JP2005076959A - Continuous heat treatment equipment - Google Patents

Continuous heat treatment equipment Download PDF

Info

Publication number
JP2005076959A
JP2005076959A JP2003306830A JP2003306830A JP2005076959A JP 2005076959 A JP2005076959 A JP 2005076959A JP 2003306830 A JP2003306830 A JP 2003306830A JP 2003306830 A JP2003306830 A JP 2003306830A JP 2005076959 A JP2005076959 A JP 2005076959A
Authority
JP
Japan
Prior art keywords
furnace core
core tube
heat treatment
gas discharge
continuous heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003306830A
Other languages
Japanese (ja)
Inventor
Hiroshi Morii
博史 森井
Hideo Ito
英雄 伊藤
Shigeru Akimoto
茂 秋本
Shinichiro Matsumura
晋一朗 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003306830A priority Critical patent/JP2005076959A/en
Publication of JP2005076959A publication Critical patent/JP2005076959A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a treated object which received a high quality heat treatment and simplify a structure of continuous heat treatment equipment by promoting heat treatment of the treated object by making unnecessary gas component for the heat treatment in atmospheric gas in a core pipe to be appropriately discharged from the core pipe. <P>SOLUTION: In the continuous heat treatment equipment equipped with the cylindrical core pipe 2 which is rotation-driven around a shaft center in a status storing the treated object, a heating means 5 for heating the core pipe 2, a supply device 8 for supplying the treated object from an end side in a shaft direction into the core pipe 2 and a discharging device for discharging the treated object traveled in the core pipe 2 from the other end side in the shaft direction and the treated object can travel from an end side in the shaft direction to the other end side along an inner peripheral face of the core pipe, a gas discharging mechanism 11 for sucking the unnecessary gas component from the core pipe 2 and discharging it to outside is provided and a gas discharging part to outside in the gas discharging mechanism 11 is provided at a treated object supply side part of the core pipe. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば粉体などの被処理物の熱処理(例えば仮焼など)に供せられる連続式熱処理装置に関する。   The present invention relates to a continuous heat treatment apparatus used for heat treatment (for example, calcination) of an object to be treated such as powder.

従来、連続式熱処理装置としては、ヒータなどの加熱手段により加熱される円筒状の炉芯管を、被処理物供給側を上位に、処理後の被処理物排出側を下位になるよう傾斜姿勢にした状態で、その中心軸心周りで回転可能に構成したものが提案されている(特許文献1参照)。   Conventionally, as a continuous heat treatment apparatus, a cylindrical furnace core tube heated by a heating means such as a heater is inclined so that the workpiece supply side is at the upper position and the processed object discharge side is at the lower position. In such a state, a structure that can rotate around its central axis has been proposed (see Patent Document 1).

これにより、被処理物は、炉芯管内を移動させられながら熱処理される。すなわちセラミックス粉体などの被処理物は、回転駆動される炉芯管内を通過していく間に加熱手段による加熱によって熱処理され、熱処理されたその被処理物が炉芯管の一端側から排出される。   Thereby, the workpiece is heat-treated while being moved in the furnace core tube. That is, an object to be processed such as ceramic powder is heat-treated by heating by a heating means while passing through the rotationally driven furnace core tube, and the heat-treated object to be treated is discharged from one end side of the furnace core tube. The

この従来の連続式熱処理装置では、炉芯管が回転駆動される炉芯管本体とこの炉芯管本体の内部に設けられた多孔質板製の内側部材とで構成されている。また、この連続式熱処理装置では、炉芯管内部を減圧する状態と加圧する状態とに交互に切り換えられるようにし、その切り換えは半回転させるごとに行うようにしている。すなわち、減圧により被処理物を炉芯管内面側に付着させ、その後炉芯管を半回転させることで、被処理物が付着した炉芯管内面部分が上位側に位置するようにして、その状態で加圧することにより被処理物の炉芯管内面への付着が解除されて、被処理物が下方に落下するようにし、その後減圧するということを繰り返す。これによって、被処理物に対する均一性の高い熱処理が行えるようにしている。
特開平8−178543号公報(全頁、全図)
This conventional continuous heat treatment apparatus includes a furnace core tube body in which the furnace core tube is rotationally driven and an inner member made of a porous plate provided inside the furnace core tube body. In this continuous heat treatment apparatus, the inside of the furnace core tube is alternately switched between a pressure reducing state and a pressure increasing state, and the switching is performed every half rotation. That is, the object to be processed is attached to the inner surface of the furnace core tube by decompression, and then the furnace core tube is rotated halfway so that the inner surface part of the furnace core tube to which the object to be processed is attached is positioned on the upper side. By pressurizing in this state, the adherence of the workpiece to the inner surface of the furnace core tube is released, so that the workpiece is dropped downward, and then the pressure is reduced. Thus, heat treatment with high uniformity can be performed on the object to be processed.
JP-A-8-178543 (all pages, all figures)

回転駆動される炉芯管本体とこの炉芯管本体の内部に設けられた多孔質板製の内側部材とで炉芯管が構成されている従来の連続式熱処理装置の場合、炉芯管本体と共に回転される内側部材の内周面箇所を被処理物が移動していくのであって、多孔質板で構成された内側部材の孔に被処理物が目詰まりすることがある。そうなると被処理物の吸引による付着や加圧による被処理物の内側部材からの離脱が不十分なものとなり、熱処理が適正に行われにくくなるという問題がある。また、多孔質板製の内側部材を別途設けることによる構造の複雑化などの問題がある。   In the case of a conventional continuous heat treatment apparatus in which a furnace core tube is constituted by a furnace core tube body that is rotationally driven and an inner member made of a porous plate provided inside the furnace core tube body, the furnace core tube body In addition, the object to be processed moves along the inner peripheral surface portion of the inner member rotated together, and the object to be processed may be clogged in the hole of the inner member formed of the porous plate. In this case, there is a problem that adhesion due to suction of the object to be processed and separation of the object to be processed from the inner member due to pressure become insufficient, and it becomes difficult to perform heat treatment properly. In addition, there is a problem such as a complicated structure due to the separate provision of an inner member made of a porous plate.

さらに、従来の連続式熱処理装置では、被処理物を炉芯管の内側部材に吸着させるため内部圧力を低くする減圧を行うに過ぎず、熱処理に伴う不要ガス成分を除去することまでは考慮するものとなっていなかった。このため、従来の連続式熱処理装置においては、不要ガス成分が炉芯管内に残留して所定濃度以上の高い濃度なっていることがあり、そのような高濃度の不要ガス成分が炉芯管内の雰囲気ガスに含まれていることで、被処理部の熱処理に伴う反応も進行しにくくなりがちであって、その場合、被処理物の反応が進行不足のまま排出される場合がある。   Furthermore, in the conventional continuous heat treatment apparatus, only the pressure reduction for lowering the internal pressure is performed in order to adsorb the object to be treated to the inner member of the furnace core tube, and consideration is given to removing unnecessary gas components accompanying the heat treatment. It was not a thing. For this reason, in the conventional continuous heat treatment apparatus, unnecessary gas components may remain in the furnace core tube and have a concentration higher than a predetermined concentration, and such high concentration unnecessary gas components may remain in the furnace core tube. By being contained in the atmospheric gas, the reaction accompanying the heat treatment of the portion to be processed tends to be difficult to proceed. In this case, the reaction of the object to be processed may be discharged with insufficient progress.

このように炉芯管内の雰囲気ガスにおいて不要ガスの濃度が高い値で一定になると、被熱処理物において未反応成分が増す傾向があり、被処理物としての特性が劣化するという問題があった。   Thus, when the concentration of the unnecessary gas in the atmosphere gas in the furnace core tube becomes constant at a high value, there is a tendency that unreacted components tend to increase in the object to be heat treated, and the characteristics as the object to be treated are deteriorated.

そこで、本発明は、炉芯管内の熱処理にとって不要なガス成分を炉芯管内から良好に排出できるようにすることによって、被処理物の熱処理を促進して、高品質に熱処理された被処理物を得ることができるようにするとともに、構造の簡単化を図ることのできる連続式熱処理装置の提供を解決すべき課題としている。   Therefore, the present invention promotes the heat treatment of the object to be processed by enabling the gas components unnecessary for the heat treatment in the furnace core tube to be discharged well from the inside of the furnace core tube, and the object to be processed that has been heat-treated at a high quality. In addition, the provision of a continuous heat treatment apparatus that can simplify the structure is an issue to be solved.

本発明に係る熱処理装置は、被処理物を収納した状態で軸心周りに回転駆動される筒状の炉芯管と、前記炉芯管を加熱する加熱手段と、前記炉芯管内に軸方向一端側から被処理物を供給する供給装置と、前記炉芯管内を移動した被処理物を軸方向他端側から排出する排出装置とを備えるとともに、前記被処理物が前記炉芯管の内周面に沿って軸方向一端側から他端側へ移動可能に構成した連続式熱処理装置において、前記炉芯管内から不要ガス成分を吸引して外部へ排出するガス排出機構を設けるとともに、前記炉芯管の前記被処理物供給側部分に、前記ガス排出機構における外部へのガス排出部を設けている、ことを特徴とする。炉芯管は円筒状であることが好ましい。   The heat treatment apparatus according to the present invention includes a cylindrical furnace core tube that is rotationally driven around an axis in a state in which an object to be processed is accommodated, a heating unit that heats the furnace core tube, and an axial direction in the furnace core tube. A supply device for supplying the object to be processed from one end side, and a discharge device for discharging the object to be processed moved in the furnace core tube from the other end side in the axial direction. In the continuous heat treatment apparatus configured to be movable from one end side to the other end side in the axial direction along the circumferential surface, a gas discharge mechanism for sucking unnecessary gas components from the furnace core tube and discharging them to the outside is provided, and the furnace A gas discharge section to the outside of the gas discharge mechanism is provided in the workpiece supply side portion of the core tube. The furnace core tube is preferably cylindrical.

本発明に係る連続式熱処理装置によれば、炉芯管の被処理物供給側部分に設けられたガス排出機構が、炉芯管内の雰囲気ガスにおける不要ガス成分を炉芯管の外部へ排出するから、炉芯管内で被熱処理物の加熱処理に伴い発生する不要なガス成分について、その加熱処理の初期から不要ガス成分の炉芯管内からの排除が進められることになる。このため、炉芯管内に不要なガス成分が滞留しなくなり、熱処理時における被処理物の反応が抑制されることも解消できる。   According to the continuous heat treatment apparatus according to the present invention, the gas discharge mechanism provided in the workpiece supply side portion of the furnace core tube discharges unnecessary gas components in the atmospheric gas in the furnace core tube to the outside of the furnace core tube. Therefore, with respect to unnecessary gas components generated in the furnace core tube due to the heat treatment of the object to be heat-treated, the unnecessary gas components are eliminated from the furnace core tube from the beginning of the heat treatment. For this reason, unnecessary gas components do not stay in the furnace core tube, and it is possible to eliminate the suppression of the reaction of the object to be processed during the heat treatment.

また、本発明の連続式熱処理装置は、従来のように炉芯管内に多孔質の内部部材を別途設けるものでなく、構成として簡易なものとなる。さらに、本発明の連続式熱処理装置は、炉芯管内の圧力を減圧や加圧を繰り返すものではないので、その圧力制御や炉芯管の回転制御が簡易に行えるものとなっている。   Further, the continuous heat treatment apparatus of the present invention does not separately provide a porous internal member in the furnace core tube as in the prior art, and has a simple structure. Furthermore, since the continuous heat treatment apparatus of the present invention does not repeatedly reduce or increase the pressure in the furnace core tube, the pressure control and the rotation control of the furnace core tube can be easily performed.

また、本発明に係る熱処理装置は、好ましくは、前記ガス排出機構の前記ガス排出部は、前記炉芯管における被処理物が供給される側の端面部分に設けられ、前記炉芯管における主たるガスの流れが前記端面部分に向かう。この場合、回転駆動される炉芯管の外周部分にガス排出部を設けるよりも、回転駆動されてもガス排出が可能な構成として回転されない端面部分を利用してガス排出部を設けることになるので、構造的に簡易なものとなる。また、被処理物が炉芯管内で加熱されながら移動していく際その端面部分が最も上手側に位置するから、より一層不要ガス成分の滞留を抑制できる状態でその排出を行うことができる。   In the heat treatment apparatus according to the present invention, preferably, the gas discharge portion of the gas discharge mechanism is provided at an end surface portion of the furnace core tube on a side to which an object to be processed is supplied, and is a main part of the furnace core tube. The gas flow is directed toward the end face portion. In this case, rather than providing the gas discharge part on the outer peripheral part of the furnace core tube that is rotationally driven, the gas discharge part is provided by utilizing the end surface part that is not rotated as a configuration capable of discharging gas even if driven to rotate. Therefore, the structure is simple. Moreover, since the end surface portion is positioned on the uppermost side when the object to be processed moves while being heated in the furnace core tube, the discharge can be performed in a state where the retention of unnecessary gas components can be further suppressed.

本発明に係る熱処理装置は、前記炉芯管の前記被処理物供給側部分に前記ガス排出部を設けているガス排出機構は、前記炉芯管の他の箇所に外部へのガス排出部を設けている他のガス排出機構より高いガス排出能力を有することが好ましい。この場合、炉芯管の被処理物供給側部分以外にガス排出機構を設けていても、被処理物供給側部分に設けられたガス排出機構のガス排出能力が最も高いものとなっているから、炉芯管内の不要ガスの排出の流れが被熱処理物の加熱処理がなされる初期の箇所側に向かいやすくなっていて、不要ガス成分の炉芯管内での滞留が十分抑制される。   In the heat treatment apparatus according to the present invention, the gas discharge mechanism in which the gas discharge portion is provided in the workpiece supply side portion of the furnace core tube has a gas discharge portion to the outside in another portion of the furnace core tube. It is preferable to have a higher gas discharge capacity than other gas discharge mechanisms provided. In this case, even if the gas discharge mechanism is provided in addition to the workpiece supply side portion of the furnace core tube, the gas discharge mechanism provided in the workpiece supply side portion has the highest gas discharge capability. The flow of exhausting unnecessary gas in the furnace core tube tends to be directed toward the initial location where the heat-treated object is heated, and the retention of unnecessary gas components in the furnace core tube is sufficiently suppressed.

本発明に係る熱処理装置は、好ましくは、前記ガス排出機構によるガス排出により、前記炉芯管内の気圧を大気圧以下にしている。この場合、不要なガス成分の排出された炉芯管内へ外気などを炉芯管内に吸気し易くなっていて、雰囲気ガスの清浄化を図ることができるとともに、熱処理に伴う被処理物の反応によるガスの発生も促進されやすい。   In the heat treatment apparatus according to the present invention, preferably, the pressure in the furnace core tube is set to an atmospheric pressure or less by gas discharge by the gas discharge mechanism. In this case, it is easy to take outside air into the furnace core tube from which unnecessary gas components are discharged, and it is possible to purify the atmospheric gas and to react with the object to be processed accompanying the heat treatment. Gas generation is also easily promoted.

本発明に係る連続式熱処理装置によれば、炉芯管の被処理物供給側部分に設けられたガス排出機構が、炉芯管内の雰囲気ガスにおける不要ガス成分を炉芯管の外部へ排出するから、炉芯管内で被熱処理物の加熱処理に伴い発生する不要なガス成分について、その加熱処理の初期から不要ガス成分の炉芯管内からの排除が進められることになる。このため、炉芯管内に不要なガス成分が滞留しなくなり、熱処理時における被処理物の反応促進が抑制されることも解消できる。   According to the continuous heat treatment apparatus according to the present invention, the gas discharge mechanism provided in the workpiece supply side portion of the furnace core tube discharges unnecessary gas components in the atmospheric gas in the furnace core tube to the outside of the furnace core tube. Therefore, with respect to unnecessary gas components generated in the furnace core tube due to the heat treatment of the object to be heat-treated, the unnecessary gas components are eliminated from the furnace core tube from the beginning of the heat treatment. For this reason, unnecessary gas components do not stay in the furnace core tube, and it is possible to eliminate the suppression of the reaction of the object to be processed during the heat treatment.

また、被処理物が熱処理されながら移動していく部材として炉芯管のみを設けた構成であり、その炉芯管は一定回転を継続することにより熱処理するものにできるから、構造的に簡単なものにできるとともに、炉芯管の回転制御なども簡易なものにできる。   In addition, it is a configuration in which only the furnace core tube is provided as a member that moves while the workpiece is heat-treated, and the furnace core tube can be heat-treated by continuing constant rotation. It is possible to simplify the control of the rotation of the furnace core tube.

本発明に係る連続式熱処理装置の実施の形態を図1,図2に基づいて説明する。図1は、連続式熱処理装置の一例を示す縦断側面図、図2は、図1の連続式熱処理装置における内部の二酸化炭素濃度の分布状態を示すグラフである。   An embodiment of a continuous heat treatment apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal side view showing an example of a continuous heat treatment apparatus, and FIG. 2 is a graph showing a distribution state of internal carbon dioxide concentration in the continuous heat treatment apparatus of FIG.

この実施の形態では、被処理物としての炭酸バリウムおよび二酸化チタンの固相反応によりチタン酸バリウムを生産するための連続式熱処理装置1について説明する。図1を参照して、連続式熱処理装置1は、ロータリキルン(回転式レトルト炉)であって、炉長方向が水平に対し傾斜した状態に円筒状の炉芯管2を備えている。この連続式熱処理装置1は、炉芯管2をその筒の軸心周りで回転自在に支持する複数個のローラ3と、ローラ3を介して炉芯管2を回転駆動する駆動用電動モータ4と、炉長方向に沿って炉芯管2を囲むように配置された加熱手段としてのヒータ5が設けられた炉体6とを備えている。加熱用のヒータ5は被処理物としてのセラミックス被処理物の種別に応じた加熱温度及び加熱プロファイルに従って制御される。炉芯管2自体は、粉体の被処理物が加熱処理中に外部に漏出することがないよう、内外に連通する孔や微小孔の無い緻密な固体材(例えばムライトなど)で構成されている。炉芯管2の上位側となる一端側の側面部には、炉芯管2を蓋する仕切り7が設けられている。この仕切り7の中央部は開孔されており、粉体のセラミックス被処理物を炉芯管2内に導入させる被処理物供給装置8が貫通している。一方、炉芯管2の下位側となる他端側は、原料が排出される為開放となっている。被処理物によっては排出を制御する第2仕切り体9が設けられている。この第2仕切り体9は炉芯管2の軸芯方向に対して螺旋状に設けられている。   In this embodiment, a continuous heat treatment apparatus 1 for producing barium titanate by solid phase reaction of barium carbonate and titanium dioxide as an object to be processed will be described. Referring to FIG. 1, a continuous heat treatment apparatus 1 is a rotary kiln (rotary retort furnace), and includes a cylindrical furnace core tube 2 in a state where the furnace length direction is inclined with respect to the horizontal. The continuous heat treatment apparatus 1 includes a plurality of rollers 3 that support a furnace core tube 2 so as to be rotatable around the axis of the cylinder, and an electric motor 4 that drives the furnace core tube 2 through the rollers 3. And a furnace body 6 provided with a heater 5 as a heating means arranged so as to surround the furnace core tube 2 along the furnace length direction. The heater 5 for heating is controlled in accordance with a heating temperature and a heating profile corresponding to the type of the ceramic object to be processed. The furnace core tube 2 itself is composed of a dense solid material (for example, mullite) having no holes or micropores communicating with the inside or outside so that the powder object to be processed does not leak outside during the heat treatment. Yes. A partition 7 that covers the furnace core tube 2 is provided on a side surface on one end side that is the upper side of the furnace core tube 2. A central portion of the partition 7 is opened, and a workpiece supply apparatus 8 for introducing a ceramic workpiece to be processed into the furnace core tube 2 passes therethrough. On the other hand, the other end, which is the lower side of the furnace core tube 2, is open because the raw material is discharged. The 2nd partition body 9 which controls discharge | emission depending on a to-be-processed object is provided. The second partition 9 is provided in a spiral shape with respect to the axial direction of the furnace core tube 2.

炉芯管2の一端部分を成す仕切り7を介して被処理物を供給するための被処理物供給装置8は、粉体の被処理物を貯留する供給側ホッパ10から単位時間当たり所定量のセラミック被処理物を炉芯管2内に供給できるようになっている。この被処理物供給装置8は、例えば搬送用筒内にスクリュー式搬送装置を回転駆動自在に設けたものであり、被処理物供給装置8の端部の原料供給口は炉芯管2内に臨ませている。仕切り7は、この炉芯管2と一体に設けられているため、炉芯管2と共に回転するものである。さらに被処理物供給装置8と同一側に炉芯管2内の雰囲気ガスを外部へ排出するためのガス排出機構11が仕切り体7を貫通している。このガス排出機構11は、炉芯管2内に臨む吸気口を設け、外部に臨む排気口を設けた排気ポンプであって、図示しない電動モータにより駆動されるものである。   An object supply device 8 for supplying an object to be processed through a partition 7 constituting one end portion of the furnace core tube 2 has a predetermined amount per unit time from a supply-side hopper 10 that stores the powder object to be processed. A ceramic workpiece can be supplied into the furnace core tube 2. The workpiece supply device 8 is, for example, a screw-type transfer device provided in a transfer cylinder so as to be rotatably driven, and a raw material supply port at an end of the workpiece supply device 8 is provided in the furnace core tube 2. I ’m here. Since the partition 7 is provided integrally with the furnace core tube 2, the partition 7 rotates together with the furnace core tube 2. Further, a gas discharge mechanism 11 for discharging atmospheric gas in the furnace core tube 2 to the outside on the same side as the workpiece supply apparatus 8 penetrates the partition body 7. The gas discharge mechanism 11 is an exhaust pump having an intake port facing the furnace core tube 2 and an exhaust port facing the outside, and is driven by an electric motor (not shown).

第2仕切り体9は、炉芯管2から排出される被処理物を受け止めて貯留もしくは次工程への案内を行うもので、炉芯管2に固定されている。第2仕切り体9には、炉芯管2の末端下部へ移動してきた被処理物を被処理物排出装置12へ導く排出口が形成されている。また、炉芯管2と第2仕切り体9との固定方法は特に限定するものではなく、第2仕切り体9の材質についても、セラミックス、金属に限定されるものではない。   The second partition 9 receives the object to be processed discharged from the furnace core tube 2 and performs storage or guidance to the next process, and is fixed to the furnace core tube 2. The second partition 9 is formed with a discharge port that guides the workpiece that has moved to the lower end of the furnace core tube 2 to the workpiece discharge device 12. Moreover, the fixing method of the furnace core pipe 2 and the 2nd partition body 9 is not specifically limited, The material of the 2nd partition body 9 is also not limited to ceramics and a metal.

上記構成により、この連続式熱処理装置1は、熱処理される原料である粉末状の炭酸バリウム(BaCO)と粉末状の二酸化チタン(TiO)との混合物(同じモル量)を供給側ホッパ10から単位時間当たり所定量被処理物供給装置8により炉芯管2内に供給する。炉芯管2は所定回転速度で一定向きに連続して回転駆動されている。ヒータ5によって炉芯管2内が熱処理に適した温度に加熱される。その状態で、被処理物供給装置8で炉芯管2内に供給された炭酸バリウム粉末と二酸化チタン粉末とは炉芯管2の内周面に沿って下方へ移動していき、その炉内での反応により二酸化炭素が分離し、チタン酸バリウムの粉体が固相合成される。反応により生じた二酸化炭素ガスは、炉芯管2内の雰囲気ガスと共にガス排出機構11により吸引され外部へ排出される。ガス排出機構11は、その作動により炉芯管2内を外気圧よりも低い負圧状態にしている。 With the above configuration, this continuous heat treatment apparatus 1 supplies a mixture (same molar amount) of powdered barium carbonate (BaCO 3 ) and powdered titanium dioxide (TiO 2 ), which are raw materials to be heat treated, to the supply-side hopper 10. Is supplied into the furnace core tube 2 by a predetermined amount of the object supply device 8 per unit time. The furnace core tube 2 is continuously driven to rotate in a fixed direction at a predetermined rotational speed. The inside of the furnace core tube 2 is heated to a temperature suitable for heat treatment by the heater 5. In this state, the barium carbonate powder and the titanium dioxide powder supplied into the furnace core tube 2 by the workpiece supply device 8 move downward along the inner peripheral surface of the furnace core tube 2, and the inside of the furnace In the reaction, carbon dioxide is separated, and barium titanate powder is solid-phase synthesized. The carbon dioxide gas generated by the reaction is sucked by the gas discharge mechanism 11 together with the atmospheric gas in the furnace core tube 2 and discharged to the outside. The operation of the gas discharge mechanism 11 places the inside of the furnace core tube 2 in a negative pressure lower than the external pressure.

本発明者は、上記チタン酸バリウムを得るための連続式熱処理装置1の炉芯管2内における二酸化炭素濃度を測定した。図2には、炉芯管2における被処理物の移動経路を8等分したそれぞれの位置における二酸化炭素濃度が計測位置に対応する三角印とそれらを結ぶ太線とで示されている。なお、ガス排出機構を全く備えていないロータリキルンの炉芯管内における二酸化炭素濃度についても比較のために測定し、その結果を図2に白抜き三角と細線で示している。本発明の場合、ガス排出機構11が作動して二酸化炭素ガスを含む炉芯管2内の雰囲気ガスが被処理物投入側から排出されるものとなっているため、炉芯管2における被処理物移動経路の前半側で濃度が高いものとなっているが、後半側では二酸化炭素濃度が著しく低下しており、炉芯管2内の全体として反応が良好に行われやすくなっている。これに対して、比較例の場合、炉芯管2内全体として二酸化炭素濃度が15%近くの高い濃度となっているため、炉芯管2内全体的に高い濃度の二酸化炭素が滞留した状態となっている。この比較例の場合、雰囲気ガス中の二酸化炭素濃度が高いため二酸化炭素が分離する反応が進みにくくなっていて、炉芯管2から排出された被処理物中に反応なくショートパスした炭酸バリウムや二酸化チタンが混じっているなど品質のばらつきが大きなものとなった。   The inventor measured the carbon dioxide concentration in the furnace core tube 2 of the continuous heat treatment apparatus 1 for obtaining the barium titanate. In FIG. 2, the carbon dioxide concentration at each position obtained by dividing the movement path of the object to be processed in the furnace core tube 2 by 8 is indicated by a triangle mark corresponding to the measurement position and a thick line connecting them. Note that the carbon dioxide concentration in the furnace core tube of a rotary kiln having no gas discharge mechanism was also measured for comparison, and the results are shown by white triangles and thin lines in FIG. In the case of the present invention, the gas discharge mechanism 11 is operated and the atmosphere gas in the furnace core tube 2 containing carbon dioxide gas is discharged from the workpiece input side. Although the concentration is high on the first half side of the material movement path, the carbon dioxide concentration is remarkably reduced on the second half side, and the reaction in the entire furnace core tube 2 is easily performed well. On the other hand, in the case of the comparative example, since the carbon dioxide concentration as a whole in the furnace core tube 2 is a high concentration of about 15%, a state in which a high concentration of carbon dioxide is retained in the furnace core tube 2 as a whole. It has become. In the case of this comparative example, since the carbon dioxide concentration in the atmospheric gas is high, the reaction for separating carbon dioxide does not proceed easily, and barium carbonate that has been short-passed without reaction in the workpiece discharged from the furnace core tube 2 Variations in quality became large, such as the presence of titanium dioxide.

次に、別の実施の形態について図3に基づいて説明する。なお、上記実施の形態と同様の構造については説明を省略するとともに、図中の符号も同じ符号を付す。   Next, another embodiment will be described with reference to FIG. Note that the description of the same structure as that of the above embodiment is omitted, and the same reference numerals are used in the drawings.

図3を参照して、この連続式熱処理装置1もロータリキルンである。炉芯管2の被処理物が供給される側の端面部分の蓋体13は炉芯管2と一体に固定されている。被処理物を炉芯管2内へ供給する被処理物供給装置と一体のジョイント部材14の筒状部分と、前記蓋体13の筒状部分とが相対回転自在に嵌合されている。この蓋体13とジョイント部材14とが嵌合した構造によりロータリジョイント15が構成されている。回転しないジョイント部材14と被処理物供給装置16がそのロータリジョイント15の中心に炉芯管2の回転中心軸に沿って設けられている。この被処理物供給装置16の炉芯管2内に臨む端部から原料が供給される。被処理物供給装置16とロータリジョイント15の内壁には隙間18があり、炉芯管2内で吸引した雰囲気ガスは、この隙間18を介して排気される。隙間18を介して排気されるガスは被処理物供給装置16と一体である排気室17を介して、外部に排出される。雰囲気ガスを外部へ排出する為の真空ポンプ(図示せず)が排気室17の排出部に設けられている。また、被処理物は被処理物供給装置16により炉芯管2内へ供給できるよう供給経路が形成されている。したがって、回転駆動される炉芯管2へロータリジョイント15を介して被処理物(粉末状の炭酸バリウムと粉末状の二酸化チタンの混合物)を供給できるものとなっている。   Referring to FIG. 3, this continuous heat treatment apparatus 1 is also a rotary kiln. The lid body 13 at the end surface portion of the furnace core tube 2 on the side to which the workpiece is supplied is fixed integrally with the furnace core tube 2. The cylindrical portion of the joint member 14 integrated with the workpiece supply device for supplying the workpiece to the furnace core tube 2 and the cylindrical portion of the lid 13 are fitted in a relatively rotatable manner. A rotary joint 15 is configured by a structure in which the lid 13 and the joint member 14 are fitted. A non-rotating joint member 14 and a workpiece supply device 16 are provided at the center of the rotary joint 15 along the rotation center axis of the furnace core tube 2. The raw material is supplied from the end of the workpiece supply apparatus 16 facing the furnace core tube 2. There is a gap 18 between the inner walls of the workpiece supply device 16 and the rotary joint 15, and the atmospheric gas sucked in the furnace core tube 2 is exhausted through the gap 18. The gas exhausted through the gap 18 is exhausted to the outside through the exhaust chamber 17 that is integral with the workpiece supply device 16. A vacuum pump (not shown) for exhausting the atmospheric gas to the outside is provided in the exhaust part of the exhaust chamber 17. Further, a supply path is formed so that the object to be processed can be supplied into the furnace core tube 2 by the object supply device 16. Therefore, the object to be processed (a mixture of powdered barium carbonate and powdered titanium dioxide) can be supplied to the furnace core tube 2 that is driven to rotate through the rotary joint 15.

その被処理物は、ヒータ5により加熱されることにより反応が促進されて、二酸化炭素が分離してチタン酸バリウムに変換し、炉芯管2の排出端から排出される。この排出部もロータリジョイント18に構成されている。すなわち、炉芯管2と一体の第2蓋体19の筒状部分と、排出された被処理物を受け入れるホッパ状の被処理物排出部20と一体のジョイント部材21の筒状部分とが相対回転自在に嵌合されることによってロータリジョイント18が構成されている。第2蓋体19の筒状部分とジョイント部材21の筒状部分とには、被処理物を炉芯管2から被処理物排出部20へ排出できる排出経路が形成されている。   The workpiece is heated by the heater 5 to accelerate the reaction, so that carbon dioxide is separated and converted into barium titanate and discharged from the discharge end of the furnace core tube 2. This discharge portion is also formed in the rotary joint 18. That is, the cylindrical portion of the second lid 19 integrated with the furnace core tube 2 and the cylindrical portion of the joint member 21 integrated with the hopper-shaped workpiece discharge portion 20 that receives the discharged workpiece are relatively disposed. A rotary joint 18 is configured by being fitted in a rotatable manner. A discharge path through which the workpiece can be discharged from the furnace core tube 2 to the workpiece discharge portion 20 is formed in the cylindrical portion of the second lid 19 and the cylindrical portion of the joint member 21.

上記各実施の形態では、炉芯管内から不要ガスを外部へ排出するためのガス排出機構を一つのみ設けた連続式熱処理装置を示したが、複数個のガス排出機構を設けても良い。ただし、その場合でも、被処理物を炉芯管内へ供給する側にガス排出機構を設けなければならない。また、その被処理物を炉芯管内へ供給するガス排出機構は、他のガス排出機構よりもその排出能力は高いものに設定されている必要がある。例えば、ガス排出機構を被処理物の排出される側にのみ設けたり、この排出される側に設けられるガス排出機構が最も排出能力が高いものに設定されていると、炉芯管内の排出される側の不要ガス濃度が高くなって、排出される側における熱処理による反応が低下し、未反応の被処理物が生じやすいが、被処理物を供給する側に排気すると、排出側での反応が促進されることで被処理物の反応の完全化を図れる。   In each of the above-described embodiments, the continuous heat treatment apparatus provided with only one gas discharge mechanism for discharging unnecessary gas from the furnace core tube to the outside is shown, but a plurality of gas discharge mechanisms may be provided. However, even in that case, a gas discharge mechanism must be provided on the side where the workpiece is supplied into the furnace core tube. Further, the gas discharge mechanism for supplying the object to be processed into the furnace core tube needs to have a higher discharge capacity than the other gas discharge mechanisms. For example, if the gas discharge mechanism is provided only on the discharge side of the workpiece, or if the gas discharge mechanism provided on the discharge side is set to have the highest discharge capacity, the discharge from the furnace core tube is performed. The concentration of unnecessary gas on the exhaust side increases, and the reaction due to the heat treatment on the exhaust side decreases, and unreacted workpieces are likely to be generated. Is promoted, and the reaction of the object to be processed can be completed.

本発明に係る実施形態の連続式熱処理装置の概略的な縦断面図Schematic longitudinal sectional view of a continuous heat treatment apparatus according to an embodiment of the present invention 図1の連続式熱処理装置および比較例の連続式熱処理装置での熱処理時における炉芯管内での二酸化炭素濃度を示すグラフ1 is a graph showing the carbon dioxide concentration in the furnace core tube during heat treatment in the continuous heat treatment apparatus of FIG. 1 and the continuous heat treatment apparatus of the comparative example. 本発明に係る別の実施形態の連続式熱処理装置の概略的な縦断面図Schematic longitudinal sectional view of a continuous heat treatment apparatus according to another embodiment of the present invention

符号の説明Explanation of symbols

1 連続式熱処理装置
2 炉芯管
5 ヒータ(加熱手段)
8 供給装置
11 ガス排出機構
1 Continuous heat treatment device 2 Furnace core tube 5 Heater (heating means)
8 Supply device 11 Gas discharge mechanism

Claims (4)

被処理物を収納した状態で軸心周りに回転駆動される筒状の炉芯管と、前記炉芯管を加熱する加熱手段と、前記炉芯管内に軸方向一端側から被処理物を供給する供給装置と、前記炉芯管内を移動した被処理物を軸方向他端側から排出する排出装置とを備えるとともに、前記被処理物が前記炉芯管の内周面に沿って軸方向一端側から他端側へ移動可能に構成した連続式熱処理装置において、
前記炉芯管内から不要ガスを吸引して外部へ排出するガス排出機構を設けるとともに、前記炉芯管の前記被処理物供給側部分に、前記ガス排出機構における外部へのガス排出部を設けている、ことを特徴とする連続式熱処理装置。
A cylindrical furnace core tube that is rotationally driven around the axis in a state in which the object to be processed is stored, a heating means for heating the furnace core tube, and the object to be processed is supplied into the furnace core tube from one end in the axial direction. And a discharge device that discharges the workpiece moved in the furnace core tube from the other axial end side, and the workpiece is axially extended along the inner peripheral surface of the furnace core tube. In the continuous heat treatment apparatus configured to be movable from the side to the other end side,
A gas discharge mechanism for sucking unnecessary gas from the furnace core pipe and discharging it to the outside is provided, and a gas discharge section to the outside of the gas discharge mechanism is provided on the workpiece supply side portion of the furnace core pipe. A continuous heat treatment apparatus.
請求項1に記載の連続式熱処理装置において、
前記ガス排出機構の前記ガス排出部は、前記炉芯管における被処理物が供給される側の端面部分に設けられ、前記炉芯管における主たるガスの流れが前記端面部分に向かう、ことを特徴とする連続式熱処理装置。
The continuous heat treatment apparatus according to claim 1,
The gas discharge portion of the gas discharge mechanism is provided in an end surface portion of the furnace core tube on a side to which an object to be processed is supplied, and a main gas flow in the furnace core tube is directed to the end surface portion. Continuous heat treatment equipment.
請求項1または2に記載の連続式熱処理装置において、
前記炉芯管の前記被処理物供給側部分に前記ガス排出部を設けているガス排出機構は、前記炉芯管の他の箇所に外部へのガス排出部を設けている他のガス排出機構より高いガス排出能力を有する、ことを特徴とする連続式熱処理装置。
The continuous heat treatment apparatus according to claim 1 or 2,
The gas discharge mechanism in which the gas discharge unit is provided in the workpiece supply side portion of the furnace core tube is another gas discharge mechanism in which a gas discharge unit to the outside is provided in another part of the furnace core tube. A continuous heat treatment apparatus having a higher gas discharge capacity.
請求項1ないし3のいずれかに記載の連続式熱処理装置において、
前記ガス排出機構によるガス排出により、前記炉芯管内の気圧を大気圧以下にしている、ことを特徴とする連続式熱処理装置。
The continuous heat treatment apparatus according to any one of claims 1 to 3,
A continuous heat treatment apparatus, wherein the pressure in the furnace core tube is reduced to an atmospheric pressure or less by gas discharge by the gas discharge mechanism.
JP2003306830A 2003-08-29 2003-08-29 Continuous heat treatment equipment Pending JP2005076959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306830A JP2005076959A (en) 2003-08-29 2003-08-29 Continuous heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306830A JP2005076959A (en) 2003-08-29 2003-08-29 Continuous heat treatment equipment

Publications (1)

Publication Number Publication Date
JP2005076959A true JP2005076959A (en) 2005-03-24

Family

ID=34409797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306830A Pending JP2005076959A (en) 2003-08-29 2003-08-29 Continuous heat treatment equipment

Country Status (1)

Country Link
JP (1) JP2005076959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327890A (en) * 2005-05-27 2006-12-07 Kyocera Corp Barium titanate powder, its manufacturing method and its sintered compact
JP2015516941A (en) * 2012-04-30 2015-06-18 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass granules
CN111692876A (en) * 2020-05-19 2020-09-22 赣州有色冶金机械有限公司 Vacuum calcining furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871308A (en) * 1971-12-23 1973-09-27
JPS5344606U (en) * 1977-09-14 1978-04-17
JPH02272294A (en) * 1989-04-12 1990-11-07 Takasago Ind Co Ltd Rotary kiln
JPH05187776A (en) * 1992-01-09 1993-07-27 Murata Mfg Co Ltd Batch type rotary retort furnace
JPH10286544A (en) * 1997-04-16 1998-10-27 Akutorii Murata:Kk Apparatus for carbonization-reduction of waste
JPH11217208A (en) * 1998-01-30 1999-08-10 Sankyo Sangyo Kk Active carbon production/regeneration unit
JP2000018831A (en) * 1998-06-30 2000-01-18 Mitsui Eng & Shipbuild Co Ltd Thermal decomposer and thermal decomposition method for used ion exchange resin
JP2003207273A (en) * 2002-01-16 2003-07-25 Takasago Ind Co Ltd External heating rotary kiln

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871308A (en) * 1971-12-23 1973-09-27
JPS5344606U (en) * 1977-09-14 1978-04-17
JPH02272294A (en) * 1989-04-12 1990-11-07 Takasago Ind Co Ltd Rotary kiln
JPH05187776A (en) * 1992-01-09 1993-07-27 Murata Mfg Co Ltd Batch type rotary retort furnace
JPH10286544A (en) * 1997-04-16 1998-10-27 Akutorii Murata:Kk Apparatus for carbonization-reduction of waste
JPH11217208A (en) * 1998-01-30 1999-08-10 Sankyo Sangyo Kk Active carbon production/regeneration unit
JP2000018831A (en) * 1998-06-30 2000-01-18 Mitsui Eng & Shipbuild Co Ltd Thermal decomposer and thermal decomposition method for used ion exchange resin
JP2003207273A (en) * 2002-01-16 2003-07-25 Takasago Ind Co Ltd External heating rotary kiln

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327890A (en) * 2005-05-27 2006-12-07 Kyocera Corp Barium titanate powder, its manufacturing method and its sintered compact
JP4658689B2 (en) * 2005-05-27 2011-03-23 京セラ株式会社 Method for producing barium titanate powder, barium titanate powder, and sintered barium titanate
JP2015516941A (en) * 2012-04-30 2015-06-18 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass granules
CN111692876A (en) * 2020-05-19 2020-09-22 赣州有色冶金机械有限公司 Vacuum calcining furnace

Similar Documents

Publication Publication Date Title
JP2005076959A (en) Continuous heat treatment equipment
CN114929621B (en) Method for producing carbon nanotube assembly
JP2018056300A (en) Substrate processing apparatus and substrate processing method
CN211695824U (en) Lithium battery powder sintering rotary kiln
JP2019123634A (en) Method for producing ceramic fired body and method for firing ceramic molded body
JP3913646B2 (en) Substrate processing equipment
JP2011038653A (en) External heat type rotary furnace and core tube thereof
JP2020508429A (en) Heat treatment method
JP5550440B2 (en) Operation method of powder firing plant
JP5339856B2 (en) Horizontal rotating container type powder processing equipment
JP4985923B2 (en) Firing furnace
JP2009014328A (en) Rotary kiln
JP4408124B2 (en) Thin film forming equipment
KR101132285B1 (en) Powder heat treatment equipment
JP2008249189A (en) Dust disposal device
JPH05187776A (en) Batch type rotary retort furnace
JP2006284052A (en) Vacuum heating rotary furnace and powder material heat treatment method
KR101758465B1 (en) Rotatry kiln
JP6231412B2 (en) Raw material heating device
JP2003207273A (en) External heating rotary kiln
JP2008115200A (en) External heating-type carbonizing apparatus
SU1735687A1 (en) Rotary furnace
JP2016121860A (en) Rotary kiln
JPH063064A (en) Kiln
JP2001255071A (en) Powder baking furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A02