JP2005076533A - Turbine blade - Google Patents

Turbine blade Download PDF

Info

Publication number
JP2005076533A
JP2005076533A JP2003307974A JP2003307974A JP2005076533A JP 2005076533 A JP2005076533 A JP 2005076533A JP 2003307974 A JP2003307974 A JP 2003307974A JP 2003307974 A JP2003307974 A JP 2003307974A JP 2005076533 A JP2005076533 A JP 2005076533A
Authority
JP
Japan
Prior art keywords
edge line
line
ventral
turbine blade
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003307974A
Other languages
Japanese (ja)
Inventor
Asako Inomata
麻子 猪亦
Fumio Otomo
文雄 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003307974A priority Critical patent/JP2005076533A/en
Publication of JP2005076533A publication Critical patent/JP2005076533A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbine blade improving profile efficiency by reducing loss due to shock wave and loss due to deficit of velocity distribution of slip stream. <P>SOLUTION: In a turbine blade having a shape of a following edge 2 in a profile 1 formed with a ventral side edge line 3 and a dorsal side edge line 4, the ventral side edge line 3 is formed with either straight line or curved line having large curvature radius and the dorsal edge line 4 is formed with curved line having smaller curvature radius than curvature radius of the ventral side edge line 3, angle formed at a connection point of an end part of the ventral side edge line 3 and an end part of the dorsal side edge line 4 is formed in roughly perpendicular. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、タービン翼に係り、特にプロファイル(翼型)のうち、後縁の形状に改良を加えたタービン翼に関する。   The present invention relates to a turbine blade, and more particularly to a turbine blade in which the shape of the trailing edge of the profile (airfoil type) is improved.

例えば、蒸気タービン、ガスタービン等、最近のタービン技術の分野では、性能向上の強化の一環としてタービン翼のプロファイル効率の向上が見直されている。   For example, in recent turbine technology fields such as steam turbines and gas turbines, the improvement of the profile efficiency of turbine blades has been reviewed as part of the enhancement of performance improvement.

従来、タービンの内部損失は、全タービン損失のうち、タービン段落損失が約2/3を占めているとされており、無視できない損失量になっている。   Conventionally, the turbine internal loss accounts for about 2/3 of the total turbine loss, and the turbine internal loss is a loss that cannot be ignored.

タービン段落損失は、大きく分けると、プロファイル損失、二次流れ損失、漏洩損失、湿り損失に分類され、各損失を低減するための開発が進められている。ここで注目しているプロファイル損失とは、翼の後流(ウェーク)に基づく速度分布欠損による損失であり、プロファイル損失を低減させるためには、いかに速度分布欠損を少なくするか重要である。このためには、翼後縁部の形状が重要であり、後縁端は細ければ細いほど損失が少なくなることが知られている。   Turbine stage loss is roughly classified into profile loss, secondary flow loss, leakage loss, and wetness loss, and development for reducing each loss is underway. The profile loss focused here is a loss due to a velocity distribution defect based on the wake (wake) of the blade. In order to reduce the profile loss, it is important how to reduce the velocity distribution defect. For this purpose, the shape of the blade trailing edge is important, and it is known that the thinner the trailing edge, the smaller the loss.

しかし、現実には、強度上の問題から、後縁端の厚みは制限され、許容限界の厚さで後縁形状は直線か円弧形状となっていた。また、衝撃波が発生するような高マッハ数の場合は、特に後縁部の強度を高くする必要があり、この点を考えると、後縁端を細くすることはできない。   However, in reality, the thickness of the trailing edge is limited due to a problem in strength, and the trailing edge shape is a straight line or an arc shape with an allowable limit thickness. Further, in the case of a high Mach number that generates a shock wave, it is necessary to increase the strength of the trailing edge, and considering this point, the trailing edge cannot be thinned.

このため、大容量化タービンに適用するタービン翼では、プロファイル効率の向上が見直されており、試行錯誤を繰り返すものの、現在、模索中である。   For this reason, in turbine blades applied to large-capacity turbines, the improvement in profile efficiency has been reviewed, and although trial and error are repeated, they are currently being searched.

なお、プロファイルの後縁形状を改良した技術には、例えば特開昭60−122201号公報に見られるように、小形過給機に適用したものや、例えば特開2000−53082号公報に見られるように、水中翼に適用したものがある。
特開昭60−122201号公報 特開2000−53082号公報
As a technique for improving the trailing edge shape of the profile, for example, as shown in Japanese Patent Application Laid-Open No. 60-122201, it is applied to a small turbocharger, and as shown in, for example, Japanese Patent Application Laid-Open No. 2000-53082. As such, there are those applied to hydrofoil.
JP-A-60-122201 JP 2000-53082 A

特開昭60−122201号公報記載のものは、タービン翼と言えどもラジアルタイプの小形過給機に適用するものであり、プロファイルの後縁形状を背側直線と、腹側直線と、端面直線とで形成するとともに、背側直線と端面直線とを曲率半径の大きな円弧で接続する一方、腹側直線と端面直線とを曲率半径の小さな円弧で接続したものである。   Japanese Patent Application Laid-Open No. 60-122201 applies to a radial type small turbocharger even though it is a turbine blade, and the trailing edge shape of the profile is a back side straight line, a ventral side straight line, and an end face straight line. And the back side straight line and the end face straight line are connected by an arc having a large curvature radius, while the ventral side straight line and the end face straight line are connected by an arc having a small curvature radius.

しかし、特開昭60−122201号公報記載のものは、本願が適用対象とする大容量タービンに較べて取り扱う駆動流体の重量流量が少なく、上述の後縁の形状をそのまま本願に組み入れても後流の速度分布欠損に基づく損失を低く抑えることが難しい。   However, the one described in Japanese Patent Application Laid-Open No. 60-122201 requires less weight flow rate of the driving fluid to be handled than the large-capacity turbine to which the present application is applied. It is difficult to keep losses due to flow velocity distribution deficiencies low.

また、特開2000−53082号公報のものは、高速艇を適用対象とし、後縁形状を翼前後方向中心線を境に非対称形状にしたものであるが、上述と同様に、このような後縁形状をそのまま本願に組み入れても後流の速度分布欠損に基づく損失が増加する等の問題点を持っている。   Japanese Patent Application Laid-Open No. 2000-53082 is intended for high-speed boats, and the trailing edge shape is asymmetrical with respect to the center line in the wing front-rear direction. Even if the shape is incorporated in the present application as it is, there is a problem that the loss due to the velocity distribution loss of the wake increases.

このため、大容量タービン分野では、強度を従来とおりに保証しつつ、衝撃波や後流の速度分布欠損に基づく損失を低くしてプロファイル効率をより一層向上させた後縁形状の実現が望まれていた。   For this reason, in the large-capacity turbine field, it is desired to realize a trailing edge shape that further improves the profile efficiency by reducing the loss based on the shock wave and the velocity distribution defect of the wake, while guaranteeing the strength as before. It was.

本発明は、このような背景技術に基づいてなされたものであり、大容量タービンに適用する際、衝撃波の誘起を少なくさせるとともに、後流の速度分布欠損を少なくさせてプロファイル効率をより一層向上させるタービン翼を提供することを目的とする。   The present invention has been made on the basis of such a background art, and when applied to a large-capacity turbine, the induction of shock waves is reduced, and the velocity distribution deficit of the wake is reduced to further improve the profile efficiency. An object of the present invention is to provide a turbine blade.

本発明に係るタービン翼は、上述の目的を達成するために、請求項1に記載したように、プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を前記腹側縁線の曲率半径よりも小さい曲率半径で形成し、前記腹側縁線の端部と前記背側縁線の端部との接続点の角度を略垂直に形成したものである。   In order to achieve the above-mentioned object, a turbine blade according to the present invention is a turbine blade in which a shape of a trailing edge is formed by a ventral side edge line and a back side edge line in a profile as described in claim 1. The ventral edge line is formed by selecting either a straight line or a curve having a large curvature radius, and the dorsal edge line is formed with a radius of curvature smaller than the curvature radius of the ventral edge line. And the angle of the connection point of the edge part of the said ventral edge line and the edge part of the said back side edge line is formed substantially perpendicularly.

また、本発明に係るタービン翼は、上述の目的を達成するために、請求項2に記載したように、プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を前記腹側縁線の端部とを直線を介装させて接続する一方、この直線と前記腹側縁線の端部との接続点の角度を略垂直に形成したものである。   Moreover, in order to achieve the above-mentioned object, the turbine blade according to the present invention forms the shape of the trailing edge of the profile with the ventral edge line and the dorsal edge line, as described in claim 2. In the turbine blade, the ventral edge line is formed by selecting one of a straight line and a curve having a large radius of curvature, and the back side edge line is connected to the end of the ventral edge line via a straight line. On the other hand, the angle of the connection point between this straight line and the end of the ventral edge line is formed substantially perpendicularly.

また、本発明に係るタービン翼は、上述の目的を達成するために、請求項3に記載したように、腹側縁線の曲率半径よりも小さい曲率半径で形成する背側縁線は、楕円線であることを特徴とするものである。   Further, in order to achieve the above-described object, the turbine blade according to the present invention has an elliptical back line formed with a curvature radius smaller than the curvature radius of the ventral side edge line as described in claim 3. It is characterized by being a line.

また、本発明に係るタービン翼は、上述の目的を達成するために、請求項4に記載したように、楕円線は、長径をaとし、短径をbとするとき、長径と短径との比a/bを、
[数2]
a/b≦5/1
に設定したものである。
In order to achieve the above object, the turbine blade according to the present invention has a major axis and a minor axis when the major axis is a and the minor axis is b. The ratio a / b of
[Equation 2]
a / b ≦ 5/1
Is set.

また、本発明に係るタービン翼は、上述の目的を達成するために、請求項5に記載したように、プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を陰関数曲線で形成したものである。   Moreover, in order to achieve the above-mentioned object, the turbine blade according to the present invention forms the shape of the trailing edge of the profile with a ventral edge line and a dorsal edge line, as described in claim 5. In the turbine blade, the ventral edge line is formed by selecting one of a straight line and a curve having a large curvature radius, and the dorsal edge line is formed by an implicit function curve.

また、本発明に係るタービン翼は、上述の目的を達成するために、請求項6に記載したように、プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線をその端部に向って徐々に曲率半径の小さい曲線で形成したものである。   Moreover, in order to achieve the above-mentioned object, the turbine blade according to the present invention forms the shape of the trailing edge of the profile with a ventral edge line and a dorsal edge line, as described in claim 6. In the turbine blade, the ventral side edge line is formed by selecting any one of a straight line and a curve with a large radius of curvature, and the back side edge line is gradually curved toward the end thereof with a gradually decreasing radius of curvature. It was formed by.

また、本発明に係るタービン翼は、上述の目的を達成するために、請求項7に記載したように、プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を複数の短い直線で形成したものである。   Moreover, in order to achieve the above-mentioned object, the turbine blade according to the present invention forms the shape of the trailing edge of the profile with a ventral edge line and a dorsal edge line, as described in claim 7. In the turbine blade, the ventral edge line is formed by selecting one of a straight line and a curve having a large curvature radius, and the dorsal edge line is formed by a plurality of short straight lines.

また、本発明に係るタービン翼は、上述の目的を達成するために、請求項8に記載したように、プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線をパラメトリック曲線で形成したものである。   Moreover, in order to achieve the above-mentioned object, the turbine blade according to the present invention forms the shape of the trailing edge of the profile with a ventral edge line and a dorsal edge line, as described in claim 8. In the turbine blade, the ventral side edge line is formed by selecting one of a straight line and a curve having a large curvature radius, and the back side edge line is formed by a parametric curve.

また、本発明に係るタービン翼は、上述の目的を達成するために、請求項9に記載したように、プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線のうち、端部から5%翼高さのチップ部および端部から5%翼高さのルート部のそれぞれを直線および曲率半径の大きな曲線のうち、いずれか一方を選択して形成する一方、残りの翼有効部を前記腹側縁線の曲率半径よりも小さい曲率半径の曲線で形成し、前記腹側縁線の端部と前記背側縁線の端部との接続点の角度を略垂直に形成したものである。   Moreover, in order to achieve the above-mentioned object, the turbine blade according to the present invention forms the shape of the trailing edge of the profile with the ventral edge line and the dorsal edge line, as described in claim 9. In the turbine blade, the ventral side edge line is formed by selecting one of a straight line and a curve with a large curvature radius, and the tip part of the back side edge line is 5% blade height from the end. Each of the root portions having a blade height of 5% from the end portion is formed by selecting one of a straight line and a curve having a large curvature radius, while the remaining blade effective portion is formed by the curvature radius of the ventral edge line. It is formed by a curve having a smaller radius of curvature, and the angle of the connection point between the end of the ventral side edge line and the end of the back side edge line is formed substantially perpendicularly.

また、本発明に係るタービン翼は、上述の目的を達成するために、請求項10に記載したように、プロファイル内に冷却媒体の吹出し口を備えるとともに、前記プロファイルの後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を前記腹側縁線の曲率半径よりも小さい曲率半径で形成し、前記吹出し口を前記腹側縁線側に形成したものである。   In order to achieve the above-mentioned object, the turbine blade according to the present invention includes a cooling medium outlet in the profile and the shape of the trailing edge of the profile on the ventral side. In the turbine blade formed by an edge line and a back side edge line, the abdomen side edge line is formed by selecting one of a straight line and a curve having a large curvature radius, and the back side edge line is formed by the abdomen. It is formed with a radius of curvature smaller than the radius of curvature of the side edge line, and the outlet is formed on the ventral side edge line side.

本発明に係るタービン翼は、プロファイルの後縁形状を形成する腹側縁線と背側縁線とにおいて、腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択し、背側縁線を前記腹側縁線よりも曲率半径の小さい曲線にするとともに、前記腹側縁線の端部と前記背側縁線の端部との接続点の角度を略垂直にし、駆動流体の流れが前記腹側縁線および前記背側縁線に沿うようにし、翼間通路をより広くする構成にするので、衝撃波に基づく損失や後流の速度分布欠損に基づく損失を少なくしてプロファイル効率を向上させることができる。   In the turbine blade according to the present invention, in the ventral edge line and the dorsal edge line forming the trailing edge shape of the profile, either the straight line or the curve with a large curvature radius is selected as the ventral edge line, The dorsal edge line is a curve having a smaller radius of curvature than the ventral edge line, and the angle of the connection point between the end of the ventral edge line and the end of the dorsal edge line is made substantially vertical, and driving Since the flow of the fluid is along the ventral edge line and the dorsal edge line and the passage between the blades is made wider, loss due to shock waves and loss due to velocity distribution loss of the wake are reduced. Profile efficiency can be improved.

以下、本発明に係るタービン翼の実施形態を図面および図面に付した符号を引用して説明する。   Hereinafter, embodiments of a turbine blade according to the present invention will be described with reference to the drawings and the reference numerals attached to the drawings.

図1は、本発明に係るタービン翼の第1実施形態を示す概念図である。   FIG. 1 is a conceptual diagram showing a first embodiment of a turbine blade according to the present invention.

本実施形態に係るタービン翼は、三次元フローパターン解析に基づいて設計されたプロファイル1の後縁2の形状を形成する腹側縁線3および背側縁線4のうち、腹側縁線3を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、背側縁線4を上述腹側縁線3の曲率半径よりも小さい曲率半径の曲線、例えば楕円(長円)線で形成する一方、R部を拡大して図2で示すように、腹側縁線3の端部と背側縁線4の端部との接続点Jの角度を略垂直に形成したものである。   The turbine blade according to the present embodiment has a ventral side edge line 3 out of the ventral side edge line 3 and the back side edge line 4 that forms the shape of the trailing edge 2 of the profile 1 designed based on the three-dimensional flow pattern analysis. Is formed by selecting one of a straight line and a curve with a large radius of curvature, and the dorsal edge line 4 is a curve with a radius of curvature smaller than the radius of curvature of the ventral edge line 3, for example, an ellipse (an ellipse). 2), the R portion is enlarged and the angle of the connection point J between the end of the ventral edge line 3 and the end of the dorsal edge line 4 is formed substantially perpendicularly as shown in FIG. Is.

また、背側縁線4を形成する曲率半径の小さい曲線、すなわち、楕円(長円)線は、長径をaとし、短径をbとするとき、長径と短径との比a/bを
[数3]
a/b≦5/1
の範囲に設定したものである。
Further, a curve with a small curvature radius forming the back side edge line 4, that is, an ellipse (oval) line, where the major axis is a and the minor axis is b, the ratio a / b of the major axis to the minor axis is [Equation 3]
a / b ≦ 5/1
It is set in the range.

もっとも、全圧損失係数と強度とを勘案した場合、背側縁線4を形成する楕円(長円)線は、長径と短径との比a/bを
[数4]
a/b≦3/1
にすることが最も好ましい。
However, when the total pressure loss coefficient and strength are taken into consideration, the ellipse (oval) line forming the dorsal edge line 4 has the ratio a / b of the major axis to the minor axis [Equation 4]
a / b ≦ 3/1
Most preferably.

図5は、全圧損失係数と強度とから求めた楕円の長径と短径との比を定める楕円長径、短径線図である。   FIG. 5 is an ellipse major axis / minor axis diagram that determines the ratio between the major axis and minor axis of the ellipse obtained from the total pressure loss coefficient and strength.

この線図から、全圧損失係数と強度線との交点、つまり楕円の長径aがa=3で、短径bがb=1であることがわかった。   From this diagram, it was found that the intersection of the total pressure loss coefficient and the intensity line, that is, the major axis a of the ellipse was a = 3 and the minor axis b was b = 1.

また、図4は、従来のタービン翼のプロファイル損失と本実施形態に係るプロファイル損失とを対比させた損失線図で、縦軸に全圧損失係数を採り、横軸に翼間ピッチ(P)と翼コード長(c)とのピッチ(P)/翼コード長(c)比を採っている。   FIG. 4 is a loss diagram in which the profile loss of a conventional turbine blade is compared with the profile loss according to the present embodiment. The vertical axis represents the total pressure loss coefficient, and the horizontal axis represents the blade pitch (P). The pitch (P) / blade cord length (c) ratio between the blade length and the blade cord length (c) is employed.

この線図から、図10〜図12で示した従来の後縁の形状に較べて本実施形態に係る後縁2の背側縁線4を楕円線で形成したので、損失が少ないことがわかった。   From this diagram, it can be seen that the backside edge line 4 of the trailing edge 2 according to the present embodiment is formed by an elliptical line compared to the shape of the conventional trailing edge shown in FIGS. It was.

特に、ピッチ(P)/翼コード長(c)の比が小さい場合、本実施形態に係る後縁2の背側縁線4の方が図10〜図12で示した従来の後縁の形状に較べて損失が少ないのは、背側縁線4を楕円線で形成すると、それだけ翼間の通路が大きくなり、このために衝撃による損失や後流の速度分布欠損による損失が少なくなったと考えられる。   In particular, when the ratio of pitch (P) / blade cord length (c) is small, the rear edge line 4 of the trailing edge 2 according to the present embodiment is the shape of the conventional trailing edge shown in FIGS. The loss is less than that of the case. When the back edge 4 is formed of an elliptical line, the passage between the wings increases accordingly, and the loss due to the impact and the loss of velocity distribution in the wake is reduced. It is done.

このように、本実施形態は、プロファイル1の後縁2の形状を形成する腹側縁線3および背側縁線4のうち、腹側縁線3を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、背側縁線4を上述腹側縁線3の曲率よりも小さい曲線、例えば楕円線で形成する一方、腹側縁線3の端部と背側縁線4の端部との接続点Jの角度を略垂直にし、翼間通路を広くする構成にしたので、衝撃による損失や後流の速度分布欠損による損失を少なくしてプロファイル効率を向上させることができる。   Thus, in the present embodiment, among the ventral edge line 3 and the dorsal edge line 4 that form the shape of the trailing edge 2 of the profile 1, the ventral edge line 3 is a straight line and a curve with a large curvature radius. Either one is selected and formed, and the back side edge line 4 is formed by a curve smaller than the curvature of the ventral side edge line 3, for example, an elliptical line, while the end of the ventral side edge line 3 and the back side edge Since the angle of the connection point J with the end of the line 4 is made substantially vertical and the passage between the blades is widened, the loss due to the impact and the loss due to the loss of velocity distribution in the wake are reduced to improve the profile efficiency. Can do.

なお、本実施形態は、後縁2の背側縁線4を曲率半径の比較的小さい曲線、例えば楕円線で形成したが、この例に限らず、陰関数曲線、パラメトリック曲線、背側縁線4がその端部(腹側縁線との接続点J)に向って曲率半径を徐々に小さくする曲線、背側縁線4を短い直線で結ぶ線に形成してもよい。これらの線は、いずれもが翼間通路を広く確保することができる。   In this embodiment, the dorsal edge line 4 of the trailing edge 2 is formed by a curve having a relatively small radius of curvature, for example, an elliptical line. However, the present invention is not limited to this example, and an implicit function curve, parametric curve, dorsal edge line is used. 4 may be formed as a curve that gradually decreases the radius of curvature toward the end (connection point J with the ventral edge line) and a line that connects the dorsal edge line 4 with a short straight line. Any of these lines can ensure a wide passage between blades.

また、本実施形態は、腹側縁線3の端部と背側縁線4の端部との接続点Jの角度を略垂直にしたが、この例に限らず、例えば、図3に示すように、腹側縁線3の端部と背側縁線4の端部とを直線5を介して接続させるとともに、直線5と腹側縁線3の端部との接続点Kの角度を略垂直にしてもよい。   Moreover, although this embodiment made the angle of the connection point J of the edge part of the ventral edge line 3 and the edge part of the back | dorsal edge line 4 substantially perpendicular, it is not restricted to this example, For example, it shows in FIG. In this way, the end of the ventral edge line 3 and the end of the dorsal edge line 4 are connected via the straight line 5 and the angle of the connection point K between the straight line 5 and the end of the ventral edge line 3 is substantially the same. It may be vertical.

プロファイルを作製する際、基準の位置決めを設定する場合に有効である。   This is effective when setting a reference positioning when creating a profile.

図6は、本発明に係るタービン翼の第3実施形態を示す概念図である。   FIG. 6 is a conceptual diagram showing a third embodiment of a turbine blade according to the present invention.

本実施形態に係るタービン翼は、チップ部(翼頂部)TIPの端部から翼高5%の領域とルート部(翼根元部)ROTの端部から翼高5%の領域のそれぞれに境界層が発達しており、この境界層に二次流れが加わり、二次流れ損失が発生しているが、翼高中央部PCDを中心とするチップ部TIPの端部から翼高5%の領域およびルート部ROTの端部かに翼高5%の領域までの翼有効部BEPの領域に駆動流体の流れに乱れがないことに着目したものであり、プロファイル1の後縁2のうち、後縁2のチップTIPの端部から翼高5%の領域およびルート部ROTの端部から翼高5%の領域のそれぞれのS部を拡大した図7で示すように、腹側縁線3および背側縁線4のそれぞれを直線および曲率半径の大きな曲線のうち、いずれか一方を選択して形成し、腹側縁線3の端部と背側縁線4の端部とを円弧6で接続させたものである。   The turbine blade according to the present embodiment has a boundary layer in each of a region having a blade height of 5% from the end portion of the tip portion (blade top portion) TIP and a region having a blade height of 5% from the end portion of the root portion (blade root portion) ROT. In this boundary layer, a secondary flow is added and a secondary flow loss occurs, but the region where the blade height is 5% from the end of the tip portion TIP centering on the blade height central portion PCD and Focusing on the fact that there is no disturbance in the flow of the driving fluid in the region of the blade effective portion BEP up to the region where the blade height is 5% at the end of the root portion ROT. As shown in FIG. 7 in which the S portion of the region having a blade height of 5% from the end of the tip 2 of the tip TIP and the region having a blade height of 5% from the end of the root portion ROT is enlarged, as shown in FIG. Each of the side edge lines 4 is either a straight line or a curve with a large radius of curvature. -Option and formed, is obtained by connecting the end portions of the ventral edge line 3 and the back-side edge line 4 at the arc 6.

また、本実施形態に係るタービン翼は、プロファイル1の後縁2の翼有効部BEPの領域のT部を拡大した図8で示すように、腹側縁線3を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、背側縁線4を腹側縁線3の曲率半径よりも小さい曲率半径の曲線、例えば楕円線で形成し、腹側縁線3の端部と背側縁線4の端部との接続点Jの角度を略垂直に形成したものである。   Moreover, as shown in FIG. 8 in which the T portion in the region of the blade effective portion BEP of the trailing edge 2 of the profile 1 is enlarged, the turbine blade according to the present embodiment has a straight line and a curve with a large curvature radius. And the dorsal side edge line 4 is formed by a curve with a radius of curvature smaller than the radius of curvature of the ventral side edge line 3, for example, an elliptical line, and the end of the ventral side edge line 3 is formed. The angle of the connection point J between the portion and the end of the back side edge line 4 is formed substantially perpendicularly.

このように、本実施形態は、プロファイル1の後縁2のうち、翼有効部BEPの領域における背側縁線4を、例えば楕円線で形成し、楕円線の持つ特性、つまり、広い翼間通路を確保する構成にしたので、衝撃による損失や後流の速度分布欠損による損失を少なくしてプロファイル効率を向上させることができる。   Thus, in the present embodiment, the back edge line 4 in the region of the blade effective portion BEP of the trailing edge 2 of the profile 1 is formed by, for example, an elliptical line, and the characteristic of the elliptical line, that is, a wide blade-to-blade Since the passage is secured, the profile efficiency can be improved by reducing the loss due to impact and the loss due to the loss of velocity distribution in the wake.

図9は、本発明に係るタービン翼の第4実施形態を示す概念図である。   FIG. 9 is a conceptual diagram showing a fourth embodiment of a turbine blade according to the present invention.

本実施形態に係るタービン翼は、冷却翼を適用対象とするもので、冷却媒体の吹出し口7を後縁2を形成する腹側縁線3側に寄せたものである。   The turbine blade according to the present embodiment is a cooling blade, and the cooling medium outlet 7 is brought closer to the side of the ventral edge 3 forming the trailing edge 2.

このように、本実施形態は、冷却翼における冷却媒体の吹出し口7を後縁2を形成する腹側縁線3側に寄せ、後縁2を形成する背側縁線4を、例えば楕円線で形成し、楕円線の持つ特性、つまり広い翼間通路を確保する構成にしたので、衝撃による損失や後流の速度分布欠損による損失を少なくしてプロファイル効率を向上させることができる。   Thus, in the present embodiment, the cooling medium outlet 7 in the cooling blade is brought closer to the side of the ventral edge line 3 that forms the trailing edge 2, and the back edge line 4 that forms the trailing edge 2 is replaced with an elliptical line, for example. The characteristics of the elliptical line, that is, a configuration that secures a wide passage between blades, can reduce the loss due to the impact and the loss due to the velocity distribution loss of the wake, thereby improving the profile efficiency.

本発明に係るタービン翼の第1実施形態を示す概念図。The conceptual diagram which shows 1st Embodiment of the turbine blade which concerns on this invention. 図1で示したR部の一部切欠部分拡大図。FIG. 2 is a partially cutaway enlarged view of an R portion shown in FIG. 1. 本発明に係るタービン翼の第2実施形態を示す概念図。The conceptual diagram which shows 2nd Embodiment of the turbine blade which concerns on this invention. 従来のタービン翼のプロファイル損失と本発明に係るタービン翼のプロファイル損失とを対比させた損失線図。The loss diagram which contrasted the profile loss of the conventional turbine blade, and the profile loss of the turbine blade which concerns on this invention. 全圧損失係数と強度とから求めた楕円の長径と短径との比を定める楕円長径、短径線図。The elliptical major axis and minor axis diagram that determines the ratio of the major axis to the minor axis of the ellipse obtained from the total pressure loss coefficient and strength. 本発明に係るタービン翼の第3実施形態を示す概念図。The conceptual diagram which shows 3rd Embodiment of the turbine blade which concerns on this invention. 図6で示したS部の一部切欠部分拡大図。FIG. 7 is a partially cutaway enlarged view of a portion S shown in FIG. 6. 図6で示したT部の一部切欠部分拡大図。FIG. 7 is a partially cutaway enlarged view of a T portion shown in FIG. 6. 本発明に係るタービン翼の第4実施形態を示す一部切欠部分拡大図。The partially notched part enlarged view which shows 4th Embodiment of the turbine blade which concerns on this invention. 従来のタービン翼を示す概念図。The conceptual diagram which shows the conventional turbine blade. 図10で示したU部の一部切欠部分拡大図。FIG. 11 is a partially cutaway enlarged view of a U portion shown in FIG. 10. 図11で示したタービン翼とは別の従来の後縁を示す一部切欠部分拡大図。FIG. 12 is a partially cutaway enlarged view showing a conventional trailing edge different from the turbine blade shown in FIG. 11.

符号の説明Explanation of symbols

1 プロファイル
2 後縁
3 腹側縁線
4 背側縁線
5 直線
6 円弧
7 吹出し口
10 プロファイル
11 後縁
12 腹側縁線
13 背側縁線
14 直線
15 円弧
1 Profile 2 Trailing edge 3 Ventral edge line 4 Dorsal edge line 5 Straight line 6 Arc 7 Air outlet 10 Profile 11 Trailing edge 12 Ventral edge line 13 Dorsal edge line 14 Straight line 15 Arc

Claims (10)

プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を前記腹側縁線の曲率半径よりも小さい曲率半径で形成し、前記腹側縁線の端部と前記背側縁線の端部との接続点の角度を略垂直に形成したことを特徴とするタービン翼。 Among the profiles, in the turbine blade that forms the shape of the trailing edge with the ventral edge line and the dorsal edge line, the ventral edge line is selected by selecting either a straight line or a curve with a large radius of curvature. In addition, the back side edge line is formed with a radius of curvature smaller than the curvature radius of the ventral side edge line, and the angle of the connection point between the end of the ventral side edge line and the end of the back side edge line is determined. A turbine blade characterized by being formed substantially vertically. プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を前記腹側縁線の端部とを直線を介装させて接続する一方、この直線と前記腹側縁線の端部との接続点の角度を略垂直に形成したことを特徴とするタービン翼。 Among the profiles, in the turbine blade that forms the shape of the trailing edge with the ventral edge line and the dorsal edge line, the ventral edge line is selected by selecting either a straight line or a curve with a large radius of curvature. In addition, the back side edge line is connected to the end portion of the ventral side edge line through a straight line, and the angle of the connection point between the straight line and the end portion of the ventral side edge line is made substantially vertical. A turbine blade characterized by being formed. 腹側縁線の曲率半径よりも小さい曲率半径で形成する背側縁線は、楕円線であることを特徴とする請求項1記載のタービン翼。 The turbine blade according to claim 1, wherein a back side edge line formed with a radius of curvature smaller than a curvature radius of the ventral side edge line is an elliptical line. 楕円線は、長径をaとし、短径をbとするとき、長径と短径との比a/bを、
[数1]
a/b≦5/1
に設定したことを特徴とする請求項3記載のタービン翼。
The elliptical line has a ratio of a major axis to a minor axis a / b where the major axis is a and the minor axis is b.
[Equation 1]
a / b ≦ 5/1
The turbine blade according to claim 3, wherein
プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を陰関数曲線で形成したことを特徴とするタービン翼。 Among the profiles, in the turbine blade that forms the shape of the trailing edge with the ventral edge line and the dorsal edge line, the ventral edge line is selected by selecting either a straight line or a curve with a large radius of curvature. In addition, a turbine blade characterized in that the dorsal edge line is formed by an implicit function curve. プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線をその端部に向って徐々に曲率半径の小さい曲線で形成したことを特徴とするタービン翼。 Among the profiles, in the turbine blade that forms the shape of the trailing edge with the ventral edge line and the dorsal edge line, the ventral edge line is selected by selecting either a straight line or a curve with a large radius of curvature. The turbine blade is characterized in that the dorsal edge line is formed with a curve having a gradually smaller radius of curvature toward the end portion. プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を複数の短い直線で形成したことを特徴とするタービン翼。 Among the profiles, in the turbine blade that forms the shape of the trailing edge with the ventral edge line and the dorsal edge line, the ventral edge line is selected by selecting either a straight line or a curve with a large radius of curvature. And the backside edge line is formed by a plurality of short straight lines. プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線をパラメトリック曲線で形成したことを特徴とするタービン翼。 Among the profiles, in the turbine blade that forms the shape of the trailing edge with the ventral edge line and the dorsal edge line, the ventral edge line is selected by selecting either a straight line or a curve with a large radius of curvature. In addition, a turbine blade characterized in that the dorsal edge line is formed by a parametric curve. プロファイルのうち、後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線のうち、端部から5%翼高さのチップ部および端部から5%翼高さのルート部のそれぞれを直線および曲率半径の大きな曲線のうち、いずれか一方を選択して形成する一方、残りの翼有効部を前記腹側縁線の曲率半径よりも小さい曲率半径の曲線で形成し、前記腹側縁線の端部と前記背側縁線の端部との接続点の角度を略垂直に形成したことを特徴とするタービン翼。 Among the profiles, in the turbine blade that forms the shape of the trailing edge with the ventral edge line and the dorsal edge line, the ventral edge line is selected by selecting either a straight line or a curve with a large radius of curvature. In addition, among the dorsal side edge line, either the tip portion having a blade height of 5% from the end portion and the root portion having a blade height of 5% from the end portion are either one of a straight line and a curve having a large curvature radius. The remaining wing effective portion is formed by a curve having a curvature radius smaller than the curvature radius of the ventral edge line, and the end of the ventral edge line and the end of the dorsal edge line are selected. Turbine blades characterized in that the angle of the connection point with is formed substantially vertical. プロファイル内に冷却媒体の吹出し口を備えるとともに、前記プロファイルの後縁の形状を腹側縁線と背側縁線とで形成するタービン翼において、前記腹側縁線を直線および曲率半径の大きい曲線のうち、いずれか一方を選択して形成するとともに、前記背側縁線を前記腹側縁線の曲率半径よりも小さい曲率半径で形成し、前記吹出し口を前記腹側縁線側に形成したことを特徴とするタービン翼。

In a turbine blade having a cooling medium outlet in a profile and forming the shape of the trailing edge of the profile by a ventral edge line and a dorsal edge line, the ventral edge line is a straight line and a curve having a large radius of curvature. The back edge line is formed with a curvature radius smaller than the curvature radius of the ventral edge line, and the outlet is formed on the ventral edge line side. Turbine blades characterized by that.

JP2003307974A 2003-08-29 2003-08-29 Turbine blade Pending JP2005076533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307974A JP2005076533A (en) 2003-08-29 2003-08-29 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307974A JP2005076533A (en) 2003-08-29 2003-08-29 Turbine blade

Publications (1)

Publication Number Publication Date
JP2005076533A true JP2005076533A (en) 2005-03-24

Family

ID=34410576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307974A Pending JP2005076533A (en) 2003-08-29 2003-08-29 Turbine blade

Country Status (1)

Country Link
JP (1) JP2005076533A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713252B1 (en) 2005-07-08 2007-05-02 부산대학교 산학협력단 Rotor blade for axial-flow turbine
CN101566076B (en) * 2009-04-29 2011-06-15 哈尔滨工业大学 Blade capable of weakening shock strength of transonic speed turbine
WO2012147938A1 (en) * 2011-04-28 2012-11-01 株式会社Ihi Turbine blade
WO2014069216A1 (en) * 2012-10-31 2014-05-08 株式会社Ihi Turbine blade
KR20150027270A (en) 2010-12-27 2015-03-11 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Blade body and rotary machine
RU218631U1 (en) * 2023-02-17 2023-06-02 Публичное Акционерное Общество "Одк-Сатурн" Device for increasing the thrust of the output device of an air-breathing engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713252B1 (en) 2005-07-08 2007-05-02 부산대학교 산학협력단 Rotor blade for axial-flow turbine
CN101566076B (en) * 2009-04-29 2011-06-15 哈尔滨工业大学 Blade capable of weakening shock strength of transonic speed turbine
KR20150027270A (en) 2010-12-27 2015-03-11 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Blade body and rotary machine
WO2012147938A1 (en) * 2011-04-28 2012-11-01 株式会社Ihi Turbine blade
JP5549825B2 (en) * 2011-04-28 2014-07-16 株式会社Ihi Turbine blade
US9371734B2 (en) 2011-04-28 2016-06-21 Ihi Corporation Turbine blade
WO2014069216A1 (en) * 2012-10-31 2014-05-08 株式会社Ihi Turbine blade
JP2014088858A (en) * 2012-10-31 2014-05-15 Ihi Corp Turbine blade
US10024167B2 (en) 2012-10-31 2018-07-17 Ihi Corporation Turbine blade
RU218631U1 (en) * 2023-02-17 2023-06-02 Публичное Акционерное Общество "Одк-Сатурн" Device for increasing the thrust of the output device of an air-breathing engine

Similar Documents

Publication Publication Date Title
US9932960B2 (en) Rotor blade of a wind turbine
US6375420B1 (en) High efficiency blade configuration for steam turbine
US8911215B2 (en) Compressor blade for an axial compressor
JP5530453B2 (en) How to optimize wing shape and corresponding wing
US6638021B2 (en) Turbine blade airfoil, turbine blade and turbine blade cascade for axial-flow turbine
JP2003074306A (en) Axial flow turbine
WO2007108232A1 (en) Turbine cascade end wall
JP2007224898A (en) Blade, vane and turnaround method of fluid
JPH10169405A (en) Turbine nozzle
US6776582B2 (en) Turbine blade and turbine
US6666654B2 (en) Turbine blade airfoil and turbine blade for axial-flow turbine
JPS62275896A (en) Aerofoil-shaped article
EP2703600B1 (en) Turbine blade
JP2005076533A (en) Turbine blade
KR100286633B1 (en) Stator of automotive torque converter
JP2003020904A (en) Axial flow turbine blade and axial flow turbine stage
JPH05222901A (en) Structure of stationary blade of turbine
JP2002349201A (en) Turbin rotor blade
JP2000045703A (en) Axial flow turbine cascade
JPH0478803B2 (en)
JP2010203259A (en) Blade structure and axial flow turbo-machine
JP2021063456A (en) Blade of turbomachine, method for designing blade, and method for manufacturing impeller
JP2000204903A (en) Axial turbine
JPH10196303A (en) High performance blade
JPH08135597A (en) Reduction of secondary flow in blade cascade/and blade profile therefor