JP2005081228A - Activation method and activation tool for running water through pipe - Google Patents

Activation method and activation tool for running water through pipe Download PDF

Info

Publication number
JP2005081228A
JP2005081228A JP2003315443A JP2003315443A JP2005081228A JP 2005081228 A JP2005081228 A JP 2005081228A JP 2003315443 A JP2003315443 A JP 2003315443A JP 2003315443 A JP2003315443 A JP 2003315443A JP 2005081228 A JP2005081228 A JP 2005081228A
Authority
JP
Japan
Prior art keywords
water
conduit
germanium
permanent magnet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003315443A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Hamanaka
博義 浜中
Toshio Ikeuchi
俊夫 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003315443A priority Critical patent/JP2005081228A/en
Publication of JP2005081228A publication Critical patent/JP2005081228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Domestic Plumbing Installations (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activation method and an activation tool for running water through a pipe which can obtain a performance stability over a long time by simple attaching operation in purification of water, such as drinking water, and is free from fear of adversely affecting human beings and environment. <P>SOLUTION: The activation tool for running water through the pipe is characterized in that the far-infrared rays radiated from germanium-containing biotite 2 disposed in the vicinity of a repulsive magnetic field generated by oppositely arranging the N poles of permanent magnets 1 is made to act. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導管内流水活性化方法及び導管内流水活性化器具に関し、更に詳しくは、遠赤外線の放射と磁気斥力を組み合わせて利用した流水活性化器具に関する。   The present invention relates to a method for activating a running water in a conduit and a running water activating device in a conduit, and more particularly to a running water activating device using a combination of far-infrared radiation and magnetic repulsion.

従来技術Conventional technology

我々の住む地球では、近年、特に水資源の枯渇が心配され、一方でまた、河川の水、雨水共に汚染が進んでいる現状があり、それらの水を集めて多くの人に供給する安全な飲料水道水を作るためには、殺菌剤や不純物吸着剤、pH調製剤等の化学薬剤を相当量使用しなければならない。   On the earth where we live, in recent years we are particularly worried about the depletion of water resources. On the other hand, there is a situation where both river water and rainwater are polluted, and it is safe to collect these water and supply it to many people. In order to make drinking tap water, a considerable amount of chemical agents such as bactericides, impurity adsorbents and pH adjusters must be used.

また、工場の装置や職場環境の清掃等に使用する中水や農業、漁業などで使われる間近にある淡水や海水も注意を払わないと使用してかえってマイナスの結果を生むことがある。   In addition, middle water used for cleaning factory equipment and the workplace environment, fresh water and seawater used in agriculture, fisheries, etc. may be used if care is not taken, producing negative results.

これらのことから、飲料水だけでもより安全なものにしたり、また、おいしく感じるものにしたいという要求が高まり、飲用時にカルシウムイオンを投入して殺菌後の塩素イオンを除去したり、逆浸透膜を用いて、雑菌の通過を阻止したり、あるいは活性炭によって混有不純物を吸着させたりすることが各方面で行われている。   For these reasons, there is a growing demand for safer drinking water alone, and a more delicious taste, and when drinking, calcium ions are added to remove sterilized chlorine ions, and reverse osmosis membranes are used. It is used in various directions to prevent passage of various bacteria or to adsorb mixed impurities with activated carbon.

一方、水に直接接触せずに、水を改質させる方法として古くから給水管や蛇口に一個又は複数個の永久磁石を取り付けて、磁場内で水分子に電荷を持たせることを目論んだり、磁力と遠赤外線物質とを組み合わせて、その現象を助長させようとする装置が考えだされてきている。   On the other hand, as a method of reforming water without direct contact with water, one or more permanent magnets are attached to a water supply pipe or faucet for a long time, aiming to make water molecules have a charge in a magnetic field, Devices have been devised that combine magnetic forces and far-infrared materials to promote the phenomenon.

しかしながら、前述した各種の化学的処理方法では、処理材料の性能劣化があり、その都度調製、補充する手間があって、その目安を見ることが難しく、かつ、煩わしい。また、磁力や遠赤外線を利用する物理的処理方法では、目に見えた効果を得るためには、流水中にも磁場をつくる必要から、かなり強い磁力を有する永久磁石を使用しなければならないので、装置の取り付けに留意しなければならず、しかも取り付け後も装置全体の強い残留磁束密度が周辺のIC関連精密器具類の正常作動を妨げる心配があるなどの問題点があった。   However, in the various chemical processing methods described above, the performance of the processing material is deteriorated, and there is an effort to prepare and replenish each time, so that it is difficult and troublesome to see the standard. Moreover, in the physical processing method using magnetic force and far infrared rays, in order to obtain a visible effect, it is necessary to create a magnetic field in running water, so it is necessary to use a permanent magnet having a considerably strong magnetic force. However, there is a problem in that attention must be paid to the installation of the device, and even after the installation, there is a concern that the strong residual magnetic flux density of the entire device may hinder the normal operation of the peripheral IC-related precision instruments.

さらには、公知の永久磁石の組み合わせ及びそれに加えて遠赤外線放射物質を附属させた磁気水活性化装置では、水に作用する磁力範囲が狭く、従って、水を変質させる効率が悪いために、管内の清浄化のためには都合良いが、装置部分を通過してでた流水の性質は短時間で原水と変わらないものになってしまうという難点があった。   Furthermore, in a magnetic water activation device to which a combination of known permanent magnets and a far-infrared emitting material is added, the magnetic force range acting on water is narrow, and therefore the efficiency of altering water is poor, so Although it is convenient for cleaning, there is a problem that the nature of the flowing water that has passed through the apparatus part becomes the same as the raw water in a short time.

本発明者は、上記課題を解決する目的で、簡便な取り付け操作でかつ、長期に亘る性能安定性が得られ、しかも人、環境に対して悪影響を与える心配のない導管内流水活性化器具をつくり出す研究を鋭意行った結果、限定された極の近傍に低温条件下で遠赤外線を放射する固有の物質を付帯させた永久磁石を相対させて給水管及び/又は蛇口に固定させた後に、水を流すと化学的処理を一切付帯させることなしに、効率良く水が活性化され、しかも、その状態が長時間接続するという知見を得て、本発明に到達した。   In order to solve the above-mentioned problems, the present inventor has provided an apparatus for activating the running water in a conduit that can provide a long-term performance stability with a simple mounting operation and has no fear of adversely affecting humans and the environment. As a result of diligent research, a permanent magnet attached with a unique substance that emits far-infrared rays under a low temperature condition in the vicinity of a limited pole is fixed to a water supply pipe and / or faucet, As a result, the inventors have obtained the knowledge that water is efficiently activated without any additional chemical treatment, and the state is connected for a long time, and the present invention has been achieved.

すなわち本発明の第1は、給水管及び/又は蛇口若しくはその延長部の内部に取り付けた永久磁石のN極同士を相対させて、前記給水管及び/又は蛇口若しくはその延長部の内部に斥力磁場を誘導したところに、前記永久磁石表面に近接させたゲルマニウム内在黒雲母から放射される遠赤外線を作用させることを特徴とする導管内流水活性化方法である。   That is, according to the first aspect of the present invention, the N poles of the permanent magnet attached to the inside of the water supply pipe and / or faucet or its extension are made to face each other, and the repulsive magnetic field is placed inside the water supply pipe and / or the faucet or its extension. In this method, the far-infrared ray radiated from germanium-containing biotite close to the surface of the permanent magnet is caused to act on the water in the conduit.

本発明の第2は、前記ゲルマニウム内在黒雲母は、粉末として永久磁石表面に塗装付着させ、又は強磁性体板に塗装付着させて永久磁石に吸着させて用いるか、又は粉末若しくは顆粒として永久磁石表面と可動的に接触させて用いるか、あるいは強磁性体粉末と共存させて加工し、着磁させたボンド磁石成型物として用いることを特徴とする請求項1記載の導管内流水活性化方法である。   In the second aspect of the present invention, the germanium-containing biotite is used by being adhered to the surface of the permanent magnet as a powder, or by being adhered to a ferromagnetic plate and adsorbed to the permanent magnet, or as a permanent magnet as powder or granules. 2. The method for activating activated water in a conduit according to claim 1, wherein the method is used as a bonded magnet molded product that is used while being movably brought into contact with the surface or processed and magnetized with a ferromagnetic powder. is there.

本発明の第3は、相対させている内面部のN極にゲルマニウム内在黒雲母を付着させた永久磁石1を保持材3に押着させてなることを特徴とする導管内流水活性化器具である。   A third aspect of the present invention is an in-pipe water activation device characterized in that a permanent magnet 1 having germanium-containing biotite adhered to the north pole of the inner surface facing each other is pressed against a holding material 3. is there.

本発明の第4は、前記永久磁石は、ゲルマニウム内在黒雲母粉末と樹脂系塗料とを焼き付け処理し、次いで塗膜を付着させたものを磁力で吸着させた磁性体板からなる永久磁石であることを特徴とする請求項3記載の導管内流水活性化器具である。   According to a fourth aspect of the present invention, the permanent magnet is a permanent magnet made of a magnetic plate obtained by baking a germanium-containing biotite powder and a resin-based paint, and then adhering a film with a magnetic film adsorbed thereon. The in-conduit water activation device according to claim 3.

本発明の第5は、ゲルマニウム内在黒雲母顆粒とN極同士を相対させている永久磁石とを保持材内で接触充填させることを特徴とする導管内流水活性化器具である。   According to a fifth aspect of the present invention, there is provided an in-conduit water activation device characterized in that germanium-containing biotite granules and permanent magnets having N poles facing each other are contact-filled in a holding material.

本発明の第6は、ゲルマニウム内在黒雲母粉末と強磁性体粉末とを共存させて加工し、着磁させたN極同士を相対させているボンド磁石成型物からなることを特徴とする導管内流水活性化器具である。   According to a sixth aspect of the present invention, in a conduit characterized by comprising a bonded magnet molding in which germanium-containing biotite powder and ferromagnetic powder are coexisted and magnetized N poles are opposed to each other. It is a running water activation device.

本発明の導管内流水活性化方法に使用する導管内流水活性化器具は、永久磁石のN極同士を相対させて生ずる反発磁界の近傍に、ゲルマニウムを内在させた低温条件下で遠赤外線を放射する黒雲母を置いて、その中を通過する水分子に対してエネルギー伝搬させることよりなる物理作用応用器具であり、本発明器具を単に導管に接続させるだけで、他に水に一切の化学物質を添加せず、また、消費材を共存させる必要もなく、器具部材が破壊しない限り、半永久的に使用できるものである。   The in-conduit water activation device used in the in-conduit water activation method of the present invention radiates far-infrared rays under a low temperature condition in which germanium is present in the vicinity of the repulsive magnetic field generated by making the N poles of the permanent magnets face each other. It is a physics-applied instrument consisting of a biotite that propagates energy to water molecules that pass through it. Simply connect the instrument of the present invention to a conduit, and any other chemicals in water. Is not added, and there is no need for the consumption material to coexist.

よって、本発明を実施することにより、簡便にかつ低コストで、安心感をもって生理活性の高い、多機能型の良い水を常時再現性良く製造し得るので、飲料をはじめとする家庭用生活水はもとより抽出、凝集、分離処理する必要のある工業用洗浄水、農業向け促進健全栽培用水、漁業向け養殖用水等の改善に大いに役立つものである。   Therefore, by carrying out the present invention, it is possible to easily and inexpensively produce highly functional, highly functional and highly functional water with good reproducibility at all times. In addition to industrial washing water that needs to be extracted, agglomerated, and separated, it is very useful for improving agricultural and cultivated water for agriculture and aquaculture for fishery.

本発明においては、永久磁石の種類は特に選ばず、フェライト磁石でも希土類磁石でもいずれでも良い。さらには、それらの永久磁石粉末とプラスチック若しくはゴムとからなるボンド磁石でも良い。   In the present invention, the type of permanent magnet is not particularly selected, and either a ferrite magnet or a rare earth magnet may be used. Furthermore, a bond magnet made of those permanent magnet powders and plastic or rubber may be used.

本発明においては、低温条件下遠赤外線放射物質として層間にゲルマニウムを確実に内在させた黒雲母であることを要する。   In the present invention, it is necessary to be biotite in which germanium is surely contained between layers as a far-infrared emitting material under low temperature conditions.

本発明においては、相対させる極をN極同士とし、その間に働く斥力を流水に作用させることを要する。この場合、流水の種類は限定せず、天然水でも、水道水でも、また、飲料用でない中水でも、海水でも良く、さらに、その中に洗浄剤、防腐剤等を混有するものでも良い。   In the present invention, the poles to be opposed are N poles, and it is necessary to cause the repulsive force acting between them to act on running water. In this case, the type of running water is not limited, and it may be natural water, tap water, non-beverage water, seawater, or a mixture of cleaning agents, preservatives, and the like.

本発明においては、ゲルマニウム内在黒雲母粉末を塗装付着させるための強磁性体板の材質は特に限定せず、例えば、鉄、コバルト、ニッケル等を含むものが使用される。   In the present invention, the material of the ferromagnetic plate for coating and attaching germanium-containing biotite powder is not particularly limited, and for example, a material containing iron, cobalt, nickel or the like is used.

本発明においては、内側におけるN極同士の斥力を確実に導管内流水に作用させるために、保持材に固定した永久磁石を最小限2個用意し、かつ、導管の内部でその二つが相対した状態を形成させることが必要であるが、その場合の相対状態の確保の仕方は、処理後に保持材を使用するか、または、N極同士の斥力を利用して保持材の内部に自動的に固定させることなどする。しかる後、導管内若しくは導管と蛇口との連絡部、あるいはまた蛇口の延長部において組み立てた本発明の導管内流水活性化器具を作動させる。   In the present invention, in order to ensure that the repulsive force between the N poles on the inside acts on the flowing water in the conduit, at least two permanent magnets fixed to the holding material are prepared, and the two are opposed to each other inside the conduit. It is necessary to form a state, but the method of securing the relative state in that case is to use the holding material after processing, or automatically use the repulsive force between the N poles inside the holding material. Fix it. Thereafter, the in-conduit water activation device of the present invention assembled in the conduit or in the conduit-to-faucet connection or in the extension of the faucet is activated.

次に、本発明を実施例及び応用実施例によって説明するが、本発明の導管内流水活性化器具の技術と有用性は以下の具体例だけに限定されるものではない。   Next, although an example and an application example explain the present invention, the technique and utility of the in-conduit flow water activation instrument of the present invention are not limited only to the following specific examples.

外側半径16mm、内側半径12mm、長さ30mmの円柱を3分の1に切断して、内側をN極とした表面磁力800ガウスのフェライト磁石の内側の面に対して、平均粒径5μmのゲルマニウム内在黒雲母粉末(但し、韓国、株式会社曙峰社製品)65%を含有するエポキシコートを厚さ50μmで施した後、ABS樹脂からなる保持材にN極を上にして固定し、図1に示すように業務用塩化ビニール製水道元導管(但し、内径32mmのもの)の内部に押し込んで、本発明の導管内流水活性化器具を製造した。   A cylinder with an outer radius of 16 mm, an inner radius of 12 mm, and a length of 30 mm is cut into one third, and the inner surface of a ferrite magnet having a surface magnetic force of 800 gauss with an inner side of N pole, germanium with an average particle size of 5 μm After applying an epoxy coat containing 65% of the inherent biotite powder (provided by Korea Co., Ltd., Minfeng Co., Ltd.) to a thickness of 50 μm, it is fixed to a holding material made of ABS resin with the N pole facing up, FIG. As shown in Fig. 2, the water-in-conduit for water activation in the conduit of the present invention was manufactured by pushing into a commercial water chloride water supply conduit (however, having an inner diameter of 32 mm).

平均重合度800、引張り強さ(MPa)47.7、軟化温度64℃のエチレンー塩化ビニル樹脂18重量部、平均粒径5μmのゲルマニウム内在黒雲母粉末(但し、韓国、株式会社曙峰社製品)4重量部及び平均粒径1μmのサマリウム鉄窒素粉末78重量部とをブラベンダーに仕込んで混合した後、160〜170℃、15分の混練条件でカレンダー押出し成型により幅5mm、厚さ2mm、外側半径8mm、内側半径6mm、長さ50mmの長方形そり型を作成し、内側をN極になるように表面磁力500ガウスに着磁させた部材を作成した。   Germanium-containing biotite powder with an average degree of polymerization of 800, tensile strength (MPa) of 47.7, softening temperature of 64 ° C, 18 parts by weight of ethylene-vinyl chloride resin, and average particle size of 5 μm 4 parts by weight and 78 parts by weight of samarium iron nitrogen powder having an average particle size of 1 μm were mixed in a Brabender, then 5 mm wide and 2 mm thick by calendar extrusion molding at 160-170 ° C. for 15 minutes. A rectangular sled shape having a radius of 8 mm, an inner radius of 6 mm, and a length of 50 mm was prepared, and a member magnetized with a surface magnetic force of 500 gauss so that the inner side became an N pole was prepared.

次いで、保持材である内径16mm、厚さ1.5mm、長さ65mmのシリコンゴム官の中に上述の部材2個をN極同士を相対させつつ、図2のように強制的に押し込んだ後、水道蛇口にゴム弾性をもって連結させ、本発明の導管内流水活性化器具を製造した。   Next, after forcibly pushing the two members into the silicon rubber member having an inner diameter of 16 mm, a thickness of 1.5 mm, and a length of 65 mm as the holding material as shown in FIG. Then, the water faucet was connected to a water tap with rubber elasticity to produce the in-conduit running water activation device of the present invention.

比較例1Comparative Example 1

実施例1と同様のフェライト磁石をゲルマニウム内在黒雲母を塗装付着させずに、ABS樹脂からなる保持材に固定させた後、実施例1と同様にして業務用塩化ビニール製水道導管(但し、内径32mmのもの)の内部に押し込んだ。   After fixing a ferrite magnet similar to that of Example 1 to a holding material made of ABS resin without coating germanium-containing biotite, a commercial PVC water pipe (however, the inner diameter) 32 mm).

比較例2Comparative Example 2

平均重合度800、引張り強さ(MPa)47.7、軟化温度64℃のエチレンー塩化ビニル樹脂18重量部、平均粒径5μmの黒雲母粉末(但し、ペグマタイトから採取した硬度2.7、比重3.0のもの)4重量部及び平均粒径1μmのサマリウム鉄窒素粉末78重量部とにより、実施例2と同様の表面磁力500ガウスのボンド磁石を作成し、内径16mm、厚さ1.5mm、長さ65mmのシリコンゴム管の中に押し込んだ後、水道蛇口に連結させた。   An average polymerization degree of 800, tensile strength (MPa) of 47.7, softening temperature of 64 ° C. ethylene-vinyl chloride resin 18 parts by weight, average particle diameter of 5 μm biotite powder (however, hardness 2.7 collected from pegmatite, specific gravity 3 0.0) a bond magnet having a surface magnetic force of 500 gauss similar to that of Example 2 was prepared using 4 parts by weight and 78 parts by weight of samarium iron nitrogen powder having an average particle diameter of 1 μm. The inner diameter was 16 mm, the thickness was 1.5 mm, After being pushed into a 65 mm long silicone rubber tube, it was connected to a water tap.

外側半径16mm、内側半径12mm、長さ65mmの円柱の3分の1の形状からなる、内側をN極とした表面磁力2800ガウスのネオジウム鉄ボロン磁石2個をN極同士を相対させつつ平均粒径1mmのゲルマニウム内在黒雲母顆粒(但し、韓国、株式会社曙峰社製品)10gと共にSUS316Lステンレススチールの二重容器型保持材に充填させた後、外枠を無色透明アクリル樹脂板とする100メッシュのSUS316Lステンレススチールの金網でふさいで、図3及び図4に示すような本発明の導管内流水活性化器具を製造した。   The average particle size of two neodymium iron boron magnets with a surface magnetic force of 2800 gauss, with a N-pole inside, consisting of one-third of a cylinder with an outer radius of 16 mm, an inner radius of 12 mm, and a length of 65 mm, with the N poles facing each other A 100-mesh SUS316L stainless steel double-container holding material is filled together with 10 g of germanium-containing biotite granules with a diameter of 1 mm (provided by Korea, Inc.) The SUS316L stainless steel wire mesh was used to manufacture the in-conduit water activation device of the present invention as shown in FIGS.

比較例3Comparative Example 3

内側をS極とした実施例3と同様形状の表面磁力2800ガウスのネオジウム鉄ボロン磁石2個をS極同士を相対させつつ平均粒径1mmのゲルマニウム内在黒雲母顆粒(但し、韓国、株式会社曙峰社製品)10gと共に、実施例3と同様のSUS316Lステンレススチールよりなる保持材の中に充填、密封した。   Germanium-bearing biotite granules with an average particle size of 1 mm, with two neodymium iron boron magnets with a surface magnetic force of 2800 gauss having the same shape as in Example 3 with the inner side as the south pole (however, Korea, The product was filled and sealed in a holding material made of SUS316L stainless steel similar to Example 3 together with 10 g of Mine Co.).

60mm×30mm×5mmの表面磁力900ガウスのストロンチウムフェライト磁石をN極を上にして立ち上がり部20mm×30mm×2mm、平面部64mm×30mm×2mmのL字型ABS樹脂板の内側にエポキシ系接着剤で接着させた後、厚さ0.6mmの鉄板(但し、60mm×30mmのもの)に平均粒径5μmのゲルマニウム内在黒雲母粉末(但し、韓国、株式会社曙峰社製品)60%と油性1液型アクリル樹脂系塗料40%との混合物で焼き付け処理して、厚さ60μmの塗膜を付着させたものを磁力で吸着させた部材を2個作成した。
次いで、この2個の部材をN極同士を相対させつつ、図5に示すように接着させた箱形保持材の中に固定し、本発明の導管内流水活性化器具を製造した。
Epoxy adhesive on the inside of an L-shaped ABS resin plate with a rising part of 20mm x 30mm x 2mm and a flat part of 64mm x 30mm x 2mm with a strontium ferrite magnet of 60mm x 30mm x 5mm with a surface magnetic force of 900 gauss with the N pole facing up After being bonded to the steel plate, 60% of germanium biotite powder having an average particle size of 5 μm (provided by Korea, Inc., Minfeng Co., Ltd.) and oily 1 Baking treatment was performed with a mixture of 40% liquid acrylic resin-based paint, and two members having a 60 μm-thick coating film adhered thereto were adsorbed by magnetic force.
Next, these two members were fixed in a box-shaped holding material bonded as shown in FIG. 5 with the N poles facing each other, and the in-conduit running water activation device of the present invention was manufactured.

比較例4Comparative Example 4

ゲルマニウム内在黒雲母粉末含有アクリル塗料焼き付け鉄板を吸着させずに、実施例4と同様にN極同士を相対させつつ、実施例4と同様の箱形保持材の中に固定した。   Without adsorbing the germanium-containing biotite-containing acrylic paint-baked iron plate, it was fixed in the same box-shaped holding material as in Example 4, with the N poles facing each other in the same manner as in Example 4.

比較例5Comparative Example 5

実施例4と同様のストロンチウムフェライト磁石の1個をN極を上にして同様のL字型ABS樹脂板の内側に接着させ、もう1個をS極を上にして同様のL字型ABS樹脂板の内側に接着させた。しかる後、それぞれに対して、実施例4と同様にしてゲルマニウム内在黒雲母粉末含有アクリル塗料焼き付け鉄板を吸着させ、N極とS極を相対させつつ実施例4と同様の箱形保持材の中に固定した。   One of the same strontium ferrite magnets as in Example 4 was bonded to the inside of the same L-shaped ABS resin plate with the N pole facing up, and the other one with the S pole facing up, the same L-shaped ABS resin Glued to the inside of the board. Thereafter, in the same manner as in Example 4, for each, an acrylic paint-baked iron plate containing germanium-containing biotite powder is adsorbed, and the N pole and the S pole are opposed to each other in the same box-shaped holding material as in Example 4. Fixed to.

応用実施例1Application Example 1

本発明実施例1の導管内流水活性化器具及び比較例1の磁気器具を水道導管の途中に取り付け、一方、本発明実施例2〜4の導管内流水活性化器具及び比較例2〜5の磁気器具を水道導管の蛇口の最外部(但し、水道水原水は全て千葉県八千代市内使用のもの)に取り付けた後、流水させた直後の水検体を各々500mlのPETボトルに採取し、20℃恒温条件で4時間整地させた。   The in-conduit water activation device of Example 1 of the present invention and the magnetic device of Comparative Example 1 were installed in the middle of the water pipe, while the in-conduit activation device of Examples 2 to 4 of the present invention and Comparative Examples 2 to 5 After attaching the magnetic device to the outermost part of the faucet of the water pipe (however, all the tap water is used in Yachiyo City, Chiba Prefecture), the water samples immediately after running water are collected in 500 ml PET bottles, 20 The soil was leveled for 4 hours under constant temperature conditions.

つづいて、各10人の飲料者による味覚判定、デュヌイ法による表面張力測定及びサラダオイルの強制分散後の再凝集性をそれぞれ比較し、以下に示す判定基準にしたがって表1に示した。   Subsequently, taste determination by each 10 drinkers, surface tension measurement by Dunui method, and reaggregation property after forced dispersion of salad oil were respectively compared, and are shown in Table 1 according to the determination criteria shown below.

(1)味覚判定
次の判定基準とした。
◎・・・10人の試飲者全員が塩素の刺激が無くなり、まろやかになったとしたもの
○・・・10人の試飲者中7〜9人が塩素の刺激が無くなり、まろやかになったとしたも の
△・・・10人の試飲者中5〜6人が塩素の刺激が無くなり、まろやかになったとしたも の
×・・・10人の試飲者中、塩素の刺激が無くなったと判定したものが4人以下のもの
(1) Taste judgment The following judgment criteria were used.
◎ ・ ・ ・ All 10 tasters were no longer stimulated by chlorine and mellow ○ ・ ・ ・ 7 to 9 out of 10 tasters were no longer stimulated by chlorine and mellow △ ... 5-6 out of 10 tasting people are no longer stimulated by chlorine, and x are those that are mellow. Less than 4

(2)表面張力
ビーカーに100mlづつ、各水検体を取り、20℃でデュヌイの表面張力計で測定した。
(2) Surface tension Each 100 ml of water sample was taken in a beaker and measured at 20 ° C. with a Dunui's surface tension meter.

(3)サラダオイルの再凝集性
試験管に50gづつ、20℃の各水検体を取り、その上に油溶性染料(但し、オイルレッドBを使用)を溶解させたサラダオイルを2g注入した後、30回手動による振盪を行い、次いで、20℃恒温条件で5分間靜置させ観測した。
(3) Salad oil re-aggregation After taking 2Og of each 20% water sample in a test tube and injecting 2g of salad oil in which oil-soluble dye (however, oil red B is used) dissolved Then, 30 times of manual shaking was performed, and then the sample was placed under a constant temperature condition of 20 ° C. for 5 minutes and observed.

Figure 2005081228
Figure 2005081228

表1から分かるように、本発明の導管内流水活性化器具を通過してなる流水は、水道水原水の相としての性質である表面張力を低下させるものではなく、水分子の共鳴振動を励起させることにより、塩素の刺激が舌に与える影響を相対的に少なくするために、まろやかになるということが伺われた。   As can be seen from Table 1, running water that passes through the in-pipe running water activation device of the present invention does not reduce surface tension, which is a property of the phase of raw tap water, and excites resonance vibrations of water molecules. In order to reduce the effect of chlorine stimulation on the tongue relatively, it has been said that it is mellow.

応用実施例2Application Example 2

1ヶ月25日稼働(但し、1日6時間営業)している焼豚肉兼焼鳥肉店の水道元導管に本発明実施例1の導管内流水活性化器具及び比較例1の磁気器具をそれぞれ別々に1ヶ月間接続して流水し、店内で使用した。その間のグリーストラップの状態変化を示した結果を表2に示した。   The in-pipe water activation device of Example 1 of the present invention and the magnetic device of Comparative Example 1 are separately provided on the water supply conduit of the grilled pork and yakitori restaurant that operates 25 days a month (but 6 hours a day). For one month and then running and running in the store. Table 2 shows the results of changes in the state of the grease trap during that time.

Figure 2005081228
Figure 2005081228

表2から分かるように、共鳴振動している本発明の流水活性化器具通過水道水分子の作用は顕著で、グリーストラップの円滑運用を助ける効果が充分に引き出されていることが確認された。   As can be seen from Table 2, it was confirmed that the action of the flowing water activating device passing tap water molecules of the present invention which is oscillating resonantly is remarkable, and the effect of assisting the smooth operation of the grease trap is sufficiently brought out.

応用実施例3Application Example 3

活性炭濾過層使用水精製装置の出口に本発明実施例2の導管内流水活性化器具及び比較例2の磁気器具をそれぞれ別々に連結させた後、コーヒー豆(La Tarra doro PRESTIGE)を装填しているコーヒーマシン(但し、スイス国エグロ社製品ARCO)の中に注入し、85℃で30秒間、抽出操作を行った。   After the activated water filtration device using the activated carbon filtration layer was connected to the in-pipe water activation device of Example 2 of the present invention and the magnetic device of Comparative Example 2 separately, coffee beans (La Tarra doro PRESTIGE) were loaded. The coffee machine was poured into a coffee machine (produced by Egro, Switzerland, ARCO) and extracted at 85 ° C. for 30 seconds.

取り出したコーヒー液について、比重、粘度の物性測定と主要成分であるカフェインの100gにおける抽出量を高速液体クロマトグラフ分析で調べた結果を表3に示した。   Table 3 shows the results obtained by measuring the physical properties of specific gravity and viscosity of the extracted coffee liquid and examining the extraction amount of 100 g of caffeine, which is the main component, by high performance liquid chromatographic analysis.

Figure 2005081228
Figure 2005081228

表3から分かるように、共鳴振動している本発明の流水活性化器具通過精製水は他の精製水に比べてコーヒー液の製造に一層有効であることが調べられた。また、このことは定性的に、味及び香気でも見分けられた。   As can be seen from Table 3, it was investigated that the purified water passing through the water-flow activation device of the present invention, which is resonantly oscillated, is more effective for the production of coffee liquid than other purified water. This was also qualitatively distinguished by taste and aroma.

応用実施例4Application Example 4

本発明実施例3の導管内流水活性化器具及び比較例3の磁気器具を延長ホースを中継して水道蛇口と連結させた後に流水させ、50メッシュの鉄網皿の上に乗せた摘み取り24時間経過15℃放置後のホウレンソウに対して2時間散水した。   The in-pipe water activation device of Example 3 of the present invention and the magnetic device of Comparative Example 3 were connected to a water faucet through an extension hose and then allowed to run, and then picked up on a 50 mesh iron tray for 24 hours. Water was sprinkled on spinach after standing for 15 ° C for 2 hours.

また、各検体水を1リットルのビーカーに取り、摘み取り120時間経過5℃放置後のトマトを48時間浸漬させた。状態変化を観察した結果を表4に示した。   Further, each sample water was taken in a 1 liter beaker, and the tomatoes after picking and leaving at 5 ° C. for 120 hours were immersed for 48 hours. The results of observing the state change are shown in Table 4.

Figure 2005081228
Figure 2005081228

表4から明らかなように、共鳴振動している本発明の流水活性化器具通過水道水は植物性食品に有効な生理活性協力効果をもたらすということが確認された。   As is apparent from Table 4, it was confirmed that the running water activating instrument passing tap water of the present invention which is oscillating at resonance brings about a physiologically active cooperative effect effective for vegetable foods.

応用実施例5Application Example 5

築20年の9階建てビルの中の屋上貯水槽の水道水を利用している1室(但し、1週間の内5日、午前9時〜午後7時の間に平均3人在勤)の水洗トイレの洗浄水噴射蛇口に本発明実施例3の導管内流水活性化器具及び比較例3の磁気器具を各々別々に1ヶ月間接続して流水し、使用した。その間のセラミック製便器の清浄化状況等を示した結果を表5に示した。   A flush toilet in one room (with an average of 3 people working from 9:00 am to 7:00 pm on the 5th of the week, using tap water in a 20-year-old 9-story building) In the washing water jet faucet, the in-conduit running water activation device of Example 3 of the present invention and the magnetic device of Comparative Example 3 were separately connected for 1 month to run and used. Table 5 shows the results of cleaning the ceramic toilet during that time.

Figure 2005081228
Figure 2005081228

表5から分かるように、本発明の流水活性化器具通過水道水は、洗浄剤を使用しない条件でも充分に洗浄性を発揮するということが認められた。   As can be seen from Table 5, it was confirmed that the running water activating instrument passing tap water of the present invention exhibits sufficient cleaning properties even under conditions where no cleaning agent is used.

応用実施例6Application Example 6

各々、マブナ(但し、体長10cmのもの)2匹、タイリクバラタナゴ(但し、体長3cmのもの)5匹及びモツゴ(但し、体長7cmのもの)5匹を入れて、窓ガラス1枚を通して日光を受けた側面全体にアオコを発生させている45cm×29.5cm×29.5cmの4個のガラス製水槽の上部に設置されたポンプ式濾過兼用水循環器(但し、コトブキ社製スーパーターボゼット450を使用)のうちの3つの吐出口に、各々本発明実施例4の導管内流水活性化器具、比較例4及び比較例5の磁気器具を接続させて2ヶ月間、槽内の水を循環させ、付着したアオゴ及び発生するアオコに対する影響を調べた結果を表6に示した。   Put two mabunas (however, 10 cm long), five tiger crab (however, 3 cm long) and five moths (however, 7 cm long) and receive sunlight through a window glass. Pump-type filtration combined water circulator installed in the upper part of four glass water tanks of 45 cm x 29.5 cm x 29.5 cm that generate water-bloom on the entire side surface (However, Super Turbo Zet 450 manufactured by Kotobuki Co., Ltd. is used. ) To the three outlets, respectively, the in-conduit water activation device of Example 4 of the present invention and the magnetic device of Comparative Example 4 and Comparative Example 5 were connected to circulate the water in the tank for two months, Table 6 shows the results of investigating the effect on the attached blue and blue sea bream.

Figure 2005081228
Figure 2005081228

表6から分かるように、永久磁石のN極同士の斥力と黒雲母の層間内在ゲルマニウムに由来する低温放射遠赤外線の作用の組み合わせを利用する本発明の流水活性化器具通過槽内循環水は固有のエネルギー状態にあり、その作用によって水槽の適正使用に大いに益しているということが比較確認された。   As can be seen from Table 6, the circulating water in the running water activation device passage tank of the present invention using the combination of the repulsive force between the N poles of the permanent magnet and the action of low-temperature radiant far-infrared rays derived from the germanium in the interlayer of biotite is unique. It was confirmed by comparison that it has greatly benefited the proper use of aquarium by its action.

本発明実施例1の導管内流水活性化器具をステンレススチール製導管内部に取り付けた断面図である。It is sectional drawing which attached the flowing water activation instrument in the conduit | pipe of this invention Example 1 inside the stainless steel conduit | pipe. 本発明実施例2の導管内流水活性化器具の斜視図である。It is a perspective view of the flowing water activation instrument in the conduit | pipe of this invention Example 2. FIG. 本発明実施例3の導管内流水活性化器具の正面図である。It is a front view of the flowing water activation instrument in the conduit | pipe of this invention Example 3. FIG. 本発明実施例3の導管内流水活性化器具の側面図である。It is a side view of the flowing water activation instrument in the conduit | pipe of this invention Example 3. FIG. 本発明実施例4の導管内流水活性化器具の正面図である。It is a front view of the flowing water activation instrument in the conduit | pipe of this invention Example 4. FIG.

符号の説明Explanation of symbols

1・・・永久磁石
2・・・ゲルマニウム内在黒雲母
3・・・保持材
4・・・導管
5・・・鉄板
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet 2 ... Germanium-containing biotite 3 ... Holding material 4 ... Conduit 5 ... Iron plate

Claims (6)

給水管及び/又は蛇口若しくはその延長部の内部に取り付けた永久磁石のN極同士を相対させて、前記給水管及び/又は蛇口若しくはその延長部の内部に斥力磁場を誘導したところに、前記永久磁石表面に近接させたゲルマニウム内在黒雲母から放射される遠赤外線を作用させることを特徴とする導管内流水活性化方法。 When the N poles of the permanent magnets attached to the inside of the water supply pipe and / or faucet or its extension are made to face each other, a repulsive magnetic field is induced inside the water supply pipe and / or the faucet or its extension. A method for activating flow water in a conduit, characterized in that far-infrared rays radiated from germanium-containing biotite close to the magnet surface are acted on. 前記ゲルマニウム内在黒雲母は、粉末として永久磁石表面に塗装付着させ、又は強磁性体板に塗装付着させて永久磁石に吸着させて用いるか、又は粉末若しくは顆粒として永久磁石表面と可動的に接触させて用いるか、あるいは強磁性体粉末と共存させて加工し、着磁させたボンド磁石成型物として用いることを特徴とする請求項1記載の導管内流水活性化方法。 The germanium-containing biotite is applied to the surface of the permanent magnet as a powder, or is applied to a ferromagnetic plate and adsorbed to the permanent magnet, or is movably contacted with the surface of the permanent magnet as a powder or a granule. 2. The method for activating flow water in a conduit according to claim 1, wherein the method is used as a bonded magnet molded product that is used in combination with a ferromagnetic powder and is processed and magnetized. 相対させている内面部のN極にゲルマニウム内在黒雲母を付着させた永久磁石1を保持材3に押着させてなることを特徴とする導管内流水活性化器具。 An in-conduit water activation device comprising a permanent magnet 1 having germanium-incorporated biotite attached to the north pole of the inner surface opposed to the holding member 3. 前記永久磁石1は、ゲルマニウム内在黒雲母粉末と樹脂系塗料とを焼き付け処理し、次いで塗膜を付着させたものを磁力で吸着させた磁性体板からなる永久磁石であることを特徴とする請求項3記載の導管内流水活性化器具。 The permanent magnet 1 is a permanent magnet composed of a magnetic plate obtained by baking a germanium-containing biotite powder and a resin-based paint, and then adhering a film to which a coating film is adhered. Item 4. An apparatus for activating flow water in a conduit according to Item 3. ゲルマニウム内在黒雲母顆粒とN極同士を相対させているを永久磁石とを保持材内で接触充填させることを特徴とする導管内流水活性化器具。 An in-conduit water activation device characterized in that germanium-containing biotite granules and N poles are opposed to each other, and a permanent magnet is contact-filled in a holding material. ゲルマニウム内在黒雲母粉末と強磁性体粉末とを共存させて加工し、着磁させたN極同士を相対させているボンド磁石成型物からなることを特徴とする導管内流水活性化器具。 An in-conduit water activation device comprising a bonded magnet molded product which is processed by coexisting germanium-containing biotite powder and ferromagnetic powder, and magnetized N poles are opposed to each other.
JP2003315443A 2003-09-08 2003-09-08 Activation method and activation tool for running water through pipe Pending JP2005081228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315443A JP2005081228A (en) 2003-09-08 2003-09-08 Activation method and activation tool for running water through pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315443A JP2005081228A (en) 2003-09-08 2003-09-08 Activation method and activation tool for running water through pipe

Publications (1)

Publication Number Publication Date
JP2005081228A true JP2005081228A (en) 2005-03-31

Family

ID=34415714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315443A Pending JP2005081228A (en) 2003-09-08 2003-09-08 Activation method and activation tool for running water through pipe

Country Status (1)

Country Link
JP (1) JP2005081228A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229561B1 (en) * 2004-02-27 2007-06-12 Hiroyoshi Hamanaka Method of in-pipe activation of running water and in-pipe activator for running water as well as method of maintaining body temperature by way of promoting blood flow
JP2007152227A (en) * 2005-12-05 2007-06-21 Hiroyoshi Hamanaka Release cleaning method using kinetically functional aerosol
JP2007174909A (en) * 2005-12-27 2007-07-12 Mitsuzuka Kiyoshi Method for separation treatment of material adhering and attaching to raw shell constructing putrefaction-suppressing atmosphere
KR101192725B1 (en) 2010-03-29 2012-10-18 김철상 Methode for preparing mineral water using biotite and mineral water prepared therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229561B1 (en) * 2004-02-27 2007-06-12 Hiroyoshi Hamanaka Method of in-pipe activation of running water and in-pipe activator for running water as well as method of maintaining body temperature by way of promoting blood flow
JP2007152227A (en) * 2005-12-05 2007-06-21 Hiroyoshi Hamanaka Release cleaning method using kinetically functional aerosol
JP2007174909A (en) * 2005-12-27 2007-07-12 Mitsuzuka Kiyoshi Method for separation treatment of material adhering and attaching to raw shell constructing putrefaction-suppressing atmosphere
KR101192725B1 (en) 2010-03-29 2012-10-18 김철상 Methode for preparing mineral water using biotite and mineral water prepared therefrom

Similar Documents

Publication Publication Date Title
Bernard et al. Physicochemical analysis of groundwater samples of Bichi local government area of Kano State of Nigeria
Jacquot et al. Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary
Eze et al. Physicochemical and microbiological analysis of water bodies in Uturu, Abia State-Nigeria
Hung et al. POC/234Th ratios in particles collected in sediment traps in the northern South China Sea
Hamilton et al. Biogenic calcite–phosphorus precipitation as a negative feedback to lake eutrophication
Adeogun et al. Occurrence, species, and organ differences in bioaccumulation patterns of phthalate esters in municipal domestic water supply lakes in Ibadan, Nigeria
Cho et al. Tracing nitrogen sources fueling coastal green tides off a volcanic island using radon and nitrogen isotopic tracers
Borul Study of water quality of Lonar Lake
JP2005081228A (en) Activation method and activation tool for running water through pipe
CN108455783A (en) Have the device and method of magnetic liquid using plurality of filter media production
Chang et al. Effects of aquatic ecological indicators of sustainable green energy landscape facilities
US7229561B1 (en) Method of in-pipe activation of running water and in-pipe activator for running water as well as method of maintaining body temperature by way of promoting blood flow
WO2009025461A2 (en) Water purifier directly connected to faucet
Mustafa et al. Determination of trace and heavy metals in drinking water of Jhal Magsi district of Balochistan, Pakistan
Wani et al. Preliminary study on irrigational quality of some ground water sources of Kashmir, India
JP4152151B2 (en) In-conduit water activation method and in-conduit water activation device
KR100722797B1 (en) Water treatment system
AU2014396421B2 (en) Method and apparatus for manufacturing magnetized water
Banasiak Removal of inorganic and trace organic contaminants by electrodialysis
Narsimha et al. Groundwater quality and its suitability for drinking and agricultural purpose around Chityal Area, Nalgonda District, Andhra Pradesh, India
Sanchez et al. Iron cycling in a mesocosm experiment in a north Patagonian fjord: Potential effect of ammonium addition by salmon aquaculture
JP6799889B1 (en) Metal ion generator
Sharma et al. Phytoplankton diversity and its ecology in Sadul Branch Sirhind feeder canal (Hanumangarh, Rajasthan)
US20140076818A1 (en) Method and apparatus for magnetic activation of water based solutions and materials
Derlet Backpacking in Yosemite and Kings Canyon National Parks and neighboring wilderness areas: how safe is the water to drink?

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060824

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A132

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224