JP2005079599A - High loss factor composite absorption material and microwave absorber thereof - Google Patents

High loss factor composite absorption material and microwave absorber thereof Download PDF

Info

Publication number
JP2005079599A
JP2005079599A JP2004253928A JP2004253928A JP2005079599A JP 2005079599 A JP2005079599 A JP 2005079599A JP 2004253928 A JP2004253928 A JP 2004253928A JP 2004253928 A JP2004253928 A JP 2004253928A JP 2005079599 A JP2005079599 A JP 2005079599A
Authority
JP
Japan
Prior art keywords
loss factor
conductive particles
microwave
absorber
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253928A
Other languages
Japanese (ja)
Inventor
Takeshi Oshima
武之 尾嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/605,026 external-priority patent/US20040104835A1/en
Application filed by Individual filed Critical Individual
Publication of JP2005079599A publication Critical patent/JP2005079599A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase loss factor of a composite absorber that is used for a micro absorber. <P>SOLUTION: In a conventional method of increasing loss factor of a composite absorber by dispersing conductive particles such as carbon or the like in a dielectric, conductive particles of low resistivity in which volume resistivity is lower than approx. 2 (Ω-cm) are dispersed. Therefore, loss factor reached its maximum at millimeter-wavelength or extremely high frequencies. According to the present invention, conductive particles of high resistivity in which volume resistivity is higher than approx. 2 (Ω-cm) so as to make the loss factor of composite absorber reach its maximum in a microwave frequency band. This enables increasing substantially the loss factor of the composite absorber in microwave frequencies. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一般にマイクロ波吸収体およびその材質に関するもので、特に母体となる非導電性誘電体に適当な導電率を有する導電性粒子を分散させた合成吸収材と、これを使用したマイクロ波吸収体に関するものである。   The present invention generally relates to a microwave absorber and a material thereof, and in particular, a synthetic absorber in which conductive particles having appropriate conductivity are dispersed in a non-conductive dielectric material serving as a base, and a microwave using the same. It relates to an absorber.

合成吸収材の電磁波的損失は一般に周波数依存性があり、その多くはデバイ型の分散特性を示す。従来からマイクロ波吸収体として使用されてきた合成吸収材では、化学物質を母体に約50(S/m)より大きな導電率を有するカーボン、グラファイトや金属等の導電粒子を分散させていた。ちなみに、この50(S/m)の導電率は2(Ω−cm)の体積抵抗率に相当する。       The electromagnetic loss of the synthetic absorbent is generally frequency-dependent, and many of them exhibit Debye-type dispersion characteristics. Conventional synthetic absorbers that have been used as microwave absorbers have dispersed conductive particles such as carbon, graphite, and metal having a conductivity greater than about 50 (S / m) in the base material of a chemical substance. Incidentally, the conductivity of 50 (S / m) corresponds to a volume resistivity of 2 (Ω-cm).

このように高い導電率(低い抵抗率)の導電粒子を分散させた合成吸収材の電磁波の吸収の程度を示す損失率(タンデルタ)は、ミリ波やそれ以上に高い周波数で最大となる。そして、マイクロ波帯のように周波数がそれより低くなってくると、その損失率は急速に小さくなる。その結果、マイクロ波領域(波長がセンチメータの領域)では大きな損失率をもつ合成吸収材は得られなかった。       Thus, the loss rate (tan delta) indicating the degree of electromagnetic wave absorption of the synthetic absorbent in which conductive particles having high conductivity (low resistivity) are dispersed becomes maximum at millimeter waves and higher frequencies. When the frequency becomes lower than that in the microwave band, the loss rate decreases rapidly. As a result, a synthetic absorbent material having a large loss rate could not be obtained in the microwave region (wavelength region).

本発明が解決しようとする課題は、この合成吸収材の損失率が最大となる周波数を、従来のミリ波以上の極めて高い周波数から波長がセンチメータ程度であるマイクロ波周波数帯に持ってくることである。それによって、マイクロ波周波数帯での損失率の増大を計ろうとするものである。       The problem to be solved by the present invention is to bring the frequency at which the loss rate of the synthetic absorbent material is maximum to a microwave frequency band having a wavelength of about a centimeter from a very high frequency higher than the conventional millimeter wave. It is. Thereby, an attempt is made to increase the loss rate in the microwave frequency band.

そのためには、この合成吸収材に分散する従来の高導電率の粒子を使用する代わりに、導電率が約50(S/m)以下の半導体粒子や特殊なカーボン等の低導電率の粒子を使用することである。その理由を以下に図面で説明する。       For that purpose, instead of using the conventional high conductivity particles dispersed in the synthetic absorbent material, low conductivity particles such as semiconductor particles having a conductivity of about 50 (S / m) or less and special carbon are used. Is to use. The reason will be described below with reference to the drawings.

図1の横軸は電磁波の周波数を合成吸収材の比誘電率の虚数部が最大となる周波数(ピーク周波数)で除した相対周波数で、縦軸は合成吸収材の損失率(タンデルタ)であり、合成吸収材の損失率はほぼピーク周波数で最大となることを表している。図2は横軸に分散させた導電粒子の導電率を母体の比誘電率で除した数値を取ると、それに対してピーク周波数がどのように変化するかを表している。つまり、通常容易に得られる母体の比誘電率は高々10程度であるので仮にそれを10として、かつ導電粒子の導電率が例えば60(S/m)であるとすると、その合成吸収材のピーク周波数は30GHzのミリ波周波数となる。したがって、この場合では図1より、そのピーク周波数の10分の1のマイクロ波帯の3GHzの損失率は、30GHzでの最大損失率の約0.156倍(=0.025/0.16)の小さな値となってしまうことがわかる。       The horizontal axis in FIG. 1 is the relative frequency obtained by dividing the frequency of the electromagnetic wave by the frequency (peak frequency) at which the imaginary part of the relative dielectric constant of the synthetic absorbent is maximized, and the vertical axis is the loss rate (tan delta) of the synthetic absorbent. This shows that the loss rate of the synthetic absorbent becomes substantially maximum at the peak frequency. FIG. 2 shows how the peak frequency changes with respect to the numerical value obtained by dividing the conductivity of the conductive particles dispersed on the horizontal axis by the relative dielectric constant of the matrix. In other words, the relative permittivity of the matrix that is usually easily obtained is about 10 at most, so if it is 10 and the conductivity of the conductive particles is, for example, 60 (S / m), the peak of the composite absorbent material The frequency is a millimeter wave frequency of 30 GHz. Therefore, in this case, from FIG. 1, the loss rate of 3 GHz in the microwave band of 1/10 of the peak frequency is a small value of about 0.156 times (= 0.025 / 0.16) of the maximum loss rate at 30 GHz. I understand that.

したがって、図1と図2から、損失率が最大となる周波数(ほぼピーク周波数)を30GHz以下のマイクロ波周波数帯にするには、少なくとも導電粒子の導電率を50(S/m)以下、すなわち導電粒子の体積抵抗率を2(Ω−cm)以上にすれば良い。   Therefore, from FIGS. 1 and 2, in order to set the frequency (approximately peak frequency) at which the loss rate is maximum to a microwave frequency band of 30 GHz or less, at least the conductivity of the conductive particles is 50 (S / m) or less. The volume resistivity of the conductive particles may be 2 (Ω-cm) or more.

本発明による高い損失率の合成吸収材を用いてマイクロ波吸収体や吸収シートを構成すると、従来のものより薄くても充分電磁波を吸収できるので、より薄くかつ軽いマイクロ波吸収体を製造することが出来、その経済効果は非常に大きい。   When a microwave absorber or absorbent sheet is constructed using the synthetic material having a high loss rate according to the present invention, electromagnetic waves can be sufficiently absorbed even if it is thinner than the conventional one, so that a thinner and lighter microwave absorber is manufactured. The economic effect is very large.

相対周波数に対する合成吸収材の損失率のグラフ。A graph of the loss rate of a synthetic absorbent against relative frequency 母体の比誘電率で除した導電粒子の導電率に対するピーク周波数のグラフ。The graph of the peak frequency with respect to the electrical conductivity of the electroconductive particle divided | segmented by the dielectric constant of the base material.

Claims (3)

母体となる非導電性誘電体とその中に非磁性でかつ導電性の粒子を分散させた合成吸収材において、その導電性粒子の体積抵抗率が2(Ω−cm)以上でかつ2メガ(Ω−cm)以下である合成吸収材。       In a synthetic absorbent material in which a non-conductive dielectric as a base and non-magnetic and conductive particles are dispersed therein, the volume resistivity of the conductive particles is 2 (Ω-cm) or more and 2 mega ( A synthetic absorbent that is equal to or less than Ω-cm). 請求項1を満たす合成吸収材おいて、その導電性粒子が半導体、カーボン、あるいは導電性ポリマーである合成吸収材。       The synthetic absorbent material satisfying claim 1, wherein the conductive particles are a semiconductor, carbon, or a conductive polymer. 請求項1あるいは請求項2の合成吸収材を使用したマイクロ波吸収体あるいはマイクロ波吸収シート。         A microwave absorber or a microwave absorbing sheet using the synthetic absorbent material according to claim 1 or 2.
JP2004253928A 2003-09-02 2004-09-01 High loss factor composite absorption material and microwave absorber thereof Pending JP2005079599A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/605,026 US20040104835A1 (en) 2002-10-09 2003-09-02 Microwave absorbent devices and materials

Publications (1)

Publication Number Publication Date
JP2005079599A true JP2005079599A (en) 2005-03-24

Family

ID=34421867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253928A Pending JP2005079599A (en) 2003-09-02 2004-09-01 High loss factor composite absorption material and microwave absorber thereof

Country Status (1)

Country Link
JP (1) JP2005079599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118073A (en) * 2015-12-25 2017-06-29 日本ゼオン株式会社 Electromagnetic wave absorbing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118073A (en) * 2015-12-25 2017-06-29 日本ゼオン株式会社 Electromagnetic wave absorbing material

Similar Documents

Publication Publication Date Title
González et al. Electromagnetic shielding materials in GHz range
Sohi et al. Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate‐based conductive composites: Effect of different type of carbon fillers
Das et al. Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers
US20100311866A1 (en) Heirarchial polymer-based nanocomposites for emi shielding
Wang Microwave absorbing materials based on polyaniline composites: a review
JPH09255837A (en) Conductive polytetrafluoroethylene article
Luo et al. Carbon nanotube/polyolefin elastomer metacomposites with adjustable radio‐frequency negative permittivity and negative permeability
WO2001078085A3 (en) Low density dielectric having low microwave loss
Sahoo et al. Circularly polarised filtering dielectric resonator antenna for X‐band applications
JP2008053383A (en) Radiation heat, electric wave absorption and shield film
Al‐Ghamdi et al. Electromagnetic wave shielding and microwave absorbing properties of hybrid epoxy resin/foliated graphite nanocomposites
JP2015015373A (en) Electromagnetic wave-absorbing resin composition, and molded product thereof
Fan et al. Frequency and pattern reconfigurable saline‐water antenna array
Sankaralingam et al. Performance of electro-textile wearable circular patch antennas in the vicinity of human body at 2.45 GHz
JP2005079599A (en) High loss factor composite absorption material and microwave absorber thereof
Al‐Sehemi et al. Flexible polymer/fabric fractal monopole antenna for wideband applications
Kurt et al. Rheological, mechanical, and X‐band microwave absorption properties of nickel and nickel‐coated carbon‐filled cyclo‐olefin copolymer composites
Sahu et al. Polymer composites for flexible electromagnetic shields
US3208013A (en) Electromagnetic wave absorber comprising inherently resonant filamentary fibers suspended in dielectric
Sarika et al. An approach to improve gain and bandwidth in bowtie antenna using frequency selective surface
JP5735163B1 (en) Conductive slurry for radio wave absorber and radio wave absorber
Almoneef et al. Harvesting electromagnetic energy using metamaterial particles
US20040104835A1 (en) Microwave absorbent devices and materials
KR102019877B1 (en) Particle-matrix composite with effective permeability by using coil-type conductive micro particles
Nuan-on et al. Design and Fabrication of Microwave Absorbers Using Water Hyacinth