JP2005076339A - Structural analysis method of steel concrete composite structure and composite structure designed by using this method - Google Patents

Structural analysis method of steel concrete composite structure and composite structure designed by using this method Download PDF

Info

Publication number
JP2005076339A
JP2005076339A JP2003309694A JP2003309694A JP2005076339A JP 2005076339 A JP2005076339 A JP 2005076339A JP 2003309694 A JP2003309694 A JP 2003309694A JP 2003309694 A JP2003309694 A JP 2003309694A JP 2005076339 A JP2005076339 A JP 2005076339A
Authority
JP
Japan
Prior art keywords
steel
reinforced concrete
beam element
composite structure
resistance member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309694A
Other languages
Japanese (ja)
Inventor
Akira Ogawa
晃 小川
Koichi Mae
孝一 前
Fumiaki Hisatomi
文彰 久富
Yae Tanaka
八重 田中
Katsuyuki Niimi
勝之 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003309694A priority Critical patent/JP2005076339A/en
Publication of JP2005076339A publication Critical patent/JP2005076339A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform rational and highly accurate design on a steel concrete composite structure of forming a steel structure and a reinforced concrete structure into an integral structure, by using a nonslip means such as a stud bolt on a contact plane. <P>SOLUTION: In this structural analysis method of the steel concrete composite structure formed by joining a steel structure part and a reinforced concrete structure part via the dislocation preventive means such as the stud bolt, a rigid beam element 13 is arranged up to a contact plane position from a joining nodal point 19 of respective beam elements, in a nonslip position between a beam element 11A set along the axis of the steel structure part and a beam element 12 set along the axis of the reinforced concrete structure part. An analytical model is set by connecting both nodal points by adding a shearing spring element 20 between the nodal points by setting a tip nodal point 14 of the respective beam elements 13 as a double nodal point in nodal point coordinates of the nonslip means position. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は鋼コンクリート合成構造の構造解析方法に係り、特に接合面にスタッドボルト等のずれ止め手段を用いて鋼構造と鉄筋コンクリート構造とを一体構造とした鋼コンクリート合成構造について合理的で精度の高い設計を行える解析モデルを設定して行うようにした鋼コンクリート合成構造の構造解析方法及び同方法を用いて設計された合成構造に関する。   The present invention relates to a structural analysis method for a steel-concrete composite structure, and in particular, a steel concrete composite structure in which a steel structure and a reinforced concrete structure are integrated by using a locking means such as a stud bolt on a joint surface. The present invention relates to a structural analysis method for a steel-concrete composite structure set by performing an analysis model that can be designed, and a composite structure designed using the method.

基礎掘削の仮設山留め壁として造成された柱列式連続地中壁の芯材を、その内部空間に構築される本体構造の一部として利用する地下外壁構造は、建設コスト低減、敷地の有効活用等の面で有利となる場合があり、鉄筋コンクリート地下構造の際に採用される事例が増加している。図5、図6は、従来のこの種の地下外壁構造50の一例を示した部分断面図である。柱列式連続地中壁51は、両図に示したように、先端51aが支持層52まで到達するように壁体延長方向に所定のピッチで造成され、芯材としての細幅系H形鋼(鋼材)53が各壁体内に埋設されている(図6参照)。このH形鋼53の本体構造側のフランジ外側面53aにはスタッドボルト(以下、単にスタッドと記す。)54が芯材(H形鋼)の深さ方向に所定のピッチで溶植され、このスタッド54が本体構造となる鉄筋コンクリート躯体55内に埋設され、鋼材53と鉄筋コンクリート躯体55との一体化が図られるようになっている。   The underground outer wall structure that uses the core material of the continuous underground wall of the columnar column constructed as a temporary retaining wall for foundation excavation as part of the main body structure built in the interior space reduces construction costs and makes effective use of the site There are cases where it is advantageous in view of the above, and the number of cases adopted for reinforced concrete underground structures is increasing. 5 and 6 are partial cross-sectional views showing an example of a conventional underground outer wall structure 50 of this type. As shown in both figures, the columnar continuous underground wall 51 is formed at a predetermined pitch in the wall body extending direction so that the tip 51a reaches the support layer 52, and has a narrow width H shape as a core material. Steel (steel material) 53 is embedded in each wall (see FIG. 6). On the flange outer surface 53a of the H-shaped steel 53 on the main body structure side, stud bolts (hereinafter simply referred to as studs) 54 are implanted at a predetermined pitch in the depth direction of the core material (H-shaped steel). The stud 54 is embedded in a reinforced concrete housing 55 that is a main body structure, and the steel material 53 and the reinforced concrete housing 55 are integrated.

ところで、上述した地下外壁構造のような連続地中壁の芯材を本体利用し、鋼材と鉄筋コンクリートとを一体化させた合成構造の設計では、異種の構成部材の剛性、寸法を考慮した合成断面を有する平面骨組解析モデルを設定し、単位幅当たり(たとえばH形鋼の打設間隔に相当)の換算部材特性を設定して構造解析を行っている。そして得られた断面力を、合成構造を構成する部材ごとの剛性比等により決定された係数により分配し、対象となる単位幅当たりの壁、梁の断面設計を行っている。このとき鋼材と鉄筋コンクリートとはその接合面に設けられたスタッド等のずれ止め部材(せん断抵抗部材、シアコネクタ)により外力に対して一体的な挙動を示すが、このスタッドの力学的評価が困難であるため、たとえばスタッドが深さ方向にピッチを変えて配置された場合にも深さ方向に一様配置のモデル化が行われていた。   By the way, in the design of the composite structure that uses the core material of the continuous underground wall like the above-mentioned underground outer wall structure and integrates steel and reinforced concrete, the composite cross-section considering the rigidity and dimensions of different components The plane frame analysis model having the above is set, and the conversion member characteristics per unit width (e.g., corresponding to the H-section steel placement interval) are set to perform the structural analysis. The obtained cross-sectional force is distributed according to a coefficient determined by the rigidity ratio of each member constituting the composite structure, and the cross-sectional design of walls and beams per unit width is performed. At this time, the steel material and the reinforced concrete show an integral behavior with respect to the external force due to an anti-slip member such as a stud (shear resistance member, shear connector) provided on the joint surface, but mechanical evaluation of this stud is difficult. For this reason, for example, even when studs are arranged at different pitches in the depth direction, modeling of uniform arrangement in the depth direction has been performed.

また、上述した地下外壁構造のようなH形鋼を芯材とする土留壁を本体利用する鋼コンクリート合成構造の設計手法を示した設計指針として非特許文献1がある。   Further, there is Non-Patent Document 1 as a design guideline showing a design method of a steel-concrete composite structure using a retaining wall whose main body is an H-shaped steel such as the above-described underground outer wall structure.

社団法人日本トンネル技術協会編,「H形鋼を芯材とする土留壁本体利用の手引き」,平成14年7月発刊Edited by Japan Tunneling Technology Association, “Guide for using retaining wall with H-shaped steel core”, published in July 2002

たとえば、上述の解析手法を用いて設計したり、設計指針(たとえば非特許文献1)に準拠して行う従来の設計には、以下の問題点があることが知られている。
(1)スタッド等のずれ止め部材の総本数と接合面積をもとに、合成構造全体として剛性等から、発生断面力を鋼材と鉄筋コンクリートの各部材のために断面力の配分を評価するため、各部の断面力の発生状況に応じた合理的なずれ止め部材の設計を行うことができない。このため安全側設計の部材配置を前提とするため、不経済な設計にならざるを得ない。
(2)合成構造における異種部材間の接合部、隅角部等の特殊形状部分に対する構造解析手法が確立されていない。
(3)上記設計指針では部材弾性域での設計を前提としている。これに対して地震時(たとえばレベル2地震を想定)を考慮した構造物の安全性を確認するためには、構造物の弾塑性挙動の把握を行う非線形解析を行う必要がある。この場合、鋼構造及び鉄筋コンクリート構造では、既往例をもとにして各設計基準において、非線形特性を適用した設計手法が確立されているが、スタッドを用いた鋼コンクリート合成構造の構造解析においては、スタッドの適正な評価がなされていなかった。
For example, it is known that the conventional design that is designed by using the above-described analysis method or that conforms to a design guideline (for example, Non-Patent Document 1) has the following problems.
(1) In order to evaluate the distribution of the cross-sectional force for each member of steel and reinforced concrete from the rigidity of the composite structure as a whole, based on the total number of studs and other non-slip members and the joint area, A rational shift preventing member cannot be designed according to the state of occurrence of the cross-sectional force of each part. For this reason, since it is premised on the member arrangement of the safety side design, the design must be uneconomical.
(2) No structural analysis method has been established for specially shaped parts such as joints and corners between different members in a composite structure.
(3) The above design guideline presupposes design in the elastic region. On the other hand, in order to confirm the safety of a structure in consideration of an earthquake (for example, assuming a level 2 earthquake), it is necessary to perform nonlinear analysis for grasping the elastoplastic behavior of the structure. In this case, in steel structures and reinforced concrete structures, design methods applying nonlinear characteristics have been established in each design standard based on past cases, but in structural analysis of steel-concrete composite structures using studs, The stud has not been properly evaluated.

また、構造物の形状が複雑な鋼コンクリート合成構造物の場合、荷重作用時の発生断面力を的確に得るため、作用荷重を適切に設定するとともに、構造解析手法、解析モデルの選択も重要である。以下、解析モデルの設定例を説明し、各モデル化における問題点を示す。図7は、RC造の2階建ての鉄筋コンクリート躯体65の側面にシールドトンネル70,71が合流する区間の一断面を示したトンネル拡幅部60の横断面図である。このトンネル拡幅部60は、同図に示したように、上下に所定の離隔で掘削された2本のシールドトンネル70,71の鋼殻(鋼製セグメント)72の一部が取り除かれ、鋼殻72を構成する2重フランジの外側面72aに、機械継手を用いて接合された接合鉄筋や補強プレート等のせん断抵抗部材、引張抵抗部材(図示せず)が鉄筋コンクリート躯体65の各段スラブ(頂版、底版、中間床)の一部に埋設され一体的に接合されている。   In addition, in the case of a steel-concrete composite structure with a complex shape, it is important to set the working load appropriately and to select the structural analysis method and analysis model in order to accurately obtain the generated sectional force at the time of loading. is there. Hereinafter, an example of setting an analysis model will be described, and problems in each modeling will be shown. FIG. 7 is a cross-sectional view of the tunnel widening portion 60 showing a cross section of a section where the shield tunnels 70 and 71 merge with the side surface of the RC two-story reinforced concrete frame 65. As shown in the figure, the tunnel widening portion 60 is formed by removing a part of the steel shells (steel segments) 72 of the two shield tunnels 70 and 71 excavated at a predetermined distance in the vertical direction. A shear resistance member such as a joint rebar or a reinforcing plate and a tensile resistance member (not shown) joined to the outer surface 72a of the double flange constituting the 72 using a mechanical joint are provided on each slab (top) of the reinforced concrete frame 65. Plate, bottom plate, and intermediate floor) and are joined together.

このトンネル拡幅部の設計のための解析モデルとしては、対象構造物の軸線に沿って設定された平面骨組梁要素が一般的である(図8(a)参照)。この解析モデルは、モデル化、解析計算が容易であるため、概略設計に用いることができるが、図7に示したような鋼殻72とコンクリート躯体65との接合部61の挙動を正確に把握することができないため、接合部61の詳細な断面設計ができない。   As an analysis model for designing the tunnel widening portion, a plane frame beam element set along the axis of the target structure is generally used (see FIG. 8A). Since this analysis model is easy to model and calculate, it can be used for schematic design. However, the behavior of the joint 61 between the steel shell 72 and the concrete frame 65 as shown in FIG. Therefore, it is impossible to design the cross section of the joint 61 in detail.

一方、実際の構造物の性状を反映し、高精度の解析結果を得られる解析としては、図8(b)に示したような各部材の厚さ、形状を考慮したソリッド要素を用いた有限要素法解析がある。この解析モデルによれば、対象構造物全体の応力状態を適切に把握することができるが、接合部に用いられる接合鉄筋等も要素化するため、詳細で膨大な要素データを作成する必要があり、解析計算に長時間を要する場合もある。解析モデルの簡素化のために、鋼殻部分を梁要素とし、コンクリート躯体部分をソリッド要素とした解析モデルも設定できるが、接合部における鋼殻の2重フランジの桁高を考慮できないため、配置された各種のせん断抵抗部材を考慮した正確なモデル化を行えないという問題がある。そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、鋼構造と鉄筋コンクリート構造との接合部におけるせん断抵抗部材の挙動を的確に再現可能なモデル化を行った鋼コンクリート合成構造の構造解析方法及びこの構造解析方法を用いて設計された合成構造を提供することにある。   On the other hand, as an analysis that reflects the properties of an actual structure and obtains a highly accurate analysis result, a finite element using a solid element considering the thickness and shape of each member as shown in FIG. There is an element method analysis. According to this analysis model, it is possible to properly grasp the stress state of the entire target structure, but it is necessary to create detailed and enormous element data because the joint reinforcement used in the joint is also made into an element. In some cases, analysis calculation takes a long time. To simplify the analysis model, it is possible to set an analysis model in which the steel shell part is a beam element and the concrete frame part is a solid element. However, because the double flange flange height of the steel shell cannot be taken into account at the joint, Therefore, there is a problem that accurate modeling considering various shear resistance members cannot be performed. Therefore, the object of the present invention is to solve the problems of the prior art described above, and a steel-concrete composite structure that has been modeled so that the behavior of the shear resistance member at the joint between the steel structure and the reinforced concrete structure can be accurately reproduced. And a synthetic structure designed by using this structural analysis method.

上記目的を達成するために、本発明は鋼構造部分と鉄筋コンクリート構造部分とを、せん断抵抗部材を介して接合してなる鋼コンクリート合成構造の構造解析方法において、前記鋼構造部分の軸線に沿って設定された梁要素と前記鉄筋コンクリート構造部分の軸線に沿って設定された梁要素との間の前記せん断抵抗部材の設置位置に、各梁要素の接合節点から接合面位置まで剛梁要素を設け、各剛梁要素の先端節点を、前記せん断抵抗部材の設置位置の節点座標で別個の節点として該節点間にせん断バネ要素を付加して両節点を連結させた解析モデルを設定し、所定荷重作用時における弾性域から弾塑性域までの解析計算を行うことを特徴とする。   In order to achieve the above object, the present invention relates to a structural analysis method for a steel-concrete composite structure in which a steel structure portion and a reinforced concrete structure portion are joined via a shear resistance member, along the axis of the steel structure portion. In the installation position of the shear resistance member between the set beam element and the beam element set along the axis of the reinforced concrete structure portion, a rigid beam element is provided from the joint node of each beam element to the joint surface position, Set the analysis model that connects the two joints by adding a shear spring element between the joints as the joints of the joints of the tip of each rigid beam element as separate joints at the joint coordinates of the installation position of the shear resistance member. Analytical calculation from the elastic region to the elastoplastic region is performed.

前記鋼構造部分は、柱列連続地中壁の芯材であり、前記鉄筋コンクリート構造部分は、前記柱列連続地中壁の山留め空間内に構築されるコンクリート躯体であり、前記せん断抵抗部材として、前記芯材の前記山留め空間側にスタッドボルトを溶植することが好ましい。   The steel structure part is a core material of a columnar continuous underground wall, the reinforced concrete structural part is a concrete frame constructed in a retaining space of the columnar continuous underground wall, and as the shear resistance member, It is preferable that a stud bolt is melt-planted on the mountain retaining space side of the core material.

前記鋼構造部分は、シールドトンネルの鋼殻であり、前記鉄筋コンクリート構造部分は、前記シールドトンネルの掘進に従って前記鋼殻の一部が、その躯体の一部に合流する位置に構築された鉄筋コンクリート躯体であり、前記せん断抵抗部材として、前記鋼殻のフランジの前記鉄筋コンクリート躯体側に接合鉄筋を列設することが好ましい。   The steel structure part is a steel shell of a shield tunnel, and the reinforced concrete structure part is a reinforced concrete frame constructed at a position where a part of the steel shell merges with a part of the frame according to the excavation of the shield tunnel. In addition, as the shear resistance member, it is preferable that a joining reinforcing bar is arranged on the reinforced concrete frame side of the flange of the steel shell.

前記剛梁要素は、前記接合節点を含めて曲げ剛性が著しく大きい剛部材とされるとともに、各梁要素に垂直に配置され、軸方向伸縮が拘束された部材とすることが好ましい。   It is preferable that the rigid beam element is a rigid member having a remarkably large bending rigidity including the joint node, and is a member that is arranged perpendicular to each beam element and in which axial expansion and contraction is restricted.

前記せん断バネ要素は、せん断実験により弾性域、弾塑性域での部材特性を求め、解析値とすることが好ましい。   It is preferable that the shearing spring element has an analytical value by obtaining member characteristics in an elastic region and an elastic-plastic region by a shear experiment.

また、鋼構造部分と鉄筋コンクリート構造部分とを、せん断抵抗部材を介して接合してなる鋼コンクリート合成構造であって、前記鋼構造部分の軸線に沿って設定された梁要素と前記鉄筋コンクリート構造部分の軸線に沿って設定された梁要素との間の前記せん断抵抗部材の設置位置に、各梁要素の接合節点から接合面位置まで剛梁要素を設け、各剛梁要素の先端節点を、前記せん断抵抗部材の設置位置の節点座標で別個の節点として該節点間にせん断バネ要素を付加して両節点を連結させた解析モデルを設定し、所定荷重作用時における弾性域から弾塑性域までの解析計算により設計された合成構造を特徴とする。   A steel-concrete composite structure formed by joining a steel structure part and a reinforced concrete structure part via a shear resistance member, wherein the beam element set along the axis of the steel structure part and the reinforced concrete structure part A rigid beam element is provided from the joint node of each beam element to the joint surface position at the installation position of the shear resistance member between the beam element set along the axis and the tip node of each rigid beam element is sheared. Set up an analysis model that connects both nodes by adding a shear spring element between the nodes as separate nodes in the node coordinates of the installation position of the resistance member, and analyze from the elastic region to the elasto-plastic region when a predetermined load is applied It features a composite structure designed by calculation.

前記鋼構造部分は、柱列連続地中壁の芯材であり、前記鉄筋コンクリート構造部分は、前記柱列連続地中壁の山留め空間内に構築されるコンクリート躯体であり、前記せん断抵抗部材として、前記芯材の前記山留め空間側にスタッドボルトが溶植されてなるような鋼コンクリート合成構造であることが好ましい。   The steel structure part is a core material of a columnar continuous underground wall, the reinforced concrete structural part is a concrete frame constructed in a retaining space of the columnar continuous underground wall, and as the shear resistance member, It is preferable that the core material has a steel-concrete composite structure in which stud bolts are fused on the mountain retaining space side.

また、前記鋼構造部分は、シールドトンネルの鋼殻であり、前記鉄筋コンクリート構造部分は、前記シールドトンネルの掘進に従って前記鋼殻の一部が、その躯体の一部に合流する位置に構築された鉄筋コンクリート躯体であり、前記せん断抵抗部材として、前記鋼殻のフランジの前記鉄筋コンクリート躯体側に接合鉄筋が列設されてなるような鋼コンクリート合成構造であることが好ましい。   Further, the steel structure part is a steel shell of a shield tunnel, and the reinforced concrete structure part is a reinforced concrete constructed at a position where a part of the steel shell joins a part of the housing in accordance with the excavation of the shield tunnel. It is a frame, and it is preferable that the shear resistance member has a steel-concrete composite structure in which joining reinforcing bars are arranged on the reinforced concrete frame side of the flange of the steel shell.

上述の発明によれば、比較的簡単な解析モデルの設定により、解析対象である鋼コンクリート合成構造物の接合部に用いられるせん断抵抗部材を適正に評価することができ、実際の構造物の性状を反映した高精度の解析結果を得られ、また設計対象である鋼コンクリート合成構造の適正な設計を行うことができるという効果を奏する。   According to the above-described invention, by setting a comparatively simple analysis model, it is possible to appropriately evaluate the shear resistance member used in the joint portion of the steel-concrete composite structure to be analyzed, and the actual properties of the structure. It is possible to obtain a highly accurate analysis result reflecting the above, and to perform an appropriate design of the steel-concrete composite structure to be designed.

以下、図面を参照して、実施例に基づき本発明を説明する。   Hereinafter, the present invention will be described based on examples with reference to the drawings.

[解析モデルの構成]
実施例1として、図5を参照して上述した地下外壁構造50のモデル化を行い、その解析モデルの特徴について説明する。なお、解析モデル10は、地震時の水平方向荷重を作用させるため全断面モデルとするが、同構造物は対称形状であるため、図1では右半断面のみを示している。同図に示したように、解析モデル10は、基本的に、鉄筋コンクリート構造からなるコンクリート躯体の軸線に沿って設定された梁要素11A,11Bと、芯材としてのH形鋼の軸線に沿って設定された梁要素12とから構成されている。コンクリート躯体の底版に相当する梁要素11Bと外側壁に相当する形鋼の梁要素12は、周辺地盤の地盤特性をもとに設定されたバネ定数(Khi,Kv)からなる地盤バネ要素で支持されている。
[Structure of analysis model]
As Example 1, the underground outer wall structure 50 described above is modeled with reference to FIG. 5 and the characteristics of the analysis model will be described. The analysis model 10 is a full-section model in order to apply a horizontal load at the time of an earthquake. However, since the structure is symmetrical, only the right half section is shown in FIG. As shown in the figure, the analysis model 10 basically includes beam elements 11A and 11B set along the axis of a concrete frame made of a reinforced concrete structure, and the axis of an H-shaped steel as a core material. The beam element 12 is set. The beam element 11B corresponding to the bottom plate of the concrete frame and the beam element 12 of the shaped steel corresponding to the outer wall are ground spring elements having spring constants (K hi , K v ) set based on the ground characteristics of the surrounding ground. It is supported by.

また、H形鋼のフランジに固着されたずれ止めとしてのせん断抵抗部材の設置位置(深さ)には、せん断バネ要素20(図1に○印で表示)が付加されている。このせん断バネ要素20は、図2に示したように、鉄筋コンクリートの梁要素11Aと、H形鋼の梁要素12からその接合面位置(鉄筋コンクリートとH形鋼とが接する面位置。ここではスタッド等が植設されるH形鋼の表面)まで延設された各剛梁要素13の先端節点14,14間に設けられている。すなわち、鉄筋コンクリート側とH形鋼側とにそれぞれの梁要素の接合節点19で接合した剛梁要素13の先端部(先端節点14)を、それぞれそれぞれ同一座標からなる2重節点とし、この2重節点位置に植設されたスタッドのせん断剛性を部材特性とするバネ要素20を配置したものである。   Further, a shear spring element 20 (indicated by a circle in FIG. 1) is added to the installation position (depth) of the shear resistance member as a detent that is fixed to the H-shaped steel flange. As shown in FIG. 2, the shear spring element 20 has a reinforced concrete beam element 11 </ b> A and a joint surface position (a surface position where the reinforced concrete and the H section steel are in contact with each other). Is provided between the distal end nodes 14 and 14 of each rigid beam element 13 extended to the surface of the H-shaped steel to be implanted. In other words, the distal end portion (the distal end node 14) of the rigid beam element 13 joined to the reinforced concrete side and the H-shaped steel side at the joining node 19 of each beam element is set as a double node having the same coordinates. A spring element 20 having a shear rigidity of a stud planted at a node position as a member characteristic is arranged.

剛梁要素13は、荷重作用時に部材方向伸縮が拘束されるとともに、梁要素11A,12との接合節点19を含めて曲げ剛性が著しく大きい剛部材として設定されている。先端節点14,14は梁要素11Aの対象とする鉄筋コンクリート側のスタッドが植設された接合面位置と、梁要素12の対象とするH形鋼側のスタッドが植設された接合面位置の挙動を正確に反映するようになっている。   The rigid beam element 13 is set as a rigid member in which expansion and contraction in the member direction is restricted when a load is applied, and the bending rigidity including the joint node 19 with the beam elements 11A and 12 is extremely large. The tip nodes 14 and 14 are behaviors of the joint surface position where the reinforced concrete side stud targeted for the beam element 11A is implanted and the joint surface position where the stud H side steel targeted for the beam element 12 is implanted. Is accurately reflected.

本実施例では、せん断バネ要素の解析値としては、鋼材のフランジに所定ピッチで溶植したスタッド(φ16,L=120mm)の想定荷重方向に関するせん断試験を行い、せん断抵抗部材としての弾塑性性状を把握した部材特性値(トリリニア型)を使用した。また、鉄筋コンクリート、H形鋼の非線形特性(弾塑性域の材料特性)は、ともに自重による軸圧縮状態を考慮し、鉄筋コンクリート部分は道路橋示方書(コンクリート橋編)に準拠し、トリリニア型のM−φ関係で与えた。またH形鋼部分はフランジ降伏点を折れ点とするバイリニア型のM−φ関係で与えた。   In the present embodiment, the analysis value of the shear spring element is obtained by conducting a shear test on the assumed load direction of the stud (φ16, L = 120 mm) which has been welded to the flange of the steel material at a predetermined pitch, and the elastic-plastic property as the shear resistance member. The member characteristic value (trilinear type) that grasped the above was used. The nonlinear characteristics of reinforced concrete and H-shaped steel (material characteristics in the elasto-plastic region) both take into account the axial compression state due to their own weight, and the reinforced concrete part conforms to the road bridge specifications (concrete bridge edition). Given in relation to -φ. The H-shaped steel part was given by a bilinear M-φ relationship with the flange yield point as the break point.

[解析結果の評価]
設定解析値の評価に関しては、実際の構造物を模した合成梁試験体による1点載荷曲げ試験と解析結果との荷重−変位量(P−δ)関係の比較により行った。弾性域では、合成梁の解析値による弾性剛性は実験値(長期許容応力における割線剛性)よりわずかに大きくなり、非特許文献1に記載された理論式とほぼ一致する結果を得た。また、弾塑性解析結果(P−δ関係)によれば、降伏点近くまで非線形領域に対して実験時の挙動を良好に再現できることが確認できた。
[Evaluation of analysis results]
The set analysis value was evaluated by comparing the load-displacement (P-δ) relationship between the one-point loading bending test using a composite beam test specimen simulating an actual structure and the analysis result. In the elastic region, the elastic stiffness according to the analysis value of the composite beam is slightly larger than the experimental value (secant stiffness in the long-term allowable stress), and the result almost coincides with the theoretical formula described in Non-Patent Document 1. Moreover, according to the elasto-plastic analysis result (P-δ relation), it was confirmed that the behavior at the time of the experiment could be well reproduced for the non-linear region up to the vicinity of the yield point.

実施例2として、上述したトンネル拡幅部60における鋼コンクリート合成構造(図7)のモデル化を行い、その解析モデルの特徴について説明する。この解析モデルでは、同図に示したように、鉄筋コンクリート躯体65の側壁は地下外壁構造となっている。そこで、実施例1に示した場合と同様に、鉄筋コンクリート躯体65とH形鋼62とは梁要素を連続させた平行な2本の直線状の梁要素15,16と、鋼殻72と各スラブ(頂版、底版、中間床)との接合部を模した2本の曲線状の梁要素17,18とを設定し、さらに各2本の梁要素(15,16),(17,18)間の、接合部材、せん断抵抗部材としての接合鉄筋、補強プレート(図示せず)の設置位置に対応させた位置で剛梁要素13をそれぞれの梁要素に接合し、剛梁要素13の先端節点14,14を同一座標の2重節点として、これらの間にせん断バネ要素20を配置した(図3参照)。同図ではせん断バネ要素20の配置位置を○印で示している。各剛梁要素13は、図4に示したように、2本の曲がり梁間に配置され、荷重作用時に部材方向伸縮が拘束されるとともに、梁要素との接合節点19を含めて曲げ剛性が著しく大きい剛部材として設定されている。先端節点14,14は、それぞれの梁要素1対象とする鉄筋コンクリートとH形鋼あるいは鉄筋コンクリートと鋼殻との接合面位置の挙動を正確に反映するようになっている。   As Example 2, the steel-concrete composite structure (FIG. 7) in the tunnel widening portion 60 described above is modeled, and the characteristics of the analysis model will be described. In this analysis model, as shown in the figure, the side wall of the reinforced concrete housing 65 has an underground outer wall structure. Therefore, similarly to the case shown in the first embodiment, the reinforced concrete housing 65 and the H-shaped steel 62 are composed of two parallel linear beam elements 15 and 16 each having a continuous beam element, a steel shell 72 and each slab. Two curved beam elements 17 and 18 simulating a joint with (top plate, bottom plate, intermediate floor) are set, and each two beam elements (15, 16), (17, 18) The rigid beam elements 13 are joined to the respective beam elements at positions corresponding to the installation positions of the joint members, the joint reinforcing bars as the shear resistance members, and the reinforcing plates (not shown), and the distal end nodes of the rigid beam elements 13 14 and 14 are the double nodes having the same coordinates, and the shear spring element 20 is disposed between them (see FIG. 3). In the drawing, the arrangement position of the shear spring element 20 is indicated by a circle. As shown in FIG. 4, each rigid beam element 13 is arranged between two bent beams, restrains expansion and contraction in the member direction when a load is applied, and remarkably has bending rigidity including a joint node 19 with the beam element. It is set as a large rigid member. The tip nodes 14 and 14 accurately reflect the behavior of the joint surface position between the reinforced concrete and the H-shaped steel or the reinforced concrete and the steel shell as the target of each beam element 1.

本実施例では、鋼殻65の2重フランジ内に所定ピッチで機械継手を介して配筋された接合鉄筋(D51,@250mm)のせん断抵抗部材としての弾塑性性状を把握し、解析入力値(トリリニア型)として使用した。また、前述の実施例1と同様に、鉄筋コンクリート、鋼殻の非線形特性(弾塑性域の材料特性)はともに自重による軸圧縮状態を考慮し、鉄筋コンクリート部分は道路橋示方書(コンクリート橋編)に準拠し、トリリニア型のM−φ関係で与えた。またH形鋼部分はフランジ降伏点を折れ点とするバイリニア型のM−φ関係で与えた。   In this embodiment, the elasto-plastic properties of the joint rebar (D51, @ 250 mm), which are arranged through a mechanical joint at a predetermined pitch in the double flange of the steel shell 65, are grasped and the analysis input value is obtained. Used as (trilinear type). In addition, as in Example 1 above, the nonlinear properties of reinforced concrete and steel shells (material properties in the elasto-plastic zone) both take into account the axial compression state due to their own weight, and the reinforced concrete part is in the road bridge specifications (concrete bridge edition). Based on the trilinear M-φ relationship. The H-shaped steel part was given by a bilinear M-φ relationship with the flange yield point as the break point.

[解析結果の評価]
接合部におけるせん断バネ要素の設定解析値の評価は、図8(b)に示したソリッド要素を用いた解析モデルによる解析結果と、図3に示した梁要素、せん断バネ要素、剛梁要素の合成要素モデルとの比較により行った。接合部の両端の鉄筋コンクリート部(a−a)と鋼殻と鉄筋コンクリートの断面変化部(b−b)における断面力を比較した結果、(a−a)部では、接合部に連続した鋼殻が厚肉シェルとして挙動する結果、接合部の鋼殻側の端部モーメントはソリッド要素で置き換えた場合より約20%低減されることが確認された。したがって、上述の合成要素を用いた解析モデルの場合、鋼殻側の接合部においては安全側の設計となり、適正な低減係数等を考慮した設計を行うことができる。(b−b)部では、両解析で同等の結果を得た。
[Evaluation of analysis results]
The evaluation of the set analysis value of the shear spring element at the joint is performed by analyzing the analysis result of the analysis model using the solid element shown in FIG. 8B and the beam element, shear spring element, and rigid beam element shown in FIG. The comparison was made with a synthetic element model. As a result of comparing the cross-sectional force in the cross-section change part (bb) of the reinforced concrete part (aa) and the steel shell and the reinforced concrete at both ends of the joint part, in the (aa) part, the steel shell continuous to the joint part is As a result of acting as a thick-walled shell, it was confirmed that the end moment on the steel shell side of the joint was reduced by about 20% compared to the case where it was replaced with a solid element. Therefore, in the case of the analysis model using the above-described composite element, the steel shell side joint is designed on the safe side, and can be designed in consideration of an appropriate reduction coefficient. In the (bb) part, equivalent results were obtained in both analyses.

なお、解析モデルの設定において、図8(b)に示したような鋼殻と鉄筋コンクリートとをソリッド要素によって全体の解析モデルを構成し、せん断抵抗部材の設置位置を2重節点とし、該当する2重節点に上述したせん断バネ要素を付加した解析モデルを設定することも可能である。   In setting the analysis model, a steel shell and reinforced concrete as shown in FIG. 8B constitute a whole analysis model by solid elements, the installation position of the shear resistance member is a double node, and the corresponding 2 It is also possible to set an analysis model in which the above-described shear spring element is added to the double node.

また、鋼コンクリート合成構造における鋼材とコンクリートとの接合面に設けられるせん断抵抗部材(ずれ止め部材)としては、上述したスタッドの他、鉄筋加工品、形鋼プレート加工品、各種形状ジベル等を用いることができる。したがって、解析時に用いる個々の部材の部材特性は、実際の接合部を再現した各種せん断試験、既往データ等をもとに把握しておくことが重要である。   Moreover, as a shear resistance member (slipping prevention member) provided on the joint surface between the steel material and the concrete in the steel-concrete composite structure, in addition to the above-described stud, a rebar-processed product, a shaped steel plate-processed product, various shape divels, and the like are used. be able to. Therefore, it is important to grasp the member characteristics of each member used at the time of analysis based on various shear tests, past data, and the like that reproduce an actual joint.

本発明による設計方法に用いる解析モデルの一実施例を示した解析モデル全体図。The whole analysis model figure showing one example of the analysis model used for the design method by the present invention. 芯材形鋼と鉄筋コンクリート部の接合部における解析モデル拡大図。Fig. 3 is an enlarged view of an analysis model at a joint between a core shape steel and a reinforced concrete portion. 本発明による設計方法に用いる解析モデルの他の実施例を示した解析モデル全体図。The whole analysis model figure showing other examples of the analysis model used for the design method by the present invention. 鋼殻と鉄筋コンクリート部の接合部における解析モデル拡大図。An enlarged view of the analysis model at the joint between the steel shell and the reinforced concrete part. 地下外壁構造の一例を示した構造断面図。Structural sectional drawing which showed an example of the underground outer wall structure. 図5に示した地下外壁構造のVI-VI断面線に沿って示した部分断面図。The fragmentary sectional view shown along the VI-VI sectional line of the underground outer wall structure shown in FIG. シールドトンネルが鉄筋コンクリート躯体に合流して構成されたトンネル拡幅部の一例を示した構造断面図。The structure sectional view showing an example of the tunnel widening part constituted by the shield tunnel joining the reinforced concrete frame. 図7に示したトンネル拡幅部の解析モデル全体図((a)梁要素、(b)ソリッド要素による)。FIG. 8 is an overall view of an analysis model of the tunnel widening portion shown in FIG. 7 (by (a) beam element, (b) solid element).

符号の説明Explanation of symbols

10 解析モデル
11A,11B,12,15,16,17,18 梁要素
13 剛梁要素
14 先端節点(2重節点)
19 接合節点
20 せん断バネ要素
50 地下外壁構造
60 トンネル拡幅部
10 Analysis models 11A, 11B, 12, 15, 16, 17, 18 Beam element 13 Rigid beam element 14 Tip node (double node)
19 joint node 20 shear spring element 50 underground outer wall structure 60 tunnel widening part

Claims (8)

鋼構造部分と鉄筋コンクリート構造部分とを、せん断抵抗部材を介して接合してなる鋼コンクリート合成構造の構造解析方法において、
前記鋼構造部分の軸線に沿って設定された梁要素と前記鉄筋コンクリート構造部分の軸線に沿って設定された梁要素との間の前記せん断抵抗部材の設置位置に、各梁要素の接合節点から接合面位置まで剛梁要素を設け、各剛梁要素の先端節点を、前記せん断抵抗部材の設置位置の節点座標で別個の節点として該節点間にせん断バネ要素を付加して両節点を連結させた解析モデルを設定し、所定荷重作用時における弾性域から弾塑性域までの解析計算を行うことを特徴とする鋼コンクリート合成構造の構造解析方法。
In the structural analysis method of a steel-concrete composite structure in which a steel structure part and a reinforced concrete structure part are joined via a shear resistance member,
Joined from the joint node of each beam element to the installation position of the shear resistance member between the beam element set along the axis of the steel structure portion and the beam element set along the axis of the reinforced concrete structure portion A rigid beam element is provided up to the surface position, and the tip node of each rigid beam element is connected as a separate node in the node coordinates of the installation position of the shear resistance member, and a shear spring element is added between the nodes to connect both nodes. A structural analysis method for a steel-concrete composite structure characterized in that an analytical model is set and analytical calculation is performed from an elastic region to an elasto-plastic region when a predetermined load is applied.
前記鋼構造部分は、柱列連続地中壁の芯材であり、前記鉄筋コンクリート構造部分は、前記柱列連続地中壁の山留め空間内に構築されるコンクリート躯体であり、前記せん断抵抗部材として、前記芯材の前記山留め空間側にスタッドボルトが溶植されたことを特徴とする請求項1に記載の鋼コンクリート合成構造の構造解析方法。   The steel structure part is a core material of a columnar continuous underground wall, the reinforced concrete structural part is a concrete frame constructed in a retaining space of the columnar continuous underground wall, and as the shear resistance member, The structural analysis method for a steel-concrete composite structure according to claim 1, wherein stud bolts are fused on the side of the retaining space of the core material. 前記鋼構造部分は、シールドトンネルの鋼殻であり、前記鉄筋コンクリート構造部分は、前記シールドトンネルの掘進に従って前記鋼殻の一部が、その躯体の一部に合流する位置に構築された鉄筋コンクリート躯体であり、前記せん断抵抗部材として、前記鋼殻のフランジの前記鉄筋コンクリート躯体側に接合鉄筋が列設されたことを特徴とする請求項1に記載の鋼コンクリート合成構造の構造解析方法。   The steel structure part is a steel shell of a shield tunnel, and the reinforced concrete structure part is a reinforced concrete frame constructed at a position where a part of the steel shell merges with a part of the frame according to the excavation of the shield tunnel. 2. The structural analysis method for a steel-concrete composite structure according to claim 1, wherein as the shear resistance member, joint reinforcing bars are arranged on the reinforced concrete frame side of the flange of the steel shell. 前記剛梁要素は、前記接合節点を含めて剛部材として設定されるとともに、軸線方向伸縮が拘束された部材であることを特徴とする請求項1に記載の鋼コンクリート合成構造の構造解析方法。   The structural analysis method for a steel-concrete composite structure according to claim 1, wherein the rigid beam element is a member that is set as a rigid member including the joint node and in which expansion and contraction in the axial direction is constrained. 前記せん断バネ要素は、せん断実験により弾性域及び弾塑性域での部材特性を求め、解析入力値としたことを特徴とする請求項1に記載の鋼コンクリート合成構造の構造解析方法。   2. The structural analysis method for a steel-concrete composite structure according to claim 1, wherein the shear spring element is obtained by obtaining a member characteristic in an elastic region and an elasto-plastic region by a shear experiment and using it as an analysis input value. 鋼構造部分と鉄筋コンクリート構造部分とを、せん断抵抗部材を介して接合してなる鋼コンクリート合成構造であって、
前記鋼構造部分の軸線に沿って設定された梁要素と前記鉄筋コンクリート構造部分の軸線に沿って設定された梁要素との間の前記せん断抵抗部材の設置位置に、各梁要素の接合節点から接合面位置まで剛梁要素を設け、各剛梁要素の先端節点を、前記せん断抵抗部材の設置位置の節点座標で別個の節点として該節点間にせん断バネ要素を付加して両節点を連結させた解析モデルを設定し、所定荷重作用時における弾性域から弾塑性域までの解析計算により設計されたことを特徴とする鋼コンクリート合成構造。
It is a steel concrete composite structure formed by joining a steel structure part and a reinforced concrete structure part via a shear resistance member,
Joined from the joint node of each beam element to the installation position of the shear resistance member between the beam element set along the axis of the steel structure portion and the beam element set along the axis of the reinforced concrete structure portion A rigid beam element is provided up to the surface position, and the tip node of each rigid beam element is connected as a separate node in the node coordinates of the installation position of the shear resistance member, and a shear spring element is added between the nodes to connect both nodes. A steel-concrete composite structure characterized by setting an analytical model and designing by analytical calculation from the elastic region to the elasto-plastic region when a predetermined load is applied.
前記鋼構造部分は、柱列連続地中壁の芯材であり、前記鉄筋コンクリート構造部分は、前記柱列連続地中壁の山留め空間内に構築されるコンクリート躯体であり、前記せん断抵抗部材として、前記芯材の前記山留め空間側にスタッドボルトが溶植されてなることを特徴とする請求項6に記載の鋼コンクリート合成構造。   The steel structure part is a core material of a columnar continuous underground wall, the reinforced concrete structural part is a concrete frame constructed in a retaining space of the columnar continuous underground wall, and as the shear resistance member, The steel-concrete composite structure according to claim 6, wherein stud bolts are fused on the side of the mountain retaining space of the core material. 前記鋼構造部分は、シールドトンネルの鋼殻であり、前記鉄筋コンクリート構造部分は、前記シールドトンネルの掘進に従って前記鋼殻の一部が、その躯体の一部に合流する位置に構築された鉄筋コンクリート躯体であり、前記せん断抵抗部材として、前記鋼殻のフランジの前記鉄筋コンクリート躯体側に接合鉄筋が列設されてなることを特徴とする請求項6に記載の鋼コンクリート合成構造。   The steel structure part is a steel shell of a shield tunnel, and the reinforced concrete structure part is a reinforced concrete frame constructed at a position where a part of the steel shell merges with a part of the frame according to the excavation of the shield tunnel. 7. The steel-concrete composite structure according to claim 6, wherein as the shear resistance member, a joining reinforcing bar is arranged on the side of the reinforced concrete frame of the flange of the steel shell.
JP2003309694A 2003-09-02 2003-09-02 Structural analysis method of steel concrete composite structure and composite structure designed by using this method Pending JP2005076339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309694A JP2005076339A (en) 2003-09-02 2003-09-02 Structural analysis method of steel concrete composite structure and composite structure designed by using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309694A JP2005076339A (en) 2003-09-02 2003-09-02 Structural analysis method of steel concrete composite structure and composite structure designed by using this method

Publications (1)

Publication Number Publication Date
JP2005076339A true JP2005076339A (en) 2005-03-24

Family

ID=34411770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309694A Pending JP2005076339A (en) 2003-09-02 2003-09-02 Structural analysis method of steel concrete composite structure and composite structure designed by using this method

Country Status (1)

Country Link
JP (1) JP2005076339A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336217A (en) * 2005-05-31 2006-12-14 Shimizu Corp Existing concrete pile and axial shear reinforcing structure inside pile head
JP2009249884A (en) * 2008-04-04 2009-10-29 Nippon Steel Corp Tunnel structure
JP2010025583A (en) * 2008-07-15 2010-02-04 Ohbayashi Corp Calculation method of shearing force distribution in joint surface between steel product and concrete member, calculation method of maximum shearing proof stress in joint surface between steel product and concrete member, calculation method of shearing force working on stud, and support structure of reversely driven column
CN108222977A (en) * 2018-02-02 2018-06-29 中交三航局第三工程有限公司 A kind of twisted steel positioning reinforcing device and its installation method
CN112883621A (en) * 2021-03-10 2021-06-01 陕西华山建设集团有限公司 Method for acquiring positions of steel bar joints in irregular plate column shear wall under finite element analysis
CN117216862A (en) * 2023-11-09 2023-12-12 湖南大学 Three-dimensional shield tunnel dynamic analysis model based on fiber beam unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336217A (en) * 2005-05-31 2006-12-14 Shimizu Corp Existing concrete pile and axial shear reinforcing structure inside pile head
JP2009249884A (en) * 2008-04-04 2009-10-29 Nippon Steel Corp Tunnel structure
JP2010025583A (en) * 2008-07-15 2010-02-04 Ohbayashi Corp Calculation method of shearing force distribution in joint surface between steel product and concrete member, calculation method of maximum shearing proof stress in joint surface between steel product and concrete member, calculation method of shearing force working on stud, and support structure of reversely driven column
CN108222977A (en) * 2018-02-02 2018-06-29 中交三航局第三工程有限公司 A kind of twisted steel positioning reinforcing device and its installation method
CN108222977B (en) * 2018-02-02 2024-03-22 中交三航局第三工程有限公司 Screw thread rib positioning and reinforcing device and installation method thereof
CN112883621A (en) * 2021-03-10 2021-06-01 陕西华山建设集团有限公司 Method for acquiring positions of steel bar joints in irregular plate column shear wall under finite element analysis
CN112883621B (en) * 2021-03-10 2022-09-02 陕西华山建设集团有限公司 Method for acquiring positions of steel bar joints in irregular plate column shear wall under finite element analysis
CN117216862A (en) * 2023-11-09 2023-12-12 湖南大学 Three-dimensional shield tunnel dynamic analysis model based on fiber beam unit
CN117216862B (en) * 2023-11-09 2024-02-02 湖南大学 Three-dimensional shield tunnel dynamic analysis model based on fiber beam unit

Similar Documents

Publication Publication Date Title
Amadio et al. Refined numerical modelling for the structural assessment of steel-concrete composite beam-to-column joints under seismic loads
Da Silva et al. Experimental behaviour of end-plate beam-to-column composite joints under monotonical loading
Foraboschi Versatility of steel in correcting construction deficiencies and in seismic retrofitting of RC buildings
Shim et al. Experiments on prefabricated segmental bridge piers with continuous longitudinal reinforcing bars
Nguyen et al. Experimental study on seismic performance of new RCS connection
Valente et al. Numerical investigations of repairable dissipative bolted fuses for earthquake resistant composite steel frames
Wan et al. Mechanical performance of novel steel one-sided bolted joints in shear
Eghbali et al. Experimental investigation of steel beam to RC column connection via a through-plate
Alimohammadi et al. The study of progressive collapse in dual systems
Ghobadi et al. Seismic performance of ductile welded connections using T-stiffener
Mistakidis et al. Low yield metal shear panels as an alternative for the seismic upgrading of concrete structures
Pul et al. Experimental and numerical investigation of a proposed monolithic-like precast concrete column-foundation connection
Zhang et al. Experimental and numerical investigation on the bearing capacity of disconnectable coupling (DC) joints for prestressed internal bracing in subway excavations
Dan et al. Theoretical and experimental study of precast reinforced concrete walls with different openings under seismic loads
Wang et al. Behaviour of steel-concrete-steel sandwich walls with EC connectors under out-of-plane patch loads
JP2005076339A (en) Structural analysis method of steel concrete composite structure and composite structure designed by using this method
Güldür et al. Experimental and numerical analysis of cold-formed steel floor trusses with concrete filled compression chord
Aydın et al. Cyclic behaviour of diagonally-stiffened beam-to-column connections of corrugated-web I sections
Formisano et al. Ductility and behaviour factor of RC frame-perforated SPSW dual systems
KR101770988B1 (en) Reforcing panel for concrete structure and reinforcing method using the same
JP4038822B2 (en) Road expansion structure
Mansouri et al. Development of a corrugated web shear link for steel moment-resisting frames
Christopher et al. Geosynthetic-reinforced soil walls and slopes: US perspective
KR101920223B1 (en) Efficient Basement Structure by changing connection betwwon piles and footing
Fu et al. Steel-concrete composite floor systems with different structural and loading configurations under a corner column removal scenario: Experimental tests

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311