JP2005080458A - Motor controlling device - Google Patents

Motor controlling device Download PDF

Info

Publication number
JP2005080458A
JP2005080458A JP2003310243A JP2003310243A JP2005080458A JP 2005080458 A JP2005080458 A JP 2005080458A JP 2003310243 A JP2003310243 A JP 2003310243A JP 2003310243 A JP2003310243 A JP 2003310243A JP 2005080458 A JP2005080458 A JP 2005080458A
Authority
JP
Japan
Prior art keywords
current
motor
command
axis
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003310243A
Other languages
Japanese (ja)
Inventor
Junji Ozawa
順二 小澤
Kazuya Yasui
和也 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Engineering Corp
Priority to JP2003310243A priority Critical patent/JP2005080458A/en
Publication of JP2005080458A publication Critical patent/JP2005080458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor controlling device that makes it possible to start a motor smoothly, when it is started from the state that a permanent magnet motor is rotating. <P>SOLUTION: When a slip determining means 18 determines immediately after a start that the motor is rotating, a presumed gain by a rotor position presuming means 15 is increased to quicken presuming response until the DC component of a value, obtained by subtracting the product of a d-axis voltage high-frequency component and a d-axis current high-frequency component from that of a q-axis voltage high-frequency component and a q-axis current high-frequency component calculated by the rotor position presuming means 15, converges into a prescribed range. The presuming gain is returned to a normal state after the conversion of the DC component into the prescribed range. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、永久磁石モータの制御装置に関する。   The present invention relates to a control device for a permanent magnet motor.

従来、永久磁石モータ回転子の磁気特極性を利用し、回転子位置を把握したモータ制御装置が知られており(例えば、特許文献1参照)、その構成例を図6に示す。   2. Description of the Related Art Conventionally, there has been known a motor control device that uses a magnetic special polarity of a permanent magnet motor rotor to grasp a rotor position (see, for example, Patent Document 1), and a configuration example thereof is shown in FIG.

図6に示すように、モータ制御装置は、高周波電流指令重畳手段11と、電流制御手段12と、電圧指令座標変換手段13と、電流座標変換手段14と、回転子位置推定手段15とから構成され、永久磁石モータ1を駆動するインバータ部2に適用される。   As shown in FIG. 6, the motor control device includes high-frequency current command superimposing means 11, current control means 12, voltage command coordinate conversion means 13, current coordinate conversion means 14, and rotor position estimation means 15. And applied to the inverter unit 2 that drives the permanent magnet motor 1.

高周波電流重畳手段11は、モータ1のモータ回転子の回転周波数と異なる高周波成分の回転電流指令を、トルクを出力するために必要なd軸電流指令及びq軸電流指令IdRef1,IqRef1にそれぞれ重畳する。ここに、q軸は回転子突方向であり、d軸は回転子突方向と直角の方向である。   The high-frequency current superimposing means 11 superimposes a rotational current command having a high-frequency component different from the rotational frequency of the motor rotor of the motor 1 on the d-axis current command and the q-axis current commands IdRef1, IqRef1 necessary for outputting torque. . Here, the q axis is the rotor protrusion direction, and the d axis is a direction perpendicular to the rotor protrusion direction.

電流制御手段12は、電流座標変換手段14からの出力であるモータ1のd軸電流およびq軸電流の実際値Id,Iqが、高周波電流指令重畳手段11から出力される電流指令値IdRef2,IqRef2に追従するように、インバータ2の出力のd軸電圧指令とq軸電圧指令を操作する。   The current control unit 12 outputs the current command values IdRef2 and IqRef2 output from the high-frequency current command superimposing unit 11 based on the actual values Id and Iq of the d-axis current and the q-axis current of the motor 1 which are outputs from the current coordinate conversion unit 14. The d-axis voltage command and the q-axis voltage command of the output of the inverter 2 are manipulated so as to follow.

電圧指令座標変換手段13は、電流制御手段12からの出力であるd軸電圧指令およびq軸電圧指令VdRef,VqRefを、回転子位置推定手段15からの出力であるモータ回転子の位置推定値θhを用いて、インバータ2の3相電圧指令Vu,Vv,Vwに変換し、インバータ部2に与える。   The voltage command coordinate conversion means 13 uses the d-axis voltage command and the q-axis voltage commands VdRef and VqRef, which are outputs from the current control means 12, and the estimated position θh of the motor rotor, which is an output from the rotor position estimation means 15. Is converted into a three-phase voltage command Vu, Vv, Vw of the inverter 2 and given to the inverter unit 2.

電流座標変換手段14は、モータ1の3相電流(3相のうち2相の電流検出値)Iu,Iwを、回転子位置推定手段15からの出力であるモータ回転子の位置推定値θhを用いて、dq座標軸での値である上記d軸電流およびq軸電流の実際値Id,Iqに変換する。   The current coordinate conversion means 14 uses the three-phase currents (current detection values of two phases out of three phases) Iu and Iw of the motor 1 and the estimated position value θh of the motor rotor, which is the output from the rotor position estimation means 15. And converted into actual values Id and Iq of the d-axis current and the q-axis current, which are values on the dq coordinate axis.

回転子位置推定手段15は、電流制御手段12からの出力であるd軸電圧指令およびq軸電圧指令VdRef,VqRefと、電流座標変換手段14からの出力であるd軸電流およびq軸電流の実際値Id,Iqとを用いて、それぞれの入力の値の高周波電流指令重畳手段11で重畳した高周波電流の周波数成分をバンドパスフィルタ(BPF)15aで抽出し、かつこのq軸電圧高周波成分とq軸電流高周波成分との積を掛算器15bで求め、この積からd軸電圧高周波成分とd軸電流高周波成分との積を減じた値を算出し、この算出値の直流成分Hがゼロとなるようにモータ回転子の回転速度推定値ωhをPI制御器15cにて補正して出力すると共に、モータ回転子の回転速度推定値の時間積分値を積分器15dで求め、該積分値を上記モータ回転子の位置推定値θhとして出力する。
特開2001−339999号公報
The rotor position estimator 15 performs actual processing of the d-axis voltage command and q-axis voltage commands VdRef and VqRef output from the current controller 12 and the d-axis current and q-axis current output from the current coordinate converter 14. Using the values Id and Iq, the frequency component of the high-frequency current superimposed by the high-frequency current command superimposing means 11 of each input value is extracted by the bandpass filter (BPF) 15a, and the q-axis voltage high-frequency component and q A product of the axial current high frequency component is obtained by the multiplier 15b, a value obtained by subtracting the product of the d axis voltage high frequency component and the d axis current high frequency component from this product is calculated, and the DC component H of this calculated value becomes zero. In this way, the estimated rotational speed value ωh of the motor rotor is corrected by the PI controller 15c and output, and the time integral value of the estimated rotational speed value of the motor rotor is obtained by the integrator 15d. And outputs as the position estimate θh of the motor rotor.
JP 2001-339999 A

しかしながら、上記従来装置において回転子位置推定手段15は、PI制御器15cのゲインが固定とされているため、永久磁石モータ1が回転している状態から起動する際には回転子位置推定手段15における回転子位置推定の制御ゲインが低いと推定値が収束しないことがある。このような場合、電流制御不安定となり、望まざるトルク発生し、最悪の場合過電流保護動作により、再起動できなくなる。   However, since the gain of the PI controller 15c is fixed in the rotor position estimation means 15 in the above-described conventional apparatus, the rotor position estimation means 15 is activated when the permanent magnet motor 1 is started from the rotating state. If the control gain for estimating the rotor position at is low, the estimated value may not converge. In such a case, current control becomes unstable, undesired torque is generated, and in the worst case, restart is impossible due to an overcurrent protection operation.

本発明の目的は、永久磁石モータが回転している状態から起動するに際し、スムーズに起動することを可能としたモータ制御装置を提供することにある。   An object of the present invention is to provide a motor control device that can start smoothly when a permanent magnet motor starts from a rotating state.

上記課題を解決するために、本発明は、モータ回転子に磁気突極性を有し、直流電力を交流電力に変換するインバータからの出力が供給される永久磁石モータに適用されるモータ制御装置において、
前記モータ回転子の回転周波数と異なる高周波成分の回転電流指令を、トルクを出力するために必要な回転子突方向に係るd軸電流指令及び前記回転子突方向と直角方向に係るq軸電流指令にそれぞれ重畳する高周波電流指令重畳手段と、
前記モータのd軸電流及びq軸電流の実際値が前記高周波電流指令重畳手段から出力される電流指令値に追従するように、前記インバータの出力のd軸電圧指令とq軸電圧指令を操作する電流制御手段と、
d軸電圧指令及びq軸電圧指令とd軸電流とq軸電流の実際値を用いて、それぞれの入力の値の前記高周波電流指令重畳手段で重畳した高周波電流の周波数成分を抽出し、かつ当該q軸電圧高周波成分とq軸電流高周波成分の積から、d軸電圧高周波成分とd軸電流高周波成分の積を減じた値を算出し、当該算出値の直流成分がゼロとなるように前記モータ回転子の回転速度推定値を補正して出力すると共に、前記モータ回転子の回転速度推定値の時間積分値を前記モータ回転子の位置推定値として出力する回転子位置推定手段と、
この回転子位置推定手段による前記モータ回転子の位置推定値を用いて、前記電流制御手段からの出力であるd軸電圧指令及びq軸電圧指令を、3相電圧指令に変換する電圧指令座標変換手段と、
前記モータの3相電流を前記モータ回転子の位置推定値を用いて、dq軸座標軸での値である前記d軸電流およびq軸電流に変換する電流座標変換手段と、
起動開始の直後に前記モータに流れ込む電流がゼロを含む所望の値となるように電流フィードバック制御を実施し、この時の出力電圧指令が所定量以上となっていた場合に前記モータが回転中であると判断する空転判別手段と、
起動開始直後に空転判別手段により前記モータが回転中であると判断した場合、前記回転子位置推定手段において算出されるq軸電圧高周波成分とq軸電流高周波成分の積から、d軸電圧高周波成分とd軸電流高周波成分の積を減じた値の直流成分が所定の範囲内に収束するまで、前記回転子位置推定手段の推定ゲイン増大させて推定応答を早めて、直流成分が所定の範囲内に収束した後は推定ゲインを通常状態に戻す制御手段とを具備することを特徴とする。
In order to solve the above problems, the present invention provides a motor control device applied to a permanent magnet motor having a magnetic saliency in a motor rotor and supplied with an output from an inverter that converts DC power into AC power. ,
A rotational current command having a high frequency component different from the rotational frequency of the motor rotor, a d-axis current command related to the rotor projecting direction necessary for outputting torque, and a q-axis current command related to a direction perpendicular to the rotor projecting direction High frequency current command superimposing means for superimposing each on
The d-axis voltage command and q-axis voltage command of the inverter output are operated so that the actual values of the d-axis current and q-axis current of the motor follow the current command value output from the high-frequency current command superimposing means. Current control means;
Using the actual values of the d-axis voltage command, the q-axis voltage command, the d-axis current, and the q-axis current, the frequency component of the high-frequency current superimposed by the high-frequency current command superimposing means for each input value is extracted, and A value obtained by subtracting the product of the d-axis voltage high-frequency component and the d-axis current high-frequency component from the product of the q-axis voltage high-frequency component and the q-axis current high-frequency component is calculated, and the direct current component of the calculated value is zero. A rotor position estimating means for correcting and outputting the estimated rotational speed value of the rotor, and outputting a time integral value of the estimated rotational speed value of the motor rotor as the estimated position value of the motor rotor;
Voltage command coordinate conversion for converting a d-axis voltage command and a q-axis voltage command, which are outputs from the current control unit, into a three-phase voltage command using the estimated position value of the motor rotor by the rotor position estimation unit Means,
Current coordinate conversion means for converting the three-phase current of the motor into the d-axis current and the q-axis current, which are values on the dq-axis coordinate axes, using the estimated position of the motor rotor;
Immediately after start-up, current feedback control is performed so that the current flowing into the motor becomes a desired value including zero. When the output voltage command at this time exceeds a predetermined amount, the motor is rotating. An idling determination means for determining that there is,
If the idling determination means determines that the motor is rotating immediately after start-up, the d-axis voltage high-frequency component is calculated from the product of the q-axis voltage high-frequency component and the q-axis current high-frequency component calculated by the rotor position estimation means. Until the DC component of the value obtained by subtracting the product of the high-frequency component and the d-axis current converges within the predetermined range, the estimated gain of the rotor position estimating means is increased to speed up the estimation response, and the DC component is within the predetermined range. And control means for returning the estimated gain to the normal state after the convergence.

本発明によれば、起動から一定時間の間は電流基準を0とした電流フィードバック制御のみ実施し、その間の電圧ベクトル振幅が一定値以上であれば、永久磁石モータが空転中であると判断して高調波重畳時の回転子位置推定のゲインを大きくして高速に位置推定を行うことにより、永久磁石モータが高速に回転している状態でも、スムーズに起動することができる。   According to the present invention, only current feedback control with a current reference of 0 is performed for a certain time from the start, and if the voltage vector amplitude during that time is greater than or equal to a certain value, it is determined that the permanent magnet motor is idling. By increasing the rotor position estimation gain at the time of harmonic superposition and performing position estimation at a high speed, the permanent magnet motor can be started smoothly even when the permanent magnet motor is rotating at a high speed.

以上のように本発明によれば、永久磁石モータが回転している状態から起動するに際し、スムーズに起動することを可能としたモータ制御装置を提供できるものである。   As described above, according to the present invention, it is possible to provide a motor control device that can start smoothly when the permanent magnet motor starts from a rotating state.

(第1実施形態)
本発明による第1実施形態のモータ制御装置を、図1及び図2を参照して説明する。図1において図6の回路要素と同一の回路要素には同一符号を付して示している。
(First embodiment)
The motor control apparatus of 1st Embodiment by this invention is demonstrated with reference to FIG.1 and FIG.2. In FIG. 1, the same circuit elements as those in FIG. 6 are denoted by the same reference numerals.

図1に示すように、本実施形態のモータ制御装置は、高周波電流指令重畳手段11と、電流制御手段12と、電圧指令座標変換手段13と、電流座標変換手段14と、回転子位置推定手段15′と、動作指令手段16と、電流基準信号切換手段17と、空転検出手段18と、推定ゲイン切換手段19とから構成され、永久磁石モータ1を駆動するインバータ部2に適用される。   As shown in FIG. 1, the motor control device of this embodiment includes a high frequency current command superimposing means 11, a current control means 12, a voltage command coordinate converting means 13, a current coordinate converting means 14, and a rotor position estimating means. 15 ', an operation command means 16, a current reference signal switching means 17, an idling detection means 18, and an estimated gain switching means 19, and is applied to the inverter unit 2 that drives the permanent magnet motor 1.

ここに、回転子位置推定手段15′は、図6にて示した回転子位置推定手段15に、推定完了設定手段15a及び比較器15bを付加したものであり、回転子位置推定手段15の機能と共に、推定完了設定手段15a及び比較器15bによる機能を奏する。すなわち、q軸電圧高周波成分とq軸電流高周波成分との積からd軸電圧高周波成分とd軸電流高周波成分との積を減じた値である直流成分Hが推定完了設定手段15aにより設定された値よりも小さくなると、動作指令手段16からの出力HI_GAINがOFFとなりゲインG1により回転子位置推定が行われる。   Here, the rotor position estimating means 15 'is obtained by adding an estimation completion setting means 15a and a comparator 15b to the rotor position estimating means 15 shown in FIG. In addition, the function of the estimation completion setting means 15a and the comparator 15b is achieved. That is, the DC component H, which is a value obtained by subtracting the product of the d-axis voltage high-frequency component and the d-axis current high-frequency component from the product of the q-axis voltage high-frequency component and the q-axis current high-frequency component, is set by the estimation completion setting means 15a. When the value is smaller than the value, the output HI_GAIN from the operation command means 16 is turned OFF, and the rotor position is estimated by the gain G1.

動作指令手段16は、起動時における起動指令START、回転子位置推定手段15′からの出力H_LEVEL及び空転検出手段18からのFRUN信号を入力すると共に高周波電流重畳手段11に対する高周波重畳指令HF_ON、電流基準信号切換手段17に対する切換信号0_CURR、推定ゲイン切換手段19に対する指令HI_GAINを出力する。   The operation command means 16 receives the start command START at the time of start-up, the output H_LEVEL from the rotor position estimation means 15 'and the FRUN signal from the idling detection means 18, and the high frequency superposition command HF_ON for the high frequency current superposition means 11, the current reference A switching signal 0_CURR for the signal switching means 17 and a command HI_GAIN for the estimated gain switching means 19 are output.

電流基準信号切換手段17は、高周波電流指令重畳手段11と電流制御手段12との間に設けられ、電流制御手段12に与える電流基準IdRef2、IdRef2を、そのまま又は0に切換える。   The current reference signal switching unit 17 is provided between the high-frequency current command superimposing unit 11 and the current control unit 12 and switches the current references IdRef2 and IdRef2 to be given to the current control unit 12 as they are or to 0.

空転検出手段18は、ベクトル振幅演算部18a、空転検出設定手段18b及び比較器18cを有し、振幅値E1_Rを下記式1にて求め、当該振幅値E1_Rが空転検出設定手段18bにより設定された値より大きければ、空転検出手段18よりFRUN信号を出力する。

Figure 2005080458
The idling detection unit 18 includes a vector amplitude calculation unit 18a, an idling detection setting unit 18b, and a comparator 18c. The amplitude value E1_R is obtained by the following equation 1, and the amplitude value E1_R is set by the idling detection setting unit 18b. If greater than the value, the FRUN signal is output from the idling detection means 18.
Figure 2005080458

推定ゲイン切換手段19は、動作指令手段16からの指令HI_GAINに応動し、通常時ゲイン設定手段19aと空転起動時ゲイン設定手段19bとを切換えて、回転子位置推定手段15′のPI制御器15cにゲインG1,G2を選択的に与える。この場合、ゲインは、G1<G2の関係となっており、空転時には回転子位置推定が早く収束するように設定されている。   The estimated gain switching means 19 responds to the command HI_GAIN from the operation command means 16 and switches between the normal gain setting means 19a and the idling start gain setting means 19b, and the PI controller 15c of the rotor position estimating means 15 '. Are selectively given gains G1 and G2. In this case, the gain has a relationship of G1 <G2, and is set so that the rotor position estimation converges quickly during idling.

上記のように構成された本実施形態のモータ制御装置においては、起動時に、起動指令STARTが動作指令手段16に入力されると、動作指令手段16は、図2に示すように、時間t_OC間、電流基準信号切換手段17に対する切換信号0_CURRを1にする。   In the motor control device according to the present embodiment configured as described above, when the start command START is input to the operation command means 16 at the time of start-up, the operation command means 16 performs a time t_OC interval as shown in FIG. The switching signal 0_CURR for the current reference signal switching means 17 is set to 1.

これにより、高周波電流指令重畳手段11から出力され電流制御手段12に与える電流基準IdRef2、IdRef2は0となる。   As a result, the current references IdRef2 and IdRef2 output from the high-frequency current command superimposing unit 11 and applied to the current control unit 12 become zero.

この際、永久磁石モータが空転状態であれば、電流制御手段12からの出力であるd軸電圧指令およびq軸電圧指令VdRef,VqRefは、逆起電圧の逆位相の値となり、空転検出手段18においてその振幅値E1_Rが上記式のように求められる。   At this time, if the permanent magnet motor is in the idling state, the d-axis voltage command and the q-axis voltage commands VdRef and VqRef, which are outputs from the current control means 12, become the values of the reverse phase of the counter electromotive voltage, and the idling detection means 18 The amplitude value E1_R is obtained as in the above equation.

空転検出手段18において、振幅値E1_Rが空転検出設定手段18bにより設定された値より大きければ、図2に示すように、FRUN信号が動作指令手段16に出力される。   In the idling detection means 18, if the amplitude value E1_R is larger than the value set by the idling detection setting means 18b, the FRUN signal is output to the operation command means 16, as shown in FIG.

動作指令手段16は、図2に示すようにt_0C経過後、高周波電流重畳手段11に対して高周波重畳指令HF_ONとともに、回転子位置推定手段15においてHの値が推定完了設定手段15aにより設定された値よりも大きい期間、推定ゲイン切換手段19に対してHI_GAIN信号を出力する。   As shown in FIG. 2, after t_0C has elapsed, the operation command means 16 sets the value of H in the rotor position estimation means 15 to the high-frequency current superposition means 11 together with the high-frequency superposition command HF_ON by the estimation completion setting means 15a. The HI_GAIN signal is output to the estimated gain switching means 19 for a period longer than the value.

これにより、推定ゲイン切換手段19は、通常時ゲイン設定手段19aに設定されたゲインG1から空転起動時ゲイン設定手段19bに設定されたゲインG2に切り換え、回転子位置推定手段15′のPI制御器15cに与える。回転子位置推定手段15′は、空転起動時ゲイン設定手段19bに設定されたゲインG2にて回転子位置推定が行われる。   Thereby, the estimated gain switching means 19 switches from the gain G1 set in the normal time gain setting means 19a to the gain G2 set in the idling start gain setting means 19b, and the PI controller of the rotor position estimating means 15 '. 15c. The rotor position estimating means 15 'performs rotor position estimation with the gain G2 set in the idling start gain setting means 19b.

一方、回転子位置推定手段15において直流成分Hの値が、推定完了設定手段15aにより設定された値よりも小さくなると、動作指令手段16からの出力HI_GAINがOFFとなり、回転子位置推定手段15′は、通常時ゲイン設定手段19aに設定されたゲインG1により回転子位置推定が行われる。   On the other hand, when the value of the DC component H in the rotor position estimating means 15 becomes smaller than the value set by the estimation completion setting means 15a, the output HI_GAIN from the operation command means 16 is turned OFF, and the rotor position estimating means 15 ' The rotor position is estimated by the gain G1 set in the normal time gain setting means 19a.

以上のように本実施形態のモータ制御装置では、起動から一定時間の間は電流基準を0とした電流フィードバック制御のみ実施し、その間の電圧ベクトル振幅が一定値以上であれば、永久磁石モータ1が空転中であると判断して高調波重畳時の回転子位置推定のゲインを大きくして高速に位置推定を行う。これにより、永久磁石モータ1が高速に回転している状態でも、スムーズに起動することができる。   As described above, in the motor control device of the present embodiment, only the current feedback control with the current reference being 0 is performed for a certain time from the start, and if the voltage vector amplitude during that time is equal to or greater than a certain value, the permanent magnet motor 1 Is determined to be idling, and the position estimation is performed at high speed by increasing the rotor position estimation gain when the harmonics are superimposed. Thereby, even if the permanent magnet motor 1 is rotating at high speed, it can start smoothly.

(第2実施形態)
本発明による第1実施形態のモータ制御装置を、図3を参照して説明する。図3において図1、図6の回路要素と同一の回路要素には同一符号を付して示している。
(Second Embodiment)
A motor control apparatus according to a first embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same circuit elements as those in FIGS. 1 and 6 are denoted by the same reference numerals.

図3に示すように、本実施形態のモータ制御装置は、高周波電流指令重畳手段11と、電流制御手段12と、電圧指令座標変換手段13と、電流座標変換手段14と、回転子位置推定手段15と、動作指令手段16と、電流基準信号切換手段17と、空転検出手段18と、推定ゲイン切換手段19′とから構成され、永久磁石モータ1を駆動するインバータ部2に適用される。   As shown in FIG. 3, the motor control apparatus according to the present embodiment includes a high-frequency current command superimposing unit 11, a current control unit 12, a voltage command coordinate conversion unit 13, a current coordinate conversion unit 14, and a rotor position estimation unit. 15, operation command means 16, current reference signal switching means 17, idling detection means 18, and estimated gain switching means 19 ′, and is applied to the inverter unit 2 that drives the permanent magnet motor 1.

推定ゲイン切換手段19′は、動作指令手段16からの出力HI_GAINがONとなってからt_hg経過後、OFFとなりようにt_hgワンショット回路19cを有し、このt_hg経過後に、通常時ゲイン設定手段19aと空転起動時ゲイン設定手段19bとを切換えて、回転子位置推定手段15′のPI制御器15cにゲインG1,G2を選択的に与える。ゲインはG1<G2の関係であり、空転時には回転子位置推定が早く収束するように設定されている。   The estimated gain switching means 19 'has a t_hg one-shot circuit 19c so that the output HI_GAIN from the operation command means 16 is turned ON after t_hg has elapsed, and after this t_hg has elapsed, the normal gain setting means 19a is provided. And the idling start gain setting means 19b are switched to selectively give gains G1 and G2 to the PI controller 15c of the rotor position estimating means 15 '. The gain has a relationship of G1 <G2, and is set so that the rotor position estimation converges quickly during idling.

上記のように構成された本実施形態のモータ制御装置においては、起動時に、起動指令STARTが動作指令手段16に入力されると、動作指令手段16は、時間t_OC間、電流基準信号切換手段17に対する切換信号0_CURRを1にする。   In the motor control device of the present embodiment configured as described above, when the start command START is input to the operation command means 16 at the time of start-up, the operation command means 16 is set to the current reference signal switching means 17 for the time t_OC. The switching signal 0_CURR for is set to 1.

これにより、高周波電流指令重畳手段11から出力され電流制御手段12に与える電流基準IdRef2、IdRef2は0となる。   As a result, the current references IdRef2 and IdRef2 output from the high-frequency current command superimposing unit 11 and applied to the current control unit 12 become zero.

この際、モータ1が空転状態であれば、電流制御手段12からの出力であるd軸電圧指令およびq軸電圧指令VdRef,VqRefは、逆起電圧の逆位相の値となり、空転検出手段18においてその振幅値E1_Rが前記式1のように求められる。   At this time, if the motor 1 is in the idling state, the d-axis voltage command and the q-axis voltage commands VdRef and VqRef, which are outputs from the current control means 12, become values of opposite phases of the counter electromotive voltage, and the idling detection means 18 The amplitude value E1_R is obtained as in Equation 1 above.

振幅値E1_Rが、空転検出設定手段18bにより設定された値より大きければ、空転検出手段18よりFRUN信号が出力され、動作指令手段16からt_0C経過後、高周波電流重畳手段11に対して高周波重畳指令HF_ONとともに、回転子位置推定手段15において、あらかじめ設定されたt_hg時間、推定ゲイン切換手段19に対してHI_GAIN信号を出力する。   If the amplitude value E1_R is larger than the value set by the idling detection setting means 18b, the FRUN signal is output from the idling detection means 18, and after the elapse of t_0C from the operation command means 16, the high frequency current superposition means 11 is instructed. Along with HF_ON, the rotor position estimating means 15 outputs a HI_GAIN signal to the estimated gain switching means 19 for a preset t_hg time.

これにより、推定ゲイン切換手段19′は、通常時ゲイン設定手段19aに設定されたゲインG1から、空転起動時ゲイン設定手段19bに設定されたゲインG2に切換えて回転子位置推定に用いられる。   Thereby, the estimated gain switching means 19 ′ is used for estimating the rotor position by switching from the gain G1 set in the normal time gain setting means 19a to the gain G2 set in the idling start gain setting means 19b.

動作指令手段16からの出力HI_GAINがONとなってからt_hg経過後、OFFとなりゲインG1により回転子位置推定が行われる。   After t_hg elapses after the output HI_GAIN from the operation command means 16 is turned on, it is turned off and the rotor position is estimated by the gain G1.

以上のように本実施形態のモータ制御装置では、起動から一定時間の間は電流基準を0とした電流フィードバック制御のみ実施し、その間の電圧ベクトル振幅が一定値以上であれば、永久磁石モータ1が空転中であると判断して高調波重畳時の回転子位置推定のゲインを大きくして高速に位置推定を行う。これにより、永久磁石モータ1が高速に回転している状態でも、スムーズに起動することができる。   As described above, in the motor control device of the present embodiment, only the current feedback control with the current reference being 0 is performed for a certain time from the start, and if the voltage vector amplitude during that time is equal to or greater than a certain value, the permanent magnet motor 1 Is determined to be idling, and the position estimation is performed at high speed by increasing the rotor position estimation gain when the harmonics are superimposed. Thereby, even if the permanent magnet motor 1 is rotating at high speed, it can start smoothly.

また、推定ゲイン切換手段19′のt_hgワンショット回路19cにより、推定ゲインを増大させて推定応答を早めた後は、推定ゲインは通常状態に戻すことができる。   Further, after the estimated gain is increased by the t_hg one-shot circuit 19c of the estimated gain switching means 19 'to speed up the estimated response, the estimated gain can be returned to the normal state.

(第3実施形態)
本発明による第3実施形態のモータ制御装置を、図4を参照して説明する。図3において図1、図3及び図6の回路要素と同一の回路要素には同一符号を付して示している。
(Third embodiment)
A motor control apparatus according to a third embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same circuit elements as those in FIGS. 1, 3 and 6 are denoted by the same reference numerals.

図4に示すように、本実施形態のモータ制御装置は、高周波電流指令重畳手段11と、電流制御手段12と、電圧指令座標変換手段13と、電流座標変換手段14と、回転子位置推定手段15′と、動作指令手段16と、電流基準信号切換手段17と、空転検出手段18と、高周波電流指令切換手段20とから構成され、永久磁石モータ1を駆動するインバータ部2に適用される。   As shown in FIG. 4, the motor control apparatus of this embodiment includes a high frequency current command superimposing means 11, a current control means 12, a voltage command coordinate converting means 13, a current coordinate converting means 14, and a rotor position estimating means. 15 ′, operation command means 16, current reference signal switching means 17, idling detection means 18, and high-frequency current command switching means 20, and is applied to the inverter unit 2 that drives the permanent magnet motor 1.

高周波電流指令切換手段20は、回転子位置推定手段15′において直流成分Hの値が推定完了設定手段15aにより設定された値よりも大きい期間に入力されるHF_SEL信号に応動し、通常時に高周波電流重畳手段11により印加される高周波電流を設定手段20aに設定された高周波電流指令HF1から空転起動時設定手段20bに設定された高周波電流指令HF2に切換るものである。この場合、高周波電流指令はHF1<HF2の関係で空転からの時起動時には回転子位置推定手段15′において回転子位置推定が早く収束するように設定されている。   The high-frequency current command switching means 20 responds to the HF_SEL signal input during a period when the value of the DC component H is larger than the value set by the estimation completion setting means 15a in the rotor position estimating means 15 ′, The high frequency current applied by the superimposing means 11 is switched from the high frequency current command HF1 set in the setting means 20a to the high frequency current command HF2 set in the idling start time setting means 20b. In this case, the high-frequency current command is set so that the rotor position estimation converges quickly in the rotor position estimating means 15 'when starting from idling due to the relationship of HF1 <HF2.

上記のように構成された本実施形態のモータ制御装置においては、起動時に、起動指令STARTが動作指令手段16に入力されると、動作指令手段16は、時間t_OC間、電流基準信号切換手段17に対する切換信号0_CURRを1にする。   In the motor control device of the present embodiment configured as described above, when the start command START is input to the operation command means 16 at the time of start-up, the operation command means 16 is set to the current reference signal switching means 17 for the time t_OC. The switching signal 0_CURR for is set to 1.

これにより、高周波電流指令重畳手段11から出力され電流制御手段12に与える電流基準IdRef2、IdRef2は0となる。   As a result, the current references IdRef2 and IdRef2 output from the high-frequency current command superimposing unit 11 and applied to the current control unit 12 become zero.

この際、永久磁石モータが空転状態であれば、電流制御手段12からの出力であるd軸電圧指令およびq軸電圧指令VdRef,VqRefは、逆起電圧の逆位相の値となり、空転検出手段18においてその振幅値E1_Rが上記式1のように求められる。   At this time, if the permanent magnet motor is in the idling state, the d-axis voltage command and the q-axis voltage commands VdRef and VqRef, which are outputs from the current control means 12, become the values of the reverse phase of the counter electromotive voltage, and the idling detection means 18 The amplitude value E1_R is obtained as shown in Equation 1 above.

振幅値E1_Rが空転検出設定手段18bにより設定された値より大きければ、空転検出手段18よりFRUN信号が出力され、動作指令手段16からt_0C経過後、高周波電流重畳手段11に対して高周波重畳指令HF_ONとともに、回転子位置推定手段15′において直流成分Hの値が、推定完了設定手段15aにより設定された値よりも大きい期間、高調波電流指令切換手段20に対してHF_SEL信号を出力する。   If the amplitude value E1_R is greater than the value set by the idling detection setting means 18b, the FRUN signal is output from the idling detection means 18, and after the elapse of t_0C from the operation command means 16, the high frequency superposition command HF_ON At the same time, the HF_SEL signal is output to the harmonic current command switching means 20 during a period when the value of the DC component H is larger than the value set by the estimation completion setting means 15a in the rotor position estimation means 15 '.

高調波電流指令切換手段20は、このHF_SEL信号に応動し、通常時に高周波電流重畳手段11により印加される高周波電流を設定手段20aに設定された高周波電流指令HF1から空転起動時設定手段20bに設定された高周波電流指令HF2に切換る。   The harmonic current command switching means 20 responds to the HF_SEL signal, and sets the high frequency current applied by the high frequency current superimposing means 11 at the normal time from the high frequency current command HF1 set in the setting means 20a to the idling start time setting means 20b. The high-frequency current command HF2 is switched to.

回転子位置推定手段15′において直流成分Hの値が推定完了設定手段15aにより設定された値よりも小さくなると、動作指令手段16からの出力HF_SELがOFFとなり、通常時に高周波電流重畳手段11により印加される高周波電流を設定手段20aに設定された通常時の高周波電流指令が印加される。   When the value of the DC component H in the rotor position estimating means 15 'becomes smaller than the value set by the estimation completion setting means 15a, the output HF_SEL from the operation command means 16 is turned OFF and is applied by the high frequency current superimposing means 11 in normal times. The normal high frequency current command in which the set high frequency current is set in the setting means 20a is applied.

以上のように本実施形態のモータ制御装置では、起動から一定時間の間は電流基準を0とした電流フィードバック制御のみ実施し、その間の電圧ベクトル振幅が一定値以上であれば永久磁石モータ1が空転中であると判断して高調波重畳時の高周波電流指令を大きくして高速に位置推定を行っている。   As described above, in the motor control device of the present embodiment, only the current feedback control with the current reference set to 0 is performed for a certain time from the start, and if the voltage vector amplitude during that time is equal to or greater than a certain value, the permanent magnet motor 1 The position is estimated at high speed by determining that the vehicle is idling and increasing the high-frequency current command when the harmonics are superimposed.

これにより、永久磁石モータ1が高速に回転している状態でもスムーズに起動することができ、通常時は最小の高周波電流指令とすることにより高周波による振動、騒音を最小限とすることが出来る。   Thereby, even if the permanent magnet motor 1 is rotating at high speed, it can be started smoothly, and vibration and noise due to high frequency can be minimized by using the minimum high frequency current command in normal times.

(第4実施形態)
本発明による第4実施形態のモータ制御装置を、図5を参照して説明する。図3において図1、図3、図4及び図6の回路要素と同一の回路要素には同一符号を付して示している。
(Fourth embodiment)
A motor control apparatus according to a fourth embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same circuit elements as those in FIGS. 1, 3, 4 and 6 are denoted by the same reference numerals.

図5に示すように、本実施形態のモータ制御装置は、高周波電流指令重畳手段11と、電流制御手段12と、電圧指令座標変換手段13と、電流座標変換手段14と、回転子位置推定手段15と、動作指令手段16と、電流基準信号切換手段17と、空転検出手段18と、高周波電流指令切換手段20′とから構成され、永久磁石モータ1を駆動するインバータ部2に適用される。   As shown in FIG. 5, the motor control device of this embodiment includes a high-frequency current command superimposing means 11, a current control means 12, a voltage command coordinate conversion means 13, a current coordinate conversion means 14, and a rotor position estimation means. 15, operation command means 16, current reference signal switching means 17, idling detection means 18, and high-frequency current command switching means 20 ′, and is applied to the inverter unit 2 that drives the permanent magnet motor 1.

高周波電流指令切換手段20′は、動作指令手段16から高周波電流重畳手段11に対して高周波重畳指令HF_ONが出力され、また高調波電流指令切換手段20′に対しHF_SEL信号を、t_hgワンショット回路20cによりあらかじめ設定されたt_hg時間出力したとき、通常時に高周波電流重畳手段11により印加される高周波電流を設定手段20aに設定された高周波電流指令HF1から空転起動時設定手段20bに設定された高周波電流指令HF2に切換るものである。この場合、高周波電流指令はHF1<HF2の関係で空転からの時起動時には回転子位置推定手段15において回転子位置推定が早く収束するように設定されている。   The high-frequency current command switching means 20 'outputs a high-frequency superposition command HF_ON from the operation command means 16 to the high-frequency current superposition means 11, and also outputs an HF_SEL signal to the harmonic current command switching means 20' and a t_hg one-shot circuit 20c. The high frequency current command set in the idling start time setting means 20b from the high frequency current command HF1 set in the setting means 20a to the high frequency current applied by the high frequency current superimposing means 11 at the normal time when output for t_hg time set in advance by It switches to HF2. In this case, the high-frequency current command is set so that the rotor position estimation means converges quickly in the rotor position estimating means 15 when starting from idling because of the relationship of HF1 <HF2.

上記のように構成された本実施形態のモータ制御装置においては、起動時に、起動指令STARTが動作指令手段16に入力されると、動作指令手段16は、時間t_OC間、電流基準信号切換手段17に対する切換信号0_CURRを1にする。   In the motor control device of the present embodiment configured as described above, when the start command START is input to the operation command means 16 at the time of start-up, the operation command means 16 is set to the current reference signal switching means 17 for the time t_OC. The switching signal 0_CURR for is set to 1.

これにより、高周波電流指令重畳手段11から出力され電流制御手段12に与える電流基準IdRef2、IdRef2は0となる。   As a result, the current references IdRef2 and IdRef2 output from the high-frequency current command superimposing unit 11 and applied to the current control unit 12 become zero.

この際、永久磁石モータが空転状態であれば、電流制御手段12からの出力であるd軸電圧指令およびq軸電圧指令VdRef,VqRefは、逆起電圧の逆位相の値となり、空転検出手段18においてその振幅値E1_Rが上記式1のように求められる。   At this time, if the permanent magnet motor is in the idling state, the d-axis voltage command and the q-axis voltage commands VdRef and VqRef, which are outputs from the current control means 12, become the values of the reverse phase of the counter electromotive voltage, and the idling detection means 18 The amplitude value E1_R is obtained as shown in Equation 1 above.

振幅値E1_Rが、空転検出設定手段18bにより設定された値より大きければ、空転検出手段18よりFRUN信号が出力され、動作指令手段16からt_0C経過後、高周波電流重畳手段11に対して高周波重畳指令HF_ONとともに、回転子位置推定手段15において、あらかじめ設定されたt_hg時間、高調波電流指令切換手段20に対してHF_SEL信号を出力する。   If the amplitude value E1_R is larger than the value set by the idling detection setting means 18b, the FRUN signal is output from the idling detection means 18, and after the elapse of t_0C from the operation command means 16, the high frequency current superposition means 11 is instructed. Together with HF_ON, the rotor position estimating means 15 outputs the HF_SEL signal to the harmonic current command switching means 20 for a preset t_hg time.

こりにより、高調波電流指令切換手段20′は、通常時に高周波電流重畳手段11により印加される高周波電流を設定手段20aに設定された高周波電流指令HF1から空転起動時設定手段20bに設定された高周波電流指令HF2に切換る。   As a result, the harmonic current command switching means 20 'causes the high-frequency current applied by the high-frequency current superimposing means 11 at the normal time from the high-frequency current command HF1 set in the setting means 20a to the high frequency set in the idling start setting means 20b. Switch to current command HF2.

動作指令手段16からの出力HF_SELがONとなってからt_hg経過後、OFFとなり通常時に高周波電流重畳手段11により印加される高周波電流を設定手段20aに設定された通常時の高周波電流指令が印加される。   After t_hg has elapsed since the output HF_SEL from the operation command means 16 is turned ON, it is turned OFF, and the normal high frequency current command in which the high frequency current applied by the high frequency current superimposing means 11 is set in the setting means 20a is applied. The

以上のように本実施形態のモータ制御装置では、起動から一定時間の間は電流基準を0とした電流フィードバック制御のみ実施し、その間の電圧ベクトル振幅が一定値以上であれば永久磁石モータ1が空転中であると判断して高調波重畳時の高周波電流指令を大きくして高速に位置推定を行っている。   As described above, in the motor control device of the present embodiment, only the current feedback control with the current reference set to 0 is performed for a certain time from the start, and if the voltage vector amplitude during that time is equal to or greater than a certain value, the permanent magnet motor 1 The position is estimated at high speed by determining that the vehicle is idling and increasing the high-frequency current command when the harmonics are superimposed.

これにより、永久磁石モータ1が高速に回転している状態でもスムーズに起動することができ、通常時は最小の高周波電流指令とすることにより高周波による振動、騒音を最小限とすることが出来る。   Thereby, even if the permanent magnet motor 1 is rotating at high speed, it can be started smoothly, and vibration and noise due to high frequency can be minimized by using the minimum high frequency current command in normal times.

また、高周波電流指令切換手段20′のt_hgワンショット回路20cの作用により高周波電流指令を増大させて推定応答を早めた後は、高周波電流指令値を通常の状態に戻すことができる。   Further, after the high frequency current command is increased by the action of the t_hg one-shot circuit 20c of the high frequency current command switching means 20 'to speed up the estimated response, the high frequency current command value can be returned to the normal state.

なお、本願発明は、上記各実施形態に限定されるものでなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合、組み合わされた効果が得られる。さらに、上記各実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば実施形態に示される全構成要件から幾つかの構成要件が省略されることで発明が抽出された場合には、その抽出された発明を実施する場合には省略部分が周知慣用技術で適宜補われるものである。   Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. In addition, the embodiments may be appropriately combined as much as possible, and in that case, combined effects can be obtained. Furthermore, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, when an invention is extracted by omitting some constituent elements from all the constituent elements shown in the embodiment, when the extracted invention is implemented, the omitted part is appropriately supplemented by a well-known common technique. It is what is said.

本発明によるモータ制御装置の第1実施形態を示すブロック図。The block diagram which shows 1st Embodiment of the motor control apparatus by this invention. 本発明によるモータ制御装置の第1実施形態におけるシーケンス図。The sequence diagram in 1st Embodiment of the motor control apparatus by this invention. 本発明によるモータ制御装置の第2実施形態を示すブロック図。The block diagram which shows 2nd Embodiment of the motor control apparatus by this invention. 本発明によるモータ制御装置の第3実施形態を示すブロック図。The block diagram which shows 3rd Embodiment of the motor control apparatus by this invention. 本発明によるモータ制御装置の第4実施形態を示すブロック図。The block diagram which shows 4th Embodiment of the motor control apparatus by this invention. 従来のモータ制御装置の一例を示すブロック図。The block diagram which shows an example of the conventional motor control apparatus.

符号の説明Explanation of symbols

1…永久磁石モータ、2…インバータ、11…高周波電流指令重畳手段、12…電流制御手段、13…電圧指令座標変換手段、14…電流座標変換手段、15…回転子位置推定手段、15a…推定完了設定手段、16…動作指令手段、17…電流基準信号切換手段、18…空転検出手段、18a…ベクトル振幅演算部、18b…空転検出設定手段、18c…比較器、19…推定ゲイン切換手段、19a…通常時ゲイン設定手段、19b…空転時ゲイン設定手段、20…高周波電流指令切換手段、20a…通常時高周波電流設定手段、20b…空転時高周波電流設定手段。   DESCRIPTION OF SYMBOLS 1 ... Permanent magnet motor, 2 ... Inverter, 11 ... High frequency current command superimposing means, 12 ... Current control means, 13 ... Voltage command coordinate conversion means, 14 ... Current coordinate conversion means, 15 ... Rotor position estimation means, 15a ... Estimation Completion setting means, 16 ... operation command means, 17 ... current reference signal switching means, 18 ... idling detection means, 18a ... vector amplitude calculation unit, 18b ... idling detection setting means, 18c ... comparator, 19 ... estimated gain switching means, 19a: Normal gain setting means, 19b: idling gain setting means, 20 ... high frequency current command switching means, 20a ... normal high frequency current setting means, 20b ... idling high frequency current setting means.

Claims (4)

モータ回転子に磁気突極性を有し、直流電力を交流電力に変換するインバータからの出力が供給される永久磁石モータに適用されるモータ制御装置において、
前記モータ回転子の回転周波数と異なる高周波成分の回転電流指令を、トルクを出力するために必要な回転子突方向に係るd軸電流指令及び前記回転子突方向と直角方向に係るq軸電流指令にそれぞれ重畳する高周波電流指令重畳手段と、
前記モータのd軸電流及びq軸電流の実際値が前記高周波電流指令重畳手段から出力される電流指令値に追従するように、前記インバータの出力のd軸電圧指令とq軸電圧指令を操作する電流制御手段と、
d軸電圧指令及びq軸電圧指令とd軸電流とq軸電流の実際値を用いて、それぞれの入力の値の前記高周波電流指令重畳手段で重畳した高周波電流の周波数成分を抽出し、かつ当該q軸電圧高周波成分とq軸電流高周波成分の積から、d軸電圧高周波成分とd軸電流高周波成分の積を減じた値を算出し、当該算出値の直流成分がゼロとなるように前記モータ回転子の回転速度推定値を補正して出力すると共に、前記モータ回転子の回転速度推定値の時間積分値を前記モータ回転子の位置推定値として出力する回転子位置推定手段と、
この回転子位置推定手段による前記モータ回転子の位置推定値を用いて、前記電流制御手段からの出力であるd軸電圧指令及びq軸電圧指令を、3相電圧指令に変換する電圧指令座標変換手段と、
前記モータの3相電流を前記モータ回転子の位置推定値を用いて、dq軸座標軸での値である前記d軸電流およびq軸電流に変換する電流座標変換手段と、
起動開始の直後に前記モータに流れ込む電流がゼロを含む所望の値となるように電流フィードバック制御を実施し、この時の出力電圧指令が所定量以上となっていた場合に前記モータが回転中であると判断する空転判別手段と、
起動開始直後に空転判別手段により前記モータが回転中であると判断した場合、前記回転子位置推定手段において算出されるq軸電圧高周波成分とq軸電流高周波成分の積から、d軸電圧高周波成分とd軸電流高周波成分の積を減じた値の直流成分が所定の範囲内に収束するまで、前記回転子位置推定手段の推定ゲイン増大させて推定応答を早めて、直流成分が所定の範囲内に収束した後は推定ゲインを通常状態に戻す制御手段と
を具備することを特徴とするモータ制御装置。
In a motor control device applied to a permanent magnet motor having a magnetic saliency on a motor rotor and supplied with an output from an inverter that converts DC power into AC power,
A rotational current command having a high frequency component different from the rotational frequency of the motor rotor, a d-axis current command related to the rotor projecting direction necessary for outputting torque, and a q-axis current command related to a direction perpendicular to the rotor projecting direction High frequency current command superimposing means for superimposing each on
The d-axis voltage command and q-axis voltage command of the inverter output are operated so that the actual values of the d-axis current and q-axis current of the motor follow the current command value output from the high-frequency current command superimposing means. Current control means;
Using the actual values of the d-axis voltage command, the q-axis voltage command, the d-axis current, and the q-axis current, the frequency component of the high-frequency current superimposed by the high-frequency current command superimposing means for each input value is extracted, and A value obtained by subtracting the product of the d-axis voltage high-frequency component and the d-axis current high-frequency component from the product of the q-axis voltage high-frequency component and the q-axis current high-frequency component is calculated, and the direct current component of the calculated value is zero. A rotor position estimating means for correcting and outputting the estimated rotational speed value of the rotor, and outputting a time integral value of the estimated rotational speed value of the motor rotor as the estimated position value of the motor rotor;
Voltage command coordinate conversion for converting a d-axis voltage command and a q-axis voltage command, which are outputs from the current control unit, into a three-phase voltage command using the estimated position value of the motor rotor by the rotor position estimation unit Means,
Current coordinate conversion means for converting the three-phase current of the motor into the d-axis current and the q-axis current, which are values on the dq-axis coordinate axes, using the estimated position of the motor rotor;
Immediately after start-up, current feedback control is performed so that the current flowing into the motor becomes a desired value including zero. When the output voltage command at this time exceeds a predetermined amount, the motor is rotating. An idling determination means for determining that there is,
If the idling determination means determines that the motor is rotating immediately after start-up, the d-axis voltage high-frequency component is calculated from the product of the q-axis voltage high-frequency component and the q-axis current high-frequency component calculated by the rotor position estimation means. Until the DC component of the value obtained by subtracting the product of the high-frequency component and the d-axis current converges within a predetermined range, the estimated gain of the rotor position estimating means is increased to speed up the estimation response, and the DC component is within the predetermined range. And a control means for returning the estimated gain to the normal state after the convergence to the motor control device.
前記制御手段は、起動開始直後に前記空転判別手段により前記モータが回転中であると判断した場合、一定時間、前記回転子位置推定手段の推定ゲインを増大させて推定応答を早めた後、推定ゲインを通常状態に戻す手段を具備することを特徴とする請求項1記載のモータ制御装置。 When the control means determines that the motor is rotating immediately after the start of the start, the control means increases the estimated gain of the rotor position estimating means for a certain period of time to accelerate the estimated response, and then estimates 2. The motor control device according to claim 1, further comprising means for returning the gain to a normal state. 前記制御手段は、起動開始直後に前記空転判別手段により前記モータが回転中であると判断した場合、前記回転子位置推定手段において算出されるq軸電圧高周波成分とq軸電流高周波成分の積から、d軸電圧高周波成分とd軸電流高周波成分の積を減じた値の直流成分が所定の範囲内に収束するまで、前記高周波電流指令重畳手段で重畳する高周波電流指令を増大させて推定応答を早めて、前記直流成分が所定の範囲内に収束した後は高周波電流指令を通常の状態に戻す手段を具備することを特徴とする請求項1記載のモータ制御装置。 If the control means determines that the motor is rotating immediately after starting, the control means calculates the product of the q-axis voltage high-frequency component and the q-axis current high-frequency component calculated by the rotor position estimating means. The high-frequency current command superimposed by the high-frequency current command superimposing means is increased until the DC component of the value obtained by subtracting the product of the d-axis voltage high-frequency component and the d-axis current high-frequency component converges within a predetermined range. 2. The motor control device according to claim 1, further comprising means for returning the high-frequency current command to a normal state after the DC component converges within a predetermined range. 前記制御手段は、起動開始直後に前記空転判別手段により前記モータが回転中であると判断した場合、一定時間、前記高周波電流指令重畳手段で重畳する高周波電流指令を増大させて推定応答を早めた後、高周波電流指令値を通常の状態に戻す手段を具備したことを特徴とする請求項1記載のモータ制御装置。 When the control means determines that the motor is rotating immediately after start-up, the control means increases the high-frequency current command superimposed by the high-frequency current command superimposing means for a certain period of time to speed up the estimated response. 2. The motor control device according to claim 1, further comprising means for returning the high-frequency current command value to a normal state.
JP2003310243A 2003-09-02 2003-09-02 Motor controlling device Pending JP2005080458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310243A JP2005080458A (en) 2003-09-02 2003-09-02 Motor controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310243A JP2005080458A (en) 2003-09-02 2003-09-02 Motor controlling device

Publications (1)

Publication Number Publication Date
JP2005080458A true JP2005080458A (en) 2005-03-24

Family

ID=34412172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310243A Pending JP2005080458A (en) 2003-09-02 2003-09-02 Motor controlling device

Country Status (1)

Country Link
JP (1) JP2005080458A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199864A (en) * 2007-02-16 2008-08-28 Fuji Electric Fa Components & Systems Co Ltd Controller of permanent magnet type synchronous motor
JP2009148017A (en) * 2007-12-12 2009-07-02 Denso Corp Controller of rotating machine
JP2011030330A (en) * 2009-07-23 2011-02-10 Tsubaki Emerson Co Motor drive device
WO2012132703A1 (en) * 2011-03-30 2012-10-04 アイシン・エィ・ダブリュ株式会社 Motor control apparatus
JP2013128350A (en) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp Vehicular power system
JP2019213429A (en) * 2018-06-08 2019-12-12 キヤノン株式会社 Motor control device, sheet conveying device, and image forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199864A (en) * 2007-02-16 2008-08-28 Fuji Electric Fa Components & Systems Co Ltd Controller of permanent magnet type synchronous motor
JP2009148017A (en) * 2007-12-12 2009-07-02 Denso Corp Controller of rotating machine
JP2011030330A (en) * 2009-07-23 2011-02-10 Tsubaki Emerson Co Motor drive device
WO2012132703A1 (en) * 2011-03-30 2012-10-04 アイシン・エィ・ダブリュ株式会社 Motor control apparatus
JP2012213253A (en) * 2011-03-30 2012-11-01 Aisin Aw Co Ltd Motor controller
JP2013128350A (en) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp Vehicular power system
JP2019213429A (en) * 2018-06-08 2019-12-12 キヤノン株式会社 Motor control device, sheet conveying device, and image forming apparatus
JP7204347B2 (en) 2018-06-08 2023-01-16 キヤノン株式会社 Motor control device, sheet conveying device and image forming device

Similar Documents

Publication Publication Date Title
JP3719910B2 (en) Motor control device
EP1221765B1 (en) Method of controlling ac motor and controller
JP5098439B2 (en) Sensorless control device for permanent magnet synchronous motor
WO2001015311A1 (en) Synchronous motor control device and method
JP2008167566A (en) High-response control device of permanent magnet motor
JP2007189766A (en) Motor drive controller and motor drive system
JP2006238605A (en) Motor drive
JPH1189297A (en) Power converting device
JP2005080458A (en) Motor controlling device
JP5392532B2 (en) Induction motor control device
JP2007104760A (en) Motor controller
JP2019068586A (en) Motor controller and motor control method
JP2004040986A (en) Method and device for ac motor control
JP4881038B2 (en) Control device for permanent magnet synchronous motor
JP2008148437A (en) Controller for permanent magnet type synchronous motor
CN113169695A (en) Motor control device
JP3745633B2 (en) Electric motor control device
JP2006217754A (en) Synchronous machine drive controller
JP6695497B2 (en) Motor controller
JP2007228662A (en) Controller for induction motors
JP2004120854A (en) Controller for motor
JP2005278327A (en) Speed sensorless vector control device
JP2003284381A (en) Method of instantaneously interrupting and restarting induction motor and inverter control apparatus
JP2008193796A (en) Controller of permanent magnet motor, control method of permanent magnet motor, and module
JP2014230430A (en) Controller of permanent-magnet synchronous motor