JP2005078934A - Insulation-covered electric conductor - Google Patents
Insulation-covered electric conductor Download PDFInfo
- Publication number
- JP2005078934A JP2005078934A JP2003307778A JP2003307778A JP2005078934A JP 2005078934 A JP2005078934 A JP 2005078934A JP 2003307778 A JP2003307778 A JP 2003307778A JP 2003307778 A JP2003307778 A JP 2003307778A JP 2005078934 A JP2005078934 A JP 2005078934A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- resin
- imide
- coated
- metal conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 103
- 229920002312 polyamide-imide Polymers 0.000 claims abstract description 64
- 239000011347 resin Substances 0.000 claims abstract description 62
- 229920005989 resin Polymers 0.000 claims abstract description 62
- 239000002184 metal Substances 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 238000009413 insulation Methods 0.000 claims abstract description 16
- 125000005462 imide group Chemical group 0.000 claims abstract description 15
- 125000003368 amide group Chemical group 0.000 claims abstract description 12
- 239000004962 Polyamide-imide Substances 0.000 claims description 51
- 239000011248 coating agent Substances 0.000 claims description 33
- 238000000576 coating method Methods 0.000 claims description 33
- 239000010410 layer Substances 0.000 claims description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 17
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000011247 coating layer Substances 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 claims description 4
- 238000003466 welding Methods 0.000 abstract description 23
- 239000002966 varnish Substances 0.000 description 26
- 150000003949 imides Chemical class 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 238000005452 bending Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000001993 wax Substances 0.000 description 8
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 7
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 description 6
- 150000001408 amides Chemical class 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 125000006159 dianhydride group Chemical group 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920005575 poly(amic acid) Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 150000003627 tricarboxylic acid derivatives Chemical class 0.000 description 2
- CQMIJLIXKMKFQW-UHFFFAOYSA-N 4-phenylbenzene-1,2,3,5-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C(O)=O)=C1C1=CC=CC=C1 CQMIJLIXKMKFQW-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- KSOCVFUBQIXVDC-FMQUCBEESA-N p-azophenyltrimethylammonium Chemical compound C1=CC([N+](C)(C)C)=CC=C1\N=N\C1=CC=C([N+](C)(C)C)C=C1 KSOCVFUBQIXVDC-FMQUCBEESA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Coils Of Transformers For General Uses (AREA)
Abstract
Description
本発明は、モーターや発電機などのコイルを構成するために好適な、コイル中の回路に溶接箇所を設けることにより回路を形成するような場合の溶接熱にも耐えられる絶縁被覆電気導体に関する。 The present invention relates to an insulation-coated electric conductor that can withstand welding heat when a circuit is formed by providing a welding point in a circuit in a coil, which is suitable for forming a coil such as a motor or a generator.
電気絶縁物で被覆された導体は各種の電気機器に組み込まれ、コイルの用途に大量に使用されている。それらはモーターや発電機に代表される電気機器に特に多く使用されている。このうち、導体断面が丸形状以外の形状の巻線として、その被覆材料にガラスや紙などの絶縁物を横巻きしたものが旧来使用されてきた。これらは、非常に信頼性を要求される機器、たとえば、発電所用の発電機のコイル、変圧器のコイルや車両用の駆動モーターなどの用途に使用されていたものである。
近年、これらの機器より小型の機器にも導体が丸形状以外の巻線、おおむね平角形状のものが使用されるようになってきた。これらの小型機器でもコイルの形状において高性能化が進められ、コイル作成方法も、従来からの巻線と呼ばれていた電線を円周上に巻回してコイルを作成する方法ではなく、コイルの形状に合致した断面形状を持つ被覆導体をつなぎ合わせてコイルを形成する方法が取られるようになった。この小型機器での丸形状以外の導体の巻線を使用することは、コイルのコアとの空隙がなくなり、磁界ロスが少なくなり結果として性能向上となることと、小型機器に使用されるコイルがさらに小型化できることにより進展しているものである。
導体を丸以外の形状とすることは、コイル状の回路形成に際して電線を直接長いまま巻回することが困難となるため、短い導体を該コイルの部分形状に形成した後、導体同士を溶接して全体の回路を形成する手法が行われるようになった。これらのコイルを形成するためには、導体同士の接続が必要となる。導体を接続するために従来は半田付けが行われていた部分に、ヒュージング(圧力をかけながら電気溶接をする)やTIG溶接などの電気溶接方法がとられるようになってきた。これは、従来使用されてきた半田付けでは、半田に含有される鉛などが製品を廃棄する際に環境に与える影響が大きいことと、半田付け部分が機器の振動に対して信頼性が低いことから、現在使用されている導体(銅など)同等のものを接続材料として使用することが要求されるようになったことに由来している。
Conductors coated with electrical insulators are incorporated into various electrical equipment and are used in large quantities for coil applications. They are used particularly often in electrical equipment such as motors and generators. Of these, windings having a conductor cross-section other than a round shape have been conventionally used in which an insulating material such as glass or paper is horizontally wound around the covering material. These have been used for applications that require extremely high reliability, such as generator coils for power plants, transformer coils, and drive motors for vehicles.
In recent years, windings other than round shapes and generally rectangular shapes have come to be used for devices smaller than these devices. Even in these small devices, higher performance has been promoted in the shape of the coil, and the coil creation method is not a method of creating a coil by winding an electric wire, which was conventionally called a winding, around the circumference of the coil. A method has been adopted in which a coil is formed by joining coated conductors having a cross-sectional shape matching the shape. Using a winding with a conductor other than a round shape in this small device eliminates the gap between the coil core and magnetic field loss, resulting in improved performance. Further progress has been made by being able to reduce the size.
Making a conductor other than a circle makes it difficult to wind the wire directly long when forming a coiled circuit, so after forming the short conductor into the partial shape of the coil, the conductors are welded together As a result, a method of forming an entire circuit has been carried out. In order to form these coils, it is necessary to connect the conductors. An electric welding method such as fusing (electric welding is performed while applying pressure) or TIG welding has been adopted in a portion where soldering is conventionally performed to connect the conductors. This is because in soldering that has been used in the past, the lead contained in the solder has a large impact on the environment when the product is discarded, and the soldered part has low reliability against vibration of the equipment. Therefore, it is derived from the fact that a conductor (such as copper) that is currently used is required to be used as a connection material.
従来、丸エナメル線に使用される被覆材料はポリエステルなどの各種樹脂が使用されてきた。しかしながら、ヒュージングやTIG溶接では、導体に直接熱を加えて導体を溶解し、導体同士を接続することから、接続部分の近傍の絶縁被覆はきわめて高い温度となるため大きな熱劣化を受けることとなる。たとえば、通常の溶接で銅同士を接続するためには、銅の温度を銅の融点以上とする必要があり、そのためにはおよそ1100℃以上に導体温度が上昇する。導体温度の上昇は、その近傍の絶縁被覆の熱劣化を生じさせ、さらに被覆材料中の低分子量成分が熱により蒸発し、被覆に膨れ(発泡)を生じさせることとなり近傍の被覆材料の電気特性が低下することがある。このように溶接の熱が被覆に影響を与えることは周知であるが、この影響を少なくすることは、電気機器の信頼性向上のためにも必要である。溶接部分の導体温度がおよそ1100℃となった場合、絶縁性能が必要である被膜が受ける熱は、溶接部分から10mmの距離でおよそ600℃となる。そのため、このような被覆の膨れは、従来から使用されているポリアミドイミド樹脂単体では回避することができなかった。 Conventionally, various resins such as polyester have been used as coating materials used for round enamel wires. However, in fusing and TIG welding, the conductor is melted by directly applying heat to the conductors, and the conductors are connected to each other. Therefore, the insulation coating in the vicinity of the connection part is extremely high in temperature and is subject to great thermal deterioration. Become. For example, in order to connect copper to each other by ordinary welding, the temperature of copper needs to be higher than the melting point of copper, and for that purpose, the conductor temperature rises to about 1100 ° C. or higher. An increase in the conductor temperature causes thermal deterioration of the insulating coating in the vicinity, and the low molecular weight component in the coating material evaporates due to heat, causing the coating to swell (foam), and the electrical characteristics of the nearby coating material May decrease. Although it is well known that the heat of welding affects the coating, it is necessary to reduce this effect in order to improve the reliability of electrical equipment. When the conductor temperature of the welded portion is approximately 1100 ° C., the heat received by the coating that requires insulation performance is approximately 600 ° C. at a distance of 10 mm from the welded portion. For this reason, such swelling of the coating cannot be avoided with a conventionally used polyamideimide resin alone.
この問題を回避するため、例えば、その被膜の中層にポリイミド樹脂を使用した被覆電気導体が提案されている(特許文献1参照)。この被覆電気導体は良好な瞬間耐熱性を有し、コイル製造工程での導体の溶接などの加工に対しても皮膜にボイドやブリスターを生起することがないものであり、信頼性の高いコイルを提供するものであった。しかし、機器の高性能化に伴い、より一層信頼性の高いコイルのための被覆電気導体が求められている。
本発明は、モーターや発電機などのコイルを構成するために好適な、コイル中の回路に溶接箇所を設けることにより回路を形成するような場合の溶接熱にも耐えられる被覆電気導体を提供することを目的とするものである。 The present invention provides a coated electrical conductor that can withstand welding heat when forming a circuit by providing a welding location in a circuit in the coil, which is suitable for forming a coil of a motor, a generator, or the like. It is for the purpose.
本発明者らは、被覆電気導体の被覆の材質に注目し、溶接時の熱にも耐えられ、さらに被覆の膨れなどの異常が生じない被膜構成を見いだした。この溶接時の熱に耐えうる被膜構成に関して発明者らは、溶接時の熱が瞬間的にかかることに着目し、その被膜の耐熱性(瞬間耐熱性)の検証を実施した。被膜の瞬間耐熱性は、導体の溶接時に導体側から伝導すること、導体側に形成されている被覆材料が最も熱劣化を受けやすいこと、導体側の被覆材料から発生する分解ガスが被覆全体にボイドやブリスター(微細な発泡)を生じさせることを確認した。このため、ボイドなどの発生に対抗するために、被覆が加熱されても軟化しない材料を被覆の一部として使用する事を検討し、多層絶縁被覆層の特定の層に特定のポリアミドイミド樹脂を使用することで本発明の目的を達成できることを見出し、この知見に基づき本発明をなすに至った。 The present inventors paid attention to the coating material of the coated electric conductor, and found a coating structure that can withstand the heat during welding and that does not cause abnormalities such as swelling of the coating. Regarding the coating composition that can withstand the heat during welding, the inventors focused on the fact that the heat during welding is instantaneously applied, and verified the heat resistance (instant heat resistance) of the coating. The instantaneous heat resistance of the coating is that it conducts from the conductor side during welding of the conductor, the coating material formed on the conductor side is most susceptible to thermal degradation, and the cracked gas generated from the coating material on the conductor side spreads over the entire coating. It was confirmed that voids and blisters (fine foaming) were generated. For this reason, in order to counteract the generation of voids, etc., we considered using a material that does not soften even when the coating is heated as a part of the coating, and a specific polyamideimide resin is applied to a specific layer of the multilayer insulating coating layer. It has been found that the object of the present invention can be achieved by use, and the present invention has been made based on this finding.
すなわち、本発明は、
(1)多層絶縁被覆電気導体であって、多層絶縁被覆層の最上層に接触する下層の絶縁被覆層がポリアミドイミド樹脂からなり、前記ポリアミドイミド樹脂のアミド基数とイミド基数の比率が、アミド基:イミド基で45:55〜1:99であることを特徴とする被覆金属導体、
(2)前記ポリアミドイミド樹脂中のイミド基の一部あるいは全部が、ピロメリット酸二無水物に由来することを特徴とする(1)項記載の被覆金属導体、
(3)前記多層絶縁被覆層の最上層がポリアミドイミド樹脂からなることを特徴とする(1)または(2)項記載の被覆金属導体、
(4)金属導体が、酸素含有量が30ppm以下の低酸素銅または無酸素銅であることを特徴とする(1)〜(3)のいずれか1項に記載の被覆金属導体、
(5)導体の横断面が円以外の形状を有することを特徴とする(1)〜(4)のいずれか1項に記載の被覆金属導体、及び、
(6)コイル中に溶接箇所を設けて回路を構成するコイルに使用される多層絶縁被覆電気導体であることを特徴とする(1)〜(5)のいずれか1項に記載の被覆金属導体
を提供するものである。
本発明における作用が奏される理由についてはまだ明確ではないが、ポリイミド樹脂は高温時でも室温時に比べ弾性率の低下が少なく、このことからイミド成分含有比率の高いポリアミドイミドは、室温時と高温時の弾性率の差が少ないことによるものと考えられる。
That is, the present invention
(1) A multilayer insulation coating electric conductor, wherein a lower insulation coating layer contacting the uppermost layer of the multilayer insulation coating layer is made of a polyamideimide resin, and the ratio of the number of amide groups to the number of imide groups of the polyamideimide resin is an amide group A coated metal conductor characterized by having an imide group of 45:55 to 1:99;
(2) Part or all of the imide groups in the polyamide-imide resin are derived from pyromellitic dianhydride, the coated metal conductor according to (1),
(3) The coated metal conductor according to (1) or (2), wherein the uppermost layer of the multilayer insulating coating layer is made of a polyamideimide resin,
(4) The coated metal conductor according to any one of (1) to (3), wherein the metal conductor is low-oxygen copper or oxygen-free copper having an oxygen content of 30 ppm or less,
(5) The coated metal conductor according to any one of (1) to (4), wherein the conductor has a cross section other than a circle, and
(6) The coated metal conductor according to any one of (1) to (5), wherein the coated metal conductor is a multilayer insulation coated electric conductor used in a coil constituting a circuit by providing a welding location in the coil Is to provide.
The reason why the effect of the present invention is exerted is not yet clear, but the polyimide resin has less decrease in elastic modulus even at room temperature than at room temperature. This is thought to be due to the small difference in elastic modulus.
本発明の被覆金属導体は良好な瞬間耐熱性を有し、過酷なコイル製造工程で高温度の熱がかかる導体の溶接などの加工に対しても被膜にボイドやブリスターを生起することがなく、健全性が維持されるため、絶縁電線が劣化してしまうことがない。また、本被覆金属導体を使用する場合には、導体側から伝導する熱に対しても絶縁被膜が熱劣化を起こしにくく、信頼性の高いコイルを提供することができるようになる。このことはコイルを用いる機器全体の性能を高くし、機器に対する信頼性を高めることに寄与するという優れた効果を奏するものである。
また、ピロメリット酸二無水物の組み合わせにより作成したイミド比率を変更したポリアミドイミド樹脂を用いると安価で使い勝手が良く、また製造安定性が良好である。
また、最上層がポリアミドイミド樹脂であると絶縁破壊電圧が高く、焼付け硬化が可能なものとなる。
また、金属導体が、酸素含有量が30ppm以下の低酸素銅または無酸素銅であると溶接部分の電気抵抗が悪化することを防止するとともに溶接部分の強度を保持することができる。
また、導体はその横断面が所望の形状のものを使用できる。
The coated metal conductor of the present invention has good instantaneous heat resistance, and does not cause voids or blisters in the coating even for processing such as welding of a conductor that is heated at high temperature in a harsh coil manufacturing process, Since soundness is maintained, an insulated wire does not deteriorate. In addition, when the present coated metal conductor is used, it is possible to provide a highly reliable coil because the insulating coating hardly causes thermal deterioration even with respect to heat conducted from the conductor side. This has an excellent effect of enhancing the performance of the entire device using the coil and contributing to the reliability of the device.
In addition, when a polyamideimide resin having a modified imide ratio prepared by combining pyromellitic dianhydride is used, it is inexpensive and easy to use, and the production stability is good.
Further, when the uppermost layer is a polyamide-imide resin, the dielectric breakdown voltage is high and baking hardening is possible.
Further, when the metal conductor is low oxygen copper or oxygen free copper having an oxygen content of 30 ppm or less, the electrical resistance of the welded portion can be prevented from deteriorating and the strength of the welded portion can be maintained.
Further, the conductor having a desired cross-sectional shape can be used.
本発明において、多層絶縁被覆層の最上層に接触する下層の絶縁被覆層を形成するために用いられるアミド基数とイミド基数の比率が、アミド基:イミド基で45:55〜1:99であるように、イミド比率を変更したポリアミドイミド樹脂は、ポリアミドイミド樹脂の合成時に酸成分のモノマーを適宜変更することによって作成出来る。一般的にポリアミドイミドは、トリメリット酸無水物(以下、TMAという)とジフェニルメタン−4,4’−ジイソシアネート(以下、MDIという)の当モル反応によって作成される。このTMAの一部を、酸二無水物に変更することによってアミドとイミドの比率を変更することが可能である。ここで使用可能な酸二無水物としては、たとえばピロメリット酸二無水物(以下、PMDAという)、3,3’4,4’−ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAという)、4,4’−オキシジフタル酸二無水物(以下、ODPAという)、3,3’4,4’−ビフェニルテトラカルボン酸二無水物(以下、BPDAという)など、および、その異性体が挙げられる。また、そのほかの酸二無水物も使用可能である。この場合、たとえばTMA:40モル、PMDA:10モル、MDI:50モルを使用して、ポリアミドイミド樹脂を作成した場合、アミド基:イミド基の基数の比率は、40:60(モル比)となる。
アミド基:イミド基は基数で45:55〜20:80が好ましく、45:55〜30:70がさらに好ましい。アミド基数当たりのイミド基数が少なすぎると絶縁皮膜の熱軟化温度が低下し、結果として耐熱温度が下がることとなる。また、アミド基数当たりのイミド基数が多すぎるとモノマーの選択にもよるが、ワニス状態での溶解性が悪くなり、電線の製造が出来なくなるである。
In the present invention, the ratio of the number of amide groups to the number of imide groups used to form the lower insulating coating layer in contact with the uppermost layer of the multilayer insulating coating layer is 45:55 to 1:99 in terms of amide group: imide group. Thus, the polyamide-imide resin in which the imide ratio is changed can be prepared by appropriately changing the monomer of the acid component during the synthesis of the polyamide-imide resin. Polyamideimide is generally prepared by an equimolar reaction of trimellitic anhydride (hereinafter referred to as TMA) and diphenylmethane-4,4′-diisocyanate (hereinafter referred to as MDI). It is possible to change the ratio of amide and imide by changing a part of this TMA to acid dianhydride. Examples of the acid dianhydride usable here include pyromellitic dianhydride (hereinafter referred to as PMDA), 3,3′4,4′-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA), 4 , 4′-oxydiphthalic dianhydride (hereinafter referred to as ODPA), 3,3′4,4′-biphenyltetracarboxylic dianhydride (hereinafter referred to as BPDA), and the isomers thereof. Other acid dianhydrides can also be used. In this case, for example, when a polyamideimide resin is prepared using TMA: 40 mol, PMDA: 10 mol, and MDI: 50 mol, the ratio of the number of amide groups: imide groups is 40:60 (molar ratio). Become.
The amide group: imide group is preferably 45:55 to 20:80, more preferably 45:55 to 30:70. When the number of imide groups per number of amide groups is too small, the heat softening temperature of the insulating film is lowered, and as a result, the heat resistant temperature is lowered. On the other hand, if the number of imide groups per amide group is too large, although it depends on the choice of monomer, the solubility in the varnish state deteriorates and the production of the electric wire becomes impossible.
この中で、TMAとPMDAの組み合わせにより作成したイミド比率変更ポリアミドイミド樹脂が最も安価で使い勝手が良く、また製造安定性が良好である。しかしながら、その他の酸二無水物であっても使用することが出来る。
また、簡単な方法としては、市販のポリアミドイミド樹脂ワニス(例えば、日立化成(株)社製 商品名 HI406など)と市販のポリアミック酸ワニス(例えば、東レ・デュポン社製 商品名 #3000など)を混合する事でもイミド比率を変更したポリアミドイミド樹脂を得ることが出来る。一般的にポリアミドイミドワニスとポリアミック酸ワニスは単純に混合させることが困難であるが、混合しながら60〜80℃に加熱し、室温まで冷却する事によりその混合物は安定化する。
上記の具体的方法に関しては、後述する実施例において詳細に説明する。
Among these, an imide ratio-modified polyamideimide resin prepared by a combination of TMA and PMDA is the cheapest, easy to use, and has good production stability. However, other acid dianhydrides can also be used.
As a simple method, a commercially available polyamideimide resin varnish (for example, trade name HI406 manufactured by Hitachi Chemical Co., Ltd.) and a commercially available polyamic acid varnish (for example, product name # 3000 manufactured by Toray DuPont) are used. A polyamide-imide resin with a changed imide ratio can also be obtained by mixing. Generally, it is difficult to simply mix a polyamideimide varnish and a polyamic acid varnish, but the mixture is stabilized by heating to 60 to 80 ° C. while cooling and cooling to room temperature.
The specific method will be described in detail in the embodiments described later.
また、本発明においては、最上層に接触する下層以外の層に、アミド基:イミド基が45:55〜55:45であるポリアミドイミド樹脂を用いることができる。これらの層に用いることができるポリアミドイミド樹脂には、市販品(例えば、日立化成(株)社製 商品名 HI406(基数で、アミド:イミドは、およそ50:50)など)を用いることができる。また、常法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート類を直接反応させて得たもの、あるいは、極性溶媒中でトリカルボン酸無水物にジアミン類を先に反応させて、まずイミド結合を導入し、ついでジイソシアネート類でアミド化して得たものを用いることができる。ポリアミドイミド樹脂は、他の樹脂に比べ熱伝導率が低く、絶縁破壊電圧が高く、焼付け硬化が可能なものであり、最上層を形成する樹脂として好適である。 Moreover, in this invention, the polyamide imide resin whose amide group: imide group is 45: 55-55: 45 can be used for layers other than the lower layer which contacts uppermost layer. As the polyamide-imide resin that can be used for these layers, commercially available products (for example, trade name HI406 manufactured by Hitachi Chemical Co., Ltd. (in terms of number, amide: imide is approximately 50:50)) can be used. . In addition, by a conventional method, for example, a product obtained by directly reacting a tricarboxylic acid anhydride and a diisocyanate in a polar solvent, or by reacting a diamine with a tricarboxylic acid anhydride in a polar solvent first, first an imide bond And then amidated with diisocyanates can be used. Polyamideimide resin has a lower thermal conductivity than other resins, has a high dielectric breakdown voltage, can be baked and cured, and is suitable as a resin for forming the uppermost layer.
また本発明の導体の被覆の最上層を形成する樹脂には、常法によりワックスや潤滑剤を分散、混合して自己潤滑樹脂としたものを使用することもできる。これに使用されるワックスとしては、通常用いられるものを特に制限なく使用することができ、例えば、ポリエチレンワックス、石油ワックス、パラフィンワックス等の合成ワックスおよびカルナバワックス、キャデリラワックス、ライスワックス等の天然ワックス等が挙げられる。潤滑剤についても特に制限はなく、例えば、シリコーン、シリコーンマクロモノマー、フッ素樹脂等を用いることができる。
なお、本発明の被覆電気導体において、被覆の各樹脂層を形成するための樹脂の形成方法には特に制限はなく、公知の各種の方法によって行うことができる。
In addition, as the resin forming the uppermost layer of the conductor coating of the present invention, a self-lubricating resin obtained by dispersing and mixing wax or a lubricant by a conventional method can be used. As the wax used for this, those usually used can be used without particular limitation, for example, synthetic waxes such as polyethylene wax, petroleum wax, paraffin wax, and natural waxes such as carnauba wax, cadilla wax, and rice wax. A wax etc. are mentioned. There is no restriction | limiting in particular also about a lubricant, For example, silicone, a silicone macromonomer, a fluororesin etc. can be used.
In the coated electric conductor of the present invention, the resin forming method for forming each resin layer of the coating is not particularly limited, and can be performed by various known methods.
また、絶縁被覆電気導体において、絶縁被覆層の最下層をポリアミドイミド樹脂とし、さらにその他の樹脂層を介するかまたは直接にイミド比率変更ポリアミドイミド樹脂を設けることを特徴とする被覆金属導体とすることにより、モーターや変圧器トランスなどで、使用されるときに導体側から伝導する熱に対して、該絶縁被膜が熱劣化を起こしにくいという作用がある。 In addition, in the insulation-coated electric conductor, the lowermost layer of the insulation coating layer is a polyamide-imide resin, and the coated metal conductor is characterized in that an imide ratio-changing polyamide-imide resin is provided directly through another resin layer As a result, there is an effect that the insulating coating hardly causes thermal deterioration with respect to heat conducted from the conductor side when used in a motor or a transformer transformer.
導体としては従来用いられている金属導体を使用することができるが、好ましくは酸素含有量が30ppm以下の低酸素銅、さらに好ましくは20ppm以下の低酸素銅または無酸素銅である。酸素含有量が少ないと、導体を溶接するために熱で溶融させた場合、溶接部分に含有酸素に起因するボイドの発生がなく、溶接部分の電気抵抗が悪化することを防止するとともに溶接部分の強度を保持することができる。また、導体はその横断面が所望の形状のものを使用できるが、円以外の形状を有するものを使用するのが好ましく、特に平角形状のものが好ましい。 Conventionally used metal conductors can be used as the conductor, preferably low oxygen copper having an oxygen content of 30 ppm or less, more preferably low oxygen copper or oxygen-free copper having 20 ppm or less. If the oxygen content is low, when the conductor is melted with heat to weld it, there is no generation of voids due to oxygen contained in the welded portion, preventing the electrical resistance of the welded portion from deteriorating and the welded portion of the welded portion. Strength can be maintained. Further, the conductor having a desired cross-sectional shape can be used, but a conductor having a shape other than a circle is preferably used, and a rectangular shape is particularly preferable.
本発明の被覆電気導体は、例えば、形成する被覆層に対応する樹脂のワニスを導体上に塗布焼き付けを行い、得ることができる。導体上にこれらの樹脂ワニスを塗布する方法は常法でよく、たとえば、導体形状の相似形としたワニス塗布用ダイスを用いる方法や、もし導体断面形状が四角形であるならば、井桁状に形成された「ユニバーサルダイス」と呼ばれるダイスを用いることができる。これらの樹脂ワニスを塗布した導体はやはり常法にて焼付炉で焼き付けされる。具体的な焼き付け条件はその使用される炉の形状などに左右されるが、およそ5mの自然対流式の竪型炉であれば、400〜500℃にて通過時間を30〜90秒に設定することにより達成することができる。本発明において最上層に接触する下層の厚さは、特に制限はないが、好ましくは4〜35μm、より好ましくは5〜18μmである。また、ポリアミドイミド樹脂層の厚さは、全体で、好ましくは10〜40μm、より好ましくは10〜35μmである。被覆する被膜の全体の厚さは、15〜130μm程度であるが、好ましくは25〜50μmである。 The coated electric conductor of the present invention can be obtained, for example, by applying and baking a resin varnish corresponding to the coating layer to be formed on the conductor. The method of applying these resin varnishes on the conductor may be a conventional method. For example, a method using a varnish application die having a similar shape to the conductor shape, or if the conductor cross-sectional shape is a quadrangle, it is formed in a grid pattern. A dice called a “universal die” can be used. The conductors coated with these resin varnishes are baked in a baking furnace in the usual manner. The specific baking conditions depend on the shape of the furnace used, but in the case of a natural convection type vertical furnace of about 5 m, the passage time is set to 400 to 500 ° C. to 30 to 90 seconds. Can be achieved. In the present invention, the thickness of the lower layer contacting the uppermost layer is not particularly limited, but is preferably 4 to 35 μm, more preferably 5 to 18 μm. The thickness of the polyamideimide resin layer as a whole is preferably 10 to 40 μm, more preferably 10 to 35 μm. The total thickness of the coating film to be coated is about 15 to 130 μm, preferably 25 to 50 μm.
本発明の被覆金属導体はコイル中に溶接箇所を設けて回路を構成するコイルに使用される多層絶縁被覆電気導体として、好ましく用いることができる。 The coated metal conductor of the present invention can be preferably used as a multilayer insulation coated electric conductor used in a coil constituting a circuit by providing a welding location in the coil.
以下に本発明を実施例に基づいてさらに詳細に説明する。
[イミド比率変更ポリアミドイミドワニスの作成1]
容量4リットルの3つ口フラスコに、加熱冷却装置、窒素導入装置、攪拌機を備えた合成装置を用意した。その中に、TMA172.9g(0.9モル)、PMDA21.8g(0.1モル)、MDI250.1g(1.0モル)と、溶媒として、N−メチル−2−ピロリドン851.2gを加え、窒素気流中攪拌しながら常温から140℃まで2時間かけて昇温した。フラスコ内から激しく炭酸ガスの発生が見られ、フラスコ内の溶液が粘調になるまで、140℃で2時間攪拌を続けた。その後常温まで冷却し、ポリアミドイミドワニス組成1(樹脂濃度30重量%)1216gを得た。
[イミド比率変更ポリアミドイミドワニスの作成2〜4]
上記作成1と同様の方法で、表1に示す量の各成分を加えイミド比率変更ポリアミドイミドワニス組成2〜4を得た。そのときに使用した各成分の添加量及び各組成のアミド:イミド比率を上記組成1の結果共に表1に示した。
Hereinafter, the present invention will be described in more detail based on examples.
[Creation 1 of polyamideimide varnish with changed imide ratio]
A synthesis device equipped with a heating / cooling device, a nitrogen introducing device, and a stirrer was prepared in a four-necked three-necked flask. Into it, 172.9 g (0.9 mol) of TMA, 21.8 g (0.1 mol) of PMDA, 250.1 g (1.0 mol) of MDI and 851.2 g of N-methyl-2-pyrrolidone as a solvent were added. The temperature was raised from room temperature to 140 ° C. over 2 hours with stirring in a nitrogen stream. Stirring was continued for 2 hours at 140 ° C. until carbon dioxide gas was vigorously generated from the flask and the solution in the flask became viscous. Thereafter, the mixture was cooled to room temperature to obtain 1216 g of a polyamideimide varnish composition 1 (resin concentration: 30% by weight).
[Creation 2 to 4 of polyamideimide varnish modified with imide ratio]
In the same manner as in Preparation 1, the components shown in Table 1 were added to obtain imide ratio-modified polyamideimide varnish compositions 2 to 4. The amount of each component used at that time and the amide: imide ratio of each composition are shown in Table 1 together with the results of the above composition 1.
[実施例1]
1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素含有量15ppmの銅)に、下層から、順に、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)、前記イミド比率変更ポリアミドイミドワニスの作成1で作成した組成1のワニス、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)の順に被膜を形成し、その全体の被膜厚さを45μmとした。それぞれの被膜厚さについては表2に記載のとおりである。被膜の形成に際しては導体の形状と相似形のダイスを複数個使用して、炉長8mの焼付炉にて450℃でおよそ15秒の焼き付け時間にて複数回焼き付けをおこなった。この樹脂被覆導体について、評価試験を行った結果を表5−1に示した。
[Example 1]
To a flat conductor (copper having an oxygen content of 15 ppm) with a chamfer radius r = 0.5 mm at four corners of 1.8 × 2.5 mm (thickness × width), in order from the lower layer, polyamideimide resin (PAI) (Hitachi Chemical) Co., Ltd., trade name HI406), varnish of composition 1 prepared in Preparation 1 of the above-mentioned imide ratio modified polyamideimide varnish, polyamideimide resin (PAI) (trade name HI406, manufactured by Hitachi Chemical Co., Ltd.) in this order. The total film thickness was 45 μm. Each film thickness is as shown in Table 2. When forming the film, a plurality of dies having a shape similar to the shape of the conductor were used, and baking was performed a plurality of times at 450 ° C. for about 15 seconds in a baking furnace having a furnace length of 8 m. The results of an evaluation test on this resin-coated conductor are shown in Table 5-1.
[実施例2、3]
使用樹脂および導体は実施例1と同等にし、また樹脂被覆の焼き付けの条件も同一とした。ただし、それぞれの被膜厚さについては、表2に記載のとおり変更した。この樹脂被覆導体について、評価試験を行った結果を表5−1に示した。
[Examples 2 and 3]
The resin and conductor used were the same as in Example 1, and the conditions for baking the resin coating were the same. However, each film thickness was changed as shown in Table 2. The results of an evaluation test on this resin-coated conductor are shown in Table 5-1.
[比較例1]
1.8×2.5mmで四隅のr=0.5mmの平角導体(実施例1と同質の銅)に、表2に示すようにポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)の被膜を形成し、その全体の被膜厚さを45μmとした。被膜の形成に際しては導体の形状と相似形のダイスを複数個使用して、炉長8mの焼き付け炉にて450℃でおよそ15秒の焼き付け時間にて複数回焼き付けをおこなった。この樹脂被覆導体について、評価試験を行った結果を表5−1に示した。
[Comparative Example 1]
As shown in Table 2, polyamide imide resin (PAI) (manufactured by Hitachi Chemical Co., Ltd.) is applied to a flat conductor (copper of the same quality as in Example 1) of 1.8 × 2.5 mm and four corners of r = 0.5 mm. HI406) was formed, and the total film thickness was 45 μm. When forming the film, a plurality of dies having a shape similar to the shape of the conductor were used, and baking was performed a plurality of times in a baking furnace having a furnace length of 8 m at a baking temperature of 450 ° C. for approximately 15 seconds. The results of an evaluation test on this resin-coated conductor are shown in Table 5-1.
[実施例4〜6]
実施例1と同様に、1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素含有量15ppmの銅)に、下層から、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)、前記イミド比率変更ポリアミドイミドワニスの作成2〜4で作成した組成2〜4のワニス、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)の順に被膜を形成し、その全体の被膜厚さを45μmとした。それぞれの被膜厚さについては表3に記載のとおりである。被膜の形成に際しては導体の形状と相似形のダイスを複数個使用して、炉長8mの焼付炉にて450℃でおよそ15秒の焼き付け時間にて複数回焼き付けをおこなった。この樹脂被覆導体について、評価試験を行った結果を表5−2に示した。
[Examples 4 to 6]
In the same manner as in Example 1, a rectangular conductor (copper having an oxygen content of 15 ppm) having a chamfer radius r = 0.5 mm at four corners of 1.8 × 2.5 mm (thickness × width) was applied from the lower layer to a polyamideimide resin ( PAI) (trade name HI406, manufactured by Hitachi Chemical Co., Ltd.), varnish of composition 2-4 prepared in preparations 2-4 of the imide ratio-modified polyamideimide varnish, polyamideimide resin (PAI) (product manufactured by Hitachi Chemical Co., Ltd.) Films were formed in the order of name HI406), and the total film thickness was 45 μm. Each film thickness is as shown in Table 3. When forming the film, a plurality of dies having a shape similar to the shape of the conductor were used, and baking was performed a plurality of times at 450 ° C. for about 15 seconds in a baking furnace having a furnace length of 8 m. The results of an evaluation test on this resin-coated conductor are shown in Table 5-2.
[実施例7]
容量4リットルの3つ口フラスコに、加熱冷却装置、窒素導入装置、攪拌機を備えた合成装置を用意した。その中に、TMA7.7g(0.04モル)、ODPA(4,4’−オキシジフタル酸二無水物)297.8g(0.96モル)、MDI250.1g(1.0モル)と、溶媒として、N−メチル−2−ピロリドン1109.7gを加え、窒素気流中攪拌しながら常温から140℃まで2時間かけて昇温した。フラスコ内から激しく炭酸ガスの発生が見られ、フラスコ内の溶液が粘稠になるまで、140℃で2時間攪拌を続けた。その後常温まで冷却し、イミド比率変更ポリアミドイミドワニス(ODPA樹脂濃度30重量%)1585gを得た。この場合のアミド:イミド比率は、2:98となる。
このイミド変更ポリアミドイミドワニスを使用し、2.0×3.0mmで四隅のr=0.8mmの平角導体(酸素含有量20ppmの銅)に、表4に示すように下層から、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)、前述のイミド比率変更ポリアミドイミドワニス(ODPA(2:98))、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)の順に被膜を形成し、その全体の被膜厚さを50μmとした。被膜の形成に際しては導体の形状と相似形のダイスを複数個使用して、炉長8mの焼き付け炉にて450℃でおよそ20秒の焼き付け時間にて複数回焼き付けをおこなった。この樹脂被覆導体について、評価試験を行った結果を表5−3に示した。
[Example 7]
A synthesis device equipped with a heating / cooling device, a nitrogen introducing device, and a stirrer was prepared in a four-necked three-necked flask. Among them, TMA 7.7 g (0.04 mol), ODPA (4,4′-oxydiphthalic dianhydride) 297.8 g (0.96 mol), MDI 250.1 g (1.0 mol), and as a solvent N-methyl-2-pyrrolidone (1109.7 g) was added, and the mixture was heated from room temperature to 140 ° C. over 2 hours with stirring in a nitrogen stream. Stirring was continued for 2 hours at 140 ° C. until carbon dioxide gas was vigorously generated from the flask and the solution in the flask became viscous. Thereafter, it was cooled to room temperature to obtain 1585 g of an imide ratio-modified polyamideimide varnish (ODPA resin concentration of 30% by weight). In this case, the amide: imide ratio is 2:98.
Using this imide-modified polyamide-imide varnish, a rectangular conductor (copper having an oxygen content of 20 ppm) having a corner of r = 0.8 mm at four corners of 2.0 × 3.0 mm, and a polyamide-imide resin from the lower layer as shown in Table 4. (PAI) (trade name HI406 manufactured by Hitachi Chemical Co., Ltd.), polyamideimide varnish (ODPA (2:98)) and polyamideimide resin (PAI) (trade name HI406 manufactured by Hitachi Chemical Co., Ltd.) described above. A film was formed in order, and the total film thickness was 50 μm. When forming the film, a plurality of dies having a shape similar to the shape of the conductor were used, and baking was performed a plurality of times in a baking furnace having a furnace length of 8 m at a baking temperature of 450 ° C. for about 20 seconds. The results of an evaluation test on this resin-coated conductor are shown in Table 5-3.
[実施例8]
容量4リットルの3つ口フラスコに、加熱冷却装置、窒素導入装置、攪拌機を備えた合成装置を用意した。その中に、TMA153.7g(0.8モル)、BTDA(3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物)64.4g(0.2モル)、MDI250.1g(1.0モル)と、溶媒として、N−メチル−2−ピロリドン905.8gを加え、窒素気流中攪拌しながら常温から140℃まで2時間かけて昇温した。フラスコ内から激しく炭酸ガスの発生が見られ、フラスコ内の溶液が粘稠になるまで、140℃で2時間攪拌を続けた。その後常温まで冷却し、イミド比率変更ポリアミドイミドワニス(BTDA:樹脂濃度30重量%)1294gを得た。この場合のアミド:イミド比率は、30:70となる。
2.0×3.0mmで四隅のr=0.8mmの平角導体(実施例7と同質の銅)に、表4に示すように下層から、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)、前述のイミド比率変更ポリアミドイミドワニス(BTDA(30:70))、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)の順に被膜を形成し、被膜厚さを130μmとした。被膜の形成に際しては導体の形状と相似形のダイスを複数個使用して、炉長8mの焼き付け炉にて450℃でおよそ20秒の焼き付け時間にて複数回焼き付けをおこなった。この樹脂被覆導体について、評価試験を行った結果を表5−3に示した。
[Example 8]
A synthesis device equipped with a heating / cooling device, a nitrogen introducing device, and a stirrer was prepared in a four-necked three-necked flask. Among them, TMA 153.7 g (0.8 mol), BTDA (3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride) 64.4 g (0.2 mol), MDI 250.1 g (1. 0 mol) and 905.8 g of N-methyl-2-pyrrolidone as a solvent were added, and the temperature was raised from room temperature to 140 ° C. over 2 hours while stirring in a nitrogen stream. Stirring was continued for 2 hours at 140 ° C. until carbon dioxide gas was vigorously generated from the flask and the solution in the flask became viscous. Thereafter, the mixture was cooled to room temperature to obtain 1294 g of a polyamideimide varnish (BTDA: resin concentration of 30% by weight). In this case, the amide: imide ratio is 30:70.
A rectangular conductor of 2.0 × 3.0 mm and r = 0.8 mm at the four corners (copper of the same quality as in Example 7), as shown in Table 4, from the lower layer, polyamideimide resin (PAI) (Hitachi Chemical Co., Ltd.) Product name HI406), the above-mentioned imide ratio modified polyamideimide varnish (BTDA (30:70)), polyamideimide resin (PAI) (trade name HI406, manufactured by Hitachi Chemical Co., Ltd.) in this order, and the film thickness Was 130 μm. When forming the film, a plurality of dies having a shape similar to the shape of the conductor were used, and baking was performed a plurality of times in a baking furnace having a furnace length of 8 m at a baking temperature of 450 ° C. for about 20 seconds. The results of an evaluation test on this resin-coated conductor are shown in Table 5-3.
[実施例9]
容量4リットルの3つ口フラスコに、加熱冷却装置、窒素導入装置、攪拌機を備えた合成装置を用意した。その中に、TMA153.7g(0.8モル)、BTDA(3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物)64.4g(0.2モル)、MDI250.1g(1.0モル)と、溶媒として、N−メチル−2−ピロリドン905.8gを加え、窒素気流中攪拌しながら常温から140℃まで2時間かけて昇温した。フラスコ内から激しく炭酸ガスの発生が見られ、フラスコ内の溶液が粘稠になるまで、140℃で2時間攪拌を続けた。その後常温まで冷却し、イミド比率変更ポリアミドイミドワニス(BDTA:樹脂濃度30重量%)1294gを得た。この場合のアミド:イミド比率は、30:70となる。
2.0×3.0mmで四隅のr=0.8mmの平角導体(実施例7と同質の銅)に、表4に示すように下層から前述のイミド比率変更ポリアミドイミドワニス(BTDA(30:70))、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)の順に被膜を形成し、被膜厚さを130μmとした。被膜の形成に際しては導体の形状と相似形のダイスを複数個使用して、炉長8mの焼き付け炉にて450℃でおよそ20秒の焼き付け時間にて複数回焼き付けをおこなった。この樹脂被覆導体について、評価試験を行った結果を表5−3に示した。
[Example 9]
A synthesis device equipped with a heating / cooling device, a nitrogen introducing device, and a stirrer was prepared in a four-necked three-necked flask. Among them, TMA 153.7 g (0.8 mol), BTDA (3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride) 64.4 g (0.2 mol), MDI 250.1 g (1. 0 mol) and 905.8 g of N-methyl-2-pyrrolidone as a solvent were added, and the temperature was raised from room temperature to 140 ° C. over 2 hours while stirring in a nitrogen stream. Stirring was continued for 2 hours at 140 ° C. until carbon dioxide gas was vigorously generated from the flask and the solution in the flask became viscous. Thereafter, the mixture was cooled to room temperature to obtain 1294 g of a polyamideimide varnish (BDTA: resin concentration 30% by weight) with a modified imide ratio. In this case, the amide: imide ratio is 30:70.
As shown in Table 4, from the lower layer to the above-mentioned imide ratio-modified polyamideimide varnish (BTDA (30: 30), with a rectangular conductor of 2.0 × 3.0 mm and r = 0.8 mm at the four corners (same copper as in Example 7). 70)) and polyamideimide resin (PAI) (trade name HI406 manufactured by Hitachi Chemical Co., Ltd.) in this order, and the film thickness was 130 μm. When forming the film, a plurality of dies having a shape similar to the shape of the conductor were used, and baking was performed a plurality of times in a baking furnace having a furnace length of 8 m at a baking temperature of 450 ° C. for about 20 seconds. The results of an evaluation test on this resin-coated conductor are shown in Table 5-3.
[比較例2]
2.0×3.0mmで四隅のr=0.8mmの平角導体(実施例7と同質の銅)に、表4に示すように下層から、ポリアミドイミド樹脂(PAI)(日立化成(株)製 商品名 HI406)、前記イミド比率変更ポリアミドイミドワニス1で作成した組成1のワニスの順に被膜を形成し、被膜厚さを130μmとした。被膜の形成に際しては導体の形状と相似形のダイスを複数個使用して、炉長8mの焼き付け炉にて450℃でおよそ20秒の焼き付け時間にて複数回焼き付けをおこなった。この樹脂被覆導体について、評価試験を行った結果を表5−3に示した。
[Comparative Example 2]
A rectangular conductor of 2.0 × 3.0 mm and r = 0.8 mm at the four corners (copper of the same quality as in Example 7), as shown in Table 4, from the lower layer, polyamideimide resin (PAI) (Hitachi Chemical Co., Ltd.) Product name HI406), a coating film was formed in the order of the varnish of composition 1 prepared with the imide ratio-modified polyamideimide varnish 1, and the film thickness was 130 μm. When forming the film, a plurality of dies having a shape similar to the shape of the conductor were used, and baking was performed a plurality of times in a baking furnace having a furnace length of 8 m at a baking temperature of 450 ° C. for about 20 seconds. The results of an evaluation test on this resin-coated conductor are shown in Table 5-3.
評価の方法
曲げ(エッジワイズ曲げ)
被覆導体のエッジ面方向に180°に曲げを行う(エッジワイズ曲げ)。曲げ半径は導体の幅方向の寸法と同等にした(1w曲げ)。この曲げを行ったのち、JIS C3003規定のピンホール試験を実施し、ピンホールの発生を調査した。「良」は曲げを行ったとき被膜割れが見られず、ピンホールの発生もないことを意味している。
Evaluation method Bending (edgewise bending)
Bending is performed at 180 ° in the direction of the edge surface of the coated conductor (edgewise bending). The bending radius was made equal to the dimension in the width direction of the conductor (1w bending). After this bending, a pinhole test specified in JIS C3003 was conducted to investigate the occurrence of pinholes. “Good” means that no film cracks are observed when bending is performed, and no pinholes are generated.
瞬間耐熱性(ヒュージング)
被覆導体のフラット面を直交させ、その交差部分の上下を電極で挟み、表記載の電流条件にて溶接を行った場合の溶接直近の被覆の荒れを調査した。「良」はボイドや焼けがないことを意味している。
Instantaneous heat resistance (fusing)
The flat surface of the coated conductor was orthogonalized, the upper and lower portions of the intersecting portion were sandwiched between electrodes, and the roughness of the coating immediately adjacent to the welding was investigated when welding was performed under the current conditions described in the table. “Good” means no voids or burns.
瞬間耐熱性(電気溶接)
被覆導体2本の端末を5mmだけ被覆を剥離し、それぞれを平行に剥離面がエッジ面で接触するように固定したものの突き合わせ面を電気溶接した。条件は表による。この場合の溶接面部分直近の被膜の荒れを調査した。「良」は、ボイドや焼けがないことを意味している。
Instantaneous heat resistance (electric welding)
The ends of the two coated conductors were peeled off by 5 mm, and the butted surfaces of those fixed in parallel so that the peeled surfaces were in contact with the edge surfaces were electrically welded. Conditions are according to the table. In this case, the roughness of the coating immediately adjacent to the weld surface was investigated. “Good” means no voids or burns.
絶縁破壊電圧
JIS C3003記載の金属箔法を用いて実施した。表にはn=5の平均値を示した。また、230℃の恒温槽に5日間静置したサンプルについても実施した。
Dielectric breakdown voltage It implemented using the metal foil method of JISC3003 description. The table shows the average value of n = 5. Moreover, it implemented also about the sample left still for 5 days in a 230 degreeC thermostat.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307778A JP3977305B2 (en) | 2003-08-29 | 2003-08-29 | Insulated conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307778A JP3977305B2 (en) | 2003-08-29 | 2003-08-29 | Insulated conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005078934A true JP2005078934A (en) | 2005-03-24 |
JP3977305B2 JP3977305B2 (en) | 2007-09-19 |
Family
ID=34410466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003307778A Expired - Lifetime JP3977305B2 (en) | 2003-08-29 | 2003-08-29 | Insulated conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3977305B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007204714A (en) * | 2006-02-06 | 2007-08-16 | Toyobo Co Ltd | Polyamideimide resin, film, flexible metal-clad laminate and flexible printed board |
JP2008061348A (en) * | 2006-08-30 | 2008-03-13 | Denso Corp | Rotating electric machine for vehicle |
JP2009011151A (en) * | 2007-05-30 | 2009-01-15 | Denso Corp | Stator of rotating electric machine |
JP2009011148A (en) * | 2007-05-30 | 2009-01-15 | Denso Corp | Stator for rotating electric machine |
JP2009242490A (en) * | 2008-03-28 | 2009-10-22 | Furukawa Electric Co Ltd:The | Insulated electric wire |
JP2012195212A (en) * | 2011-03-17 | 2012-10-11 | Mitsubishi Shindoh Co Ltd | Square insulating conductor material for coil and method of manufacturing the same |
JP2015117372A (en) * | 2013-12-17 | 2015-06-25 | 財團法人工業技術研究院Industrial Technology Research Institute | Polyamide-imide, graphite film, and production of graphite film |
-
2003
- 2003-08-29 JP JP2003307778A patent/JP3977305B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007204714A (en) * | 2006-02-06 | 2007-08-16 | Toyobo Co Ltd | Polyamideimide resin, film, flexible metal-clad laminate and flexible printed board |
JP2008061348A (en) * | 2006-08-30 | 2008-03-13 | Denso Corp | Rotating electric machine for vehicle |
JP2009011151A (en) * | 2007-05-30 | 2009-01-15 | Denso Corp | Stator of rotating electric machine |
JP2009011148A (en) * | 2007-05-30 | 2009-01-15 | Denso Corp | Stator for rotating electric machine |
JP2009242490A (en) * | 2008-03-28 | 2009-10-22 | Furukawa Electric Co Ltd:The | Insulated electric wire |
JP2012195212A (en) * | 2011-03-17 | 2012-10-11 | Mitsubishi Shindoh Co Ltd | Square insulating conductor material for coil and method of manufacturing the same |
JP2015117372A (en) * | 2013-12-17 | 2015-06-25 | 財團法人工業技術研究院Industrial Technology Research Institute | Polyamide-imide, graphite film, and production of graphite film |
Also Published As
Publication number | Publication date |
---|---|
JP3977305B2 (en) | 2007-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8946559B2 (en) | Insulation-coated electric conductor | |
US9484124B2 (en) | Insulated electric wire and coil using same | |
JP6325550B2 (en) | Flat electric wire, method for manufacturing the same, and electrical equipment | |
JP6974330B2 (en) | Insulated wires, coils and electrical / electronic equipment | |
JP2013131423A (en) | Electrically insulated electric wire and coil | |
TW201539491A (en) | Flat-type insulated wire, coil, and electric/electronic equipment | |
JP3977305B2 (en) | Insulated conductor | |
JP2010067521A (en) | Insulating wire, its manufacturing method, electric coil, and electric motor | |
JPWO2015198491A1 (en) | Insulated wires and coils | |
JP5351011B2 (en) | Insulated wire, electric coil and motor | |
JP2012233123A (en) | Polyimide resin varnish, insulated electric wire using the same, electric machine coil, and motor | |
JP4191233B2 (en) | Insulated conductor | |
JP4041471B2 (en) | Enamel wire and insulating coating used therefor | |
JP2013051030A (en) | Insulated wire and armature coil using the same, motor | |
JP3911274B2 (en) | Enamel wire and insulating coating used therefor | |
JP4340185B2 (en) | Stator coil for alternator | |
JP6900934B2 (en) | Insulated wire and its manufacturing method | |
JP2013101759A (en) | Insulation wire, electric machine coil using the same, and motor | |
JP2011159577A (en) | Insulated electrical wire and electric coil and motor using the same | |
JP2011159578A (en) | Insulation wire, and electric coil and motor using the same | |
JP5837397B2 (en) | Insulated wire and electric coil and motor using the same | |
JP5329121B2 (en) | Insulated wire | |
JP2012048922A (en) | Insulation wire, and electric machine coil and motor using the same | |
JP2010205542A (en) | Multilayer insulated wire | |
KR20110129187A (en) | Insulated wire with high heat resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060605 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070620 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3977305 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110629 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120629 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120629 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130629 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |