JP2005078835A - Coaxial cable and its manufacturing method - Google Patents

Coaxial cable and its manufacturing method Download PDF

Info

Publication number
JP2005078835A
JP2005078835A JP2003304784A JP2003304784A JP2005078835A JP 2005078835 A JP2005078835 A JP 2005078835A JP 2003304784 A JP2003304784 A JP 2003304784A JP 2003304784 A JP2003304784 A JP 2003304784A JP 2005078835 A JP2005078835 A JP 2005078835A
Authority
JP
Japan
Prior art keywords
fluororesin
coaxial cable
weight
conductor
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003304784A
Other languages
Japanese (ja)
Inventor
Nozomi Fujita
望 藤田
Nobuhiro Umeo
信博 梅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2003304784A priority Critical patent/JP2005078835A/en
Publication of JP2005078835A publication Critical patent/JP2005078835A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coaxial cable with low manufacturing cost and high attenuation characteristics in high frequency transmission, and also to provide the manufacturing method thereof. <P>SOLUTION: The coaxial cable has an inner conductor, an insulating layer made of a fluororesin foam covering the periphery of the inner conductor, an outer conductor installed in the periphery of the insulating layer, and a sheath layer installed in the periphery of the outer conductor, and the fluororesin satisfies following (A) and (B). (A) Melting viscosity at 372°C is 102-107 poise. (B) Fluoride ions extractable in methanol/water mixed solution of volume ratio of 1:1 is 1.5 ppm or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は同軸ケーブルおよびその製造方法に関する。   The present invention relates to a coaxial cable and a method for manufacturing the same.

従来より、耐熱性、難燃性、伝送する電磁波の減衰特性に優れる同軸ケーブルとして、内部導体にフッ素樹脂を被覆してなる構成(この構成を以下「フッ素樹脂絶縁電線」ともいう。)を有する同軸ケーブルが用いられている。その中でも、ポリテトラフルオロエチレン(PTFE)をペースト押出被覆して焼成することによって得られるPTFE絶縁電線や、未焼成のPTFEテープを延伸し、焼成した多孔質PTFEテープを導体に巻きつけるなどして得られる多孔質PTFE絶縁電線等は、高周波伝送における優れた減衰特性(すなわち、減衰量が小さい)を示すという利点がある(特許文献1)。しかし、PTFE絶縁電線は長時間を要する焼成の工程を有するため、また、多孔質PTFE絶縁電線は導体へのテープの巻きつけという時間あたりの生産性が低い工程を有するため、これらの絶縁電線は製造コストが大きいという欠点を有する。   Conventionally, as a coaxial cable excellent in heat resistance, flame retardancy, and attenuation characteristics of electromagnetic waves to be transmitted, it has a configuration in which an inner conductor is coated with a fluororesin (this configuration is also referred to as a “fluororesin insulated wire” hereinafter). Coaxial cable is used. Among them, PTFE insulated electric wires obtained by paste extrusion coating of polytetrafluoroethylene (PTFE) and firing, and unfired PTFE tape are stretched, and the fired porous PTFE tape is wound around a conductor. The obtained porous PTFE insulated wire or the like has an advantage of exhibiting excellent attenuation characteristics (that is, attenuation is small) in high-frequency transmission (Patent Document 1). However, since PTFE insulated wires have a firing process that takes a long time, and porous PTFE insulated wires have a low productivity per hour of winding a tape around a conductor, these insulated wires are The manufacturing cost is high.

一方、製造コストの点で優れるフッ素樹脂絶縁電線としては、熱可塑性フッ素樹脂であるテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)やテトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)等を導体に押出被覆してなる(焼成を経ない)絶縁電線等が知られている。しかし、これら従来使われていたPFAやFEPを被覆してなる絶縁電線は、上述の(多孔質)PTFE絶縁電線に比べ減衰特性に劣っていて、高周波、特に1GHz以上の高周波の伝送においては誘電正接(tanδ)が高い、伝送のエネルギー損失が大である、電線が発熱する等といった不具合が懸念される。
特開2000−11764号公報 特公平4−83号公報
On the other hand, as fluororesin insulated wires which are excellent in terms of production cost, thermoplastic fluororesin such as tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) and tetrafluoroethylene / hexafluoropropylene copolymer (FEP) are available. An insulated wire or the like obtained by extrusion-coating a conductor (without firing) is known. However, these conventionally used insulated wires coated with PFA and FEP are inferior to the above-mentioned (porous) PTFE insulated wires in terms of attenuation characteristics, and are dielectric in transmission at high frequencies, particularly at high frequencies of 1 GHz or higher. There are concerns about problems such as high tangent (tan δ), large transmission energy loss, and heat generation of electric wires.
JP 2000-11664 A Japanese Patent Publication No. 4-83

このような実状に鑑みて、本発明は、熱可塑性を有していて押出被覆可能であり焼成をせずに使用することができる(すなわち製造コストが低い)フッ素樹脂を用いることと、PTFE絶縁電線に匹敵する減衰特性を有することとを兼ね備えたフッ素樹脂絶縁電線を包含する同軸ケーブルおよびその製造方法を提供することを課題とする。   In view of such a situation, the present invention uses a fluororesin that has thermoplasticity, can be extrusion-coated, and can be used without firing (ie, has a low manufacturing cost), and PTFE insulation. It is an object of the present invention to provide a coaxial cable including a fluororesin insulated electric wire having a damping characteristic comparable to that of an electric wire and a method for manufacturing the same.

上述した熱可塑性フッ素樹脂を使用した場合にtanδが高くなるのは、従来は、該フッ素樹脂の主たる構造に起因するものと考えられていた。しかし、本発明者らが詳細に検討した結果、当該フッ素樹脂には後述するように、メタノール/水混合液へ抽出し得るフッ化物イオンが存在する(すなわち、化学的に不安定な末端基が存在する)ことに起因して上記問題が生じることを見出した。また、従来、フッ素樹脂用の化学発泡剤が知られていなかったことに起因して、同軸ケーブルの製造に際してフッ素樹脂を発泡成形させることは行われていなかったが、本発明者らは発泡したフッ素樹脂はさらに減衰特性が良好になることを見出した。これらの知見に基き、後述するような分子構造をもつフッ素樹脂の発泡体を用いることを特徴とする本発明を完成した。   In the past, it was thought that the increase in tan δ when the above-mentioned thermoplastic fluororesin was used was due to the main structure of the fluororesin. However, as a result of detailed investigations by the present inventors, the fluororesin contains fluoride ions that can be extracted into a methanol / water mixture as described later (that is, chemically unstable terminal groups are present). It has been found that the above problem arises due to In addition, conventionally, the foaming of the fluororesin has not been performed in the production of the coaxial cable due to the fact that the chemical foaming agent for the fluororesin has not been known. It has been found that the fluororesin further improves the damping characteristics. Based on these findings, the present invention was completed by using a fluororesin foam having a molecular structure as described later.

(1)内部導体と、内部導体の外周を被覆するフッ素樹脂の発泡体からなる絶縁層と、絶縁層の外周に設けられてなる外部導体と、外部導体の外周に設けられてなるシース層とを有しており、フッ素樹脂が下記(A)と(B)を具備する同軸ケ−ブル。
(A)372℃における溶融粘度が102〜107ポイズであること、
(B)容量比1:1のメタノール/水混合液へ抽出し得るフッ化物イオンが重量基準で1.5ppm以下であること。
(2)上記発泡体が、フッ素樹脂と成核剤とを含む組成物を物理発泡剤を用いて物理発泡させてなるものである、上記(1)記載の同軸ケーブル。
(3)上記フッ素樹脂が下記(C)をさらに具備するものである上記(1)または(2)に記載の同軸ケーブル。
(C)該フッ素樹脂の80〜99重量%が−CF2CF2−で表される反復単位からなり、1〜20重量%が−CF(ORf)−CF2− (式中、Rfは炭素数1〜8のパーフルオロアルキル基を示す)または−CF(CF3)−CF2−で表される反復単位からなること。
(4)外部導体がコルゲート加工された銅管である、上記(1)〜(3)のいずれかに記載の同軸ケーブル。
(5)1GHz以上の周波数の電磁波を伝送するためのものである、上記(1)〜(4)のいずれかに記載の同軸ケーブル。
(6)内部導体と、内部導体の外周を被覆するフッ素樹脂の発泡体からなる絶縁層と、絶縁層の外周に設けられてなる外部導体と、外部導体の外周に設けられてなるシース層とを有する同軸ケーブルの製造方法であって、
下記(A)、(B)を具備するフッ素樹脂と成核剤とを混合してなる樹脂混合物を340〜410℃に加熱する工程と、加熱状態の樹脂混合物に物理発泡剤を加えて物理発泡させながら樹脂混合物を内部導体の外周に被覆する工程とを有する、製造方法。
(A)372℃における溶融粘度が102〜107ポイズであること、
(B)容量比1:1のメタノール/水混合液へ抽出し得るフッ化物イオンが重量基準で1.5ppm以下であること。
(7)樹脂混合物における成核剤の含有量がフッ素樹脂100重量部に対して0.01〜20重量部である、上記(6)記載の製造方法。
(8)上記フッ素樹脂が下記(C)をさらに具備するものである上記(6)または(7)記載の製造方法。
(C)該フッ素樹脂の80〜99重量%が−CF2CF2−で表される反復単位からなり、1〜20重量%が−CF(ORf)−CF2− (式中、Rfは炭素数1〜8のパーフルオロアルキル基を示す)または−CF(CF3)−CF2−で表される反復単位からなること。
(1) an inner conductor, an insulating layer made of a fluororesin foam covering the outer periphery of the inner conductor, an outer conductor provided on the outer periphery of the insulating layer, and a sheath layer provided on the outer periphery of the outer conductor; A coaxial cable in which the fluororesin comprises the following (A) and (B).
(A) The melt viscosity at 372 ° C. is 10 2 to 10 7 poise,
(B) The fluoride ion that can be extracted into a methanol / water mixture having a volume ratio of 1: 1 is 1.5 ppm or less on a weight basis.
(2) The coaxial cable according to (1), wherein the foam is obtained by physically foaming a composition containing a fluororesin and a nucleating agent using a physical foaming agent.
(3) The coaxial cable according to (1) or (2), wherein the fluororesin further comprises the following (C).
(C) 80 to 99% by weight of the fluororesin is composed of repeating units represented by —CF 2 CF 2 —, and 1 to 20% by weight is —CF (OR f ) —CF 2 — (wherein R f Is a perfluoroalkyl group having 1 to 8 carbon atoms) or a repeating unit represented by —CF (CF 3 ) —CF 2 —.
(4) The coaxial cable according to any one of (1) to (3), wherein the outer conductor is a corrugated copper tube.
(5) The coaxial cable according to any one of the above (1) to (4), which is for transmitting an electromagnetic wave having a frequency of 1 GHz or more.
(6) an inner conductor, an insulating layer made of a fluororesin foam covering the outer periphery of the inner conductor, an outer conductor provided on the outer periphery of the insulating layer, and a sheath layer provided on the outer periphery of the outer conductor A method of manufacturing a coaxial cable having
Heating a resin mixture obtained by mixing a fluororesin and a nucleating agent comprising the following (A) and (B) to 340 to 410 ° C. and adding a physical foaming agent to the heated resin mixture to perform physical foaming And a step of coating the outer periphery of the inner conductor with the resin mixture.
(A) The melt viscosity at 372 ° C. is 10 2 to 10 7 poise,
(B) The fluoride ion that can be extracted into a methanol / water mixture having a volume ratio of 1: 1 is 1.5 ppm or less on a weight basis.
(7) The production method according to (6), wherein the content of the nucleating agent in the resin mixture is 0.01 to 20 parts by weight with respect to 100 parts by weight of the fluororesin.
(8) The production method according to (6) or (7), wherein the fluororesin further comprises the following (C).
(C) 80 to 99% by weight of the fluororesin is composed of repeating units represented by —CF 2 CF 2 —, and 1 to 20% by weight is —CF (OR f ) —CF 2 — (wherein R f Is a perfluoroalkyl group having 1 to 8 carbon atoms) or a repeating unit represented by —CF (CF 3 ) —CF 2 —.

このように、メタノール/水混合液へ抽出し得るフッ化物イオンの濃度を厳密に制御したフッ素樹脂を同軸ケーブルの絶縁層に用いることは、従来は全く想起し得なかったことである。これは、フッ素樹脂の末端基が高周波領域(「GHz」領域)の減衰量特性に影響していることは知られておらず、単に汚損させる要因として知られているだけであった(特許文献2参照)という理由によるものである。本発明の同軸ケーブルは、上記要件を具備する熱可塑性のフッ素樹脂を用いることで、低コストで製造可能なことと、優れた減衰特性(低いtanδ)とを両立し得るのである。   Thus, using a fluororesin in which the concentration of fluoride ions that can be extracted into a methanol / water mixture is strictly controlled for an insulating layer of a coaxial cable has never been conceived. This is not known that the terminal group of the fluororesin affects the attenuation characteristic in the high frequency region (“GHz” region), but is merely known as a factor causing fouling (patent document). 2). The coaxial cable of the present invention can be manufactured at a low cost and can have both excellent attenuation characteristics (low tan δ) by using a thermoplastic fluororesin having the above requirements.

本発明の同軸ケーブルは、高周波伝送時の伝送損失が小さく、焼成の必要がなく、製造コストが低く、高周波同軸ケーブルに一般的に使用されるポリエチレン樹脂よりも融点が高いフッ素樹脂を用いているので電力容量が大きい(耐熱性が高い)同軸ケーブルである。   The coaxial cable of the present invention uses a fluororesin that has a low transmission loss during high-frequency transmission, does not require firing, has a low manufacturing cost, and has a melting point higher than that of a polyethylene resin generally used for high-frequency coaxial cables. Therefore, it is a coaxial cable with a large power capacity (high heat resistance).

本発明の同軸ケーブルを図面を参照しながら説明する。図1は、本発明の同軸ケーブルを模式的に表す図である。図1(A)は斜視図であり、そのI−I断面図が同図(B)である。本発明の同軸ケーブル1は、長尺状の多層被覆電線である。この同軸ケーブル1は、長手方向に垂直な断面のほぼ中心部を占める内部導体11と、その外周を中心側から順に被覆してなる、絶縁層12と、外部導体13と、シース層14とを少なくとも有する。本発明の同軸ケーブル1は絶縁層12を構成するフッ素樹脂とその成形態様に特徴がある。   The coaxial cable of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a coaxial cable of the present invention. FIG. 1A is a perspective view, and its II sectional view is FIG. The coaxial cable 1 of the present invention is a long multilayer covered electric wire. The coaxial cable 1 includes an inner conductor 11 that occupies a substantially central portion of a cross section perpendicular to the longitudinal direction, an insulating layer 12, an outer conductor 13, and a sheath layer 14 that cover the outer periphery in order from the center side. Have at least. The coaxial cable 1 of the present invention is characterized by the fluororesin constituting the insulating layer 12 and its molding mode.

本発明の同軸ケーブル1の絶縁層12は、下記(A)、(B)の要件、好ましくは下記(A)〜(C)の要件を具備するフッ素樹脂の発泡体を内部導体11の外周に被覆してなるものである。   The insulating layer 12 of the coaxial cable 1 of the present invention has a fluororesin foam having the following requirements (A) and (B), preferably the following requirements (A) to (C), on the outer periphery of the internal conductor 11. It is formed by coating.

(A)372℃における溶融粘度が102〜107ポイズであること。
樹脂の溶融粘度とは、東洋精機製作所 キャピログラフ1Bに内径9.6mmの耐蝕バレルと孔径1.0mm、長さ10mmのダイスを用いて測定した、ピストンスピード10mm/min、温度372℃における見かけ粘度である。
(A) The melt viscosity at 372 ° C. is 10 2 to 10 7 poise.
The melt viscosity of the resin is an apparent viscosity at a piston speed of 10 mm / min and a temperature of 372 ° C. measured using a corrosion resistant barrel with an inner diameter of 9.6 mm and a die with a hole diameter of 1.0 mm and a length of 10 mm on the Toyo Seiki Capillograph 1B. is there.

本発明で用いるフッ素樹脂の372℃における溶融粘度は、102〜107ポイズである。当該粘度が102ポイズ未満では、押出被覆が良好に行えなくなり、107ポイズを超えると可塑性が低すぎて押出被覆が困難となるからである。当該粘度は押出被覆が良好に行えるという点から好ましくは104ポイズ以上であり、加工スピード、押出成形機のモーターへの負荷を軽減する点から好ましくは105ポイズ以下である。 The melt viscosity at 372 ° C. of the fluororesin used in the present invention is 10 2 to 10 7 poise. If the viscosity is less than 10 2 poise, extrusion coating cannot be performed well, and if it exceeds 10 7 poise, the plasticity is too low and extrusion coating becomes difficult. The viscosity is preferably 10 4 poise or more from the viewpoint of good extrusion coating, and preferably 10 5 poise or less from the viewpoint of reducing the processing speed and the load on the motor of the extrusion molding machine.

(B)容量比1:1のメタノール/水混合液へ抽出し得るフッ化物イオンが重量基準で1.5ppm以下であること。
容量比1:1のメタノール/水混合液へ抽出し得るフッ化物イオンの濃度とは、以下の測定で得られる値である。10gの試料をポリエチレンのビンに入れ、メタノール/水混合物(容量比1:1)10mlを添加し、オリオン(Orion)94−09−09全イオン強度調節緩衝液10mlをさらに添加する。これらの混合物を攪拌して24時間放置した後、フッ化物イオン電極(オリオン96−90−00)を用いて測定する。
(B) The fluoride ion that can be extracted into a methanol / water mixture having a volume ratio of 1: 1 is 1.5 ppm or less on a weight basis.
The concentration of fluoride ions that can be extracted into a methanol / water mixture having a volume ratio of 1: 1 is a value obtained by the following measurement. A 10 g sample is placed in a polyethylene bottle, 10 ml of a methanol / water mixture (1: 1 volume ratio) is added, and an additional 10 ml of Orion 94-09-09 total ionic strength adjusting buffer is added. These mixtures are stirred and allowed to stand for 24 hours, and then measured using a fluoride ion electrode (Orion 96-90-00).

このようにして測定されるフッ化物イオンはフッ素樹脂全量に対して重量基準で1.5ppm以下であることが必要である。当該フッ化物イオンが1.5ppmを超えると、絶縁電線とした場合のtanδが大きくなるという不具合がある。当該フッ化物イオンは、1.0ppm以下が好ましく、0.5ppm以下がより好ましい。上述の点から、当該フッ化物イオンは少ないほど好ましい。後述するフッ素樹脂の末端基を−CF3末端に転化する方法によれば、本要件を満たすフッ素樹脂が得られることが知られている(特許文献2)。 Thus, the fluoride ion measured needs to be 1.5 ppm or less on a weight basis with respect to the fluororesin whole quantity. When the fluoride ion exceeds 1.5 ppm, there is a problem that tan δ in the case of an insulated wire is increased. The fluoride ion is preferably 1.0 ppm or less, and more preferably 0.5 ppm or less. From the above point, the smaller the fluoride ion, the better. According to the process for converting the terminal groups of which will be described later fluororesin -CF 3 end, it is known that fluorine resins satisfying this requirement is obtained (Patent Document 2).

本発明における「フッ素樹脂」とは、80重量%以上が−CF2CF2−で表される反復単位からなる樹脂をいう。本発明のフッ素樹脂は、上記(A)、(B)の要件に加え、さらに下記要件(C)を具備することが好ましい。 The “fluororesin” in the present invention refers to a resin comprising 80% by weight or more of repeating units represented by —CF 2 CF 2 —. In addition to the above requirements (A) and (B), the fluororesin of the present invention preferably further includes the following requirement (C).

(C)フッ素樹脂の80〜99重量%が−CF2CF2−で表される反復単位からなり、1〜20重量%が−CF(ORf)−CF2− (式中、Rfは炭素数1〜8のパーフルオロアルキル基を示す)または−CF(CF3)−CF2−で表される反復単位からなること。
当該重量比は赤外分光法で求める。厚さ約0.05mmのフィルム状の試料の窒素雰囲気下における10.07μmでの吸収と4.25μmでの吸収とを用いて、公知の重量比の参照フィルムで作った補正曲線をもとにして、上記重量比を算出する。
(C) 80 to 99% by weight of the fluororesin is composed of repeating units represented by —CF 2 CF 2 —, and 1 to 20% by weight is —CF (OR f ) —CF 2 — (wherein R f is A perfluoroalkyl group having 1 to 8 carbon atoms) or a repeating unit represented by —CF (CF 3 ) —CF 2 —.
The weight ratio is determined by infrared spectroscopy. Based on a correction curve made with a reference film of a known weight ratio using an absorption at 10.07 μm and an absorption at 4.25 μm in a nitrogen atmosphere of a film sample having a thickness of about 0.05 mm. Then, the weight ratio is calculated.

本発明で用いるフッ素樹脂の80〜99重量%が−CF2CF2−で表される反復単位からなるのが好ましいのは、製造が容易にできるという理由による。本発明で用いるフッ素樹脂は、−CF2CF2−で表される反復単位以外は全て、−CF(ORf)−CF2−で表される反復単位(式中、Rfは上述したとおりである。)であることがより好ましい。 The reason why 80 to 99% by weight of the fluororesin used in the present invention is preferably composed of a repeating unit represented by —CF 2 CF 2 — is that the production can be facilitated. The fluororesin used in the present invention is a repeating unit represented by —CF (OR f ) —CF 2 — except for the repeating unit represented by —CF 2 CF 2 — (wherein R f is as described above. It is more preferable that

上記式中、Rfで表される炭素数1〜8のパーフルオロアルキル基は、一般式−Cn2n+1(nは、1〜8の整数である。)で示される基であればよい。 In the above formulas, perfluoroalkyl group having 1 to 8 carbon atoms represented by R f is the formula -C n F 2n + 1 (n is an integer from 1 to 8.) A group represented by any That's fine.

このようなフッ素樹脂を得る方法は、特に限定はなく、公知の方法で製造してもよいし、市販品(例えば、三井デュポンフロロケミカル(株)製、NEW PFA テフロン(登録商標)HPシリーズ等)を用いてもよい。特に上述の(A)〜(C)の要件のうち、(A)および(C)を満足するフッ素樹脂は常法により容易に合成することができる。以下、本発明のフッ素樹脂を得るための方法の一例として(A)および(C)を満たすフッ素樹脂の不安定な末端基を−CF3末端に転化する方法(特許文献2)を説明する。 The method for obtaining such a fluororesin is not particularly limited, and may be produced by a known method, or may be a commercially available product (for example, NEW PFA Teflon (registered trademark) HP series manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) ) May be used. In particular, among the above requirements (A) to (C), a fluororesin satisfying (A) and (C) can be easily synthesized by a conventional method. Hereinafter, as an example of a method for obtaining the fluororesin of the present invention, a method of converting an unstable terminal group of the fluororesin satisfying (A) and (C) to a —CF 3 terminal (Patent Document 2) will be described.

当該方法によれば、上記(A)および(C)を満たすフッ素樹脂の粒状物、フレーク、ペレット等を、フッ素ラジカルを発生する化合物(好ましくはフッ素ガス)と接触させることで、末端基を−CF3へ転化することができる。フッ素ガスを用いる場合には、フッ素ガスを不活性ガス(窒素等)で好ましくは10〜25重量%に希釈し、150〜250℃(好ましくは200〜250℃)、1〜10気圧(好ましくは大気圧)で、上記フッ素樹脂に4〜16時間(好ましくは8〜12時間)作用させる。この際、フッ素樹脂の新しい表面を連続的に露出させるために攪拌することが好ましい。このような反応を、フッ素樹脂が上述の(B)の性質を呈するまで行うことで、上記(A)〜(C)を満たすフッ素樹脂を得ることができる。なお、本発明においては要件(C)は必ずしも具備しなくてもよいことは上述したとおりである。 According to this method, the end group is changed by bringing the fluororesin granules, flakes, pellets and the like satisfying the above (A) and (C) into contact with a compound (preferably fluorine gas) that generates a fluorine radical. Can be converted to CF 3 . When fluorine gas is used, the fluorine gas is preferably diluted to 10 to 25% by weight with an inert gas (such as nitrogen), and is 150 to 250 ° C. (preferably 200 to 250 ° C.), 1 to 10 atm (preferably (At atmospheric pressure), the fluororesin is allowed to act for 4 to 16 hours (preferably 8 to 12 hours). At this time, it is preferable to stir in order to continuously expose the new surface of the fluororesin. By performing such a reaction until the fluororesin exhibits the above-described property (B), a fluororesin satisfying the above (A) to (C) can be obtained. As described above, the requirement (C) is not necessarily required in the present invention.

本発明では上述したフッ素樹脂の発泡体を絶縁層12として用いる。樹脂の発泡体とは、何らかの方法で連続または独立の気泡を含有させてなる多孔質状の樹脂成形体を意味する。従来、同軸ケーブルの絶縁層のフッ素樹脂を発泡させて高周波の伝送における損失の低減を図ることはなされていなかった。本発明の完成に際しては、発泡したフッ素樹脂を絶縁層に用いることでさらに低損失化を図れることが見出された。   In the present invention, the above-mentioned fluororesin foam is used as the insulating layer 12. The resin foam means a porous resin molded body containing continuous or independent bubbles by some method. Conventionally, loss of loss in high-frequency transmission has not been achieved by foaming a fluororesin in an insulating layer of a coaxial cable. Upon completion of the present invention, it has been found that the loss can be further reduced by using a foamed fluororesin for the insulating layer.

発泡体における発泡の程度は発泡度なるパラメータで表現することができる。発泡度とは、発泡前後の発泡体の比重の変化率を意味し、その発泡体を構成する材料固有の比重(以下、真比重ともいう。)と、発泡体の見かけの比重との変化率に等しい。同軸ケーブル1の絶縁層12を構成するフッ素樹脂の発泡体の発泡度は以下のように、発泡体の見かけ比重測定、真比重測定を経て算出される。   The degree of foaming in the foam can be expressed by a parameter that is the degree of foaming. The degree of foaming means the rate of change in the specific gravity of the foam before and after foaming, and the rate of change between the specific gravity of the material constituting the foam (hereinafter also referred to as true specific gravity) and the apparent specific gravity of the foam. be equivalent to. The foaming degree of the fluororesin foam constituting the insulating layer 12 of the coaxial cable 1 is calculated through the apparent specific gravity measurement and the true specific gravity measurement of the foam as follows.

絶縁層12を構成する発泡体の見かけ比重は、同軸ケーブルの内外導体等を除去して取り出した絶縁層12を、JIS K 7112に準じた水中置換法に供することで求められる。より具体的には、空気中での重量がMである発泡体のサンプルの、比重が既知(ρ)の置換液(例;水)中に浸漬させたときの重量Mから、当該サンプルの体積Vを、V=(M−M)/ρにて求め、この体積Vを用いて、見かけ比重をM/Vとして求める。 The apparent specific gravity of the foam constituting the insulating layer 12 is determined by subjecting the insulating layer 12 taken out by removing the inner and outer conductors of the coaxial cable to an underwater replacement method in accordance with JIS K7112. More specifically, the weight in air of a sample of the foam is M 0, specific gravity substitution fluid known ([rho); the weight M 1 when immersed in (eg water), the sample Is obtained by V = (M 0 −M 1 ) / ρ, and using this volume V, the apparent specific gravity is obtained as M 0 / V.

絶縁層12を構成する発泡体の材料の真比重の測定手順は以下のとおりである。まず、当該材料の融点以上の温度にて発泡体を熱プレスに供して、気泡を押しつぶし、気泡のないシートサンプルを作成する。次に、上述したJIS K 7112に準ずる水中置換法によってこのシートサンプルの比重を測定する。このようにして得られた比重が真比重である。上記熱プレス時の温度は、発泡体の材料がPFAであれば330℃が、FEPであれば300℃が各々例示される。   The procedure for measuring the true specific gravity of the foam material constituting the insulating layer 12 is as follows. First, the foam is subjected to hot pressing at a temperature equal to or higher than the melting point of the material to crush the bubbles, thereby creating a sheet sample without bubbles. Next, the specific gravity of the sheet sample is measured by an underwater substitution method according to JIS K 7112 described above. The specific gravity thus obtained is the true specific gravity. Examples of the temperature at the time of hot pressing are 330 ° C. if the foam material is PFA and 300 ° C. if it is FEP.

上記のようにして得た発泡体の見かけ比重と、その材料の真比重から発泡体の発泡度を以下の式によって算出する。
発泡度(%)=(真比重−見かけ比重)×100(%)/真比重
From the apparent specific gravity of the foam obtained as described above and the true specific gravity of the material, the foaming degree of the foam is calculated by the following formula.
Foaming degree (%) = (true specific gravity−apparent specific gravity) × 100 (%) / true specific gravity

本発明の同軸ケーブル1の絶縁層12を構成するフッ素樹脂の発泡体の発泡度は特に限定はないが、設計上の制約および伝送損失を小さくする点から、好ましくは35%以上であり、より好ましくは40%以上である。設計上の制約とは、発泡度が小さすぎると、同軸ケーブルの特性インピーダンスを50Ωとしたときに外部導体13を太くするかあるいは内部導体11を細くしなければならないという制約である。発泡度は高ければ高いほど伝送損失を小さくする観点からは好ましいが、製造の容易さの点から発泡度は好ましくは65%以下であり、安定して均一な発泡度を得る点から、より好ましくは55%以下である。   The degree of foaming of the fluororesin foam constituting the insulating layer 12 of the coaxial cable 1 of the present invention is not particularly limited, but is preferably 35% or more from the viewpoint of reducing the design constraints and transmission loss. Preferably it is 40% or more. The restriction on the design is that if the foaming degree is too small, the outer conductor 13 must be thickened or the inner conductor 11 must be thinned when the characteristic impedance of the coaxial cable is 50Ω. The higher the degree of foaming, the better from the viewpoint of reducing transmission loss, but the degree of foaming is preferably 65% or less from the viewpoint of ease of production, and more preferably from the viewpoint of obtaining a stable and uniform foaming degree. Is 55% or less.

一般に発泡した樹脂成形体を得る手段には、化学変化によってガスを発生する化学発泡剤を用いる化学発泡と、ガスそのものまたは相変化によってガス化し得る物理発泡剤を用いる物理発泡とが挙げられる。本発明の同軸ケーブル1の絶縁層12を構成する発泡体は化学発泡によっても、物理発泡によっても発明の作用・効果を奏する点では差異は生じ得ないので、どちらの発泡手段によって製造されてもよい。フッ素樹脂用の化学発泡剤が知られていないことから、以下、物理発泡について説明する。   In general, means for obtaining a foamed resin molded article includes chemical foaming using a chemical foaming agent that generates a gas by chemical change, and physical foaming using a physical foaming agent that can be gasified by the gas itself or phase change. The foam constituting the insulating layer 12 of the coaxial cable 1 of the present invention can be made by either foaming means because there is no difference in terms of the effects and effects of the invention by chemical foaming or physical foaming. Good. Since chemical foaming agents for fluororesins are not known, physical foaming will be described below.

物理発泡は、発泡体を形成するための樹脂組成物に物理発泡剤を混入させて行われる。物理発泡剤はガスまたは相変化してガスになりうる物質である。具体例として、内部導体11に被覆すべきフッ素樹脂の組成物を押出機内にて加熱して軟化または溶融させ、その加熱状態のフッ素樹脂組成物に物理発泡剤を加えながら内部導体11の外周に被覆して絶縁層12を形成することによる、発泡体の製造方法が挙げられる。   Physical foaming is performed by mixing a physical foaming agent into a resin composition for forming a foam. A physical foaming agent is a gas or a substance that can change into a gas upon phase change. As a specific example, a fluororesin composition to be coated on the inner conductor 11 is heated in an extruder to be softened or melted, and a physical foaming agent is added to the heated fluororesin composition on the outer periphery of the inner conductor 11. A method for producing a foam by covering and forming the insulating layer 12 may be mentioned.

フッ素樹脂を押出機内にて加熱する際の温度は340〜410℃であり、好ましくは360〜400℃である。本発明で用いる物理発泡剤はこの温度でガスになりうる物質であればよく、具体的には、フロンガス、希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン)、炭化水素(プロパン、ブタン、ペンタン、ヘキサン等)、炭酸ガス、窒素ガス等が例示され、好ましくは炭酸ガス、窒素ガス等が挙げられる。このような押出工程において物理発泡剤を加える方法は、内部導体11への被覆と樹脂の発泡とを同時になし得る点で好ましい。このような方法でフッ素樹脂を発泡させる場合、発泡度を上げるためには、上記ガスの注入圧力を上げたり、ガスの流量を上げればよく、発泡度を下げるためには逆の操作をすればよい。好ましい発泡度を呈するフッ素樹脂の発泡体を得るための具体的な条件は後述の実施例にて詳述する。   The temperature at the time of heating a fluororesin in an extruder is 340-410 degreeC, Preferably it is 360-400 degreeC. The physical foaming agent used in the present invention may be any substance that can become a gas at this temperature. Specifically, it can be a flon gas, a rare gas (helium, neon, argon, krypton, xenon, radon), hydrocarbon (propane, butane). , Pentane, hexane, etc.), carbon dioxide gas, nitrogen gas and the like, and preferably carbon dioxide gas, nitrogen gas and the like. The method of adding a physical foaming agent in such an extrusion process is preferable in that it can simultaneously cover the inner conductor 11 and foam the resin. When foaming the fluororesin by such a method, in order to increase the foaming degree, the injection pressure of the gas should be increased or the flow rate of the gas should be increased. To lower the foaming degree, the reverse operation should be performed. Good. Specific conditions for obtaining a fluororesin foam exhibiting a preferable foaming degree will be described in detail in Examples described later.

物理発泡においては、物理発泡剤のみを加えてもよいが、好ましくは成核剤をも加える。成核剤とは、具体的には窒化ホウ素(BN)、二酸化ケイ素、二酸化チタン、アルミナ、マグネシアのいずれかまたはそれら2種以上の混合物である。このような成核剤は、フッ素樹脂との濡れ性が悪い(なじみ難い)ので、発泡の際に核となるのである。より詳しく述べると、フッ素樹脂と成核剤とはなじみ難いので、両者の界面に物理発泡剤(加熱によりガス化している)がたまり易くなり、押出被覆される際に、圧力が開放されて発泡が促進されるのである。上述した押出成形においてフッ素樹脂を発泡させるに際して成核剤を加える場合には、押出機にフッ素樹脂と成核剤とを加えて樹脂混合物を得てから、上述のようにして発泡、押出成形を行うとよい。このとき、十分な発泡を得る点と、成核剤による伝送損失を防ぐ点から、樹脂混合物における成核剤の含有量は、フッ素樹脂100重量部に対して好ましくは0.01〜20重量部であり、より好ましくは0.1〜5重量部である。   In physical foaming, only a physical foaming agent may be added, but preferably a nucleating agent is also added. The nucleating agent is specifically boron nitride (BN), silicon dioxide, titanium dioxide, alumina, magnesia or a mixture of two or more thereof. Since such a nucleating agent has poor wettability with a fluororesin (it is difficult to fit in), it becomes a core when foaming. More specifically, since the fluororesin and the nucleating agent are hardly compatible, the physical foaming agent (gasified by heating) tends to accumulate at the interface between the two, and the pressure is released when foaming is applied. Is promoted. When adding a nucleating agent when foaming a fluororesin in the above-described extrusion molding, a fluororesin and a nucleating agent are added to an extruder to obtain a resin mixture, and then foaming and extrusion molding are performed as described above. It is good to do. At this time, the content of the nucleating agent in the resin mixture is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the fluororesin from the viewpoint of obtaining sufficient foaming and preventing transmission loss due to the nucleating agent. More preferably, it is 0.1 to 5 parts by weight.

本発明の同軸ケーブル1に用いる内部導体11の形状や寸法は目的に応じて任意に決めればよい。内部導体11の材質は、金属であれば限定はなく、公知のものを適用すればよく、例えば、銅線、銅合金線、銀メッキ銅線、すずメッキ銅線、アルミニウム線等の単線または撚線等が例示される。内部導体11は中空であってもよく、また、コルゲート加工管のごとく、中空であり、かつ太さが一定でなくてもよい。   What is necessary is just to determine arbitrarily the shape and dimension of the internal conductor 11 used for the coaxial cable 1 of this invention according to the objective. The material of the internal conductor 11 is not limited as long as it is a metal, and a known material may be applied. For example, a single wire such as a copper wire, a copper alloy wire, a silver-plated copper wire, a tin-plated copper wire, an aluminum wire, or a twisted wire. Lines and the like are exemplified. The inner conductor 11 may be hollow, and may be hollow and the thickness may not be constant like a corrugated tube.

本発明の同軸ケーブル1の外部導体13およびシース層14は、従来から同軸ケーブルに用いられている材料を従来公知の方法で形成することができる。外部導体13は金属であれば限定なく、その形成方法は、管状導体のシンキング、テープ溶接による管状導体の形成でもよく、また、導線の横巻き線や編組、テープの縦添えなどでもよい。同軸ケーブル1を曲げ易くする点から、外部導体13はコルゲート加工された銅管であるのが好ましい。コルゲート加工された銅管を外部導体13として用いることの更なる利点として、絶縁層12の外周面と外部導体13の内周面との間にできる空隙が、あたかも発泡体における気泡と同様の作用を奏して、伝送損失の低減に寄与する点を挙げることができる。シース層14は、外部導体13を物理的、化学的損傷から保護し得るものであればよく、具体的には、フッ素樹脂、PVC(ポリ塩化ビニル)、PE(ポリエチレン)、一般ゴム等が例示される。低発煙性、低毒性、低腐食性、耐熱性、耐薬品性、耐寒性の点から、フッ素樹脂を押出成形してシース層14を形成するのが好ましい。   The outer conductor 13 and the sheath layer 14 of the coaxial cable 1 of the present invention can be formed of a conventionally used material for a coaxial cable by a conventionally known method. The outer conductor 13 is not limited as long as it is a metal, and the formation method thereof may be tubular conductor sinking, formation of a tubular conductor by tape welding, horizontal winding or braiding of a conducting wire, vertical attachment of tape, or the like. From the viewpoint of facilitating bending of the coaxial cable 1, the outer conductor 13 is preferably a corrugated copper tube. As a further advantage of using a corrugated copper tube as the outer conductor 13, the gap formed between the outer peripheral surface of the insulating layer 12 and the inner peripheral surface of the outer conductor 13 acts as if it were a bubble in a foam. To contribute to the reduction of transmission loss. The sheath layer 14 may be any material that can protect the outer conductor 13 from physical and chemical damage. Specific examples include fluororesin, PVC (polyvinyl chloride), PE (polyethylene), and general rubber. Is done. From the viewpoint of low smoke generation, low toxicity, low corrosion, heat resistance, chemical resistance, and cold resistance, it is preferable to form the sheath layer 14 by extruding a fluororesin.

本発明の同軸ケーブル1はにおける、内部導体11の太さ(直径)、ならびに、絶縁層12、外部導体13およびシース層14の被覆厚さは特に限定はないが、好ましくは以下のとおりである。ここで、内部導体11の太さ(直径)とは、同軸ケーブルの長手方向に垂直な断面における内部導体11の切断面積と同面積の円の直径を意味する。内部導体11が中空である場合には、上記切断面積は切断面と切断面が囲む中空部分とを合わせた領域の面積を意味する。内部導体11の切断面積が切断箇所によって異なる場合(太さが一定でない場合)は、内部導体11の最大太さが以下の範囲であることが好ましい。
内部導体11 0.1〜10mm、
絶縁層12 0.5〜10mm、
外部導体13 0.1〜1.0mm、
シース層14 0.1〜2.0mm。
In the coaxial cable 1 of the present invention, the thickness (diameter) of the inner conductor 11 and the coating thicknesses of the insulating layer 12, the outer conductor 13, and the sheath layer 14 are not particularly limited, but are preferably as follows. . Here, the thickness (diameter) of the inner conductor 11 means the diameter of a circle having the same area as the cut area of the inner conductor 11 in a cross section perpendicular to the longitudinal direction of the coaxial cable. When the inner conductor 11 is hollow, the cut area means the area of the combined area of the cut surface and the hollow portion surrounded by the cut surface. When the cut area of the internal conductor 11 varies depending on the cut location (when the thickness is not constant), the maximum thickness of the internal conductor 11 is preferably in the following range.
Inner conductor 11 0.1-10 mm,
Insulating layer 12 0.5-10 mm,
Outer conductor 13 0.1-1.0 mm,
Sheath layer 14 0.1-2.0 mm.

本発明の同軸ケーブル1は上述した、内部導体11、絶縁層12、外部導体13、シース層14の他に、そうがい、支持線等をさらに有していてもよい。   The coaxial cable 1 of the present invention may further include a support wire or the like in addition to the above-described inner conductor 11, insulating layer 12, outer conductor 13, and sheath layer 14.

本発明の同軸ケーブルは、各種の電磁波を伝送する用途に適合し得るが、減衰特性に優れる点から、特に高周波を伝送する場合に好適に用いることができる。ここで、高周波とは、周波数が1GHz以上、好ましくは2〜20GHzの電磁波をいう。   The coaxial cable of the present invention can be adapted for use in transmitting various types of electromagnetic waves, but can be suitably used particularly for transmitting high frequencies because of its excellent attenuation characteristics. Here, the high frequency means an electromagnetic wave having a frequency of 1 GHz or more, preferably 2 to 20 GHz.

以下、各実施例に基づいて、本発明についてさらに詳細に説明するが、本発明は実施例のみに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on each example, but the present invention is not limited to only the example.

[実施例1−8、比較例1−10]
市販のフッ素樹脂(PFA)に対して上述の末端基の転化を行った。得られたフッ素樹脂の372℃における溶融粘度、抽出し得るフッ化物イオン、−CF(ORf)−CF2− (式中、Rfは炭素数1〜8のパーフルオロアルキル基を示す)または−CF(CF3)−CF2−で表される反復単位の量は表1および表2のとおりである。このフッ素樹脂100重量部と表1記載の種類・量の成核剤を二軸混練機に投入し、340℃にて混練押出して攪拌して樹脂混合物を得た。その樹脂混合物を押出機に投入し、表1、2記載の発泡剤を注入し、さらに攪拌しつつ、銀メッキ軟銅線からなる内部導体の外周に被覆して、フッ素樹脂絶縁電線を得た。絶縁層の発泡度を制御するために、発泡剤の注入圧を調節した。例えば、発泡度を30%にするためには注入圧を2MPaとし、発泡度を50%にするためには注入圧を6MPaとした。このフッ素樹脂絶縁電線の外周を、厚さ0.5mmの銅管(コルゲート加工の有無は表1、2参照)、次いで、FEPからなる厚さ0.5mmのシース層で覆うことによって、同軸ケーブルを得た。図2は、そのようにして得られた同軸ケーブルの模式図である。
[Example 1-8, Comparative Example 1-10]
The above-mentioned end group conversion was performed on a commercially available fluororesin (PFA). Melt viscosity at 372 ° C. of the obtained fluororesin, extractable fluoride ion, —CF (OR f ) —CF 2 — (wherein R f represents a C 1-8 perfluoroalkyl group) or The amount of the repeating unit represented by —CF (CF 3 ) —CF 2 — is as shown in Tables 1 and 2. 100 parts by weight of this fluororesin and the nucleating agent of the kind and amount shown in Table 1 were put into a biaxial kneader, kneaded and extruded at 340 ° C., and stirred to obtain a resin mixture. The resin mixture was put into an extruder, the foaming agents shown in Tables 1 and 2 were injected, and the outer periphery of the inner conductor made of silver-plated annealed copper wire was coated while stirring to obtain a fluororesin insulated wire. In order to control the foaming degree of the insulating layer, the injection pressure of the foaming agent was adjusted. For example, the injection pressure was 2 MPa in order to achieve a foaming degree of 30%, and the injection pressure was 6 MPa in order to achieve a foaming degree of 50%. The outer periphery of this fluororesin insulated wire is covered with a 0.5 mm thick copper tube (see Tables 1 and 2 for the presence or absence of corrugating), and then covered with a 0.5 mm thick sheath layer made of FEP. Got. FIG. 2 is a schematic view of the coaxial cable thus obtained.

[評価]
フッ素樹脂およびその発泡体の各パラメータは上述のように測定した。各実施例、比較例の絶縁電線に対し、ネットワークアナライザーを用いて、2GHzおよび20GHzの周波数の電波に対する、減衰量特性(dB/m)を測定した。これら測定結果を表1および表2にまとめる。
[Evaluation]
Each parameter of the fluororesin and its foam was measured as described above. Attenuation characteristics (dB / m) with respect to radio waves with frequencies of 2 GHz and 20 GHz were measured for the insulated wires of each Example and Comparative Example using a network analyzer. These measurement results are summarized in Tables 1 and 2.

Figure 2005078835
Figure 2005078835

Figure 2005078835
Figure 2005078835

表1、2における、「反復単位」とは、用いたフッ素樹脂における、−CF(ORf)−CF2− (式中、Rfは炭素数1〜8のパーフルオロアルキル基を示す)または−CF(CF3)−CF2−で表される反復単位の割合を重量%で表したものである。また、成核剤の添加量が「2phr」であるのは、樹脂100重量部に対して成核剤を2重量部添加したことを示す。 In Tables 1 and 2, “repeating unit” means —CF (OR f ) —CF 2 — (wherein R f represents a perfluoroalkyl group having 1 to 8 carbon atoms) in the fluororesin used or The ratio of the repeating unit represented by —CF (CF 3 ) —CF 2 — is expressed in weight%. Moreover, the addition amount of the nucleating agent being “2 phr” indicates that 2 parts by weight of the nucleating agent was added with respect to 100 parts by weight of the resin.

表1、2記載の測定の他に、得られた同軸ケーブルの直径20mmのマンドレルへの巻付け性を評価した。結果は、外部導体としてコルゲート加工した銅管を用いたものは巻付け性が良好であり10回以上繰り返して巻付けても座曲が生じなかった。一方、コルゲート加工しない銅管を外部導体に用いたものは、巻付けを3〜10回繰り返すと座曲してしまった。   In addition to the measurements shown in Tables 1 and 2, the winding ability of the obtained coaxial cable around a mandrel having a diameter of 20 mm was evaluated. As a result, when the corrugated copper tube was used as the outer conductor, the winding property was good, and no buckling occurred even when it was repeatedly wound 10 times or more. On the other hand, the thing using the copper pipe which does not corrugate as an external conductor has bends when winding is repeated 3 to 10 times.

本発明の同軸ケーブルを模式的に表す。図1(A)は斜視図であり、そのI−I断面図が同図(B)である。The coaxial cable of this invention is represented typically. FIG. 1A is a perspective view, and its II sectional view is FIG. 実施例および比較例にて製造した同軸ケーブルを模式的に表す。The coaxial cable manufactured in the Example and the comparative example is represented typically.

符号の説明Explanation of symbols

1 同軸ケーブル
11 内部導体
12 絶縁層
13 外部導体
14 シース層
DESCRIPTION OF SYMBOLS 1 Coaxial cable 11 Inner conductor 12 Insulation layer 13 Outer conductor 14 Sheath layer

Claims (8)

内部導体と、内部導体の外周を被覆するフッ素樹脂の発泡体からなる絶縁層と、絶縁層の外周に設けられてなる外部導体と、外部導体の外周に設けられてなるシース層とを有しており、フッ素樹脂が下記(A)と(B)を具備する同軸ケ−ブル。
(A)372℃における溶融粘度が102〜107ポイズであること、
(B)容量比1:1のメタノール/水混合液へ抽出し得るフッ化物イオンが重量基準で1.5ppm以下であること。
An inner conductor, an insulating layer made of a fluororesin foam covering the outer periphery of the inner conductor, an outer conductor provided on the outer periphery of the insulating layer, and a sheath layer provided on the outer periphery of the outer conductor A coaxial cable in which the fluororesin comprises the following (A) and (B).
(A) The melt viscosity at 372 ° C. is 10 2 to 10 7 poise,
(B) The fluoride ion that can be extracted into a methanol / water mixture having a volume ratio of 1: 1 is 1.5 ppm or less on a weight basis.
上記発泡体が、フッ素樹脂と成核剤とを含む組成物を物理発泡剤を用いて物理発泡させてなるものである、請求項1記載の同軸ケーブル。   The coaxial cable according to claim 1, wherein the foam is obtained by physically foaming a composition containing a fluororesin and a nucleating agent using a physical foaming agent. 上記フッ素樹脂が下記(C)をさらに具備するものである請求項1または2に記載の同軸ケーブル。
(C)該フッ素樹脂の80〜99重量%が−CF2CF2−で表される反復単位からなり、1〜20重量%が−CF(ORf)−CF2− (式中、Rfは炭素数1〜8のパーフルオロアルキル基を示す)または−CF(CF3)−CF2−で表される反復単位からなること。
The coaxial cable according to claim 1 or 2, wherein the fluororesin further comprises the following (C).
(C) 80 to 99% by weight of the fluororesin is composed of repeating units represented by —CF 2 CF 2 —, and 1 to 20% by weight is —CF (OR f ) —CF 2 — (wherein R f Is a perfluoroalkyl group having 1 to 8 carbon atoms) or a repeating unit represented by —CF (CF 3 ) —CF 2 —.
外部導体がコルゲート加工された銅管である、請求項1〜3のいずれかに記載の同軸ケーブル。   The coaxial cable according to claim 1, wherein the outer conductor is a corrugated copper tube. 1GHz以上の周波数の電磁波を伝送するためのものである、請求項1〜4のいずれかに記載の同軸ケーブル。   The coaxial cable according to any one of claims 1 to 4, which is for transmitting electromagnetic waves having a frequency of 1 GHz or more. 内部導体と、内部導体の外周を被覆するフッ素樹脂の発泡体からなる絶縁層と、絶縁層の外周に設けられてなる外部導体と、外部導体の外周に設けられてなるシース層とを有する同軸ケーブルの製造方法であって、
下記(A)、(B)を具備するフッ素樹脂と成核剤とを混合してなる樹脂混合物を340〜410℃に加熱する工程と、加熱状態の樹脂混合物に物理発泡剤を加えて物理発泡させながら樹脂混合物を内部導体の外周に被覆する工程とを有する、製造方法。
(A)372℃における溶融粘度が102〜107ポイズであること、
(B)容量比1:1のメタノール/水混合液へ抽出し得るフッ化物イオンが重量基準で1.5ppm以下であること。
A coaxial having an inner conductor, an insulating layer made of a foam of fluororesin covering the outer periphery of the inner conductor, an outer conductor provided on the outer periphery of the insulating layer, and a sheath layer provided on the outer periphery of the outer conductor A cable manufacturing method comprising:
Heating a resin mixture obtained by mixing a fluororesin and a nucleating agent comprising the following (A) and (B) to 340 to 410 ° C. and adding a physical foaming agent to the heated resin mixture to perform physical foaming And a step of coating the outer periphery of the inner conductor with the resin mixture.
(A) The melt viscosity at 372 ° C. is 10 2 to 10 7 poise,
(B) The fluoride ion that can be extracted into a methanol / water mixture having a volume ratio of 1: 1 is 1.5 ppm or less on a weight basis.
樹脂混合物における成核剤の含有量がフッ素樹脂100重量部に対して0.01〜20重量部である、請求項6記載の製造方法。   The manufacturing method of Claim 6 whose content of the nucleating agent in a resin mixture is 0.01-20 weight part with respect to 100 weight part of fluororesins. 上記フッ素樹脂が下記(C)をさらに具備するものである請求項6または7記載の製造方法。
(C)該フッ素樹脂の80〜99重量%が−CF2CF2−で表される反復単位からなり、1〜20重量%が−CF(ORf)−CF2− (式中、Rfは炭素数1〜8のパーフルオロアルキル基を示す)または−CF(CF3)−CF2−で表される反復単位からなること。
The method according to claim 6 or 7, wherein the fluororesin further comprises the following (C).
(C) 80 to 99% by weight of the fluororesin is composed of repeating units represented by —CF 2 CF 2 —, and 1 to 20% by weight is —CF (OR f ) —CF 2 — (wherein R f Is a perfluoroalkyl group having 1 to 8 carbon atoms) or a repeating unit represented by —CF (CF 3 ) —CF 2 —.
JP2003304784A 2003-08-28 2003-08-28 Coaxial cable and its manufacturing method Pending JP2005078835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304784A JP2005078835A (en) 2003-08-28 2003-08-28 Coaxial cable and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304784A JP2005078835A (en) 2003-08-28 2003-08-28 Coaxial cable and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005078835A true JP2005078835A (en) 2005-03-24

Family

ID=34408375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304784A Pending JP2005078835A (en) 2003-08-28 2003-08-28 Coaxial cable and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005078835A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234574A (en) * 2006-01-31 2007-09-13 Hitachi Cable Ltd Shielded cable and its terminal processing method
JP2009295402A (en) * 2008-06-04 2009-12-17 Fujikura Ltd Cable
CN102760517A (en) * 2012-07-20 2012-10-31 安徽国电电缆集团有限公司 Heat-resistant instrument cable for ships and manufacturing process of heat-resistant instrument cable
US8766096B2 (en) 2009-03-30 2014-07-01 Fujikura Ltd. Production method of foamed electric wire
CN113345649A (en) * 2021-07-05 2021-09-03 绍兴市世航电子线缆有限公司 Production process for producing LMR-400 coaxial cable by fluoroplastic foaming

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234574A (en) * 2006-01-31 2007-09-13 Hitachi Cable Ltd Shielded cable and its terminal processing method
JP4702224B2 (en) * 2006-01-31 2011-06-15 日立電線株式会社 Shielded cable and end processing method thereof
JP2009295402A (en) * 2008-06-04 2009-12-17 Fujikura Ltd Cable
US8766096B2 (en) 2009-03-30 2014-07-01 Fujikura Ltd. Production method of foamed electric wire
CN102760517A (en) * 2012-07-20 2012-10-31 安徽国电电缆集团有限公司 Heat-resistant instrument cable for ships and manufacturing process of heat-resistant instrument cable
CN113345649A (en) * 2021-07-05 2021-09-03 绍兴市世航电子线缆有限公司 Production process for producing LMR-400 coaxial cable by fluoroplastic foaming

Similar Documents

Publication Publication Date Title
JP5314707B2 (en) Tetrafluoroethylene / hexafluoropropylene copolymer and electric wire
EP0134666B1 (en) Coaxial cables suitable for use at microwave frequencies
JP5975334B2 (en) Foamed resin molded body, foamed insulated wire and cable, and method for producing foamed resin molded body
US4368350A (en) Corrugated coaxial cable
US4304713A (en) Process for preparing a foamed perfluorocarbon dielectric coaxial cable
JP5478257B2 (en) Expandable fluoropolymer composition
EP1783787A1 (en) Profiled insulation LAN cables
JP2010513676A (en) Extrusion of foamable fluoropolymer
JPH067449B2 (en) Coated wire
JP2010513675A (en) Foamed fluoropolymer articles
JP2521842B2 (en) Insulation-coated cable with low dielectric loss tangent fluorocarbon resin and its manufacturing method
WO2021193545A1 (en) Electrical wire for in-vehicle network cable, and in-vehicle network cable
WO2015145537A1 (en) Transmission line
JP2018523272A (en) USB cable for high-speed data transmission
JP2012507832A (en) Foam wire
CN107924738A (en) Cable core and transmission cable
JP2005078835A (en) Coaxial cable and its manufacturing method
JP2001067944A (en) Fluororesin-coated electric wire and manufacture of fluororesin-coated electric wire
WO2003014197A1 (en) Polytetrafluoroethylene fine powder, polytetrafluoroethylene formed article prepared from the same and method for preparation of the same
WO2008096941A1 (en) Insulator for coaxial cable, method for preparing the same, and low loss large diameter coaxial cable using the same
JP2861283B2 (en) Foam plastic insulated wire
JP2015506570A (en) Foam insulated conductor
JP2004079345A (en) Fluoro-resin insulated electric wire and its manufacturing method
JP2003109440A (en) Porous polytetrafluoroethylene insulating coaxial cable
JP2005158502A (en) High frequency coaxial cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421