JP2005081180A - Method for carrying metal particle in fin pore - Google Patents

Method for carrying metal particle in fin pore Download PDF

Info

Publication number
JP2005081180A
JP2005081180A JP2003313302A JP2003313302A JP2005081180A JP 2005081180 A JP2005081180 A JP 2005081180A JP 2003313302 A JP2003313302 A JP 2003313302A JP 2003313302 A JP2003313302 A JP 2003313302A JP 2005081180 A JP2005081180 A JP 2005081180A
Authority
JP
Japan
Prior art keywords
metal
solution
acid
reducing agent
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003313302A
Other languages
Japanese (ja)
Inventor
Yoshito Wakui
喜人 和久井
Toshishige Suzuki
敏重 鈴木
Fujio Mizukami
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003313302A priority Critical patent/JP2005081180A/en
Publication of JP2005081180A publication Critical patent/JP2005081180A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for uniformly carrying a metal, particularly a noble metal particle in a fine pore of a porous body. <P>SOLUTION: A solution containing a metal ion, a complex-forming agent and a reducing agent is made to permeate only into the fine pore of the porous body and the metal is precipitated and carried on a surface in the fine pore by a reduction reaction. The metal ion is preferably the noble metal ion; the complex-forming agent is preferably EDTA, NTA (nitrilotriacetic acid), an aliphatic oxy acid, formic acid, ammonia or salts thereof; the reducing agent is preferably a sugar, hydrazine, tartaric acid, a boronated compound, aldehyde, hypophosphorous acid, phosphinic acid, phosphonic acid or a salt thereof; and the solvent is preferably an alcohols, glycol, ether, ketone, ester or water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属粒子を、細孔、中でも多孔質担体の細孔の内部に均一に担持する方法に関するものである。本発明方法は、例えば表面積が大きく、かつガス透過性に優れる金属担持触媒、中でも貴金属担持触媒などを調製するのに有用である。   The present invention relates to a method for uniformly supporting metal particles inside pores, particularly inside pores of a porous carrier. The method of the present invention is useful for preparing, for example, a metal-supported catalyst having a large surface area and excellent gas permeability, especially a noble metal-supported catalyst.

金属、中でも貴金属は種々の化学工業プロセスに於いて反応を促進し、生成物の選択性を高める触媒となりうることが知られているが、従来よりその表面積を増大させることが強く求められており、セラミック等の担体への金属の担持などが試みられてきた(特許文献1参照)。しかし、粒子の微細化により、粒子を充填したカラムのガス透過速度は減少し、また必要な金属量が増大するという問題が生じるようになった。   Metals, especially precious metals, are known to be catalysts that promote reactions in various chemical industrial processes and increase product selectivity, but there has been a strong demand to increase their surface area. Attempts have been made to support metals on a carrier such as ceramic (see Patent Document 1). However, due to the finer particles, the gas permeation rate of the column packed with particles decreases, and the amount of metal required increases.

一般に、セラミックス表面に無電解めっきを施し金属粒子を担持して金属膜を形成させることはよく知られている(特許文献2〜5参照)。しかし、この方法をそのまま多孔質セラミックに適用しても、担体表面が金属膜で覆われて細孔が閉塞される結果となり、細孔の内部表面のみに均一に金属の担持を行うことは困難である。また、化学的気相成長法(CVD)や真空蒸着等の物理的な金属膜生成法も非伝導性物質表面に金属薄膜を生成させる有効な手法であるが、装置が大型で高価である上に、多孔体に適用するとその表面が金属で覆われてしまい、目的とする性能は得られない。   In general, it is well known to form a metal film by carrying out electroless plating on a ceramic surface to carry metal particles (see Patent Documents 2 to 5). However, even if this method is applied to the porous ceramic as it is, the surface of the support is covered with a metal film and the pores are blocked, and it is difficult to uniformly carry the metal only on the inner surface of the pores. It is. In addition, physical metal film formation methods such as chemical vapor deposition (CVD) and vacuum deposition are effective techniques for forming a metal thin film on the surface of a non-conductive material, but the apparatus is large and expensive. In addition, when it is applied to a porous body, its surface is covered with metal, and the intended performance cannot be obtained.

一方、スルーホールセラミック基板など、穴や溝のあるセラミック材料表面に無電解めっきを施すことも知られているが(特許文献6、7参照)、いずれの方法も溶液中に材料を浸漬することが必要であり、ミクロンサイズの細孔を塞がずに細孔内部に金属を担持することについてまでもは格別の知見を与えるものではなかった。
他方、金属を含有する溶液を多孔体内部に含浸させ、さらにそれを乾燥、加熱分解、水素還元等の手法で金属粒子を細孔内部に析出させることも知られているが(特許文献8〜9参照)、これらの方法では金属の細孔内における析出状態を制御できず、固体の析出による目詰まりや通気性の低減等の問題が生じるのを免れなかった。
On the other hand, it is also known that electroless plating is performed on the surface of a ceramic material having holes or grooves, such as a through-hole ceramic substrate (see Patent Documents 6 and 7), but both methods immerse the material in the solution. However, no special knowledge has been given to the fact that a metal is supported inside the pore without blocking the micron-sized pore.
On the other hand, it is also known that a metal-containing solution is impregnated inside a porous body, and further, metal particles are precipitated inside the pores by a technique such as drying, thermal decomposition, hydrogen reduction or the like (Patent Documents 8 to 8). 9), these methods cannot control the state of precipitation in the pores of the metal, and inevitably suffer from problems such as clogging due to solid precipitation and reduction in air permeability.

特開昭63−93872号公報(特許請求の範囲その他)JP 63-93872 A (Claims and others) 特開昭52−790号公報(特許請求の範囲その他)JP-A-52-790 (Claims and others) 特開昭57−42114号公報(特許請求の範囲その他)JP-A-57-42114 (Claims and others) 特開昭57−180434号公報(特許請求の範囲その他)JP-A-57-180434 (Claims and others) 特開昭58−36634号公報(特許請求の範囲その他)JP-A-58-36634 (Claims and others) 特開平3−211286号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 3-21286 (Claims and others) 特開平6−17256号公報(特許請求の範囲その他)JP-A-6-17256 (Claims and others) 特開昭52−151690号公報(特許請求の範囲その他)JP 52-151690 A (claims and others) 特開昭55−114347号公報(特許請求の範囲その他)JP 55-114347 A (claims and others)

本発明の課題は、このような事情の下、金属、特に貴金属の粒子を多孔体の細孔内に均一に担持することにある。   An object of the present invention is to uniformly support particles of metal, particularly noble metal, in the pores of the porous body under such circumstances.

本発明によれば、担持させる金属を金属イオンとして還元剤及び錯形成剤と共に含有する溶液を用い、この溶液を多孔体の細孔内だけに含浸させ、還元反応を行わせることにより、従来均一な金属粒子の担持が困難とされていた多孔体の細孔内部表面に金属粒子が析出、担持されるようになる。   According to the present invention, by using a solution containing a metal to be supported as a metal ion together with a reducing agent and a complexing agent, this solution is impregnated only in the pores of the porous body, and a reduction reaction is performed. The metal particles are deposited and supported on the inner surfaces of the pores of the porous body, which is difficult to support the metal particles.

すなわち、本発明は、以下のとおりのものである。
(1)金属イオン、錯形成剤及び還元剤を含有する溶液を多孔体の細孔内だけに含浸させ、還元反応により金属を細孔内表面に析出、担持させることを特徴とする、金属粒子の細孔内担持方法。
(2)金属イオンが貴金属イオンであり、金属が貴金属である前記(1)記載の方法。
(3)錯形成剤がEDTA、NTA、脂肪族オキシ酸、ギ酸及びアンモニアの中から選ばれた少なくとも1種又はその塩である前記(1)又は(2)記載の方法。
(4)還元剤が糖類、ヒドラジン、酒石酸、ホウ素化物、アルデヒド類、次亜リン酸、ホスフィン酸及びホスホン酸の中から選ばれた少なくとも1種又はその塩である前記(1)ないし(3)のいずれかに記載の方法。
(5)溶液における溶剤が、アルコール、グリコール、エーテル、ケトン、エステル及び水の中から選ばれた少なくとも1種である前記(1)ないし(4)のいずれかに記載の方法。
(6)溶液中の金属イオン濃度が0.002〜3Mである前記(1)ないし(5)のいずれかに記載の方法。
(7)金属イオンが貴金属イオンであり、溶液中の貴金属イオン濃度が0.002〜3Mである前記(2)ないし(6)のいずれかに記載の方法。
(8)溶液中の錯形成剤濃度が0.002〜10Mである前記(1)ないし(7)のいずれかに記載の方法。
(9)溶液中の還元剤濃度が0.002〜3Mである前記(1)ないし(8)のいずれかに記載の方法。
(10)多孔体がセラミック又は焼結金属製である前記(1)ないし(9)のいずれかに記載の方法。
(11)多孔体の細孔径が20ミクロン以下である前記(1)ないし(10)のいずれかに記載の方法。
That is, the present invention is as follows.
(1) A metal particle characterized by impregnating only a pore of a porous body with a solution containing a metal ion, a complexing agent and a reducing agent, and depositing and supporting the metal on the surface of the pore by a reduction reaction. In-pore support method.
(2) The method according to (1) above, wherein the metal ion is a noble metal ion and the metal is a noble metal.
(3) The method according to (1) or (2) above, wherein the complexing agent is at least one selected from EDTA, NTA, aliphatic oxyacid, formic acid and ammonia or a salt thereof.
(4) The above (1) to (3), wherein the reducing agent is at least one selected from saccharides, hydrazine, tartaric acid, boride, aldehydes, hypophosphorous acid, phosphinic acid and phosphonic acid, or a salt thereof. The method in any one of.
(5) The method according to any one of (1) to (4), wherein the solvent in the solution is at least one selected from alcohol, glycol, ether, ketone, ester and water.
(6) The method according to any one of (1) to (5), wherein the metal ion concentration in the solution is 0.002 to 3M.
(7) The method according to any one of (2) to (6), wherein the metal ion is a noble metal ion, and the concentration of the noble metal ion in the solution is 0.002 to 3M.
(8) The method according to any one of (1) to (7), wherein the concentration of the complexing agent in the solution is 0.002 to 10M.
(9) The method according to any one of (1) to (8), wherein the reducing agent concentration in the solution is 0.002 to 3M.
(10) The method according to any one of (1) to (9), wherein the porous body is made of ceramic or sintered metal.
(11) The method according to any one of (1) to (10), wherein the porous body has a pore diameter of 20 microns or less.

本発明方法において多孔体の細孔内に含浸させる溶液(以下、含浸用液ということもある)には、金属イオン、錯形成剤、還元剤、溶剤が含まれる。
この金属イオンについては、還元剤による金属への還元が可能であれば特に制限されないが、イオン化傾向が低く容易に還元され、また触媒活性の高い金、銀、パラジウム、白金等の貴金属のイオンが好ましい。金属イオンは溶剤に溶解しうる金属塩の形で供される。
金属塩は、貴金属塩が好ましく、貴金属塩の例としては、硝酸銀、硫酸銀等の銀塩、酢酸パラジウム、塩化パラジウム、硝酸パラジウム、硫酸パラジウム等のパラジウム塩、塩化白金、水酸化白金、ヘキサクロロ白金酸のような塩化白金酸等の白金化合物などが挙げられる。
In the method of the present invention, the solution impregnated in the pores of the porous body (hereinafter sometimes referred to as impregnation liquid) includes a metal ion, a complexing agent, a reducing agent, and a solvent.
The metal ion is not particularly limited as long as it can be reduced to a metal by a reducing agent, but is easily reduced with a low ionization tendency, and ions of noble metals such as gold, silver, palladium, and platinum having high catalytic activity. preferable. Metal ions are provided in the form of metal salts that are soluble in the solvent.
The metal salt is preferably a noble metal salt. Examples of the noble metal salt include silver salts such as silver nitrate and silver sulfate, palladium salts such as palladium acetate, palladium chloride, palladium nitrate and palladium sulfate, platinum chloride, platinum hydroxide and hexachloroplatinum. Examples thereof include platinum compounds such as chloroplatinic acid such as acids.

また、錯形成剤については、金属塩を安定に溶存させ、含浸用液の安定性を保持させるものであれば特に制限されず、このようなものとしては、例えばキレート剤、アンモニアなどが挙げられる。キレート剤の例としては、EDTAや、NTA(ニトリロトリ酢酸)や、クエン酸、酒石酸等の脂肪族オキシ酸、ギ酸やそれらの塩などが挙げられる。
錯形成剤として、好適には、EDTA、NTA、脂肪族オキシ酸、ギ酸及びアンモニアの中から選ばれた少なくとも1種又はその塩が挙げられる。
The complexing agent is not particularly limited as long as it can stably dissolve the metal salt and maintain the stability of the impregnating liquid. Examples of such a complexing agent include chelating agents and ammonia. . Examples of chelating agents include EDTA, NTA (nitrilotriacetic acid), aliphatic oxyacids such as citric acid and tartaric acid, formic acid and their salts.
The complexing agent preferably includes at least one selected from EDTA, NTA, aliphatic oxyacid, formic acid and ammonia or a salt thereof.

還元剤については、共存する金属イオンを金属へと還元するものであれば特に制限されないが、適度な還元力を有し反応を制御しやすいという点で、中でも糖類、ヒドラジン、酒石酸、ホウ素化物、アルデヒド類、次亜リン酸、ホスフィン酸及びホスホン酸の中から選ばれた少なくとも1種又はその塩が好ましい。
ホウ素化物としてはテトラヒドロホウ酸ナトリウムのようなテトラヒドロホウ酸塩、トリメチルアミンボランやジメチルアミンボランのようなアミンボラン類等が、アルデヒド類としてはホルマリン、アセトアルデヒド等が挙げられる。
The reducing agent is not particularly limited as long as it can reduce the coexisting metal ion to a metal, but in terms of having an appropriate reducing power and easy to control the reaction, saccharides, hydrazine, tartaric acid, boride, Preference is given to at least one selected from aldehydes, hypophosphorous acid, phosphinic acid and phosphonic acid or salts thereof.
Examples of the boride include tetrahydroborate such as sodium tetrahydroborate, amine boranes such as trimethylamine borane and dimethylamine borane, and aldehydes include formalin and acetaldehyde.

溶剤については、全ての成分を沈殿することなく、均一に溶解させうるものであれば特に制限されず、このようなものとしては、例えばメタノール、エタノール、イソプロパノールのようなアルコール、エチレングリコール、プロピレングリコールのようなグリコール、エチレングリコールモノメチルエーテルのようなエーテル、アセトンのようなケトン、酢酸エチルのようなエステル、水などが挙げられ、中でもエチレングリコール、メタノール、エタノール、イソプロパノール、水、これらの混合液はイオン性成分の溶解度が高いので好ましい。   The solvent is not particularly limited as long as it can be dissolved uniformly without precipitating all components. Examples of such solvents include alcohols such as methanol, ethanol and isopropanol, ethylene glycol, and propylene glycol. Such as glycol, ethylene glycol monomethyl ether, ketone such as acetone, ester such as ethyl acetate, water, etc. Among them, ethylene glycol, methanol, ethanol, isopropanol, water, and these mixed liquids It is preferable because the solubility of the ionic component is high.

含浸用液における各成分の含有割合については、金属イオンの濃度は、その溶解度の範囲内であれば特に制限されず、通常0.002〜3M、好ましくは0.005〜2M、より好ましくは0.01〜1Mの範囲になるように選ばれ、特に金属イオンが低濃度では内容積の小さな細孔内に担持しうる金属の量が少なくなるので、ある程度の高濃度、好ましくは0.1〜1Mの範囲で選ばれる。   The content ratio of each component in the impregnation liquid is not particularly limited as long as the concentration of metal ions is within the solubility range, and is usually 0.002 to 3M, preferably 0.005 to 2M, more preferably 0. The amount of metal that can be supported in pores having a small internal volume is reduced especially when the concentration of metal ions is low, so that a certain level of high concentration, preferably 0.1 to 1 M is selected. It is selected in the range of 1M.

また、錯形成剤は、金属の種類にもよるが、その濃度は通常0.002〜10M、好ましくは0.005〜2M、より好ましくは0.01〜1Mの範囲で選ばれる。
還元剤は、金属の種類にもよるが、その濃度は通常0.002〜3M、好ましくは0.005〜2M、より好ましくは0.01〜1Mの範囲で選ばれる。
溶剤は、金属の種類にもよるが、その濃度は通常0.01〜10M、好ましくは0.1〜3Mの範囲で選ばれる。
The complexing agent is selected in the range of usually 0.002 to 10M, preferably 0.005 to 2M, more preferably 0.01 to 1M, although it depends on the type of metal.
The concentration of the reducing agent is usually 0.002 to 3M, preferably 0.005 to 2M, more preferably 0.01 to 1M.
The solvent is selected in the range of usually 0.01 to 10M, preferably 0.1 to 3M, although it depends on the type of metal.

本発明方法において、含浸処理に用いられる含浸用液の温度は、通常0℃〜90℃の範囲であるが、一定以上の反応速度を維持し、しかもアンモニアのような揮散性物質の蒸散や薬剤の分解を少なくする観点から20〜50℃の範囲が好ましい。含浸後の処理時間は 含浸用液の温度、含浸後の処理温度や細孔径等にもよるが、1分〜3時間、好ましくは2〜90分、より好ましくは3〜60分の範囲である。   In the method of the present invention, the temperature of the impregnation liquid used for the impregnation treatment is usually in the range of 0 ° C. to 90 ° C., but maintains a reaction rate of a certain level or more, and transpiration of volatile substances such as ammonia or chemicals The range of 20 to 50 ° C. is preferable from the viewpoint of reducing the decomposition of. The treatment time after impregnation is in the range of 1 minute to 3 hours, preferably 2 to 90 minutes, more preferably 3 to 60 minutes, although it depends on the temperature of the liquid for impregnation, the treatment temperature and the pore diameter after the impregnation. .

高濃度の金属イオンを含む含浸用液は不安定になるので、含浸用液は、それから還元剤だけを除いた液(これをプレ含浸用液ということもある)と還元剤を混合して調製するようにするのがよい。プレ含浸用液であれば、還元剤を含まず、それによる金属イオンとの反応が生起しないので、保管しやすい。含浸用液やプレ含浸用液の取扱いには、化学的に不活性な樹脂製の容器やピペットを用いるのがよい。   Since the impregnating solution containing a high concentration of metal ions becomes unstable, the impregnating solution is prepared by mixing the reducing agent alone (this may be referred to as pre-impregnating solution) and the reducing agent. It is good to do. The pre-impregnation solution does not contain a reducing agent and does not cause a reaction with metal ions, and therefore is easy to store. For handling the liquid for impregnation and the liquid for pre-impregnation, it is preferable to use a chemically inert resin container or pipette.

金属イオンの還元速度、ひいては金属の析出速度は温度依存性を示すので、適切な還元速度となるように温度条件を設定するのが好ましい。一般的には、温度が高くなるほど還元反応が促進され、金属の析出速度は速まる。設定温度を低めとすることにより、還元反応を抑制し、金属の析出速度を遅らせ、析出金属が細孔の内表面により良好に分散して被着されるようにして、析出金属の細孔への担持をより均一に行うのが可能となる。   Since the reduction rate of metal ions, and thus the deposition rate of metal, shows temperature dependence, it is preferable to set the temperature conditions so as to obtain an appropriate reduction rate. In general, the higher the temperature, the more the reduction reaction is promoted, and the metal deposition rate is increased. By lowering the set temperature, the reduction reaction is suppressed, the deposition rate of the metal is delayed, and the deposited metal is better dispersed and deposited on the inner surface of the pore. Can be more uniformly carried.

還元剤は金属イオンを十分に還元するに足る還元力が必要であるが、還元力が強すぎると反応が早く進みすぎるし、また還元力が弱すぎたり、不足したりすると金属粒子の析出が不十分となるおそれがある。また、還元剤の濃度が高まると還元速度が速まるので、特に金属イオン濃度が高い条件では錯形成剤等により析出速度を調整することが望ましい。還元剤としては、銀イオンにはブドウ糖や酒石酸又はその塩等が、また、パラジウムイオンにはヒドラジン等がそれぞれ好ましく用いられる。錯形成剤としてはギ酸塩やエチレンジアミン四酢酸又はその塩等が好ましく用いられる。   The reducing agent needs to have sufficient reducing power to sufficiently reduce metal ions, but if the reducing power is too strong, the reaction proceeds too quickly, and if the reducing power is too weak or insufficient, precipitation of metal particles may occur. May be insufficient. Moreover, since the reduction rate increases as the concentration of the reducing agent increases, it is desirable to adjust the deposition rate with a complexing agent or the like, particularly under conditions where the metal ion concentration is high. As the reducing agent, glucose, tartaric acid or a salt thereof are preferably used for silver ions, and hydrazine is preferably used for palladium ions. As the complexing agent, formate, ethylenediaminetetraacetic acid or a salt thereof is preferably used.

金属粒子を担持するための多孔体は該粒子への親和性や透水性があり、安定に金属粒子を担持できる材料であれば特に制限されないが、熱や化学物質に対して安定で水になじみがよいという点でアルミナ、ムライト、ジルコニア等のセラミックやステンレス製焼結フィルター等が好ましく用いられる。またその形状は平板状、チューブ状のものが好ましい。   The porous body for supporting the metal particles is not particularly limited as long as it has an affinity for the particles and water permeability and can stably support the metal particles, but is stable to heat and chemical substances and is compatible with water. Of these, ceramics such as alumina, mullite and zirconia, stainless sintered filters and the like are preferably used. The shape is preferably a flat plate or tube.

多孔質担体の細孔径は、含浸用液を含浸しうる大きさであればよく、特に制限されないが、好ましくは20μm以下、中でも0.01〜10μmの範囲で選ばれる。また自然に含浸用液が浸透しない場合には圧入、もしくは含浸用液の反対側からの減圧吸引を行うのが効果的である。ただし、含浸用液の含浸後に担体の表面に含浸用液を付着させたまま放置をすると細孔入口を塞ぐおそれがあるので注意を要する。   The pore diameter of the porous carrier is not particularly limited as long as it is large enough to be impregnated with the impregnating solution, but is preferably 20 μm or less, and more preferably 0.01 to 10 μm. Further, when the impregnating liquid does not permeate naturally, it is effective to perform press-fitting or vacuum suction from the opposite side of the impregnating liquid. However, it should be noted that if the impregnating solution is left on the surface of the carrier after impregnation with the impregnating solution, the pore inlet may be blocked.

本発明によれば、従来均一な金属粒子の担持が困難とされていた多孔体内表面にも効率よく金属粒子を析出、担持させることができる。本発明の方法は、例えば貴金属触媒の製造工程で表面積が大きく、かつガス透過性に優れる触媒を製作する方法として有用である。   According to the present invention, metal particles can be efficiently deposited and supported on the surface of a porous body, which has conventionally been difficult to support uniform metal particles. The method of the present invention is useful, for example, as a method for producing a catalyst having a large surface area and excellent gas permeability in the production process of a noble metal catalyst.

本発明方法は、貴金属、中でも銀、パラジウム、白金を細孔内だけに担持するのに適しており、そのためには、含浸用液として、貴金属塩、EDTA、NTA、クエン酸、酒石酸、ギ酸などの貴金属用キレート剤、グルコース、ヒドラジン、ホルマリンなどの還元剤、及びアルコール、グリコール、エーテル、ケトン、エステル、水、これらの混合液からなる溶剤を主として含有するものを用いるのが好ましい。この「…を主として含有する」とは、「…からなるか、或いは…を主体として、好ましくは80質量%以上の割合で含有する」ことを意味する。   The method of the present invention is suitable for supporting noble metals, especially silver, palladium, platinum, only in the pores. For this purpose, noble metal salts, EDTA, NTA, citric acid, tartaric acid, formic acid and the like are used as impregnation liquids. It is preferable to use a precious metal chelating agent, a reducing agent such as glucose, hydrazine, and formalin, and a solvent mainly composed of alcohol, glycol, ether, ketone, ester, water, and a mixture thereof. The phrase “mainly contains ...” means “consisting of ... or mainly containing ..., preferably in a proportion of 80% by mass or more”.

次に、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
各例において、Mはモル濃度(モル/リットル)を意味する。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In each example, M means molar concentration (mol / liter).

硝酸銀を0.55M、アンモニアを2.3M、水酸化ナトリウムを0.7Mの各濃度で含む水溶液(トレンス試薬)5mlと、0.83Mグルコース(ブドウ糖)水溶液5mlとを室温で混合して混合溶液を調製した。
この混合溶液を二分し、一方はそのまま放置すると、数分以内に溶液中の銀は沈殿として析出し、また、他方は0.53M濃度の塩化第一スズを含む塩酸溶液で活性化したガラス板に接触させると、銀がガラス面に析出した。これより、高濃度の銀を含むトレンス試薬は還元剤との混合を行わずに保管するのが望ましく、また混合後はすぐに使用に供すること、すなわち混合後は直ちに表面を活性化させた基材に対し施用することが、基材表面に銀を析出させる上で望ましいことが分った。
5 ml of an aqueous solution (Trens reagent) containing silver nitrate 0.55M, ammonia 2.3M and sodium hydroxide 0.7M and 5 ml 0.83M glucose (glucose) aqueous solution are mixed at room temperature. Was prepared.
If this mixed solution is divided into two and one is left as it is, a silver plate in the solution is precipitated within a few minutes, and the other is activated by a hydrochloric acid solution containing 0.53M stannous chloride. When it was brought into contact with silver, silver was deposited on the glass surface. Therefore, it is desirable to store the torence reagent containing silver at a high concentration without mixing with a reducing agent, and it should be used immediately after mixing, that is, a group whose surface is activated immediately after mixing. It has been found that application to the material is desirable for depositing silver on the surface of the substrate.

硝酸銀を0.35M、アンモニアを1.7M、水酸化ナトリウムを0.7M、エチレンジアミン4酢酸・2ナトリウム塩を0.17Mの各濃度で含む水溶液0.5mlと、0.83Mグルコース(ブドウ糖)水溶液0.5mlとを室温で混合して混合溶液を調製した。この混合溶液7μlを、18μmの間隔で相対する、面積3.8cm2の2枚のガラス板の間に挟持されるように注入したところ、室温で1分以内に溶液中の銀がガラス面に析出することが確認された。これより、狭い領域での銀などの金属の担持が可能であることが分った。 0.5 ml of aqueous solution containing 0.35M silver nitrate, 1.7M ammonia, 0.7M sodium hydroxide, 0.17M ethylenediaminetetraacetic acid disodium salt, and 0.83M glucose (glucose) aqueous solution 0.5 ml was mixed at room temperature to prepare a mixed solution. When 7 μl of this mixed solution was injected so as to be sandwiched between two glass plates having an area of 3.8 cm 2 facing each other at an interval of 18 μm, silver in the solution was deposited on the glass surface within 1 minute at room temperature. It was confirmed. From this, it was found that it is possible to carry a metal such as silver in a narrow area.

硝酸銀を0.25M、アンモニアを1.1M、水酸化ナトリウムを0.38M、グルコース(ブドウ糖)を0.42Mの各濃度で含む水溶液7μlを験液として調製した。この験液を5℃及び22℃の試験温度で、0.53M塩化第一スズ塩酸溶液で活性化した、18μmの間隔で相対する、面積3.8cm2の2枚のガラス板の間に挟持されるように注入して、銀の析出試験を行った。試験開始からの経過時間とガラス面への銀の析出量との関係を図1にグラフで示す。図中、X軸は試験時間、すなわち験液をガラスに接触させた時間(分)を、Y軸は試験によりガラスに上乗せ(オン)される質量、すなわち試験前のガラスに対する試験により取得されるガラスの増加質量(μg)と銀の推定膜厚(nm)をそれぞれ示す。また、図中、−□−で示される線図は試験温度5℃の場合のグラフ、−○−で示される線図は試験温度22℃の場合のグラフである。これより、時間の経過とともに銀の析出量は増加し、増加質量は200μg前後でほぼ横這いとなることが分る。溶液中の銀が全て析出した際の推定される増加質量は190μgであるので、この結果は溶液中の銀が完全にガラス面に析出されるようになることを示唆している。 7 μl of an aqueous solution containing 0.25 M silver nitrate, 1.1 M ammonia, 0.38 M sodium hydroxide, and 0.42 M glucose (glucose) was prepared as a test solution. The test solution was sandwiched between two glass plates with an area of 3.8 cm 2 , which were activated at a test temperature of 5 ° C. and 22 ° C. with a 0.53 M stannous chloride solution and opposed at an interval of 18 μm. Then, a silver precipitation test was conducted. The relationship between the elapsed time from the start of the test and the amount of silver deposited on the glass surface is shown in a graph in FIG. In the figure, the X-axis is the test time, that is, the time (minutes) when the test solution was brought into contact with the glass, and the Y-axis is obtained by the mass on the glass by the test (on), that is, the test on the glass before the test. The increased mass (μg) of glass and the estimated film thickness (nm) of silver are shown respectively. Moreover, in the figure, a diagram indicated by-□-is a graph when the test temperature is 5 ° C, and a diagram indicated by-◯-is a graph when the test temperature is 22 ° C. From this, it can be seen that the amount of silver deposited increases with the passage of time, and the increased mass is almost flat at around 200 μg. Since the estimated increased mass when all the silver in the solution is deposited is 190 μg, this result suggests that the silver in the solution is completely deposited on the glass surface.

硝酸銀を0.5M、アンモニアを1.9M、水酸化テトラメチルアンモニウムを0.75M、ギ酸アンモニウムを0.5Mの各濃度で含む水溶液と、0.83Mグルコース(ブドウ糖)水溶液を同体積づつ混合して混合溶液7μlを験液として調製した。この験液を用いた銀の析出試験を22℃の試験温度で実施例3と同様にして行った。銀の析出による質量増加は試験開始から10分後でも33μgにとどまり、還元反応速度がギ酸イオンにより抑制されることが判明した。   An aqueous solution containing 0.5M silver nitrate, 1.9M ammonia, 0.75M tetramethylammonium hydroxide, and 0.5M ammonium formate, and 0.83M glucose (glucose) aqueous solution are mixed in the same volume. 7 μl of the mixed solution was prepared as a test solution. A silver precipitation test using this test solution was conducted in the same manner as in Example 3 at a test temperature of 22 ° C. It was found that the increase in mass due to silver precipitation remained at 33 μg even 10 minutes after the start of the test, and the reduction reaction rate was suppressed by formate ions.

陽極酸化アルミナフィルター(直径21mm、厚み60μm、細孔径0.1μm)を0.53M塩化第一スズ塩酸溶液に浸漬して該フィルターの内部表面を活性化したのち、水洗し、乾燥して、活性化フィルターを調製した。また、硝酸銀を0.5M、アンモニアを2.4M、水酸化テトラメチルアンモニウムを0.82Mの各濃度で含む水溶液と、0.83Mグルコース(ブドウ糖)水溶液を同体積づつ混合して混合溶液40μlを験液として調製した。この験液を上記活性化フィルター上に添加した。験液は瞬時にフィルター内部に含浸され、徐々に白色のフィルター全体が褐色に変化した。この処理フィルターの表面及び断面の走査型電子顕微鏡写真を図2に(a)及び(b)としてそれぞれ示す。ほとんどの表面の穴は塞がれておらず、また空孔内部にも固体の析出や細孔の閉塞は認められなかった。   An anodized alumina filter (diameter 21 mm, thickness 60 μm, pore diameter 0.1 μm) is immersed in a 0.53 M stannous chloride solution to activate the inner surface of the filter, then washed with water, dried and activated. Preparation filter was prepared. In addition, an aqueous solution containing silver nitrate of 0.5M, ammonia of 2.4M, and tetramethylammonium hydroxide at a concentration of 0.82M and a 0.83M glucose (glucose) aqueous solution are mixed in the same volume to obtain 40 μl of a mixed solution. Prepared as a test solution. This test solution was added onto the activated filter. The test solution was immediately impregnated inside the filter, and the entire white filter gradually turned brown. Scanning electron micrographs of the surface and cross-section of this processing filter are shown in FIGS. 2A and 2B, respectively. Most of the holes on the surface were not blocked, and no solid deposition or pore clogging was observed inside the pores.

実施例5と同様にして験液を含浸させ、変色させた処理フィルターを作成し、これをメタクリル酸メチルエステル樹脂に埋包した。この試料の断面について、深さ方向に銀のX線分析を行い、銀粒子の分布状態を調べた。その結果を図3にグラフで示す。約20〜80μmの試料断面部分において、銀の量は試料中央部でやや増加する傾向が見られたが、試料内部全体に行き渡っていることが確認された。   In the same manner as in Example 5, a treatment filter impregnated with the test solution and discolored was prepared and embedded in a methacrylic acid methyl ester resin. About the cross section of this sample, the X-ray analysis of silver was performed in the depth direction, and the distribution state of the silver particle was investigated. The results are shown graphically in FIG. In the sample cross section of about 20 to 80 μm, the amount of silver tended to increase slightly at the center of the sample, but it was confirmed that it was spread throughout the sample.

多孔質アルミナフィルター(直径25mm、厚さ2mm、細孔径0.1〜1μm)の側面をガラスでコーティングしたのち、水中で減圧してフィルター内部の空気を水で置換し、次いでフィルターを取り出し、フィルターを純水中で70℃に加熱後、細孔に0.53M塩化第一スズ塩酸溶液を通液して細孔内表面を活性化した。また、硝酸銀を0.5M、アンモニアを2.4M、水酸化テトラメチルアンモニウムを0.55M、ギ酸アンモニウムを0.25Mの各濃度で含む水溶液を、同体積の0.83Mグルコース水溶液と混合して混合溶液を験液として調製した。この験液を上記の活性化されたフィルター裏側から減圧ポンプで吸引し、験液0.5mlをフィルター内部に含浸させたところ、徐々に白色のフィルター全体が茶色に変化した。この処理フィルターは水を通過させることが確認され、験液での処理前のフィルターに比し8.3mgの質量増加があり、0.36質量%の銀が担持されたと推定される。   After coating the side surface of the porous alumina filter (diameter 25 mm, thickness 2 mm, pore diameter 0.1-1 μm) with glass, the pressure inside the filter is reduced to replace the air inside the filter with water, and then the filter is taken out. After heating to 70 ° C. in pure water, 0.53M stannous chloride solution was passed through the pores to activate the pore inner surfaces. Also, an aqueous solution containing silver nitrate 0.5M, ammonia 2.4M, tetramethylammonium hydroxide 0.55M and ammonium formate 0.25M in each concentration was mixed with 0.83M glucose aqueous solution of the same volume. A mixed solution was prepared as a test solution. When this test solution was sucked from the back side of the activated filter with a vacuum pump and 0.5 ml of the test solution was impregnated inside the filter, the entire white filter gradually turned brown. This treated filter was confirmed to allow water to pass through, and there was an 8.3 mg increase in mass compared to the filter before treatment with the test solution, and it was estimated that 0.36% by mass of silver was supported.

実施例7と同様にして作成したフィルターを乾燥したのち、ステンレス鋼製フィルターホルダーに固定し、フィルターにアルゴンガスを流した。ガス圧と、ガス透過度及び透過ガス流量との関係を図4にグラフで示す。図中、X軸はアルゴンガスの圧力(MPa)、Y軸はアルゴンガスの透過度(10-3mol min-1cm-2 )及び透過ガス流量(cm3min-1)を示す。また図中−○−は銀担持前のフィルターを用いた場合の線図を、−●−は銀担持後のフィルターを用いた場合の線図をそれぞれ示す。担持前後のガス透過性の減少度は約10%であり、担持後も十分なガス透過性が維持されることが分った。 The filter prepared in the same manner as in Example 7 was dried and then fixed to a stainless steel filter holder, and argon gas was allowed to flow through the filter. FIG. 4 is a graph showing the relationship between gas pressure, gas permeability, and permeate gas flow rate. In the figure, the X-axis represents the pressure (MPa) of argon gas, and the Y-axis represents the permeability of argon gas (10 −3 mol min −1 cm −2 ) and the permeate gas flow rate (cm 3 min −1 ). In the figure, -o- indicates a diagram in the case of using a filter before carrying silver, and-●-indicates a diagram in the case of using a filter after carrying silver. The degree of decrease in gas permeability before and after loading was about 10%, and it was found that sufficient gas permeability was maintained after loading.

多孔質アルミナフィルター(直径25mm、厚さ2mm、細孔径0.1〜1μm)の細孔に0.53M塩化第一スズ塩酸溶液及び1グラム/リットル濃度の塩化パラジウムを含む塩酸溶液を通液して細孔内表面を活性化した。また、塩化パラジウムを0.5M、エチレンジアミン四酢酸2ナトリウム塩を1.0M、アンモニアを9Mの各濃度で含む水溶液0.4mlを、2Mヒドラジン水溶液0.1mlと混合して混合溶液を験液として調製した。この験液を上記の活性化されたフィルター裏側から減圧ポンプで吸引し、験液0.5mlをフィルター内部に含浸させた。6分後水洗可能でこの処理フィルターは水を通過させることが確認された。このフィルターを110℃で一晩乾燥し、秤量した。験液での処理前のフィルターに比し9mgの質量増加があり、0.4質量%のパラジウムが担持されたと推定される。   A 0.53M stannous chloride solution and a hydrochloric acid solution containing 1 gram / liter of palladium chloride were passed through the pores of a porous alumina filter (diameter 25 mm, thickness 2 mm, pore size 0.1 to 1 μm). The surface inside the pores was activated. In addition, 0.4 ml of an aqueous solution containing 0.5 M of palladium chloride, 1.0 M of ethylenediaminetetraacetic acid disodium salt, and 9 M of ammonia is mixed with 0.1 ml of 2 M hydrazine aqueous solution, and the mixed solution is used as a test solution. Prepared. This test solution was aspirated from the back side of the activated filter with a vacuum pump, and 0.5 ml of the test solution was impregnated inside the filter. After 6 minutes, it was possible to wash with water, and it was confirmed that this treated filter allowed water to pass through. The filter was dried at 110 ° C. overnight and weighed. Compared to the filter before treatment with the test solution, the mass increased by 9 mg, and it is estimated that 0.4 mass% palladium was supported.

実施例3の銀析出試験における経過時間と銀析出量との関係を示すグラフ。The graph which shows the relationship between the elapsed time in the silver precipitation test of Example 3, and the amount of silver precipitation. 実施例5の処理フィルターの表面及び断面の走査型電子顕微鏡写真。The scanning electron micrograph of the surface and cross section of the process filter of Example 5. FIG. 実施例6の試料の断面の深さ方向における銀の分布状態を示すグラフ。The graph which shows the distribution state of the silver in the depth direction of the cross section of the sample of Example 6. FIG. 実施例8におけるフィルターのガス透過試験についてのガス圧と、ガス透過度及び透過ガス流量との関係を示すグラフ。The graph which shows the relationship between the gas pressure about the gas permeation | transmission test of the filter in Example 8, gas permeability, and permeate gas flow rate.

Claims (11)

金属イオン、錯形成剤及び還元剤を含有する溶液を多孔体の細孔内だけに含浸させ、還元反応により金属を細孔内表面に析出、担持させることを特徴とする、金属粒子の細孔内担持方法。 Metal particle pores characterized by impregnating only a pore of a porous body with a solution containing a metal ion, a complexing agent and a reducing agent, and depositing and supporting the metal on the surface of the pore by a reduction reaction Inner loading method. 金属イオンが貴金属イオンであり、金属が貴金属である請求項1に記載の方法。 The method according to claim 1, wherein the metal ion is a noble metal ion and the metal is a noble metal. 錯形成剤がEDTA、NTA、脂肪族オキシ酸、ギ酸及びアンモニアの中から選ばれた少なくとも1種又はその塩である請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the complexing agent is at least one selected from EDTA, NTA, aliphatic oxyacid, formic acid and ammonia or a salt thereof. 還元剤が糖類、ヒドラジン、酒石酸、ホウ素化物、アルデヒド類、次亜リン酸、ホスフィン酸及びホスホン酸の中から選ばれた少なくとも1種又はその塩である請求項1ないし3のいずれかに記載の方法。 4. The reducing agent according to claim 1, wherein the reducing agent is at least one selected from saccharides, hydrazine, tartaric acid, boride, aldehydes, hypophosphorous acid, phosphinic acid and phosphonic acid, or a salt thereof. Method. 溶液における溶剤が、アルコール、グリコール、エーテル、ケトン、エステル及び水の中から選ばれた少なくとも1種である請求項1ないし4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the solvent in the solution is at least one selected from alcohol, glycol, ether, ketone, ester and water. 溶液中の金属イオン濃度が0.002〜3Mである請求項1ないし5のいずれかに記載の方法。 The method according to claim 1, wherein the metal ion concentration in the solution is 0.002 to 3M. 金属イオンが貴金属イオンであり、溶液中の貴金属イオン濃度が0.002〜3Mである請求項2ないし6のいずれかに記載の方法。 The method according to any one of claims 2 to 6, wherein the metal ions are noble metal ions, and the concentration of the noble metal ions in the solution is 0.002 to 3M. 溶液中の錯形成剤濃度が0.002〜10Mである請求項1ないし7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein the concentration of the complexing agent in the solution is 0.002 to 10M. 溶液中の還元剤濃度が0.002〜3Mである請求項1ないし8のいずれかに記載の方法。 The method according to any one of claims 1 to 8, wherein the concentration of the reducing agent in the solution is 0.002 to 3M. 多孔体がセラミック又は焼結金属製である請求項1ないし9のいずれかに記載の方法。 The method according to claim 1, wherein the porous body is made of ceramic or sintered metal. 多孔体の細孔径が20ミクロン以下である請求項1ないし10のいずれかに記載の方法。 The method according to any one of claims 1 to 10, wherein the porous body has a pore diameter of 20 microns or less.
JP2003313302A 2003-09-04 2003-09-04 Method for carrying metal particle in fin pore Pending JP2005081180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313302A JP2005081180A (en) 2003-09-04 2003-09-04 Method for carrying metal particle in fin pore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313302A JP2005081180A (en) 2003-09-04 2003-09-04 Method for carrying metal particle in fin pore

Publications (1)

Publication Number Publication Date
JP2005081180A true JP2005081180A (en) 2005-03-31

Family

ID=34414262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313302A Pending JP2005081180A (en) 2003-09-04 2003-09-04 Method for carrying metal particle in fin pore

Country Status (1)

Country Link
JP (1) JP2005081180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130078A1 (en) * 2018-12-20 2020-06-25 出光興産株式会社 Method for manufacturing composite in which metal and metal oxide are supported

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130078A1 (en) * 2018-12-20 2020-06-25 出光興産株式会社 Method for manufacturing composite in which metal and metal oxide are supported
CN113165076A (en) * 2018-12-20 2021-07-23 出光兴产株式会社 Method for producing composite body supporting metal and metal oxide
JPWO2020130078A1 (en) * 2018-12-20 2021-11-04 出光興産株式会社 Method for producing a complex in which a metal or a metal oxide is supported
JP7328991B2 (en) 2018-12-20 2023-08-17 出光興産株式会社 METHOD FOR MANUFACTURING COMPOSITE HAVING METAL OR METAL OXIDE

Similar Documents

Publication Publication Date Title
TWI424871B (en) A gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material, and its manufacture and use
US7759281B2 (en) Photocatalyst containing metallic ultrafine particles and process for producing said photocatalyst
Yeung et al. Novel preparation of Pd/Vycor composite membranes
JP3932478B2 (en) Noble metal pore body and method for producing the same
JPS62163749A (en) Method for supporting catalytically active substance or precursor thereof by molded carrier and molded catalyst produced thereby
JP2008055422A (en) Catalyst for producing vinyl acetate, its production method, and its use
CN115193430A (en) Ammonia decomposition catalyst and ammonia decomposition method using same
CN1306459A (en) Method for producing shell catalysts by CVD process
US20130104740A1 (en) Method for preparing a palladium-gold alloy gas separation membrane sytem
JP2010539332A (en) Porous electroless plating
JP4853498B2 (en) Method for producing gold fine particle supported carrier catalyst for fuel cell and catalyst for polymer electrolyte fuel cell containing gold fine particle produced by the method
EP1857180A1 (en) Article comprising fine noble metal particles carried thereon and method for preparation thereof
Byeon et al. Ultrasound-assisted copper deposition on a polymer membrane and application for methanol steam reforming
JP2005081180A (en) Method for carrying metal particle in fin pore
JP2002001119A (en) Method for manufacturing catalyst for purification of exhaust gas and catalyst for purification of exhaust gas manufactured by that method
EP1767269A2 (en) Method for producing catalyst
KR101299193B1 (en) Method for manufacturing supported catalyst
Wojnicki et al. Catalytic properties of platinum nanoparticles obtained in a single step simultaneous reduction of Pt (IV) ions and graphene oxide
EP1205242B1 (en) Method for preparing decomposition catalyst for organic halide and method for manufacturing filter for use in decomposing organic halide
JP5311536B2 (en) Method for producing thin film for hydrogen separation by simultaneous plating of Pd-Ag
JP2005054226A (en) Simultaneous film deposition method of palladium and silver by electroless plating of non-conductive porous base material
CN108745350A (en) A kind of preparation method and applications of bimetallic nucleocapsid catalyst
KR20150065969A (en) Method for Preparing Catalyst Having Pt-Pd Deposited Polymer Electrolyte Multi-layer Treated with Sulfuric Acid
JP2005169334A (en) Manufacturing method for metal carrier and metal carrier
Lee et al. Effect of air bubbling on electroless Pd plating for the practical application of hydrogen selective membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050315

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080131

A521 Written amendment

Effective date: 20080331

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080605

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080801

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080828

Free format text: JAPANESE INTERMEDIATE CODE: A02