JP2005077552A - Lens complex optical element and its manufacturing method - Google Patents

Lens complex optical element and its manufacturing method Download PDF

Info

Publication number
JP2005077552A
JP2005077552A JP2003305715A JP2003305715A JP2005077552A JP 2005077552 A JP2005077552 A JP 2005077552A JP 2003305715 A JP2003305715 A JP 2003305715A JP 2003305715 A JP2003305715 A JP 2003305715A JP 2005077552 A JP2005077552 A JP 2005077552A
Authority
JP
Japan
Prior art keywords
lens
resin
glass plate
optical element
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003305715A
Other languages
Japanese (ja)
Inventor
Keiji Komiya
啓二 小宮
Hatsuo Hirose
初男 広瀬
Iwao Yokoyama
巌 横山
Hajime Kurahashi
肇 倉▲はし▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Sano Corp
Original Assignee
Fujinon Sano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Sano Corp filed Critical Fujinon Sano Corp
Priority to JP2003305715A priority Critical patent/JP2005077552A/en
Priority to US10/927,125 priority patent/US7196854B2/en
Publication of JP2005077552A publication Critical patent/JP2005077552A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0031Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for scanning purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1073Beam splitting or combining systems characterized by manufacturing or alignment methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Optical Head (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a lens complex optical element which can dissolve the problem of size increase and weight increase of an optical apparatus when a planar part of an optical glass plate having a prescribed optical function is made to be a lens surface, which is excellent in environment resistance and which can be manufactured inexpensively. <P>SOLUTION: In order to form the lens complex optical element by laminating a lens part 9 on a flat surface of a polarizing prism 8, a molding die 10 is used, a resin block 11 consisting of a transparent resin is supplied to a transferring surface 10a of the molding die 10 and then is heated. A lens forming surface 12a of the glass plate 12 constituting a polarizing prism 8 is pressed to molten or softened resin to transfer the transferring surface 10a and the resin is irradiated with UV by a UV irradiation device 13 to form the lens part 9. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プリズム、ハーフミラー、反射ミラーといった所定の光学機能を有するガラス板に、その光の入射面側または出射面側の少なくともいずれか一方が平面形状の表面部に曲面形状のレンズ部を積層させたレンズ複合光学素子及びその製造方法に関するものである。   The present invention provides a glass plate having a predetermined optical function, such as a prism, a half mirror, and a reflecting mirror, and a curved lens portion on a surface portion where at least one of the light incident surface side and the light emitting surface side is planar. The present invention relates to a laminated lens compound optical element and a manufacturing method thereof.

例えば、光ディスクからなる情報記録媒体から情報を読み取ったり、また情報を書き込んだりするために光ピックアップ装置が用いられる。ここで、現在、情報記録媒体としてCD(Compact Disc)とDVD(Digital Video Disc)とが並存しており、CDからの情報の読み取りと、DVDへの情報の書き込み及び情報の読み取りとを単一の装置により行えるようにした装置が実用化されている。これらCD及びDVDはディスクの厚みが異なると共に、照射される光の波長もCD系では780nmであり、またDVD系では650nmというように異なり、さらに開口数(NA)も異なる。従って、光ピックアップは、CDから情報を読み取る際と、DVDに情報を書き込んだり、読み出したりする際とでは、このレーザ光源の切り換えを行う必要がある。この光源を切り換えるために、例えば偏光プリズムが用いられる。そして、この偏光プリズムにおいて、CD用のレーザ光源である780nmの波長光を透過させ、DVD用のレーザ光源である650nmの波長光を反射させることによって、CD用とDVD用との光路をこの偏光プリズムから情報記録媒体までの間を共用することができ、もって光ピックアップの小型化、コンパクト化を図るようにしている。   For example, an optical pickup device is used to read information from or write information to an information recording medium including an optical disk. Here, CD (Compact Disc) and DVD (Digital Video Disc) coexist as information recording media, and information reading from a CD, information writing to a DVD, and information reading are performed in a single manner. An apparatus that can be used by the above apparatus has been put into practical use. These CDs and DVDs have different disc thicknesses, and the wavelength of the irradiated light is 780 nm in the CD system, 650 nm in the DVD system, and the numerical aperture (NA) is also different. Therefore, it is necessary for the optical pickup to switch the laser light source when reading information from a CD and when writing or reading information on a DVD. In order to switch the light source, for example, a polarizing prism is used. In this polarizing prism, light having a wavelength of 780 nm, which is a laser light source for CD, is transmitted, and light having a wavelength of 650 nm, which is a laser light source for DVD, is reflected. The space from the prism to the information recording medium can be shared, so that the optical pickup can be made smaller and more compact.

この場合、レーザ光が偏光プリズムを透過する際に生じる非点収差,球面収差,コマ収差等の収差を単独で、若しくは複合的に補正するために、球面,非球面のレンズ等の光学素子を介在させる必要がある。また、光ピックアップを含む各種の光学装置において、光路中において、光束を絞ったり、ビームパターンを所望の形状となるように整形したりするためにも、凸球面レンズや凹球面レンズ、さらにシリンドリカル面やトロイダル面その他の非球面からなる曲面形状となったレンズが設けられることもある。   In this case, in order to correct aberrations such as astigmatism, spherical aberration, and coma that occur when laser light passes through the polarizing prism, either alone or in combination, an optical element such as a spherical or aspherical lens is used. It is necessary to intervene. In various optical devices including optical pickups, convex spherical lenses, concave spherical lenses, and cylindrical surfaces are also used in the optical path to focus the light beam and shape the beam pattern to a desired shape. Or a toroidal surface or other aspherical lens may be provided.

偏光プリズム等の光学機能を有する光学素子と、前述したような各種のレンズを組み合わせて用いる場合、機器に組み込まれるレンズに自立性を持たせる必要があり、このためにレンズの厚みが大きくなり、全体としての光学装置が大型化、重量化することになる。透明基板にレンズ面を付与するために、透明樹脂を射出成形手段等によって一体成形品とすることも可能であり、このように一体成形を行うと、光学装置の小型化、コンパクト化を図ることができる。しかしながら、温度や湿度といった耐環境性に劣るという問題点がある。また、ガラスを射出成形することによって、プリズム等にレンズ機能を持たせる方法も考えられるが、非常に高価なものとなってしまう。
特開平10−27378号公報
When using an optical element having an optical function such as a polarizing prism in combination with various lenses as described above, it is necessary to give the lens incorporated in the device self-supporting property, which increases the thickness of the lens, The optical device as a whole is increased in size and weight. In order to give a lens surface to a transparent substrate, it is also possible to make the transparent resin into an integrally molded product by injection molding means, etc., so that the integral molding can reduce the size and size of the optical device. Can do. However, there is a problem that it is inferior in environmental resistance such as temperature and humidity. Also, a method of giving a lens function to a prism or the like by injection molding glass can be considered, but it becomes very expensive.
Japanese Patent Laid-Open No. 10-27378

従って、本発明においては、所定の光学機能を有する光学ガラス板の平面部をレンズ面とするために生じる種々の課題である光学装置の大型化、重量化という問題点を解消し、耐環境性に優れ、安価に製造できるレンズ複合光学素子を形成できるようにすることにある。   Accordingly, in the present invention, the problems of increasing the size and weight of the optical device, which are various problems that occur when the flat surface of the optical glass plate having a predetermined optical function is used as the lens surface, are eliminated, and the environment resistance is improved. It is desirable to be able to form a lens composite optical element that is excellent in manufacturing and inexpensive.

前述した課題を解決するために、本発明は、所定の光学素子として機能するガラス板の平面部表面に、外表面が曲面形状となったレンズ部を透明な合成樹脂膜を成形手段により積層させることによって、レンズ複合光学素子を形成する構成としたことをその特徴としている。   In order to solve the above-described problems, the present invention is to laminate a lens portion having a curved outer surface on a flat surface of a glass plate functioning as a predetermined optical element by a molding means. Thus, the lens composite optical element is formed.

ここで、本発明に用いられるガラス板は、何らかの光学機能を有するものであり、かつ光の入射面若しくは反射面の少なくとも一方が平面部を有している。このガラス板の例としては、プリズム、反射ミラー、ハーフミラーがあり、プリズムとしては一側面を偏光面とした偏光プリズム等として形成される。   Here, the glass plate used in the present invention has a certain optical function, and at least one of the light incident surface and the reflective surface has a flat portion. Examples of the glass plate include a prism, a reflecting mirror, and a half mirror. The prism is formed as a polarizing prism having one side as a polarizing surface.

ガラス板の平面部表面に形成されるレンズ部としては、凸レンズ、凹レンズ、若しくは回転方向には対称面となった非球面レンズ、さらにはシリンドリカル面、トロイダル面等の回転方向に非対称な曲面を含む。従って、このレンズ部としては、収差補正、ビームパターンの整形等、目的に応じた曲面形状とする。   The lens portion formed on the surface of the flat surface of the glass plate includes a convex lens, a concave lens, an aspheric lens that is a symmetric surface in the rotation direction, and a curved surface that is asymmetric in the rotation direction such as a cylindrical surface or a toroidal surface. . Therefore, the lens portion has a curved surface shape according to the purpose, such as aberration correction and beam pattern shaping.

レンズ部は、従って、透明の合成樹脂で形成され、転写面を有する成形型を用いてガラス板表面に積層するが、転写面の形状を転写するために、合成樹脂を加熱して、軟化乃至溶融させる。そして、転写が完了した後には合成樹脂を硬化させるが、迅速に硬化させるためには紫外線硬化樹脂を用いるか、または熱硬化樹脂を用いることができる。そして、このレンズ部としては、所望の機能を発揮させることを条件として、その曲率の小さいもの、例えば最大厚みが1mm以下というように、厚みの薄いほぼ膜状に形成するのが望ましい。   Therefore, the lens portion is formed of a transparent synthetic resin and is laminated on the glass plate surface using a mold having a transfer surface. In order to transfer the shape of the transfer surface, the synthetic resin is heated to be softened or softened. Melt. Then, after the transfer is completed, the synthetic resin is cured, but an ultraviolet curable resin or a thermosetting resin can be used for rapid curing. The lens portion is desirably formed in a substantially thin film shape having a small curvature, for example, a maximum thickness of 1 mm or less, on condition that a desired function is exhibited.

このように、ガラス板への転写面を有する成形型を用いて、レンズ部をこのガラス板の平面部表面に合成樹脂膜として形成することによって、小型でコンパクトなレンズ複合光学素子が安価に製造できる。しかも、目的とする曲面が得られれば良く、レンズとしての自立性が要求されないことから、実質的に膜状とすることができ、その軽量化が図られる。そして、このようにレンズ部を薄膜で形成し、ガラス板の表面に強固に固着することによって、全体としての線膨張率が実質的にガラス板の係数に置き換えられることになり、温度や湿度の変化によるレンズ曲面の曲率変動を抑制できる等、耐環境性に優れたものとなる。   In this way, by using a mold having a transfer surface to a glass plate, the lens part is formed as a synthetic resin film on the surface of the flat part of the glass plate, so that a small and compact lens composite optical element can be manufactured at low cost. it can. In addition, it is only necessary to obtain a desired curved surface, and since self-supporting property as a lens is not required, the film can be substantially formed into a film and the weight can be reduced. And, by forming the lens part as a thin film and firmly fixing it to the surface of the glass plate in this way, the overall linear expansion coefficient is substantially replaced by the coefficient of the glass plate, and the temperature and humidity It is excellent in environmental resistance, such as being able to suppress fluctuations in the curvature of the lens curved surface due to changes.

従って、本発明のレンズ複合光学素子の構成としては、所定の光学素子として機能するガラス板の平面部表面に、外表面が曲面形状となったレンズ部を透明な合成樹脂膜を成形手段により積層させたものから構成され、もって光学的に複合した機能を有する素子を光学装置にコンパクトに組み込むことができる。   Therefore, as a configuration of the lens composite optical element of the present invention, a transparent synthetic resin film is laminated by a molding means on a surface of a flat surface of a glass plate functioning as a predetermined optical element, with a lens portion having a curved outer surface Thus, an element having an optically combined function can be compactly incorporated in an optical apparatus.

また、所定の光学素子として機能するガラス板の平面部表面にレンズ部を成形手段により形成するレンズ複合光学素子の製造方法としては、前記レンズ部の曲面形状の転写面を有する成形型に紫外線硬化樹脂または熱硬化樹脂からなる樹脂塊を載置して、この樹脂塊を加熱することにより軟化乃至溶融させ、この成形型に前記ガラス板を当接させて、必要に応じて押圧することによって、前記樹脂に成形型の転写面を転写させることによって、このガラス板に合成樹脂膜を形成し、この合成樹脂膜を硬化させて、成形型を離型させることをその特徴としている。   Further, as a method for manufacturing a lens composite optical element in which a lens part is formed on a flat part surface of a glass plate functioning as a predetermined optical element by molding means, an ultraviolet curing is applied to a molding die having a curved transfer surface of the lens part. By placing a resin lump made of resin or thermosetting resin, the resin lump is softened or melted by heating, the glass plate is brought into contact with the mold, and pressed as necessary. It is characterized in that a synthetic resin film is formed on the glass plate by transferring the transfer surface of the mold to the resin, the synthetic resin film is cured, and the mold is released.

次に、本発明の実施例1を示す。この実施例1では、レンズ複合光学素子を光ピックアップ装置に組み込まれる構成としたものである。そこで、図1にこの光ピックアップ装置の要部の概略構成を示す。図中において、1は第1のレーザ光源、2は第2のレーザ光源である。第1のレーザ光源1からは780nmの波長を有するレーザ光が出射されて、CD3から情報が読み取られるようになっている。また、第2のレーザ光源2からは650nmの波長のレーザ光が出射されて、DVD4に対して情報の書き込み及び読み出しが行われる。そして、これら第1,第2のレーザ光源1,2からのレーザ光は、それぞれコリメータレンズ5,6を透過させて、平行光束とし、対物レンズ7によって、レーザ光はCD3またはDVD4からなる情報記録媒体に向けて収束されるようになっている。   Next, Example 1 of the present invention is shown. In the first embodiment, the lens composite optical element is incorporated into the optical pickup device. FIG. 1 shows a schematic configuration of a main part of the optical pickup device. In the figure, 1 is a first laser light source and 2 is a second laser light source. Laser light having a wavelength of 780 nm is emitted from the first laser light source 1 and information is read from the CD 3. Further, a laser beam having a wavelength of 650 nm is emitted from the second laser light source 2, and information is written to and read from the DVD 4. Then, the laser beams from the first and second laser light sources 1 and 2 are transmitted through the collimator lenses 5 and 6 to form parallel light beams, and the laser beam is recorded on the information recording composed of CD3 or DVD4 by the objective lens 7. It is designed to converge toward the medium.

図中において、8は偏光プリズムであり、この偏光プリズム8によって、第1のレーザ光源1からのレーザ光と、第2のレーザ光源2からのレーザ光とが同じ光路を取るようになる。偏光プリズム8には偏光分離膜8aを形成されており、この偏光分離膜8aは、入射光のうち、P偏光成分は全て透過させ、S偏光成分は全て反射させる機能を有するものである。従って、第1のレーザ光源1からのレーザ光をP偏光の光とすることによって、この第1のレーザ光源1からのレーザ光が偏光プリズム8を透過することになり、また第2のレーザ光源2からのレーザ光をS偏光の光とすることによって偏光プリズム8の偏光分離膜8aに反射する。これによって、第1,第2のレーザ光源1,2からのレーザ光が偏光プリズム8から情報記録媒体に照射されるまでの間は同一の光路を取るようになる。   In the figure, reference numeral 8 denotes a polarizing prism. By this polarizing prism 8, the laser light from the first laser light source 1 and the laser light from the second laser light source 2 take the same optical path. The polarization prism 8 is formed with a polarization separation film 8a. The polarization separation film 8a has a function of transmitting all the P-polarized light components and reflecting all the S-polarized light components in the incident light. Therefore, by making the laser light from the first laser light source 1 P-polarized light, the laser light from the first laser light source 1 is transmitted through the polarizing prism 8, and the second laser light source. The laser light from 2 is converted to S-polarized light and reflected to the polarization separation film 8 a of the polarizing prism 8. As a result, the same optical path is taken until the laser beams from the first and second laser light sources 1 and 2 are irradiated from the polarizing prism 8 to the information recording medium.

第1のレーザ光源1からのレーザ光は偏光プリズム8を透過するが、この偏光プリズム8は厚みが不均一であることから、非点収差が発生することになる。また、光学装置の構成によっては、非点収差以外にも、球面収差等他の収差が発生する可能性もある。これらの収差補正を行うために、偏光プリズム8における第1のレーザ光源1からのレーザ光の入射面に収差補正用のレンズ部9を設ける。このレンズ部9は透明樹脂からなる薄膜状の凹レンズで構成され、偏光プリズム8の平面形状となった表面に積層されるようになっている。この偏光プリズム8とレンズ部9とは、単一の光学素子として、レンズ複合光学素子として構成される。   The laser light from the first laser light source 1 passes through the polarizing prism 8, but this polarizing prism 8 has non-uniform thickness, and astigmatism occurs. In addition to astigmatism, other aberrations such as spherical aberration may occur depending on the configuration of the optical device. In order to correct these aberrations, an aberration correction lens unit 9 is provided on the incident surface of the laser beam from the first laser light source 1 in the polarizing prism 8. The lens portion 9 is formed of a thin film-like concave lens made of a transparent resin, and is laminated on the planar surface of the polarizing prism 8. The polarizing prism 8 and the lens unit 9 are configured as a lens composite optical element as a single optical element.

そこで、レンズ部9を偏光プリズム8に積層したレンズ複合光学素子を形成する方法を図2に基づいて説明する。このために、レンズ部9の曲面形状を転写する転写面10aを形成した成形型10を用いる。この成形型10は、図2(a)に示したように、転写面10aを上に向けた状態し、この転写面10aに成形されるレンズ部9の素材となる透明な合成樹脂の塊、つまり樹脂塊11を供給する。そして、この樹脂塊11を軟化乃至溶融状態となるまで加熱する。例えば、成形型10にヒータを装着して、この成形型10の全体を加熱することによって、樹脂塊11を加熱することができる。   A method of forming a lens composite optical element in which the lens unit 9 is laminated on the polarizing prism 8 will be described with reference to FIG. For this purpose, a mold 10 having a transfer surface 10a for transferring the curved surface shape of the lens portion 9 is used. As shown in FIG. 2A, the molding die 10 has a transfer surface 10a facing upward, and a transparent synthetic resin lump as a material of the lens portion 9 molded on the transfer surface 10a. That is, the resin mass 11 is supplied. Then, the resin mass 11 is heated until it becomes softened or melted. For example, the resin lump 11 can be heated by attaching a heater to the mold 10 and heating the entire mold 10.

成形型10の転写面10aに載置した樹脂塊11が軟化乃至溶融すると、図2(b)に示したように、偏光プリズム8として構成されるガラス板12において、偏光分離膜8aが形成される面とは反対面となるレンズ積層面12aを成形型10の転写面10aにおける軟化乃至溶融した樹脂に当接させることによってレンズ部9が形成される。ここで、レンズ部9は予め偏光分離膜8aを形成した後であっても良いが、ガラス板12に偏光分離膜8aを形成する前の段階する方が以後の工程等の関係で望ましい。また、レンズ部8の形成時に気泡が混入しないようにするために、成形型10の上端部とガラス板12とは接触させないようにする。樹脂を溶融させても、かなり高い粘度を有し、表面張力で転写面10aからある程度盛り上がるようになり、ガラス板12を成形型10に対して接触させなくても、この樹脂に対してある程度の加圧力を作用させることができ、十分な転写精度が得られる。そして、この加圧力により気泡はレンズ積層面12aの表面及び転写面10aの表面に沿って外周側に押し出されることになり、レンズ部9において、少なくともその有効領域内に気泡が残存することはない。   When the resin block 11 placed on the transfer surface 10a of the mold 10 is softened or melted, a polarization separation film 8a is formed on the glass plate 12 configured as the polarizing prism 8, as shown in FIG. The lens portion 9 is formed by bringing the lens laminated surface 12a opposite to the surface to be in contact with the softened or melted resin on the transfer surface 10a of the mold 10. Here, the lens unit 9 may be formed after the polarization separation film 8a is formed in advance, but it is preferable to perform the stage before the formation of the polarization separation film 8a on the glass plate 12 in terms of subsequent processes. Further, the upper end portion of the mold 10 and the glass plate 12 are not brought into contact with each other in order to prevent air bubbles from entering when the lens portion 8 is formed. Even if the resin is melted, it has a fairly high viscosity, and rises to a certain extent from the transfer surface 10a due to surface tension. Even if the glass plate 12 is not brought into contact with the molding die 10, a certain amount of resin is obtained. A pressing force can be applied, and sufficient transfer accuracy can be obtained. Then, by this applied pressure, the bubbles are pushed out to the outer peripheral side along the surface of the lens laminated surface 12a and the surface of the transfer surface 10a, and at the lens portion 9, bubbles do not remain at least in the effective area. .

ここで、樹脂を溶融させるにしても、かなり高い粘度状態を保持しているので、図3に仮想線で示したように、成形型10に供給される樹脂塊11の量を正確に制御することによって、転写面10a上に盛り上がった樹脂はガラス板12側に付着するようになり、成形型10の周胴部に沿って流下するようなことはない。そして、転写面10aの外周部に外方に向けて概略45°程度のテーパ形状の面取り部10bを形成しておくことによって、転写面10a側における余剰の樹脂がその外側にはみ出したとしても、この面取り部10bに付着することになる。その結果、余剰樹脂が成形型10の周胴部にまで流下して、ガラス板12から成形型10の離型性が悪くなることはない。そして、この面取り部10bに回り込んだ樹脂は離型時にはガラス板12側に残存することになるが、この部位は有効領域の外側に位置することから、光学的な機能としては何等の影響も与えない。   Here, even if the resin is melted, a fairly high viscosity state is maintained, so that the amount of the resin mass 11 supplied to the mold 10 is accurately controlled as indicated by the phantom line in FIG. As a result, the resin swelled on the transfer surface 10 a comes to adhere to the glass plate 12 side and does not flow down along the peripheral body portion of the mold 10. Then, by forming a chamfered portion 10b having a taper shape of approximately 45 ° outwardly on the outer peripheral portion of the transfer surface 10a, even if excess resin on the transfer surface 10a side protrudes to the outside, It will adhere to this chamfer 10b. As a result, the surplus resin does not flow down to the peripheral body portion of the mold 10 and the mold releasability of the mold 10 from the glass plate 12 does not deteriorate. The resin that has entered the chamfered portion 10b remains on the glass plate 12 side at the time of mold release, but since this portion is located outside the effective area, there is no influence on the optical function. Don't give.

以上のようにしてガラス板12のレンズ積層面12aに樹脂が積層されると、この樹脂を硬化する。このために、図2(c)に示したように、ガラス板12の上部側から紫外線照射装置13の紫外線を樹脂に照射する。ここで、ガラス板12は、偏光プリズム8としての偏光分離膜8aが形成される前の段階であるから、紫外線照射装置13からの紫外線はガラス板12を透過して、確実かつ効率的に樹脂に照射される。そして、紫外線の照射によって樹脂が硬化すると、図2(d)に示したように、成形型10をガラス板12から離間させることによって、そのレンズ積層面12aにレンズ部9が積層される。従って、成形型10による樹脂の離型性を良好にするために、成形型10の転写面10aには予め離型膜を形成しておく。   When the resin is laminated on the lens lamination surface 12a of the glass plate 12 as described above, the resin is cured. For this purpose, as shown in FIG. 2C, the resin is irradiated with ultraviolet rays from the ultraviolet irradiation device 13 from the upper side of the glass plate 12. Here, since the glass plate 12 is a stage before the polarization separation film 8a as the polarizing prism 8 is formed, the ultraviolet rays from the ultraviolet irradiation device 13 are transmitted through the glass plate 12 and reliably and efficiently resin. Is irradiated. When the resin is cured by the irradiation of ultraviolet rays, the lens portion 9 is laminated on the lens lamination surface 12a by separating the mold 10 from the glass plate 12, as shown in FIG. Therefore, a release film is formed in advance on the transfer surface 10a of the mold 10 in order to improve the resin releasability by the mold 10.

ガラス板12のレンズ積層面12aにレンズ部9が形成された後に、その反対側の面に真空蒸着やフィルムの貼着等の手段によって偏光分離膜8aを積層する。これによって、偏光プリズム8と収差補正用のレンズ部9との積層体からなるレンズ複合光学素子が形成される。   After the lens portion 9 is formed on the lens lamination surface 12a of the glass plate 12, the polarization separation film 8a is laminated on the opposite surface by means such as vacuum deposition or film adhesion. Thereby, a lens composite optical element composed of a laminate of the polarizing prism 8 and the aberration correcting lens unit 9 is formed.

ここで、偏光プリズム8に形成されるレンズ部9としては、非点収差等の収差を補正するためのものであるから、凹球面レンズとするか、若しくは凹面レンズにおいて、回転対称とした非球面レンズで構成されるが、その曲率は極めて小さいもの、つまり平面形状に近いものとして形成することができる。そして、レンズとしての自立性を必要としないので、例えば、最も厚みの大きい部位であっても、厚みが0.7mm程度とし、最小厚みが0.1mm以下となった薄膜状に形成することができる。従って、小型でコンパクトかつ軽量のレンズ複合光学素子を安価で、しかも高精度に形成できる。しかも、このように薄膜で偏光プリズム8に強固に固着したレンズ部9は、その線膨張率が偏光プリズム8を構成するガラスの線膨張係数に実質的に置き換えられることになる。その結果、屈折率の温度依存性が殆どなくなるので、耐環境性に優れたものとなる。   Here, since the lens portion 9 formed in the polarizing prism 8 is for correcting aberrations such as astigmatism, it is a concave spherical lens or a rotationally symmetric aspherical surface in the concave lens. Although it is composed of a lens, it can be formed with a very small curvature, that is, close to a planar shape. In addition, since the lens does not need to be self-supporting, for example, even the thickest part can be formed into a thin film having a thickness of about 0.7 mm and a minimum thickness of 0.1 mm or less. it can. Therefore, a small, compact and lightweight lens composite optical element can be formed at low cost and with high accuracy. In addition, the lens portion 9 that is firmly fixed to the polarizing prism 8 with a thin film in this way has its linear expansion coefficient substantially replaced with the linear expansion coefficient of the glass constituting the polarizing prism 8. As a result, the temperature dependence of the refractive index is almost eliminated, and the environment resistance is excellent.

実施例2においては、図4に示したように、レーザ光源20から照射されるレーザ光をビームスプリッタ21のハーフミラー面21aで反射させるようにした光学構成において、このビームスプリッタ21における入射面21bに入射されるレーザ光の光束の発散度合いを制御するための凸球面形状となったレンズ部22をビームスプリッタ21と一体に形成する構成としている。このレンズ部22はビームスプリッタ21の入射面21bに直接積層されている。これによって、本来であれば、図4に点線で示したように拡開する光束を、レンズ部22の作用によって、同図に実線で示したように、小径のビームパターンとなるように制御される。   In the second embodiment, as shown in FIG. 4, in the optical configuration in which the laser light emitted from the laser light source 20 is reflected by the half mirror surface 21 a of the beam splitter 21, the incident surface 21 b of the beam splitter 21. The lens portion 22 having a convex spherical shape for controlling the degree of divergence of the laser beam incident on the lens is formed integrally with the beam splitter 21. The lens unit 22 is directly laminated on the incident surface 21 b of the beam splitter 21. As a result, the light beam expanding as shown by the dotted line in FIG. 4 is controlled to be a small-diameter beam pattern as shown by the solid line in FIG. The

以上のように、ビームスプリッタ21にレンズ部22を一体的に成形することによって、凸レンズの外周部は厚みを持たせないように、つまり光束の入射面21bにおけるスポット径より僅かに大きい外径のレンズ部22を形成することによって、薄膜状のレンズをビームスプリッタ21と一体的に設けたレンズ複合光学素子が形成される。ここで、ビームスプリッタ21は、三角柱のガラス板を2枚接合させ、この接合面にハーフミラー面が形成されるが、この2枚のガラス板の一方にハーフミラー面21aを形成し、他方のガラス板にレンズ部22を形成して、接着等の手段によって相互に接合固着されることになる。従って、ハーフミラー面が形成されないガラス板23において、ビームスプリッタ21としたときにおける入射面21bとなる平坦面23aに、図5に示した手順でレンズ部22が積層される。   As described above, the lens portion 22 is integrally formed with the beam splitter 21 so that the outer peripheral portion of the convex lens does not have a thickness, that is, the outer diameter is slightly larger than the spot diameter on the light incident surface 21b. By forming the lens portion 22, a lens composite optical element in which a thin film lens is provided integrally with the beam splitter 21 is formed. Here, the beam splitter 21 joins two triangular prism glass plates, and a half mirror surface is formed on the joining surface. The half mirror surface 21a is formed on one of the two glass plates, and the other side is formed. The lens portion 22 is formed on the glass plate and bonded and fixed to each other by means such as adhesion. Accordingly, in the glass plate 23 on which the half mirror surface is not formed, the lens portion 22 is laminated on the flat surface 23a that becomes the incident surface 21b when the beam splitter 21 is formed, according to the procedure shown in FIG.

即ち、図5(a)に示したように、凸レンズの転写面24aを有する成形型24にレンズ部22を構成する樹脂塊25を載置して、この樹脂塊25を加熱することにより、転写面24a上で樹脂を軟化乃至溶融させる。この状態で、図5(b)に示したように、転写面24a内の樹脂にガラス板23を当接させる。このときに、気泡を排除するために、ガラス板23の平坦面23aは成形型24とは非接触状態にして型の転写を行わせる。さらに、ガラス板23表面に積層された樹脂にレンズ部22となる凸面形状が正確に転写されると、図5(c)に示したように、紫外線照射装置26により樹脂に紫外線を照射させることによって、この樹脂を硬化させる。樹脂が完全に硬化すると、図5(d)に示したように、成形型24を樹脂から離間させることによって、ガラス板23にレンズ部22が積層される。その後に、この三角柱形状のガラス板23を、ハーフミラー面が形成されたもう一つの三角形状のガラス板と接着することによって、レンズ部22を一体に設けたビームスプリッタ21となる。   That is, as shown in FIG. 5A, the resin mass 25 constituting the lens portion 22 is placed on the mold 24 having the convex lens transfer surface 24a, and the resin mass 25 is heated to transfer the resin mass 25. The resin is softened or melted on the surface 24a. In this state, as shown in FIG. 5B, the glass plate 23 is brought into contact with the resin in the transfer surface 24a. At this time, in order to eliminate air bubbles, the flat surface 23a of the glass plate 23 is brought into a non-contact state with the molding die 24 so as to transfer the die. Further, when the convex shape that becomes the lens portion 22 is accurately transferred to the resin laminated on the surface of the glass plate 23, the ultraviolet irradiation device 26 irradiates the resin with ultraviolet rays as shown in FIG. To cure the resin. When the resin is completely cured, the lens portion 22 is laminated on the glass plate 23 by separating the mold 24 from the resin as shown in FIG. Thereafter, the triangular prism-shaped glass plate 23 is bonded to another triangular glass plate on which a half mirror surface is formed, so that the beam splitter 21 integrally provided with the lens portion 22 is obtained.

なお、成形型の転写面は、例えばシリンドリカル面とする等、ガラス板に形成されるレンズ部は必ずしも球面乃至近似球面形状ではない曲面形状とすることができる。これによって、ガラス板にはシリンドリカルレンズ等が形成されることになり、断面が円形となった入射ビームを楕円形状のパターンとなるように整形することができる。また、レンズ部を形成する樹脂は紫外線により硬化するものではなく、熱で硬化するものを使用する場合には、成形型を樹脂の硬化温度以上にまで加熱すれば良い。さらに、膜付けによるレンズの形成は、ガラス板の1面だけでなく、複数の面(例えば図4の光の出射側面)にも形成することができ、また同一面において、異なる部位にも形成することができる。   The lens surface formed on the glass plate may have a curved surface shape that is not necessarily a spherical shape or an approximate spherical shape, for example, the transfer surface of the mold is a cylindrical surface. As a result, a cylindrical lens or the like is formed on the glass plate, and the incident beam having a circular cross section can be shaped into an elliptical pattern. In addition, the resin forming the lens portion is not cured by ultraviolet rays, and when a resin that cures by heat is used, the mold may be heated to a temperature higher than the curing temperature of the resin. Furthermore, the lens can be formed by filming not only on one surface of the glass plate but also on a plurality of surfaces (for example, the light emission side surface of FIG. 4), and also on different portions on the same surface. can do.

本発明の実施例1におけるレンズ複合光学素子として、レンズ付き偏光プリズムとして構成して、光ピックアップ装置に組み込んだ状態を示す概略構成図である。It is a schematic block diagram which shows the state comprised as a polarizing prism with a lens as a lens compound optical element in Example 1 of this invention, and incorporating in the optical pick-up apparatus. 図1の偏光プリズムを構成するガラス板にレンズ部を形成する方法を示す説明図である。It is explanatory drawing which shows the method of forming a lens part in the glass plate which comprises the polarizing prism of FIG. 図2の方法を実施するために用いられる成形型の他の形態を示す要部拡大図である。It is a principal part enlarged view which shows the other form of the shaping | molding die used in order to implement the method of FIG. 本発明の実施例2におけるレンズ複合光学素子として、レンズ付きビームスプリッタの構成説明図である。It is a structure explanatory view of a beam splitter with a lens as a lens compound optical element in Example 2 of the present invention. 図4のビームスプリッタを構成するガラス板にレンズ部を形成する方法を示す説明図である。It is explanatory drawing which shows the method of forming a lens part in the glass plate which comprises the beam splitter of FIG.

符号の説明Explanation of symbols

8 偏光プリズム
8a 偏光分離膜
9,22 レンズ部
10,24 成形型
10a,24a 転写面
11,25 樹脂塊
12,23 ガラス板
13,26 紫外線照射装置
DESCRIPTION OF SYMBOLS 8 Polarizing prism 8a Polarization separating film 9, 22 Lens part 10, 24 Mold 10a, 24a Transfer surface 11, 25 Resin lump 12, 23 Glass plate 13, 26 Ultraviolet irradiation device

Claims (5)

所定の光学素子として機能するガラス板の平面部表面に、外表面が曲面形状となったレンズ部を透明な合成樹脂膜を成形手段により積層させたことを特徴とするレンズ複合光学素子。 A lens composite optical element characterized in that a transparent synthetic resin film is laminated on a surface of a flat surface of a glass plate functioning as a predetermined optical element by a molding means on a lens part having a curved outer surface. 前記ガラス板は、プリズム、ハーフミラー、反射ミラーのいずれかであることを特徴とする請求項1記載のレンズ複合光学素子。 The lens composite optical element according to claim 1, wherein the glass plate is any one of a prism, a half mirror, and a reflection mirror. 前記レンズ部は、収差補正またはビーム整形を行うためのものであることを特徴とする請求項1記載のレンズ複合光学素子。 The lens composite optical element according to claim 1, wherein the lens unit is for performing aberration correction or beam shaping. 前記透明な合成樹脂は紫外線硬化樹脂であり、この紫外線硬化樹脂は、曲面形状の転写面を有する成形型でこの紫外線硬化樹脂からなるレンズ部を成形する構成としたことを特徴とする請求項1記載のレンズ複合光学素子。 2. The transparent synthetic resin is an ultraviolet curable resin, and the ultraviolet curable resin is configured to mold a lens portion made of the ultraviolet curable resin with a molding die having a curved transfer surface. The lens composite optical element described. 所定の光学素子として機能するガラス板の平面部表面にレンズ部を成形手段により形成する方法であって、
前記レンズ部の曲面形状の転写面を有する成形型に紫外線硬化樹脂または熱硬化樹脂からなる樹脂塊を載置して、この樹脂塊を加熱することにより軟化乃至溶融させ、
この成形型の転写面における樹脂に前記ガラス板を当接させて、前記樹脂に成形型の転写面形状を転写させることによって、このガラス板に合成樹脂膜を形成し、
この合成樹脂膜を硬化させて、成形型を離型させる
ことを特徴とするレンズ複合光学素子の製造方法。
A method of forming a lens portion on a flat surface of a glass plate functioning as a predetermined optical element by a molding means,
A resin lump made of an ultraviolet curable resin or a thermosetting resin is placed on a molding die having a curved transfer surface of the lens part, and the resin lump is softened or melted by heating,
By bringing the glass plate into contact with the resin on the transfer surface of the mold and transferring the shape of the transfer surface of the mold to the resin, a synthetic resin film is formed on the glass plate,
A method for producing a lens composite optical element, comprising curing the synthetic resin film and releasing a mold.
JP2003305715A 2003-08-29 2003-08-29 Lens complex optical element and its manufacturing method Pending JP2005077552A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003305715A JP2005077552A (en) 2003-08-29 2003-08-29 Lens complex optical element and its manufacturing method
US10/927,125 US7196854B2 (en) 2003-08-29 2004-08-27 Complex optical element and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305715A JP2005077552A (en) 2003-08-29 2003-08-29 Lens complex optical element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005077552A true JP2005077552A (en) 2005-03-24

Family

ID=34408986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305715A Pending JP2005077552A (en) 2003-08-29 2003-08-29 Lens complex optical element and its manufacturing method

Country Status (2)

Country Link
US (1) US7196854B2 (en)
JP (1) JP2005077552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003466A (en) * 2006-06-26 2008-01-10 Mitsutoyo Corp Lens optical system and photoelectric encoder

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7529029B2 (en) * 2005-07-29 2009-05-05 3M Innovative Properties Company Polarizing beam splitter
US7362507B2 (en) * 2005-07-29 2008-04-22 3M Innovative Properties Company Polarizing beam splitter
US20070023941A1 (en) * 2005-07-29 2007-02-01 Duncan John E Method for making polarizing beam splitters
DE102012203683B4 (en) * 2012-03-08 2022-08-11 Osram Gmbh projection device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1362380A (en) * 1971-11-25 1974-08-07 Mullard Ltd Manufacture of optical elements
JPH02196201A (en) * 1989-01-25 1990-08-02 Seiko Epson Corp Production of microlens array
JPH09159811A (en) * 1995-12-01 1997-06-20 Pioneer Electron Corp Optical element and its production
JP2001116917A (en) * 1999-10-18 2001-04-27 Hitachi Ltd Member to improve image quality and image display device using the same
US6473232B2 (en) * 2000-03-08 2002-10-29 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
JP3791394B2 (en) * 2001-11-01 2006-06-28 日本電気株式会社 Optical waveguide substrate
ITUD20020059A1 (en) * 2002-03-12 2003-09-12 Seima Italiana Spa OPTICAL LIGHTING DEVICE AND METHOD OF PRODUCTION OF LIGHTING DEVICES OR SIMILAR ADOPTING SUCH DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003466A (en) * 2006-06-26 2008-01-10 Mitsutoyo Corp Lens optical system and photoelectric encoder

Also Published As

Publication number Publication date
US7196854B2 (en) 2007-03-27
US20050083586A1 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4210265B2 (en) Hybrid lens manufacturing method
JP4435650B2 (en) Microlens manufacturing method
TWI223253B (en) Multi-layer information recording medium and information recording and reproducing apparatus
JP4672058B2 (en) Compound optical element
JP2002055274A (en) Objective lens for optical recording medium and optical pickup device using the same
JP2004029050A (en) Objective lens for reproducing optical recording medium and optical recording medium reproducing device
JPWO2007145117A1 (en) Compound lens and manufacturing method thereof
JP2000040247A (en) Lens, its manufacture, and optical pickup
JP3810051B2 (en) Objective lens for optical recording medium and optical pickup device using the same
US8238005B2 (en) Hologram medium manufacturing method, master hologram medium manufacturing method, recording medium, and hologram medium manufacturing apparatus
KR100624454B1 (en) Hybrid lens unit and hybrid lens array
JP2005077552A (en) Lens complex optical element and its manufacturing method
US7403464B2 (en) Lens and combination lens
JP2006286109A (en) Collimator lens for optical pickup
WO2007145120A1 (en) Composite optical element
TWI303415B (en) Optical pickup device, optical information recording and reproducing apparatus and objective lens
JP2002522809A (en) Optical scanning device and optical apparatus for reading and / or writing information on an information surface equipped with such a device
JPH1031840A (en) Optical head for optical disk device
JP2004046053A (en) Objective and optical head device
JP2005535063A (en) Scanning device including an objective lens formed of two kinds of materials
JP2007309964A (en) Complex optical element and method of manufacturing the same
CN101349801B (en) Synthetic resin lens manufacturing method, reformed quality synthetic resin material manufacturing method and optical pickup device
JP2003232997A (en) Cemented objective lens, objective optical system for optical disk and method for manufacturing the lens
EP1164583A2 (en) Complex objective lens and method for manufacturing the same and optical pickup device and optical recording / reproducing apparatus
WO2007145116A1 (en) Composite optical element and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090318