JP2005076059A - Method for manufacturing solid thin film having uniform composition and structure - Google Patents

Method for manufacturing solid thin film having uniform composition and structure Download PDF

Info

Publication number
JP2005076059A
JP2005076059A JP2003305752A JP2003305752A JP2005076059A JP 2005076059 A JP2005076059 A JP 2005076059A JP 2003305752 A JP2003305752 A JP 2003305752A JP 2003305752 A JP2003305752 A JP 2003305752A JP 2005076059 A JP2005076059 A JP 2005076059A
Authority
JP
Japan
Prior art keywords
droplet
thin film
tube
cooling member
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003305752A
Other languages
Japanese (ja)
Other versions
JP4168140B2 (en
Inventor
Hideaki Nagai
秀明 永井
Takeshi Okuya
猛 奥谷
Yoshinori Nakada
善徳 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003305752A priority Critical patent/JP4168140B2/en
Publication of JP2005076059A publication Critical patent/JP2005076059A/en
Application granted granted Critical
Publication of JP4168140B2 publication Critical patent/JP4168140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily and reliably manufacturing a thin film having a uniform composition and structure. <P>SOLUTION: The method for easily and reliably manufacturing the solid thin film having the uniform composition and structure employs a solid material having the uniform composition and structure as a starting material, and deposits the starting material on a substrate by a laser ablation technique. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、均質な組成・組織を有する固体薄膜の製造方法に関するものである。   The present invention relates to a method for producing a solid thin film having a homogeneous composition / structure.

半導体などの熱融解性固体材料の融液を急冷することによりアモルファス材料の製造が行われている。この溶液急冷法には、単一ローラー溶液スピニング法、双ローラー溶液スピニング法、回転シリンダ法、溶液引き出し法、溶液ドラッグ法、Gun法などがある(参考文献:「先端材料辞典」p.591、産業調査会(1996);S.J.Savage and F.H.Froes、J.Metals、36、(4)(1984)、pp.20−33.)。単一ローラー溶液スピニング法やGun法などの方法では、ローラーや急冷板などに溶液原料を加速射出して急冷する。また、溶液引き出し法や溶液ドラッグ法では、回転ドラムに溶液を付着させて冷却するが、この時溶液には回転ドラムによる撹拌などによって強力な対流が発生する。これらの方法では、10〜10℃/秒程度の急速冷却速度を得ることができ、また、連続的にリボン状薄膜が得られるように工夫されている。得られる薄膜はアモルファスがほとんどであるが、これを加熱処理して結晶化させると、組成と組織が冷却ローラーなどに接触している部分と接触していない部分では異なり、均一組成・組織から成る高品質結晶材料は製造できない。 An amorphous material is manufactured by rapidly cooling a melt of a heat-meltable solid material such as a semiconductor. Examples of the solution quenching method include a single roller solution spinning method, a twin roller solution spinning method, a rotating cylinder method, a solution drawing method, a solution drag method, and a Gun method (reference: “Advanced Materials Dictionary” p. 591, Industrial Research Council (1996); S. J. Savage and FH Froes, J. Metals, 36, (4) (1984), pp. 20-33.). In a method such as a single roller solution spinning method or a Gun method, a solution raw material is acceleratedly injected onto a roller, a quenching plate, or the like for rapid cooling. In the solution drawing method and the solution drag method, the solution is attached to the rotating drum and cooled. At this time, strong convection is generated in the solution by stirring with the rotating drum. In these methods, a rapid cooling rate of about 10 4 to 10 8 ° C./second can be obtained, and a ribbon-like thin film is continuously obtained. The thin film obtained is mostly amorphous, but when it is crystallized by heat treatment, the composition and structure differ between the part that is in contact with the cooling roller and the part that is not in contact, and consists of a uniform composition and structure. High quality crystalline materials cannot be produced.

これらの問題点を解決する方法として、自由落下させた液滴を冷却用部材に衝突させて急冷することによって高品質結晶材料を得る方法(参考文献:特許第3087964号公報)や、自由落下させた液滴を表面に融解性コーティング層を有する冷却用部材に衝突させて急冷することによって均質な組成・組織を有する固体材料を得る方法(特許文献1)などがある。これらの方法で得られる材料は、通常、薄板状あるいはリボン状であるが、記憶材料や発光ダイオード、各種センサー、太陽電池などの様々な機能材料として利用するためには、基板上に形成された薄膜として加工することが必要である。   As a method of solving these problems, a method of obtaining a high-quality crystal material by causing a free-falling droplet to collide with a cooling member and quenching it (reference document: Japanese Patent No. 3087964), or free-falling There is a method of obtaining a solid material having a homogeneous composition / structure by colliding a liquid droplet with a cooling member having a meltable coating layer on the surface and quenching (Patent Document 1). The material obtained by these methods is usually in the form of a thin plate or ribbon, but it is formed on a substrate in order to be used as various functional materials such as memory materials, light emitting diodes, various sensors, and solar cells. It is necessary to process it as a thin film.

すでにスパッタリング法などの物理堆積(PVD)法やプラズマや熱を用いた化学堆積(CVD)法などの様々な薄膜作成技術が工業的に利用されているが、固体材料を薄膜化する技術としては、(1)真空蒸着法(電子ビーム蒸着法)、(2)スパッタリング法、(3)レーザーアブレーション法 などのPVD法が適している。その中で、レーザーアブレーション法は、(1)高融点物質の薄膜化が可能、(2)他のPVD法ほど高い真空度を必要とせず、反応系内の雰囲気ガス圧を高くできる、(3)短パルスレーザーを用いターゲットの極表面層のみを瞬時に剥離できるため、ターゲットと堆積膜の組成ずれが起こりにくい、等があげられ、出発原料の状態を反映した薄膜が得られる(参考文献:「薄膜作製応用ハンドブック」、p.364、エヌ・ティー・エス(1995))。レーザーアブレーション法では、ターゲットにレーザーが照射された段階で、原子状、分子状、クラスター状等の多くの化学種が放出され、それらを総合するとターゲットの組成比と合い、これらの化学種が膜形成に寄与する。そのため、レーザーアブレーション法に用いるターゲットには、ターゲット全体で目的とする薄膜と同じ組成になるように調整された焼結体や溶融凝固物が使用される場合がほとんどで、これらのターゲットはミクロ的には均一ではない。このようなターゲットからのアブレーションではミクロな領域では不均一であり、均質な組成・組織を有する良質な薄膜を得るために、化学種の選択や基板の加熱による堆積後の物質拡散を促進させる必要がある。   Various thin film production technologies such as physical deposition (PVD) methods such as sputtering and chemical deposition (CVD) methods using plasma and heat have already been industrially used. (1) Vacuum vapor deposition (electron beam vapor deposition), (2) sputtering, (3) laser ablation, etc. are suitable. Among them, the laser ablation method is capable of (1) thinning of a high melting point material, (2) high atmospheric gas pressure in the reaction system without requiring a higher degree of vacuum than other PVD methods, (3 ) Since only the extreme surface layer of the target can be instantaneously peeled off using a short pulse laser, the composition deviation between the target and the deposited film hardly occurs, and a thin film reflecting the state of the starting material can be obtained (references: “Thin Film Application Handbook”, p. 364, NTS (1995)). In the laser ablation method, many chemical species such as atoms, molecules, clusters, etc. are released at the stage when the target is irradiated with the laser. Contributes to formation. For this reason, most of the targets used for laser ablation are sintered bodies and melted solids that are adjusted to have the same composition as the target thin film as a whole, and these targets are microscopic. Is not uniform. Ablation from such a target is not uniform in the microscopic region, and in order to obtain a high-quality thin film having a uniform composition and structure, it is necessary to promote the diffusion of materials after deposition by selecting chemical species and heating the substrate. There is.

特開2003−80362号公報JP 2003-80362 A

本発明は、均質な組成・組織を有する薄膜を容易かつ確実に製造する方法を提供することをその課題とする。   An object of the present invention is to provide a method for easily and reliably producing a thin film having a homogeneous composition / structure.

本発明者らは、前記課題を解決すべく鋭意研究を行った結果、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.

すなわち、本発明によれば、均質な組成・組織を有する固体材料を出発原料とし、該出発物質をレーザーアブレーション法によって基板に堆積させることを特徴とする均質な組成・組織を有する固体薄膜の製造方法が提供される。   That is, according to the present invention, a solid thin film having a homogeneous composition / structure is produced by using a solid material having a homogeneous composition / structure as a starting material and depositing the starting material on a substrate by a laser ablation method. A method is provided.

本発明によると、出発原料としてあらかじめ形成した均質な組成・組織を有する固体材料を用いるだけで、その組成及び組織を変動させることなく、その出発原料に対応した均質な組成・組織を有する固体薄膜を得ることができる。
本発明により得られる均質な組成・組織を有する薄膜は、化合物半導体や、太陽電池、磁性材料用薄膜材料として有利に用いられる。
According to the present invention, a solid thin film having a homogeneous composition and structure corresponding to the starting material can be used without changing the composition and structure only by using a solid material having a homogeneous composition and structure formed in advance as a starting material. Can be obtained.
The thin film having a homogeneous composition / structure obtained by the present invention is advantageously used as a compound semiconductor, a thin film material for a solar cell or a magnetic material.

本発明で用いる出発原料は、あらかじめ形成した均質な組成及び組織を有する固体材料である。
この場合の固体材料は、熱融解性材料である。この材料は、加熱により融解して融液を形成するものであり、その融点は、通常、50℃以上、特に100℃以上であり、その上限値は、特に制約されないが、通常、2500℃程度である。熱融解性材料は、金属や合金であることができる他、熱可塑性高分子、ポリマーアロイ、金属化合物(酸化物など)であることができる。このような熱融解性材料には、チタン、鉄などの金属;チタン−ニッケル、銅−アルミニウム、銅−インジウムなどの合金;ゲルマニウム、シリコン、インジウム−アンチモン、鉄−シリコン、銅−インジウム−セレンなどの半導体;ポリ塩化ビニル、ポリエチレン、ポリスチレンなどの熱可塑性高分子;ポリスチレン−ポリプロピレン、ポリ塩化ビニル−ABS樹脂、ポリ塩化ビニル−アクリル樹脂などのポリマーアロイ;アルミナ−ガーネット複合材料(MGCマテリアル)などのセラミックスが包含される。これらの熱融解性材料は、粉末状や塊状、フィルム状などの各種の形状であることができる。
The starting material used in the present invention is a solid material having a preformed homogeneous composition and structure.
The solid material in this case is a heat-meltable material. This material is melted by heating to form a melt, and its melting point is usually 50 ° C. or higher, particularly 100 ° C. or higher, and its upper limit is not particularly limited, but is usually about 2500 ° C. It is. The heat-meltable material can be a metal or an alloy, and can be a thermoplastic polymer, a polymer alloy, or a metal compound (such as an oxide). Such heat-meltable materials include metals such as titanium and iron; alloys such as titanium-nickel, copper-aluminum, and copper-indium; germanium, silicon, indium-antimony, iron-silicon, copper-indium-selenium, and the like. Semiconductors; thermoplastic polymers such as polyvinyl chloride, polyethylene, polystyrene; polymer alloys such as polystyrene-polypropylene, polyvinyl chloride-ABS resin, polyvinyl chloride-acrylic resin; alumina-garnet composite (MGC material), etc. Ceramics are included. These heat-meltable materials can be in various shapes such as powder, lump, and film.

本発明で出発原料として用いる均質な組成及び組織を有する固体材料は、各種の方法で製造することが可能であるが、本発明の場合、以下に示す自由落下融液の衝突凝固法により製造するのが好ましい。
(1)熱融解性材料の融液からなる液滴を自由落下させ、該液滴を、冷却部材表面に衝突させて該衝突箇所から放射方向に凝固させる方法(A法)(特許法第3087984号)。
(2)熱融解性材料の融液からなる液滴を自由落下させ、該液滴を、回転体のその回転表面に衝突させて、凝固させる方法(B法)(特願2002−254663号)。
(3)熱融解性材料の融液からなる液滴を自由落下させ、該液滴の凝固前に、表面に融解性コーティング層を有する冷却用部材に衝突させて該衝突箇所から放射方向に凝固させる方法(C法)(特開2003−80362号)。
The solid material having a homogeneous composition and structure used as a starting material in the present invention can be produced by various methods, but in the case of the present invention, it is produced by the free-falling melt collision solidification method shown below. Is preferred.
(1) A method of freely dropping a droplet made of a melt of a heat-meltable material, causing the droplet to collide with the surface of a cooling member, and solidifying in a radial direction from the collision location (Method A) (Patent Method No. 3087984) issue).
(2) A method of freely dropping a droplet made of a melt of a heat-meltable material and causing the droplet to collide with the rotating surface of a rotating body to solidify (Method B) (Japanese Patent Application No. 2002-254663) .
(3) A droplet made of a melt of a heat-meltable material is freely dropped, and before the droplet is solidified, it is collided with a cooling member having a meltable coating layer on the surface and solidifies in a radial direction from the collision location. (Method C) (Japanese Patent Laid-Open No. 2003-80362).

前記3法により均質な組成・組織を有する固体材料を製造するには、先ず、熱融解性固体材料の融液を形成する。この融液は坩堝などの容器に熱融解性固体材料の粉末状や塊状、フィルム状の原料を入れ、電気抵抗炉、赤外線炉などの加熱装置で原料を融点以上に加熱、融解することにより形成することができる。強磁性や常磁性の材料の場合は、電磁浮遊加熱装置で加熱して融液を形成し、この融液を浮遊させることができる。この加熱に際しての条件は、融液が変質しない条件で、融液の種類により、非酸化性や酸化性条件が選ばれる。例えば、熱融解性固体材料が酸化されやすい場合は非酸化性条件が選ばれ、熱融解性固体材料が酸化物の場合は酸化条件でも良い。このような条件には、アルゴンやヘリウムなどの不活性ガス雰囲気、水素、酸素などの活性ガス雰囲気の他、2660Pa以下、好ましくは133Pa以下の真空の雰囲気が包含され、原料に応じて適宜選択される。蒸気圧の高い熱融解性固体材料を取り扱う場合は、材料の蒸発を抑制するように高圧の不活性ガス雰囲気中、または、活性ガス雰囲気中で融点以上に加熱し、融解するのが良い。   In order to produce a solid material having a homogeneous composition / structure by the above three methods, first, a melt of a heat-meltable solid material is formed. This melt is formed by putting a heat-fusible solid material in powder, lump, or film form into a crucible or other container, and heating and melting the raw material to a melting point or higher with a heating device such as an electric resistance furnace or infrared furnace. can do. In the case of a ferromagnetic or paramagnetic material, a melt can be formed by heating with an electromagnetic floating heating device, and the melt can be suspended. The heating conditions are such that the melt does not change, and non-oxidizing and oxidizing conditions are selected depending on the type of the melt. For example, when the heat-fusible solid material is easily oxidized, non-oxidizing conditions are selected, and when the heat-melting solid material is an oxide, the oxidizing conditions may be used. Such conditions include an inert gas atmosphere such as argon and helium, an active gas atmosphere such as hydrogen and oxygen, and a vacuum atmosphere of 2660 Pa or less, preferably 133 Pa or less, which are appropriately selected according to the raw material. The When handling a heat-fusible solid material having a high vapor pressure, it is preferable to melt by heating to a melting point or higher in a high-pressure inert gas atmosphere or an active gas atmosphere so as to suppress evaporation of the material.

次に、この熱融解性固体材料の融液を容器の底に設けた小孔から融液の一部あるいは全部を液滴として取り出す。液滴の取り出しは、融液が静止状態あるいは自由落下中に行う必要がある。液滴を作成するために融液に圧力を加えて容器下部の小孔を通りやすくしたり、容器に振動を加えても良いが、液滴を取り出す時の速度が、静止状態ではゼロに限りなく近く、自由落下中ではその時の自由落下速度に限りなく近くする必要がある。液滴の大きさは、小孔の大きさ、融液の粘度、容器と融液の濡れ性、融液の比重などにより決定されるが、通常、その直径は0.1〜50mm、好ましくは2〜10mmである。融液の液滴が存在する雰囲気は、前記に示した融解時と同じである。落下した液滴は、液滴が容器の下部の小孔から完全に切り離され、冷却用部材に衝突し、その衝突箇所から液滴の凝固が始まる。液滴の自由落下距離は、液滴が自由落下状態を経由することが必要で、小孔と冷却用部材との距離は液滴の垂直方向の長さの1〜50000倍程度の距離である。
さらに、液滴は、冷却用部材に衝突することにより凝固を開始させる必要があり、自由落下中は液滴の凝固が起こらないように自由落下距離を選定する必要がある。一般に、熱融解性固体材料の融点、液滴の温度、自由落下時に発現する過冷却度、液滴表面からの放射率などにより自由落下距離を決定することが必要である。その具体的自由落下距離は、予備実験により選定することができる。
Next, a part or all of the melt of the heat-fusible solid material is taken out as droplets from a small hole provided at the bottom of the container. It is necessary to take out the droplets while the melt is at rest or during free fall. In order to create a droplet, pressure may be applied to the melt to make it easier to pass through the small hole at the bottom of the container, or vibration may be applied to the container, but the speed when removing the droplet is limited to zero in the stationary state. It is necessary to make it as close as possible to the free fall speed at that time. The size of the droplet is determined by the size of the small holes, the viscosity of the melt, the wettability between the container and the melt, the specific gravity of the melt, and the diameter is usually 0.1 to 50 mm, preferably 2 to 10 mm. The atmosphere in which the melt droplets are present is the same as in the melting described above. The dropped droplet is completely separated from the small hole at the bottom of the container, collides with the cooling member, and solidification of the droplet starts from the collision point. The free fall distance of the droplet needs to pass through the free fall state, and the distance between the small hole and the cooling member is about 1 to 50000 times the vertical length of the droplet. .
Furthermore, it is necessary to start the solidification of the liquid droplet by colliding with the cooling member, and it is necessary to select a free fall distance so that the solidification of the liquid droplet does not occur during the free fall. In general, it is necessary to determine the free fall distance based on the melting point of the heat-meltable solid material, the temperature of the droplet, the degree of supercooling that occurs during free fall, the emissivity from the surface of the droplet, and the like. The specific free fall distance can be selected by a preliminary experiment.

前記A法で用いる冷却用部材としては、通常、金属(合金を含む)やセラミックスなどの固体部材が用いられる。この場合、金属としては、銅、鉄などが一般的に用いられる。また、セラミックスとしては、ガラスや窒化アルミニウムなどが用いられる。その冷却部材の表面温度は、通常、その液滴を構成する熱融解性固体材料の融点以下の温度、好ましくは融点より100℃程度以上低い温度、特に融点より200〜2500℃程度低い温度である。   As the cooling member used in the method A, a solid member such as a metal (including an alloy) or ceramic is usually used. In this case, copper, iron or the like is generally used as the metal. As the ceramic, glass, aluminum nitride, or the like is used. The surface temperature of the cooling member is usually a temperature not higher than the melting point of the heat-fusible solid material constituting the droplets, preferably a temperature lower by about 100 ° C. than the melting point, particularly a temperature lower by about 200 to 2500 ° C. than the melting point. .

冷却用部材表面に衝突してその表面上に形成される凝固生成物の形態は、表面が平らな冷却用部材(冷却板)の場合は、薄板状であり、その面積及び厚さは液滴が冷却板に衝突した時点での温度、粘性、衝突速度、冷却用部材の温度等による。冷却用部材板の形状を選択することにより、円形あるいは四角形などの薄板の形状のものの製造が可能である。冷却用部材に衝突した液滴は融液容器下部の小孔から、もしくは浮遊状態の液滴が落下をはじめる個所から衝突するまでは完全な自由落下であり、液滴は微小重力環境下にある。従って、液滴内に熱対流はなく、組成が均質である。冷却用部材に衝突した個所から液滴の熱は奪われ、その衝突個所から凝固を開始し、衝突個所以外へ放射方向状に凝固して行く。即ち、この凝固は衝突個所を始点とする一方向凝固である。その結果、得られる凝固物は均質組成・組織である。   The form of the solidified product that collides with the surface of the cooling member and is formed on the surface is a thin plate in the case of a cooling member (cooling plate) with a flat surface, and its area and thickness are droplets. Depends on the temperature, viscosity, collision speed, temperature of the cooling member, etc. By selecting the shape of the cooling member plate, it is possible to manufacture a thin plate shape such as a circle or a rectangle. The droplet that collided with the cooling member is completely free-falling from the small hole at the bottom of the melt vessel or until the floating droplet collides from where it begins to fall, and the droplet is in a microgravity environment. . Therefore, there is no thermal convection in the droplet and the composition is homogeneous. The heat of the droplet is taken away from the location where it has collided with the cooling member, solidification starts from the location where it collides, and it solidifies in a radial direction other than the location where it collides. That is, this solidification is unidirectional solidification starting from the collision point. As a result, the obtained coagulum has a homogeneous composition and structure.

前記B法で用いる冷却用部材としては、通常、金属(合金を含む)やセラミックスなどの固体部材が用いられる。この場合、金属としては、銅、鉄などが一般的に用いられる。また、セラミックスとしては、ガラスや窒化アルミニウムなどが用いられる。その冷却部材の表面温度は、通常、その液滴を構成する熱融解性固体材料の融点以下の温度、好ましくは融点より100℃程度以上低い温度、特に融点より200〜2500℃程度低い温度である。   As the cooling member used in the method B, a solid member such as a metal (including an alloy) or ceramic is usually used. In this case, copper, iron or the like is generally used as the metal. As the ceramic, glass, aluminum nitride, or the like is used. The surface temperature of the cooling member is usually a temperature not higher than the melting point of the heat-fusible solid material constituting the droplets, preferably a temperature lower by about 100 ° C. than the melting point, particularly a temperature lower by about 200 to 2500 ° C. than the melting point. .

冷却部材は、落下管内で回転する回転体からなる。この回転体の回転軸は、落下管の中心軸に対して任意の方向の軸であるが、一般的には同軸あるいは落下管の中心軸に直交する軸である。回転体の形状は、落下する液滴を受止できる回転表面を有するものであればよい。このような回転体としては、円錐形状体(円錐台形状態を含む)、傘形状体、円盤形状体、円筒形状体等が包含される。   The cooling member is composed of a rotating body that rotates within the drop tube. The rotational axis of the rotating body is an axis in an arbitrary direction with respect to the central axis of the drop tube, but is generally an axis that is coaxial or orthogonal to the central axis of the drop tube. The shape of the rotating body may be any as long as it has a rotating surface capable of receiving the falling droplet. Such a rotating body includes a cone-shaped body (including a truncated cone shape), an umbrella-shaped body, a disk-shaped body, a cylindrical body, and the like.

冷却用部材の回転速度は、線速度として定義される。線速度が速いほど回転表面に受止された液滴が薄膜状となるため、回転速度が高い程冷却速度が速いと言えるが、液滴が冷却用部材に衝突した時点での温度、粘性、衝突速度などに依存するため、その具体的線速度は、予備実験により選定することができる。その線速度は、通常は、毎秒1m以上、特に毎秒10mであり、その上限値は、特に制約されないが、通常毎秒100m程度である。   The rotational speed of the cooling member is defined as the linear speed. The higher the linear velocity, the thinner the droplets received on the rotating surface, so the higher the rotational speed, the faster the cooling rate, but the temperature, viscosity at the time the droplet collides with the cooling member, The specific linear velocity can be selected by a preliminary experiment because it depends on the collision velocity and the like. The linear velocity is usually 1 m or more per second, particularly 10 m per second, and the upper limit is not particularly limited, but is usually about 100 m per second.

冷却用部材表面に衝突して形成される凝固物の形態は、通常、薄板状あるいはリボン状であるが、衝突凝固時の冷却部材の回転によって、これらの粉砕された形状で得られる場合もある。その面積及び厚さは液滴が冷却用部材に衝突した時点での温度、粘性、衝突速度、冷却用部材の線速度などによる。冷却用部材に衝突した液滴は融液容器下部の小孔から、もしくは浮遊状態の液滴が落下を始める箇所から衝突するまでは完全な自由落下であり、液滴は微小重力環境下にある。従って、液滴内に熱対流はなく、組成は均質である。冷却用部材に衝突した箇所から液滴の熱は奪われ、その衝突箇所から凝固を開始し、衝突箇所以外へ放射方向状に凝固していく。その結果、得られる凝固物は均質組成・組織である。   The form of the solidified product that collides with the surface of the cooling member is usually a thin plate or ribbon, but may be obtained in these crushed shapes by rotation of the cooling member during the solidification of the collision. . The area and thickness depend on the temperature, viscosity, collision velocity, linear velocity of the cooling member, and the like when the droplet collides with the cooling member. The liquid droplet that collided with the cooling member is completely free-falling from the small hole at the bottom of the melt vessel or from where the floating liquid droplet begins to fall, and the liquid droplet is in a microgravity environment. . Therefore, there is no thermal convection in the droplet and the composition is homogeneous. The heat of the droplet is taken away from the location that has collided with the cooling member, solidification is started from the location where the collision has occurred, and solidifies in a radial direction other than the location of the impact. As a result, the obtained coagulum has a homogeneous composition and structure.

前記C法では、冷却用部材としては、通常、金属(合金を含む)やセラミックスなどからなる基板に融解性コーティング層を施したものを用いる。その表面形状は、平坦状や曲面状などであることができる。このような金属基板としては、銅、鉄などが一般的に用いられる。また、セラミックス基板としては、ガラスや窒化アルミニウムなどが用いられる。その基板の表面温度は、通常、その液滴を構成する熱融解性材料の融点以下の温度で、好ましくは融点より100℃程度以上低い温度、特に融点より200〜2500℃程度低い温度である。融解性コーティング層は、それに衝突する加熱状態にある液滴によって融解が生じるものであればよい。このような融解性コーティング層としては、スズやインジウム、亜鉛、鉛、アルミニウムなどの金属やそれらの合金、熱可塑性高分子が一般的に用いられる。融解性コーティング層の厚みは、液滴が冷却用部材に衝突する際の温度、衝突速度、液滴重量、凝固時の熱膨張率、融解性コーティング層の融点、熱伝導度などにより決定されるが、通常、その厚みは1μm〜10mm、好ましくは10μm〜5mmである。   In the C method, as the cooling member, a substrate made of a metal (including an alloy), ceramics, or the like and provided with a meltable coating layer is usually used. The surface shape can be flat or curved. As such a metal substrate, copper, iron or the like is generally used. As the ceramic substrate, glass, aluminum nitride, or the like is used. The surface temperature of the substrate is usually a temperature not higher than the melting point of the heat-meltable material constituting the droplets, preferably about 100 ° C. or more lower than the melting point, particularly about 200 to 2500 ° C. lower than the melting point. The meltable coating layer only needs to be melted by a droplet in a heated state that impinges on the meltable coating layer. As such a meltable coating layer, metals such as tin, indium, zinc, lead, and aluminum, alloys thereof, and thermoplastic polymers are generally used. The thickness of the meltable coating layer is determined by the temperature at which the droplet collides with the cooling member, the collision velocity, the droplet weight, the coefficient of thermal expansion during solidification, the melting point of the meltable coating layer, the thermal conductivity, etc. However, the thickness is usually 1 μm to 10 mm, preferably 10 μm to 5 mm.

冷却用部材表面に衝突してその表面上に形成される凝固物の形態は、表面が平らな冷却用部材の場合は、薄板状であり、その面積及び厚さは液滴が冷却用部材に衝突した時点での温度、粘性、衝突速度、融解性コーティング層の厚みなどによる。冷却用部材の形状を選択することにより、円形、あるいは四角形などの薄板形状のものの製造が可能である。冷却用部材に衝突した液滴は溶融液容器下部の小孔から、もしくは浮遊状態の液滴が落下を始める箇所から衝突するまでは完全な自由落下であり、液滴は微小重力環境下にある。従って、液滴内に熱対流はなく、組成は均質である。冷却用部材に衝突した箇所から液滴の熱は奪われ、その衝突箇所から凝固を開始し、衝突箇所以外へ放射方向状に凝固していく。その結果、得られる凝固物は均質組成・組織を有するものである。   The form of the solidified product that collides with the surface of the cooling member and forms on the surface is a thin plate in the case of a cooling member with a flat surface, and the area and thickness of the solidified material are the droplets on the cooling member. It depends on temperature, viscosity, impact speed, thickness of meltable coating layer, etc. at the time of impact. By selecting the shape of the cooling member, a thin plate shape such as a circle or a rectangle can be manufactured. The droplet that collided with the cooling member is completely free-falling from the small hole at the bottom of the melt container or from where the suspended droplet begins to fall, and the droplet is in a microgravity environment. . Therefore, there is no thermal convection in the droplet and the composition is homogeneous. The heat of the droplet is taken away from the location that has collided with the cooling member, solidification is started from the location where the collision has occurred, and solidifies in a radial direction other than the location of the impact. As a result, the obtained coagulum has a homogeneous composition and structure.

本発明により均質な組成及び組織を有する固体薄膜を製造する好ましい方法の1つは、あらかじめ形成した均質な組成及び組織を有する固体材料を出発原料とし、これをレーザーアブレーション法によって基板に堆積させる方法である。   One preferred method for producing a solid thin film having a homogeneous composition and structure according to the present invention is a method in which a solid material having a homogeneous composition and structure formed in advance is used as a starting material and deposited on a substrate by a laser ablation method. It is.

この方法を実施するには、先ず、均質な組成・組織を有する固体材料をレーザーアブレーション装置のターゲットホルダーの形状に合わせて成形、加工する。ターゲットホルダーに納めた均質な組成・組織を有する固体材料は、レーザーアブレーション装置内に配置される。レーザーアブレーション装置内の雰囲気は、均質な組成・組織を有する固体材料の種類により、非酸化性や酸化性条件が選ばれる。例えば、均質な組成・組織を有する固体材料からなる材料が酸化されやすい場合は非酸化性条件が選ばれ、均質な組成・組織を有する固体材料からなる材料が酸化物の場合は酸化性条件でも良い。このような条件には、アルゴンやヘリウムなどの不活性雰囲気、水素、酸素などの活性ガス雰囲気の他に、133Pa以下、好ましくは26Pa以下の真空の雰囲気が包含され、被処理原料により適宜選択される。   In order to carry out this method, first, a solid material having a homogeneous composition and structure is formed and processed in accordance with the shape of the target holder of the laser ablation apparatus. A solid material having a homogeneous composition and structure stored in a target holder is placed in a laser ablation apparatus. The atmosphere in the laser ablation apparatus is selected from non-oxidizing and oxidizing conditions depending on the type of solid material having a homogeneous composition and structure. For example, when a material made of a solid material having a homogeneous composition / structure is likely to be oxidized, non-oxidizing conditions are selected, and when a material made of a solid material having a homogeneous composition / structure is an oxide, the oxidizing conditions are also used. good. Such conditions include an inert atmosphere such as argon or helium, an active gas atmosphere such as hydrogen or oxygen, and a vacuum atmosphere of 133 Pa or less, preferably 26 Pa or less, which is appropriately selected depending on the raw material to be treated. The

次に、この均質な組成・組織を有する固体材料からなる材料にレーザー光を照射して、薄膜生成に必要な均一な組成の化学種を生成する。用いるレーザー光の種類や出力は、均質な組成・組織を有する固体材料からなる材料のレーザー光の吸収係数や融点、各元素間の化学結合の形式などによって決定されるが、通常、レーザー波長が180nm〜1100nm、好ましくは190nm〜600nmであり、レーザー出力が0.1〜10J/cm、好ましくは0.2〜5J/cmである。 Next, this solid material having a uniform composition / structure is irradiated with laser light to generate chemical species having a uniform composition necessary for thin film formation. The type and output of the laser beam used are determined by the absorption coefficient and melting point of the laser beam of the material made of a solid material having a homogeneous composition and structure, the type of chemical bond between each element, etc. 180 nm to 1100 nm, preferably 190 nm to 600 nm, and laser output is 0.1 to 10 J / cm 2 , preferably 0.2 to 5 J / cm 2 .

薄膜を堆積させる基板は、通常、金属(合金を含む)やセラミックス、半導体、プラスチックが用いられる。このような金属基板としては、アルミニウム、銅、鉄などが一般的に用いられ、セラミックス基板としては、ガラスや酸化アルミニウム、窒化アルミニウムなどが一般に用いられる。また、半導体基板としては、シリコンやガリウムヒ素などが一般に用いられ、プラスチック基板としては、ポリカーボネイトやポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニルなどが一般に用いられる。その基板の表面温度は、ターゲットとなる均質な組成・組織を有する固体材料からなる材料の融点と基板の溶融あるいは分解温度の内の低い方が上限となり、通常、室温〜1000℃程度の表面温度であり、好ましくは室温〜500℃、より好ましくは室温〜300℃程度の表面温度である。
均質な組成・組織を有する固体材料をターゲットとしてレーザーを照射した場合、ターゲットのどの場所からもターゲットと同じ組成の化学種がアブレーションによって生成し、それが基板に堆積するため、均一な組成及び組織の膜が堆積する。
As the substrate on which the thin film is deposited, metals (including alloys), ceramics, semiconductors, and plastics are usually used. As such a metal substrate, aluminum, copper, iron or the like is generally used, and as a ceramic substrate, glass, aluminum oxide, aluminum nitride or the like is generally used. As the semiconductor substrate, silicon, gallium arsenide, or the like is generally used, and as the plastic substrate, polycarbonate, polyethylene, polypropylene, polystyrene, polyvinyl chloride, or the like is generally used. The upper limit of the surface temperature of the substrate is the lower of the melting point of the material made of a solid material having a homogeneous composition and structure as a target and the melting or decomposition temperature of the substrate. Usually, the surface temperature is about room temperature to 1000 ° C. The surface temperature is preferably from room temperature to 500 ° C, more preferably from room temperature to 300 ° C.
When a solid material having a uniform composition / structure is irradiated with a laser as a target, a chemical species having the same composition as the target is generated by ablation from any location of the target and deposited on the substrate. A film is deposited.

本発明で得られる均質な組成及び組織を有する固体薄膜において、その厚さは、通常、10〜5000nm、好ましくは50〜2000nmである。   In the solid thin film having a homogeneous composition and structure obtained in the present invention, the thickness is usually 10 to 5000 nm, preferably 50 to 2000 nm.

次に、本発明を実施例により更に詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

参考例1
(自由落下液滴の衝突冷却によるCu−In合金高品質結晶材料の製造)
高さ13m、直径30cmのステンレス製の管の上部に、径30mm、高さ1mの石英ガラス管から成る落下管を連結し、その石英ガラス管内に、その頂部から、内径8mm、長さ30cmでその先端を細く絞り、先端に直径が0.3mmの小孔を持つ石英ガラス管を石英ガラス管内に挿入装着した。この内径8mmの石英ガラス管内部に、原子比0.66:0.34のCuとInの混合粉体0.3gを充填し、管内をヘリウムガスで置換し、133PaのHe雰囲気とした。次に、径30mmの石英ガラス管外側に取り付けた電気炉でCu−In混合粉末を750℃に加熱して融解し、この温度に保持した。Cu−In融解後、融液の入っている内径8mmの石英ガラス管上部に5333Paのヘリウムガスで加圧し、石英ガラス管下部に設けた直径0.3mmの小孔から融液を押しだし、液滴を作製した。液滴の径が2mm程度になった時点で、初速度ほぼゼロの状態から落下管下方に落下させた。落下中の液滴はほぼ球状であることから、落下中の液滴は微小重力環境にあり、その結果、表面張力の効果が顕著に現れて球状になったことがわかる。小孔の垂直下6.5mの個所に、10cm角、厚さ1mmの表面温度が室温(20℃)の石英ガラス板を設置し、Cu−In液滴を石英ガラス板に衝突させて凝固させた。凝固物を回収し、断面を研磨し、塩化第2鉄2gを添加した濃塩酸20mlをエッチング液として室温で20秒間エッチングを行った面の合金組織を光学顕微鏡で観察した。また、CuとInの分布を観察した。その結果、凝固物断面には粒界や欠陥が観察されず、均質な組織であることが確認された。また、CuとInの凝固物断面の分布の観察から、均質な組成であることが確認された。凝固生成物を粉砕し、粉末X線回折法で結晶構造を調べると、Cu2Inのみが結晶性生成物であった。これらの結果より本発明の方法によりCuInの均質組成・組織を持つ材料が製造できたことが明らかである。
Reference example 1
(Manufacture of Cu-In alloy high-quality crystal material by collision cooling of free-falling droplets)
A drop tube made of a quartz glass tube having a diameter of 30 mm and a height of 1 m is connected to the upper part of a stainless steel tube having a height of 13 m and a diameter of 30 cm. The inside of the quartz glass tube has an inner diameter of 8 mm and a length of 30 cm. The tip was narrowed down, and a quartz glass tube having a small hole with a diameter of 0.3 mm at the tip was inserted and mounted in the quartz glass tube. This quartz glass tube with an inner diameter of 8 mm was filled with 0.3 g of a mixed powder of Cu and In having an atomic ratio of 0.66: 0.34, and the inside of the tube was replaced with helium gas to form a 133 Pa He atmosphere. Next, the Cu—In mixed powder was melted by heating to 750 ° C. in an electric furnace attached to the outside of the quartz glass tube having a diameter of 30 mm, and kept at this temperature. After melting Cu-In, pressurize with 5333 Pa helium gas on the top of the quartz glass tube with an inner diameter of 8 mm containing the melt, push out the melt from a small hole with a diameter of 0.3 mm provided at the bottom of the quartz glass tube, Was made. When the diameter of the droplet reached about 2 mm, it was dropped from the state where the initial velocity was almost zero to the lower part of the dropping tube. Since the falling droplet is almost spherical, it can be seen that the falling droplet is in a microgravity environment, and as a result, the effect of surface tension appears prominently and becomes spherical. A quartz glass plate with a surface of 10cm square and a thickness of 1mm and a surface temperature of room temperature (20 ° C) is installed at a location 6.5m below the small hole, and Cu-In droplets collide with the quartz glass plate to solidify. It was. The solidified material was collected, the cross section was polished, and the alloy structure of the surface etched for 20 seconds at room temperature was observed with an optical microscope using 20 ml of concentrated hydrochloric acid added with 2 g of ferric chloride as an etching solution. In addition, the distribution of Cu and In was observed. As a result, grain boundaries and defects were not observed in the cross section of the solidified product, and it was confirmed that the structure was homogeneous. Moreover, it was confirmed from the observation of the distribution of the solidified cross section of Cu and In that the composition was homogeneous. When the solidified product was pulverized and the crystal structure was examined by a powder X-ray diffraction method, only Cu2In was a crystalline product. From these results, it is clear that a material having a homogeneous composition and structure of Cu 2 In could be produced by the method of the present invention.

比較参考例1
次に、比較のために、落下管中に石英ガラス板を設置せず、13m落下管底部にシリコンオイルを入れた容器を設置し、Cu−In液滴を13mの距離を自由落下する間に凝固させ、球状の凝固生成物を得た。この球状凝固生成物の研磨断面を塩化第2鉄2gを添加した濃塩酸20mlをエッチング液として室温で20秒間エッチングした後の断面を光学顕微鏡写真で観察した。また、Cu及びInの分布を観察した。その結果、光学顕微鏡観察では、直径が25μm程度の結晶粒が断面全体に観察された。また、Cu及びInの分布から各元素が不均一に存在していることが確認された。この凝固生成物を粉砕し、粉末X線回折法で結晶構造を調べると、CuInのみが結晶性生成物であった。
前記の実験結果より、自由落下したCuIn合金を表面温度が室温(20℃)の石英ガラス板に衝突させ、衝突した個所から凝固させることにより、均質組成・組織を持つCuInが生成したことは明らかである。すなわち、自由落下中のCuIn液滴は微小重力環境下にあり、その結果、液滴は均質で、これを石英ガラス板に衝突させ、衝突個所から凝固させる一方向凝固により均質組成・組織を持つ材料が製造できたことが明らかである。
Comparative Reference Example 1
Next, for comparison, a quartz glass plate is not installed in the drop tube, but a container filled with silicon oil is installed at the bottom of the 13 m drop tube, and the Cu-In droplet is allowed to fall freely at a distance of 13 m. Solidified to obtain a spherical solidified product. The polished cross section of this spherical solidified product was observed with an optical microscope photograph after etching for 20 seconds at room temperature with 20 ml of concentrated hydrochloric acid added with 2 g of ferric chloride as an etchant. In addition, the distribution of Cu and In was observed. As a result, in the optical microscope observation, crystal grains having a diameter of about 25 μm were observed on the entire cross section. Moreover, it was confirmed from the distribution of Cu and In that each element exists nonuniformly. When this coagulated product was pulverized and the crystal structure was examined by powder X-ray diffraction method, only Cu 2 In was a crystalline product.
From the above experimental results, it was confirmed that Cu 2 In having a homogeneous composition and structure was produced by colliding a free-falling CuIn alloy against a quartz glass plate having a surface temperature of room temperature (20 ° C.) and solidifying from the colliding part. Is clear. In other words, CuIn droplets during free fall are in a microgravity environment, and as a result, the droplets are homogeneous and have a homogeneous composition and structure by unidirectional solidification that collides with the quartz glass plate and solidifies from the impact location. It is clear that the material could be manufactured.

参考例2
(落下管を用いた自由落下液滴の高速回転体への衝突冷却によるSi−Ge合金均質組成・組織材料の製造)
直径30mm、長さ110cmのパイレックス(登録商標)(R)製チューブの上部に、径35mm、高さ200mmの石英ガラス管に径18mm、高さ100mmの石英ガラス管が接合された反応管を連結した。反応管上部の径18mmの石英ガラス管内に、その頂部から、内径10mm、長さ200mmで、その先端に直径が6mmの小孔を持つ石英ガラス管を挿入装着した。この内径10mm石英ガラス管内部に、原子比4:1のSi−Ge合金1.0gを充填し、その上に径が10mm未満、長さ150mmの石英ガラス管を挿入した。この石英ガラス管はSi−Ge合金と接触する側の開口部を塞いだ。パイレックス(登録商標)(R)製チューブの下部には直径58mm、高さ16mmの傘状銅ブロックを室温にて設置した雰囲気制御用のチャンバーを配置した。傘状銅ブロックは高速回転モーターに直結しており、傘状銅ブロックの周りは厚さ5mmの銅板で覆っていた。Si−Ge合金試料及び傘状銅ブロックを配置した後、管内を2x10−3Pa以下の真空とした。径35mmの石英ガラス管外側には赤外線加熱炉が取り付けてあった。径35mmの石英ガラス管外側に取り付けた赤外線加熱炉でSi−Ge合金を1450℃以上に加熱して融解した。この時、Si−Ge合金の融解に伴って上部に挿入した石英ガラスが下降し、融液が小孔から溶け出した後の隙間を埋めた。小孔から溶け出した融液は石英ガラス管先端で液滴を形成した後、自重によって石英ガラス管から液滴が切り離され、パイレックス(登録商標)(R)製チューブ中を自由落下した。Si−Ge合金液滴を、毎分25000回転の回転速度で高速回転した冷却用部材の回転中心から25mm離れた位置(線速度:毎秒65.4m)に衝突させて凝固させた。凝固物を回収し、断面を研磨し、走査型電子顕微鏡で凝固物の組織を観察し、電子線マイクロアナライザーでSiとGeの分布を観察した。その結果、凝固物断面は5μm程度の粒からなる均質な組織であることが確認された。また、SiとGeの凝固物断面の分布観察から、SiとGeの分布が均質であることが確認された。
Reference example 2
(Manufacture of Si-Ge alloy homogeneous composition and structure material by impact cooling of free-falling droplets to a high-speed rotating body using a drop tube)
A reaction tube in which a quartz glass tube with a diameter of 18 mm and a height of 100 mm is joined to a quartz glass tube with a diameter of 35 mm and a height of 200 mm is connected to the upper part of a Pyrex (R) (R) tube having a diameter of 30 mm and a length of 110 cm. did. A quartz glass tube having an inner diameter of 10 mm, a length of 200 mm, and a small hole with a diameter of 6 mm at the tip was inserted and mounted in a quartz glass tube having a diameter of 18 mm at the top of the reaction tube. This quartz glass tube having an inner diameter of 10 mm was filled with 1.0 g of a Si—Ge alloy having an atomic ratio of 4: 1, and a quartz glass tube having a diameter of less than 10 mm and a length of 150 mm was inserted thereon. This quartz glass tube closed the opening on the side in contact with the Si—Ge alloy. At the bottom of the Pyrex (registered trademark) (R) tube, an atmosphere control chamber in which an umbrella copper block having a diameter of 58 mm and a height of 16 mm was installed at room temperature was arranged. The umbrella-shaped copper block was directly connected to a high-speed rotating motor, and the umbrella-shaped copper block was covered with a copper plate having a thickness of 5 mm. After arranging the Si—Ge alloy sample and the umbrella-shaped copper block, the inside of the tube was evacuated to 2 × 10 −3 Pa or less. An infrared heating furnace was attached to the outside of the quartz glass tube having a diameter of 35 mm. The Si—Ge alloy was heated to 1450 ° C. or higher and melted in an infrared heating furnace attached to the outside of a quartz glass tube having a diameter of 35 mm. At this time, as the Si—Ge alloy melted, the quartz glass inserted in the upper part descended, filling the gap after the melt melted out of the small holes. The melt melted from the small holes formed droplets at the tip of the quartz glass tube, and then the droplets were separated from the quartz glass tube by its own weight, and freely dropped in the Pyrex (R) (R) tube. The Si—Ge alloy droplets were solidified by colliding with a position (linear velocity: 65.4 m / sec) 25 mm away from the rotation center of the cooling member rotated at a high speed of 25000 revolutions per minute. The solidified material was collected, the cross section was polished, the structure of the solidified material was observed with a scanning electron microscope, and the distribution of Si and Ge was observed with an electron beam microanalyzer. As a result, it was confirmed that the cross-section of the solidified product was a homogeneous structure composed of grains of about 5 μm. Moreover, it was confirmed from the distribution observation of the cross-section of the solidified product of Si and Ge that the distribution of Si and Ge is homogeneous.

比較参考例2
次に、比較のために、パイレックス(登録商標)(R)製チューブ下部に直径58mm、高さ16mmの傘上銅ブロックを室温にて設置し、傘上銅ブロックを回転しない状態でSi−Ge合金液滴を衝突させて凝固させた。この凝固物の研磨断面を走査型顕微鏡で組織観察し、電子線マイクロアナライザーでSi−Geの分布を観察した。その結果、凝固物断面には50μmを越える不定形組織が断面全体に観察された。また、SiとGeの凝固物断面の分布観察から、不定形組織中心部では出発原料組成よりSiがリッチで、不定形組織の粒界近傍ではGeがリッチであることが確認された。
Comparative Reference Example 2
Next, for comparison, an umbrella copper block having a diameter of 58 mm and a height of 16 mm is installed at the bottom of a Pyrex (registered trademark) (R) tube at room temperature, and the Si-Ge is not rotated. The alloy droplets collided to solidify. The structure of the polished cross-section of the solidified product was observed with a scanning microscope, and the Si-Ge distribution was observed with an electron beam microanalyzer. As a result, an amorphous structure exceeding 50 μm was observed in the entire cross section of the solidified cross section. Further, from the observation of the distribution of the cross-section of the solidified product of Si and Ge, it was confirmed that Si was richer than the starting material composition at the center of the amorphous structure and that Ge was rich near the grain boundary of the amorphous structure.

前記の実験結果より、自由落下したSi−Ge合金を高速回転させた傘上銅ブロック上に衝突させ、衝突した箇所から凝固させることにより、組織、組成の均質な高品質Si−Ge合金が生成したことは明らかである。すなわち、自由落下中のSi−Ge液滴は微小重力環境下にあり、その結果、液滴は均質で、これを傘上銅ブロックに衝突させ、衝突箇所から凝固する放射方向凝固により、均質組成・組織を持つ材料が製造できたことが明らかである。   From the above experimental results, free-falling Si-Ge alloy collides with a copper block on an umbrella that has been rotated at high speed, and solidifies from the impacted location, thereby producing a high-quality Si-Ge alloy with a uniform structure and composition. It is clear that That is, the Si-Ge droplets in free fall are in a microgravity environment, and as a result, the droplets are homogeneous and collide with the copper block on the umbrella, and by solidification from the collision point, the solid composition is formed by radial solidification. It is clear that a material with a structure could be manufactured.

参考例3
(自由落下液滴の衝突冷却によるFe−Si合金均質組成組織材料の製造)
直径50mm、長さ200cmのステンレス製チューブの上部に、径35mm、高さ400mmの石英ガラスから成る反応管を連結し、その石英ガラス管内に、その頂部から、内径9mm、長さ240mmで、その先端に直径が6mmの小孔を持つアルミナ管を石英ガラス管内に挿入装着した。この内径9mmのアルミナ管内部に、原子比1:2のFe−Si合金0.7gを充填し、管内を2x10−3Pa以下の真空とした。径35mmの石英ガラス管外側には赤外線加熱炉が取り付けてあった。径35mmの石英ガラス管外側に取り付けた赤外線加熱炉でFe−Si合金を1400℃以上に加熱して融解した。この時、溶融液が小孔から溶け出し、アルミナ管先端で液滴を形成した後、自重によってアルミナ管から液滴が切り離され、ステンレス製チューブ中を自由落下した。ステンレス製チューブの下部には40mm角、厚さ15mmの銅板上に0.5mmの厚さのスズを融着させた冷却用部材を室温にて設置し、Fe−Si合金液滴をこの冷却用部材に衝突させて凝固させた。凝固物を回収し、断面を研磨し、走査型電子顕微鏡で凝固物の組織を観察し、電子線マイクロアナライザーでFeとSiの分布を観察した。その結果、凝固物断面は均質な組織であることが確認された。また、FeとSiの凝固物断面の分布観察から、FeとSiの組成が原子比で1:2の均質な組成であることが確認された。これらの結果より本発明により均質組成組織Fe−Si合金が得られたことが明らかである。
Reference example 3
(Production of Fe-Si alloy homogeneous composition structure material by impact cooling of free-falling droplets)
A reaction tube made of quartz glass having a diameter of 35 mm and a height of 400 mm is connected to the upper part of a stainless steel tube having a diameter of 50 mm and a length of 200 cm, and the inside of the quartz glass tube has an inner diameter of 9 mm and a length of 240 mm. An alumina tube having a small hole with a diameter of 6 mm at the tip was inserted and mounted in the quartz glass tube. This alumina tube having an inner diameter of 9 mm was filled with 0.7 g of an Fe—Si alloy having an atomic ratio of 1: 2, and the inside of the tube was evacuated to 2 × 10 −3 Pa or less. An infrared heating furnace was attached to the outside of the quartz glass tube having a diameter of 35 mm. The Fe—Si alloy was heated to 1400 ° C. or higher and melted in an infrared heating furnace attached to the outside of a quartz glass tube having a diameter of 35 mm. At this time, the melt was melted from the small hole and formed a droplet at the tip of the alumina tube, and then the droplet was separated from the alumina tube by its own weight and freely dropped in the stainless steel tube. At the bottom of the stainless steel tube, a cooling member made by fusing 0.5 mm thick tin on a 40 mm square, 15 mm thick copper plate is installed at room temperature, and Fe-Si alloy droplets are used for this cooling. It collided with the member and solidified. The solidified material was collected, the cross section was polished, the structure of the solidified material was observed with a scanning electron microscope, and the distribution of Fe and Si was observed with an electron beam microanalyzer. As a result, it was confirmed that the solidified cross section had a homogeneous structure. Moreover, it was confirmed from the distribution observation of the cross-section of the solidified body of Fe and Si that the composition of Fe and Si was a homogeneous composition with an atomic ratio of 1: 2. From these results, it is clear that a homogeneous composition Fe—Si alloy was obtained by the present invention.

実施例1
(レーザーアブレーション法を用いたβ−FeSiターゲットからのβ−FeSi薄膜の製造)
直径30mm、長さ110cmのパイレックス(登録商標)ガラス製チューブの上部に、径35mm、高さ200mmの石英ガラスから成る反応管を連結し、その石英ガラス管内に、その頂部から、内径9mm、長さ240mmで、その先端に直径が6mmの小孔を持つアルミナ管を石英ガラス管内に挿入装着した。この内径9mmアルミナ管内部に、原子比1:2のFe−Si合金0.7gを充填し、管内を2x10−3Pa以下の真空とした。径35mmの石英ガラス管外側には赤外線加熱炉が取り付けてあった。径35mmの石英ガラス管外側に取り付けた赤外線加熱炉でFe−Si合金を1400℃以上に加熱して融解した。この時、融液が小孔から溶け出し、アルミナ管先端で液滴を形成した後、自重によってアルミナ管から液滴が切り離され、パイレックス(登録商標)ガラス製チューブ中を自由落下した。パイレックス(登録商標)ガラス製チューブの下部には40mm角、厚さ15mmの銅板上に0.6mmの厚さのスズを融着させた冷却用部材を室温にて設置し、Fe−Si合金液滴をこの冷却用部材に衝突させてFeとSiの組成が原子比で1:2の均質な組成の試料を得た。この試料を1x10−3Pa以下の真空中で850℃、1時間熱処理することによって、電子線マイクロアナライザーの結果から試料全面でFeとSiの組成が原子比で1:2であり、X線回折の結果からβ−FeSi単相である試料を得た。
Example 1
(Production of β-FeSi 2 thin film from β-FeSi 2 target using laser ablation method)
A reaction tube made of quartz glass having a diameter of 35 mm and a height of 200 mm is connected to the top of a Pyrex (registered trademark) glass tube having a diameter of 30 mm and a length of 110 cm, and an inner diameter of 9 mm and a length from the top of the quartz glass tube. An alumina tube with a diameter of 240 mm and a small hole with a diameter of 6 mm at the tip was inserted and mounted in the quartz glass tube. This alumina tube having an inner diameter of 9 mm was filled with 0.7 g of an Fe—Si alloy having an atomic ratio of 1: 2, and the inside of the tube was evacuated to 2 × 10 −3 Pa or less. An infrared heating furnace was attached to the outside of the quartz glass tube having a diameter of 35 mm. The Fe—Si alloy was heated to 1400 ° C. or higher and melted in an infrared heating furnace attached to the outside of a quartz glass tube having a diameter of 35 mm. At this time, the melt melted from the small holes and formed droplets at the tip of the alumina tube, and then the droplets were separated from the alumina tube by its own weight and dropped freely in the Pyrex (registered trademark) glass tube. At the bottom of the Pyrex (registered trademark) glass tube, a cooling member made by fusing tin of 0.6 mm thickness on a copper plate of 40 mm square and 15 mm thickness is installed at room temperature, and Fe-Si alloy liquid Droplets were made to collide with the cooling member to obtain a sample having a homogeneous composition of Fe and Si in an atomic ratio of 1: 2. By heat-treating this sample at 850 ° C. for 1 hour in a vacuum of 1 × 10 −3 Pa or less, the composition of Fe and Si is 1: 2 in atomic ratio on the entire surface of the sample from the result of the electron beam microanalyzer, and X-ray diffraction From the results, a sample having a single phase of β-FeSi 2 was obtained.

この試料約1.5gを瑪瑙乳鉢で粉砕し、直径20mmの円筒形に加圧成形し、1x10−3Pa以下の真空中で925℃、1時間熱処理を行った。これをターゲットホルダーに乗せてレーザーアブレーション装置に入れ、1x10−3Pa以下の真空に排気した。ターゲットホルダーはレーザー光の照射軸に対して45°傾いており、ターゲットホルダーから約40mm離れた位置にターゲットホルダーと平行にSi(100)面の基板17mm×20mmを配置した。基板はエタノールとアセトンによる洗浄を行い、基板温度は室温とした。レーザー光は、Nd:YAGレーザーの第3高調波(355nm)を用い、石英レンズで集光して約4J/cmの出力としたものを繰り返し周波数10Hzで5分間、ターゲットに照射した。レーザー光を照射中、ターゲットは毎分約4回転で回転していた。得られた薄膜をX線回折で調べたところ、基板に用いたSi(100)面に対応する回折ピークの他に、β−FeSiの回折ピークのみが確認され、原子比1:2の均質なFe−Si合金薄膜(厚さ:150nm)が得られることがわかった。 About 1.5 g of this sample was pulverized in an agate mortar, pressed into a cylindrical shape having a diameter of 20 mm, and heat-treated at 925 ° C. for 1 hour in a vacuum of 1 × 10 −3 Pa or less. This was placed on a target holder, placed in a laser ablation apparatus, and evacuated to a vacuum of 1 × 10 −3 Pa or less. The target holder was inclined 45 ° with respect to the irradiation axis of the laser beam, and a substrate of 17 mm × 20 mm with a Si (100) surface was disposed in parallel with the target holder at a position about 40 mm away from the target holder. The substrate was washed with ethanol and acetone, and the substrate temperature was room temperature. The laser beam used was a third harmonic (355 nm) of an Nd: YAG laser, and the target was irradiated with a quartz lens condensed to an output of about 4 J / cm 2 at a repetition frequency of 10 Hz for 5 minutes. During irradiation with laser light, the target was rotating at about 4 revolutions per minute. When the obtained thin film was examined by X-ray diffraction, in addition to the diffraction peak corresponding to the Si (100) plane used for the substrate, only the diffraction peak of β-FeSi 2 was confirmed, and the atomic ratio was 1: 2. It was found that a thin Fe—Si alloy thin film (thickness: 150 nm) was obtained.

次に、比較のために、落下管による急冷凝固前の原子比1:2のFe−Si合金を用いてレーザーアブレーション法による薄膜を合成した。この合金は、FeとSiの組成が原子比で1:1のεFeSiの100μm程度の粒子がFeとSiの組成が原子比で1:2.3のα−FeSiのマトリックスに不均一に分散した組織をしており、これを粉砕して、円筒形に加圧成形した後、1x10−3Pa以下の真空中で925℃、1時間熱処理を行ったところ、X線回折ではβ−FeSiとε−FeSiの混合物であった。これをターゲットとして同様の条件でレーザーアブレーションを行ったところ、薄膜が得られた。X線回折を行ったところ、基板に用いたSi(100)面に対応する回折ピークの他には回折ピークは得られなかった。 Next, for comparison, a thin film by a laser ablation method was synthesized using an Fe—Si alloy having an atomic ratio of 1: 2 before rapid solidification by a drop tube. In this alloy, particles of about 100 μm of εFeSi having an atomic ratio of Fe and Si of 1: 1 are dispersed unevenly in an α-FeSi 2 matrix having an atomic ratio of Fe and Si of 1: 2.3. This was pulverized and pressed into a cylindrical shape, and then heat treated at 925 ° C. for 1 hour in a vacuum of 1 × 10 −3 Pa or less. As a result of X-ray diffraction, β-FeSi 2 And ε-FeSi. When this was used as a target and laser ablation was performed under the same conditions, a thin film was obtained. When X-ray diffraction was performed, no diffraction peak was obtained in addition to the diffraction peak corresponding to the Si (100) plane used for the substrate.

Claims (1)

均質な組成・組織を有する固体材料を出発原料とし、該出発原料をレーザーアブレーション法によって基板に堆積させることを特徴とする均質な組成・組織を有する固体薄膜の製造方法。   A method for producing a solid thin film having a homogeneous composition / structure, wherein a solid material having a homogeneous composition / structure is used as a starting material, and the starting material is deposited on a substrate by a laser ablation method.
JP2003305752A 2003-08-29 2003-08-29 Method for producing solid thin film having homogeneous composition / structure Expired - Lifetime JP4168140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305752A JP4168140B2 (en) 2003-08-29 2003-08-29 Method for producing solid thin film having homogeneous composition / structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305752A JP4168140B2 (en) 2003-08-29 2003-08-29 Method for producing solid thin film having homogeneous composition / structure

Publications (2)

Publication Number Publication Date
JP2005076059A true JP2005076059A (en) 2005-03-24
JP4168140B2 JP4168140B2 (en) 2008-10-22

Family

ID=34409018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305752A Expired - Lifetime JP4168140B2 (en) 2003-08-29 2003-08-29 Method for producing solid thin film having homogeneous composition / structure

Country Status (1)

Country Link
JP (1) JP4168140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111804A1 (en) * 2005-03-28 2006-10-26 Kanagawa Academy Of Science And Technology Semiconductor manufacturing method and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111804A1 (en) * 2005-03-28 2006-10-26 Kanagawa Academy Of Science And Technology Semiconductor manufacturing method and semiconductor device

Also Published As

Publication number Publication date
JP4168140B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US6106739A (en) Method and apparatus for fabricating near spherical semiconductor single crystal particulate and the spherical product produced
Korte et al. Formation of microbumps and nanojets on gold targets by femtosecond laser pulses
EP0466617B1 (en) Process for the production of high purity aluminium-based cathodes for cathodic sputtering
US20070099332A1 (en) Chalcogenide PVD components and methods of formation
US20080112878A1 (en) Alloy casting apparatuses and chalcogenide compound synthesis methods
US3297436A (en) Method for making a novel solid metal alloy and products produced thereby
Li et al. High undercooling of bulk molten silicon by containerless processing
US3554739A (en) Alloys and processes for their manufacture
US8545942B2 (en) Method for producing clathrate compounds
JP4168140B2 (en) Method for producing solid thin film having homogeneous composition / structure
Laridjani et al. Metastable phase formation in a laser-irradiated silver-germanium alloy
US20170015550A1 (en) Spherical nanoparticle hydrides, and methods for making the same
JP5130605B2 (en) Method for manufacturing high performance materials
JP3087964B1 (en) Method for producing high quality crystalline material by impact solidification of free-falling droplets
Sitnikov et al. The microstructure of rapidly quenched TiNiCu ribbons crystallized by isothermal and electropulse treatments
JP3931223B2 (en) Method for producing homogeneous composition structure material by impact solidification of free-falling droplets
EP0178034A1 (en) Process for preparing amorphous of intermetallic compounds by a chemical reaction
EP0177110B1 (en) Process for accelerating amorphization of intermetallic compounds by a chemical reaction using lattice defects
JPH064519B2 (en) Manufacturing method of giant magnetostrictive alloy rod composed of rare earth metal and transition metal
JP3931222B2 (en) Method for producing uniform composition / homogeneous textured material by impact solidification using braking in drop tower
JP2004091857A (en) Method for manufacturing solid material having homogeneous composition/structure
Pelleg et al. Fabrication
JPS5933161B2 (en) Active metal or active alloy powder manufacturing method and its manufacturing equipment
TW200902741A (en) Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
Follstaedt et al. Formation of icosahedral Al (Mn) by pulsed surface melting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4168140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term