圧成形方法。
When molding difficult-to-form material plates using detonation pressure in water,
A detonation pressure forming method characterized by detonating explosives that are spaced apart from a shock wave propagation medium and opened to the atmosphere, and forming using an underwater shock wave generated by the detonation pressure.
前記爆轟圧の第1波を選択的に利用して成形加工に用いることを特徴とする請求項1に記載の爆轟圧成形方法。   2. The detonation pressure forming method according to claim 1, wherein the first wave of the detonation pressure is selectively used for forming processing. 水中の爆轟圧を用いて難成形材料板を成形する装置であって、
火薬を衝撃波伝播媒体から離間させ、あるいは火薬の少なくとも一部を前記媒体に水没させ、かつ、大気開放状態に設置したことを特徴とする爆轟圧成形装置。
An apparatus for forming a difficult-to-form material plate using detonation pressure in water,
A detonation pressure forming apparatus characterized in that the explosive is separated from the shock wave propagation medium, or at least a part of the explosive is submerged in the medium, and is installed in an open atmosphere state.
JP2003312874A 2003-09-04 2003-09-04 Detonated pressure forming method and its apparatus Pending JP2005081353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312874A JP2005081353A (en) 2003-09-04 2003-09-04 Detonated pressure forming method and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312874A JP2005081353A (en) 2003-09-04 2003-09-04 Detonated pressure forming method and its apparatus

Publications (1)

Publication Number Publication Date
JP2005081353A true JP2005081353A (en) 2005-03-31

Family

ID=34414005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312874A Pending JP2005081353A (en) 2003-09-04 2003-09-04 Detonated pressure forming method and its apparatus

Country Status (1)

Country Link
JP (1) JP2005081353A (en)

Similar Documents

Publication Publication Date Title
Daehn High-velocity metal forming
US9021845B2 (en) Electrically driven rapidly vaporizing foils, wires and strips used for collision welding and sheet metal forming
US3036373A (en) Metal forming
Daehn et al. High-velocity metal forming—An old technology addresses new problems
US20150360275A1 (en) Method, tool and press for the electrohydraulic forming of a workpiece
CN113458234A (en) Device and method for forming workpiece by utilizing metal foil electrified explosion shock wave
CA2471066A1 (en) Method of manufacturing a vehicle frame component by high velocity hydroforming
Bonnen et al. Electrode erosion observed in electrohydraulic discharges used in pulsed sheet metal forming
Vivek Rapid vaporization of thin conductors used for impulse metalworking
JP2005081353A (en) Detonated pressure forming method and its apparatus
Balanethiram Hyperplasticity: enhanced formability of sheet metals at high workpiece velocity
US20160008883A1 (en) Impulse metalworking with vaporizing foil actuators
US2943933A (en) Method and apparatus for making isotropic propertied beryllium sheet
US3325075A (en) Tool for explosive spot welding
US3878787A (en) Cryogenic explosive fragmentation
Baron et al. Explosive forming
Bhaduri et al. High-Energy Rate Forming
Iyama et al. Magnesium alloy forming using underwater shock wave by wire electric discharge
Bonnen et al. Electrohydraulic sheet metal forming of aluminum panels
Iyama et al. Study on explosive forming of aluminum alloy
US3084398A (en) Compaction process
Jagadeesha High-Energy Rate Forming
Watkins The shaping of metals
Iyama et al. Explosive forming
Noland High-Velocity Metalworking: A Survey

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070730