JP2005074371A5 - - Google Patents

Download PDF

Info

Publication number
JP2005074371A5
JP2005074371A5 JP2003310413A JP2003310413A JP2005074371A5 JP 2005074371 A5 JP2005074371 A5 JP 2005074371A5 JP 2003310413 A JP2003310413 A JP 2003310413A JP 2003310413 A JP2003310413 A JP 2003310413A JP 2005074371 A5 JP2005074371 A5 JP 2005074371A5
Authority
JP
Japan
Prior art keywords
adsorbent
magnetic field
magnetic
separation
continuous supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003310413A
Other languages
Japanese (ja)
Other versions
JP4353466B2 (en
JP2005074371A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2003310413A priority Critical patent/JP4353466B2/en
Priority claimed from JP2003310413A external-priority patent/JP4353466B2/en
Publication of JP2005074371A publication Critical patent/JP2005074371A/en
Publication of JP2005074371A5 publication Critical patent/JP2005074371A5/ja
Application granted granted Critical
Publication of JP4353466B2 publication Critical patent/JP4353466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

吸着体連続給排型高勾配磁気分離装置Adsorbent continuous supply / discharge type high gradient magnetic separator

本発明は、高磁界勾配部分と低磁界勾配分とを有する不均一磁界を利用して被処理流体から被分離物を分離する吸着体連続給排型高勾配磁気装置に関する。   The present invention relates to an adsorbent continuous supply / discharge type high gradient magnetic apparatus that separates an object to be separated from a fluid to be processed using a non-uniform magnetic field having a high magnetic field gradient portion and a low magnetic field gradient portion.

磁気を利用して流体中の被分離物を回収除去することは古くから行われている。例えば、製鉄所の排水や循環水を強力な磁石に接触させて、そこに含まれる鉄粉等の被分離物を回収すること等が、これに該当する。   Collecting and removing separated objects in fluids using magnetism has long been performed. For example, the wastewater or circulating water of an ironworks is brought into contact with a powerful magnet, and an object to be separated such as iron powder contained therein is recovered.

従来の高勾配磁気分離手法では、被分離物を付着させるための吸着体として磁性金属からなる微細網状体を包袋状に丸めたものや、円盤状の網状体を多層に積層したものを主に用いていた。また、特許文献1(特開平11−300120号公報)には被分離物を付着させるための吸着体として多孔質ボールを用いる技術も提案されている。   Conventional high-gradient magnetic separation methods mainly consist of a fine network made of magnetic metal rolled into a sachet as an adsorbent for attaching an object to be separated, or a multi-layered disk-shaped network. It was used for. Patent Document 1 (Japanese Patent Application Laid-Open No. 11-300120) also proposes a technique using a porous ball as an adsorbent for adhering an object to be separated.

しかしながら、本発明者らが実験に基づき鋭意研究した結果、高勾配磁気分離には次のような問題点が残されていることが判明した。   However, as a result of intensive studies based on experiments by the present inventors, it has been found that the following problems remain in high gradient magnetic separation.

すなわち、高勾配磁気分離においては、テスラオーダーの不均一磁界を用いる必要がある。そのため、吸着体は磁界内に強固に拘束されてしまい、消磁しないことには、吸着体を磁界内から取り出して洗浄することができない。しかも、かかるテスラオーダーの磁界を発生させる装置としては、励消磁にある程度の時間を要する超伝導磁石しかないのが現状である。   That is, in high gradient magnetic separation, it is necessary to use a non-uniform magnetic field of Tesla order. For this reason, the adsorbent is firmly restrained in the magnetic field, and the adsorbent cannot be removed from the magnetic field and washed without demagnetization. Moreover, as a device for generating a Tesla order magnetic field, there is currently only a superconducting magnet that requires a certain amount of time for excitation and demagnetization.

したがって、従来の高勾配磁気分離技術は、吸着体を磁界内から取り出すに際して磁界の励消磁が必要であり、実アプリケーションとして利用できるような連続的な処理は不可能なものであった。この問題点は、一見すると連続処理が可能なように見える特許文献1記載の技術においても同様である。
特開平11−300120号公報
Therefore, the conventional high gradient magnetic separation technology requires excitation and demagnetization of the magnetic field when the adsorbent is taken out from the magnetic field, and continuous processing that can be used as an actual application is impossible. This problem also applies to the technique described in Patent Document 1 that appears to be capable of continuous processing at first glance.
JP-A-11-300120

そこで、本発明の主たる課題は、吸着体の連続給排が可能であり、連続処理に適した吸着体連続給排型高勾配磁気分離装置および方法を提供することにある。   Accordingly, a main object of the present invention is to provide an adsorbent continuous supply / discharge type high gradient magnetic separation apparatus and method which can continuously supply and discharge adsorbents and is suitable for continuous processing.

上記課題を解決した本発明は、次記のとおりである。
<請求項1記載の発明>
磁性を有する吸着体と、
高磁界勾配部分と低磁界勾配部分とを有する不均一磁界を発生させる磁界発生手段と、
前記吸着体を、前記不均一磁界を弱めることなく前記不均一磁界内に供給する供給手段と、
前記不均一磁界内において吸着体と被処理流体とを接触させ、被処理流体中に含まれる被分離物を吸着体に付着させる手段と、
前記被分離物が付着した吸着体を、前記不均一磁界を弱めることなく前記不均一磁界外へ抜き出す抜出手段とを備えた、
ことを特徴とする吸着体連続給排型高勾配磁気分離装置。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
An adsorbent having magnetism;
Magnetic field generating means for generating a non-uniform magnetic field having a high magnetic field gradient portion and a low magnetic field gradient portion;
Supply means for supplying the adsorbent into the non-uniform magnetic field without weakening the non-uniform magnetic field;
Means for bringing the adsorbent and the fluid to be processed into contact with each other in the non-uniform magnetic field, and attaching an object to be separated contained in the fluid to be processed to the adsorbent;
An extraction means for extracting the adsorbent to which the object to be separated is attached to the outside of the non-uniform magnetic field without weakening the non-uniform magnetic field;
An adsorbent continuous supply / discharge type high gradient magnetic separation device.

(作用効果)
本発明によれば、不均一磁界を弱める(消磁を含む)ことなく、被分離物が付着した吸着体を不均一磁界内に供給し、また供給した吸着体を抜き出すことができる。したがって、高勾配磁気による分離効果を維持したままで、被分離物が付着した吸着体を不均一磁界内から外部へ連続的に抜き出すことおよび不均一磁界内に連続的に戻すことが可能となる。
(Function and effect)
According to the present invention, it is possible to supply an adsorbent to which an object to be separated is attached into the non-uniform magnetic field and to extract the supplied adsorbent without weakening the non-uniform magnetic field (including demagnetization). Accordingly, it is possible to continuously extract the adsorbent to which the separation object is attached from the inside of the non-uniform magnetic field and continuously return it to the non-uniform magnetic field while maintaining the separation effect by the high gradient magnetic field. .

なお、本発明にいう「被分離物」とは、本来的に磁性を有するもののほか、弱磁性体の磁性を強めたものや非磁性体に担磁したものも含む。   The “separated object” as used in the present invention includes not only those that are inherently magnetic, but also those in which the magnetism of a weak magnetic material is increased or those that are magnetized by a non-magnetic material.

<請求項2記載の発明>
前記不均一磁界に対し、弱磁気力部位に前記吸着体を供給し、この供給粒子が強磁気力部位に移動する過程で前記接触を行うように構成した、請求項1記載の吸着体連続給排型高勾配磁気分離装置。
<Invention of Claim 2>
The adsorbent continuous supply according to claim 1, wherein the adsorbent is supplied to a weak magnetic force site with respect to the non-uniform magnetic field, and the contact is performed in a process in which the supplied particles move to the strong magnetic force site. Exhaust type high gradient magnetic separator.

(作用効果)
不均一磁界内においては、磁気力の相対的な強弱が存在する。したがって弱磁気力部位に吸着体を供給すると、その吸着体は磁気力によって強磁気力部位へと自動的に移動する。本請求項2記載の発明はこれを利用して、吸着体粒子を移動する過程で被処理流体との接触を行うものである。かかる構成を採ることによって、吸着体粒子による移動層が形成され移動層式の分離が可能となる。また、吸着体粒子を弱磁気力部位に送り込むだけで例えば磁界外への排出位置に向けて移動させたりすることも可能である。そして特筆すべきは、磁気分離に必要な不均一磁界を弱めることなく、かかる利点が得られることである。
(Function and effect)
Within a non-uniform magnetic field, there is a relative strength of the magnetic force. Accordingly, when the adsorbent is supplied to the weak magnetic force site, the adsorbent automatically moves to the strong magnetic force site by the magnetic force. The invention described in claim 2 makes use of this to make contact with the fluid to be treated in the process of moving the adsorbent particles. By adopting such a configuration, a moving bed of adsorbent particles is formed, and moving bed type separation becomes possible. It is also possible to move the adsorbent particles toward the discharge position to the outside of the magnetic field, for example, by simply feeding the adsorbent particles to the weak magnetic force site. It should be noted that this advantage can be obtained without weakening the inhomogeneous magnetic field required for magnetic separation.

<請求項3記載の発明>
不均一磁界内にある吸着体を、機械力により、弱磁気力部位へ導き弱磁気力部位を通して移動させ前記不均一磁界外へ抜き出すように構成した、請求項1または2記載の吸着体連続給排型高勾配磁気分離装置。
<Invention of Claim 3>
The adsorbent continuous supply according to claim 1 or 2, wherein an adsorbent in a non-uniform magnetic field is guided to a weak magnetic force site by mechanical force, moved through the weak magnetic force site, and extracted outside the non-uniform magnetic field. Exhaust type high gradient magnetic separator.

(作用効果)
強磁気力部位にある吸着体は当該位置に強固に拘束されるためそこからの不均一磁界外への抜き出しは非常に困難となる。しかるに本請求項3記載の発明に従って、吸着体を機械力により弱磁気力部位へ導き弱磁気力部位を通して移動させ不均一磁界外(吸着体が不均一磁界の影響を実質的に受けない位置)へ抜き出すことで、より少ない機械力で不均一磁界内からの吸着体の抜き出しが可能となる。
(Function and effect)
Since the adsorbent at the strong magnetic force site is firmly restrained at the position, it is very difficult to extract it from the non-uniform magnetic field. However, according to the invention described in claim 3, the attracting body is guided to the weak magnetic force site by the mechanical force and moved through the weak magnetic force site (position where the attracting body is not substantially affected by the nonuniform magnetic field). By pulling out, the adsorbent can be extracted from the non-uniform magnetic field with less mechanical force.

<請求項4記載の発明>
前記移動する吸着体が前記抜き出しのための移動方向と反対の方向に逆行するのを防止するように構成した、請求項3記載の吸着体連続給排型高勾配磁気分離装置。
<Invention of Claim 4>
The adsorbent continuous supply / discharge high gradient magnetic separation device according to claim 3, configured to prevent the moving adsorbent from going backward in a direction opposite to a moving direction for the extraction.

(作用効果)
吸着体を磁場中から磁場外に抜き出す際に吸着体には磁場中に引き寄せられる力が働いている。このため、例えばスクリュウコンベアのような構造の抜出機械では磁場中の吸着体を磁場外に効率的に抜き出すことが難しい。このため、本請求項記載のように、吸着体が抜き出しのための移動方向と反対の方向に逆行するのを防止するように構成することが望ましい。
(Function and effect)
When the adsorbent is extracted from the magnetic field to the outside of the magnetic field, a force attracted to the magnetic field is exerted on the adsorbent. For this reason, it is difficult to efficiently extract the adsorbent in the magnetic field out of the magnetic field with an extraction machine having a structure such as a screw conveyor. For this reason, as described in this claim, it is desirable that the adsorbent be prevented from going backward in the direction opposite to the moving direction for extraction.

<請求項5記載の発明>
前記吸着体の機械力による抜き出しに先立ち又はその過程で、吸着体の集合体を崩すための手段を設けた、請求項3または4記載の吸着体連続給排型高勾配磁気分離装置。
<Invention of Claim 5>
The adsorbent continuous supply / discharge type high gradient magnetic separation apparatus according to claim 3 or 4, further comprising means for breaking the aggregate of adsorbents prior to or in the process of extracting the adsorbents by mechanical force.

(作用効果)
多数の磁性を有する吸着体を強磁場中におくと、吸着体は相互に磁化し、大きな集合体(クラスター)となって振る舞うことがわかっている。この集合体化により吸着体はフレキシブルな移動が抑制されてしまい、抜き出しが困難となる。このため、抜き出しに先立って又は抜き出しの過程で、集合体化した吸着体を崩す(または解す)ような機構を併設することは、上記のような機械力による抜き出しを行う場合に非常に有効である。
(Function and effect)
It is known that when an adsorbent having a large number of magnetisms is placed in a strong magnetic field, the adsorbents are magnetized to each other and behave as a large aggregate (cluster). As a result of this assembly, the flexible movement of the adsorbent is suppressed, making extraction difficult. For this reason, it is very effective to provide a mechanism that breaks (or unravels) the aggregated adsorbent prior to or in the process of extraction when performing extraction by mechanical force as described above. is there.

<請求項6記載の発明>
前記吸着体は、平均粒径が0.3〜3.0mmの球状の非多孔質磁性体粒子である、請求項1〜5のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。
<Invention of Claim 6>
The adsorbent continuous supply / discharge high-gradient magnetism according to any one of claims 1 to 5, wherein the adsorbent is a spherical non-porous magnetic particle having an average particle diameter of 0.3 to 3.0 mm. Separation device.

(作用効果)
吸着体として非多孔質の磁性体粒子を用いると、不均一磁界中の磁性体粒子の多くが集合体(かかる集合体は一つの場合もあるが、複数形成される場合もある)を形成し、この集合体が密充填吸着体となる結果、被処理流体との接触効率が高くなり、処理効率は非常に高くなる。
(Function and effect)
When non-porous magnetic particles are used as the adsorbent, many of the magnetic particles in a non-uniform magnetic field form an aggregate (there may be a single aggregate or a plurality of such aggregates). As a result of this aggregate becoming a densely packed adsorbent, the contact efficiency with the fluid to be processed becomes high, and the processing efficiency becomes very high.

しかも、この集合体は磁場外では解離不能なものではない。よって、消磁により再び元の粒子相互が解離した状態に戻したり、機械的洗浄により集合体内部の粒子表面を洗浄したりできるため、従来の網状体や多孔質ボールとも異なり、磁化した被分離物の除去も著しく容易にできる。   Moreover, this aggregate is not indissociable outside the magnetic field. Therefore, it is possible to return to the state in which the original particles are dissociated again by demagnetization, or the particle surface inside the aggregate can be cleaned by mechanical cleaning. Therefore, unlike conventional nets and porous balls, magnetized objects to be separated Removal can be significantly facilitated.

磁性体粒子の大きさは分離対象の大きさや、磁性体粒子の外形との関係で定まるため一概にいえるものではないが、球状粒子の場合、平均粒径が3.0mmよりも大きいと空隙率が高くなり、粒子間隙を通過する流体の圧力損失が低くなる結果、偏流が発生しやすくなり、吸着状態が不均一になる。また、高勾配磁気分離はその特性上高速通水が可能であり、高効率での処理が可能であるが、かかる場合に空隙率が高いと粒子と被処理流体との接触効率が落ちるので、平均粒径を3.0mm以下とし、空隙率を極力低くするほうが好ましい。また粒子径が3.0mmよりも大きいと比表面積が小さくなり、吸着効率が低下する。   Since the size of the magnetic particles is determined by the size of the separation target and the relationship with the outer shape of the magnetic particles, it cannot be said unconditionally, but in the case of spherical particles, if the average particle size is larger than 3.0 mm, the porosity is As a result, the pressure loss of the fluid passing through the particle gap is reduced, so that drift is likely to occur and the adsorption state becomes non-uniform. In addition, high gradient magnetic separation is capable of high-speed water passage due to its characteristics, and high-efficiency processing is possible, but in such a case, if the porosity is high, the contact efficiency between the particles and the fluid to be treated decreases. It is preferable that the average particle size is 3.0 mm or less and the porosity is as low as possible. On the other hand, if the particle diameter is larger than 3.0 mm, the specific surface area becomes small and the adsorption efficiency is lowered.

一方、磁性体粒子の平均粒径が0.3mmよりも小さいと粒子間隙における流体の通過圧力損失が高くなるだけでなく、磁性体粒子集合体が密になり過ぎるために流体と粒子の接触が不均一になる。   On the other hand, if the average particle size of the magnetic particles is smaller than 0.3 mm, not only does the fluid passing pressure loss in the particle gap increase, but the magnetic particle aggregate becomes too dense and the contact between the fluid and the particles is reduced. It becomes uneven.

よって本発明では、平均粒径が0.3〜3.0mmの磁性体球状粒子を使用するのが好ましい。かかる範囲の磁性体粒子が集合体化すると、多孔質材料等と比べても遜色ない比表面積を有するようになり、より確実に前述の磁性体粒子の集合体化による作用効果が発揮される。   Therefore, in the present invention, it is preferable to use magnetic spherical particles having an average particle diameter of 0.3 to 3.0 mm. When the magnetic particles in such a range are aggregated, they have a specific surface area comparable to that of a porous material or the like, and the effects of the above-described aggregation of magnetic particles are more reliably exhibited.

<請求項7記載の発明>
前記吸着体は、フェライト系ステレンスまたはマルテンサイト系ステンレスよりなるものである、請求項1〜6のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。
<Invention of Claim 7>
The adsorbent continuous supply / discharge high gradient magnetic separator according to any one of claims 1 to 6, wherein the adsorbent is made of ferritic stainless steel or martensitic stainless steel.

(作用効果)
かかる材質の吸着体は、磁束線の収束による磁気勾配の発生が容易であり、機械的・化学的耐久性も高いため、本発明に好適に用いることができる。
(Function and effect)
An adsorbent made of such a material can be easily used in the present invention because it easily generates a magnetic gradient due to convergence of magnetic flux lines and has high mechanical and chemical durability.

<請求項8記載の発明>
前記磁界発生手段は1テスラ以上の磁場を作用させるものである、請求項1〜7のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。
<Invention of Claim 8>
The adsorbent continuous supply / discharge high gradient magnetic separator according to any one of claims 1 to 7, wherein the magnetic field generating means applies a magnetic field of 1 Tesla or more.

(作用効果)
本発明の高勾配磁気分離においては、かかる範囲の磁場を作用させるのが望ましい。
(Function and effect)
In the high gradient magnetic separation of the present invention, it is desirable to apply such a magnetic field.

<請求項9記載の発明>
分離槽を備え、この分離槽内で前記吸着体と被処理流体とを接触させた後、前記被分離物が付着した吸着体を前記分離槽外に抜き出して洗浄を行い、前記吸着体から被分離物を除去した後にこれを再び前記分離槽に戻すように構成した、請求項1〜8のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。
<Invention of Claim 9>
A separation tank is provided, and after the adsorbent and the fluid to be treated are brought into contact with each other in the separation tank, the adsorbent to which the object to be separated is attached is extracted out of the separation tank and washed, and the adsorbent is covered with the adsorbent. The adsorbent continuous supply / discharge high gradient magnetic separation apparatus according to any one of claims 1 to 8, wherein the separation object is removed and then returned to the separation tank.

(作用効果)
本発明は、前述のとおり処理効率が高くかつ吸着体からの被分離物の分離性が良いので、吸着体を洗浄処理を介して循環利用する場合に好適であり、またこの場合実質的に連続的な高勾配磁気分離も可能である。なお、「実質的に連続的な高勾配磁気分離」とは、吸着体と被処理流体との接触処理が洗浄処理の遅延により中断することがないことを意味し、洗浄処理等の一部の処理が断続的な場合を含む。なお、効率の面から一連の処理の全てを連続的又はこれに準ずるペースで行うほうが好ましいことはいうまでもない。
(Function and effect)
As described above, the present invention is suitable for the case where the adsorbent is circulated through the cleaning process because of high processing efficiency and good separation of the object to be separated from the adsorbent, and in this case, substantially continuous. High gradient magnetic separation is also possible. In addition, “substantially continuous high gradient magnetic separation” means that the contact process between the adsorbent and the fluid to be processed is not interrupted by a delay in the cleaning process, and a part of the cleaning process, etc. Includes cases where processing is intermittent. Needless to say, it is preferable to perform all of the series of processes continuously or at a pace similar to this in terms of efficiency.

<請求項10記載の発明>
前記吸着体と被処理流体との接触を、向流接触により行うように構成した、請求項1〜9のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。
<Invention of Claim 10>
The adsorbent continuous supply / discharge high gradient magnetic separation apparatus according to claim 1, wherein the adsorbent and the fluid to be treated are contacted by countercurrent contact.

(作用効果)
本発明では、吸着体と被処理流体との接触形態としては、いわゆる向流接触方式が好適である。ただし、被分離物は吸着体表面に吸着するため、並流接触でも十分に使用可能である。
(Function and effect)
In the present invention, a so-called countercurrent contact system is suitable as a contact form between the adsorbent and the fluid to be processed. However, since the object to be separated is adsorbed on the surface of the adsorbent, it can be used sufficiently even in cocurrent contact.

以上のとおり、本発明によれば連続処理に適した高勾配磁気分離装置および方法が提供される。   As described above, according to the present invention, a high gradient magnetic separation apparatus and method suitable for continuous processing are provided.

以下、本発明の実施形態について、吸着体として磁性体粒子を用いた場合を例にとり詳説する。
<概要>
図1は本発明に好適な実施形態の基本フローを示している。同図の例では、先ず被処理流体中の微量非磁性または弱磁性成分を前処理し、後の高勾配磁気分離において分離可能なレベルまで磁性を付与し、被分離物とする。この前処理は本発明では必須ではない(詳細については後述する)。分離対象が十分な磁性を有している場合には、被処理流体を前処理を施さずに高勾配磁気分離装置1に供給することができる。
Hereinafter, the embodiment of the present invention will be described in detail by taking as an example the case of using magnetic particles as an adsorbent.
<Overview>
FIG. 1 shows a basic flow of a preferred embodiment of the present invention. In the example of the figure, first, a minute amount of non-magnetic or weak magnetic component in the fluid to be treated is pretreated, and magnetism is given to a level that can be separated in the subsequent high gradient magnetic separation to obtain a material to be separated. This pretreatment is not essential in the present invention (details will be described later). When the separation target has sufficient magnetism, the fluid to be treated can be supplied to the high gradient magnetic separation device 1 without performing pretreatment.

吸着体連続給排型高勾配磁気分離装置(以下、単に高勾配磁気分離装置という)1は高勾配磁気分離部1Aと洗浄装置1Bとから構成されている。高勾配磁気分離部1Aにおいては、高磁界勾配部分および低磁界勾配部分を有する不均一磁界が形成されており、この磁界内に磁性体粒子(吸着体に相当)が供給され、供給した磁性体粒子に対して被処理流体が接触され、その過程で磁性体粒子に分離対象の被分離物が付着する。磁性体粒子は、被分離物の付着量がある程度まで増加すると不均一磁界内から抜き出されて洗浄装置1Bに供給される。一方、被処理流体は磁性体粒子との接触時間に応じて分離対象被分離物が次第に除去され、ある程度まで除去された後に処理済流体として系外に取り出される。   An adsorbent continuous supply / discharge type high gradient magnetic separation device (hereinafter simply referred to as a high gradient magnetic separation device) 1 includes a high gradient magnetic separation unit 1A and a cleaning device 1B. In the high gradient magnetic separation unit 1A, a non-uniform magnetic field having a high magnetic field gradient portion and a low magnetic field gradient portion is formed, and magnetic particles (corresponding to an adsorbent) are supplied into the magnetic field, and the supplied magnetic material The fluid to be treated is brought into contact with the particles, and the separation target to be separated adheres to the magnetic particles in the process. The magnetic particles are extracted from the non-uniform magnetic field and supplied to the cleaning device 1B when the amount of the adhered object increases to some extent. On the other hand, the separation target separation object is gradually removed according to the contact time with the magnetic particles, and after being removed to some extent, the fluid to be treated is taken out of the system as a treated fluid.

洗浄装置1Bに供給された磁性体粒子は超音波洗浄等の適宜の洗浄処理を受けて付着した被分離物が洗い落とされる。被分離物の付着力にもよるが、通常の場合、洗浄に先立って又は洗浄中において適宜の消磁処理を施すのが望ましい。洗浄が終了した磁性体粒子は再び高勾配磁気分離部1Aに対して戻される。一方、洗い落とされた被分離物は洗浄装置1Bから系外へ排出される。   The magnetic particles supplied to the cleaning apparatus 1B are subjected to an appropriate cleaning process such as ultrasonic cleaning, and the attached separation object is washed away. Although depending on the adhesion of the object to be separated, it is usually desirable to carry out an appropriate demagnetization treatment prior to or during the cleaning. The magnetic particles that have been cleaned are returned to the high gradient magnetic separation unit 1A again. On the other hand, the objects to be separated that have been washed off are discharged out of the system from the washing apparatus 1B.

そして、本発明において特徴的には、このような不均一磁界内に対する磁性体粒子の給排が、不均一磁界を弱めずに行われるように構成される。そのため、かかる磁性体粒子のリサイクルと相まって、連続的な高勾配磁気分離を達成することができるようになる。   Characteristically, in the present invention, the supply and discharge of the magnetic particles with respect to the inhomogeneous magnetic field is performed without weakening the inhomogeneous magnetic field. Therefore, continuous high gradient magnetic separation can be achieved in combination with recycling of the magnetic particles.

<磁気分離部の第1の実施形態>
図2は、上記基本フローにおける磁気分離部1Aに相当する分離部装置例10を示している。この分離部装置10は、円筒形磁石12と、その上方の適宜の位置から内空の長手方向中央部まで同軸的に延在するように配置された略円筒形の分離槽11を備えている。
<First Embodiment of Magnetic Separation Unit>
FIG. 2 shows a separator unit example 10 corresponding to the magnetic separator 1A in the basic flow. The separation device 10 includes a cylindrical magnet 12 and a substantially cylindrical separation tank 11 arranged so as to extend coaxially from an appropriate position above the magnet 12 to a central portion in the longitudinal direction of the inner space. .

磁界発生手段としての円筒磁石12は、永久磁石、電磁石、超伝導磁石等、種類を問わず使用できるが、前述のとおり、1テスラ以上の磁場を作用させうるものが好適に使用される。   The cylindrical magnet 12 as the magnetic field generating means can be used regardless of the type, such as a permanent magnet, an electromagnet, or a superconducting magnet, but as described above, the one that can apply a magnetic field of 1 Tesla or more is preferably used.

分離槽11は、下端部に漏斗状の粒子集合部11bを有するとともに、この上側の適宜位置から上端までの径方向中央部分を占有する円柱状軸部11cを有している。分離槽11の上端開口は、軸部の外面と分離槽11の内壁面との間に連通する給排口11aとされており、この給排口11aは、粒子供給ポンプp1を介して図示しない前述の洗浄装置の粒子出側に対して連通されるとともに、処理済み流体の排出経路r1に連通される。一方、粒子集合部11bの側面に図示しない流体供給部が設けられるとともに、粒子集合部11bの下端開口は粒子排出口とされており、この粒子排出口に対してスクリューコンベヤ13の導入口が連通接続されている。このスクリューコンベヤ13は、円筒磁石12の内空の長手方向中央部からその下方の適宜位置まで、円筒磁石12の中心軸に沿って同軸的に延在されており、その下端部排出口は、排出ポンプp2を介して前述の洗浄装置の粒子入側に連通接続される。   The separation tank 11 has a funnel-shaped particle aggregate portion 11b at the lower end portion and a cylindrical shaft portion 11c that occupies a radial center portion from an appropriate position on the upper side to the upper end. The upper end opening of the separation tank 11 is a supply / discharge port 11a communicating between the outer surface of the shaft portion and the inner wall surface of the separation tank 11, and this supply / discharge port 11a is not shown via the particle supply pump p1. In addition to communicating with the particle exit side of the aforementioned cleaning device, it communicates with the treated fluid discharge path r1. On the other hand, a fluid supply unit (not shown) is provided on the side surface of the particle assembly portion 11b, and the lower end opening of the particle assembly portion 11b is a particle discharge port. The introduction port of the screw conveyor 13 communicates with the particle discharge port. It is connected. The screw conveyor 13 extends coaxially along the central axis of the cylindrical magnet 12 from the longitudinal center of the cylindrical magnet 12 to an appropriate position below the cylindrical magnet 12, and the lower end discharge port is It is connected in communication with the particle entrance side of the above-described cleaning device via the discharge pump p2.

粒子排出ポンプp2は分離槽11内の磁性体粒子を抜き出して洗浄装置に送給するためのものであり、供給ポンプp1は洗浄装置から送出される洗浄済み粒子を分離槽11に返送するためのものである。これらのポンプとしてはスネーク式ポンプを好適に使用でき、条件によってはダイアフラム式ポンプも用いることができる。   The particle discharge pump p2 is for extracting the magnetic particles in the separation tank 11 and feeding them to the cleaning apparatus, and the supply pump p1 is for returning the cleaned particles sent from the cleaning apparatus to the separation tank 11 Is. As these pumps, a snake type pump can be suitably used, and a diaphragm type pump can also be used depending on conditions.

他方、本発明では、分離槽11や軸部11c、スクリューコンベヤ13、粒子や流体搬送用の各種管路等は、磁性体金属からなるものであっても良いが、ガラスや合成樹脂等の磁化率の低いもののほうが望ましい。   On the other hand, in the present invention, the separation tank 11, the shaft portion 11 c, the screw conveyor 13, various pipes for conveying particles and fluid, etc. may be made of a magnetic metal, but the magnetization of glass or synthetic resin, etc. The one with the lower rate is preferable.

また、磁性体粒子としては、限り粒径・材質等に関係なく使用することができるが、前述のように平均粒径が0.3〜3.0mmの非多孔質球状粒子が好適である。また材質としては強磁性体であって磨耗・変形等の機械的耐久性、ならびに腐食性等の化学耐性の高い材質、具体的にはSUS430に代表されるフェライト系ステンレスや、マルテンサイト系ステレンスが好適である。   The magnetic particles can be used regardless of the particle diameter, material, etc., but non-porous spherical particles having an average particle diameter of 0.3 to 3.0 mm are suitable as described above. The material is ferromagnetic and has high mechanical durability such as wear and deformation, and high chemical resistance such as corrosion. Specifically, ferritic stainless steel represented by SUS430 and martensitic stainless steel. Is preferred.

かくして構成された分離部装置10においては、円筒磁石12により分離槽11内に不均一磁界が形成される。この不均一磁界は、円筒磁石12の長手方向においては、中央部が相対的に磁気力が強く、両端部はこれに比べて磁気力が弱くなる。また、径方向においては、中心に近いほど磁気力が弱い。   In the separation device 10 thus configured, a non-uniform magnetic field is formed in the separation tank 11 by the cylindrical magnet 12. In the longitudinal direction of the cylindrical magnet 12, this non-uniform magnetic field has a relatively strong magnetic force at the central portion and a weak magnetic force at both ends compared to this. In the radial direction, the closer to the center, the weaker the magnetic force.

したがって、粒子供給ポンプp1により分離槽11の上端部に送り込まれた粒子は、円筒磁石12の長手方向においては弱磁気力部位にあたるので、強磁気力部位にあたる分離槽11の下端部に向って磁気力により移動される。よって、本実施形態では分離槽11内に供給された磁性体粒子は、分離槽11の上端から下端へ向う移動層を構成する。この移動層は、本実施形態では、多くの磁性体粒子が集合塊状化した集合体により構成される。   Therefore, the particles sent to the upper end portion of the separation tank 11 by the particle supply pump p1 hit the weak magnetic force site in the longitudinal direction of the cylindrical magnet 12, so that they are magnetic toward the lower end portion of the separation tank 11 corresponding to the strong magnetic force site. Moved by force. Therefore, in the present embodiment, the magnetic particles supplied into the separation tank 11 constitute a moving layer from the upper end to the lower end of the separation tank 11. In this embodiment, the moving layer is composed of an aggregate in which many magnetic particles are aggregated.

分離槽11の下端部においては、分離槽11の内壁面側が強磁気力部位となる。このため、本実施形態では分離槽11の下端部を漏斗状となすことで、径方向において相対的に弱磁気力となる中心部位に粒子を集合させることができる。粒子集合部11bに到達した粒子は、当該弱磁気力部位(径方向中心部位)のみを通じてスクリューコンベヤ13により円筒磁石12の影響を実質的に受けない位置まで抜き出される。   At the lower end of the separation tank 11, the inner wall surface side of the separation tank 11 is a strong magnetic force site. For this reason, in this embodiment, by making the lower end part of the separation tank 11 into a funnel shape, the particles can be gathered at the central portion that has a relatively weak magnetic force in the radial direction. The particles that have reached the particle assembly portion 11b are extracted by the screw conveyor 13 to a position that is not substantially affected by the cylindrical magnet 12 only through the weak magnetic force portion (the central portion in the radial direction).

この一方で、分離槽11の下端部には非処理流体が供給され、これが移動層の移動方向と反対向きに流通され、この過程で移動層中の磁性体粒子と向流接触される。この結果、被処理流体に含まれる被分離物は磁性体粒子表面に順次付着される。すなわち移動層を構成する磁性体粒子は下端側のものほど被分離物の付着量が多くなり、被処理流体は下端側のものほど被分離物含有量が多くなる。これにより、被処理流体は汚染度の高い磁性体粒子からなる層から汚染度の低い磁性体粒子からなる層へ順次通過接触されるようになり、効率的な分離が可能となる。移動層を通過し終えた被処理流体は分離槽11上端部の給排口11aからオーバーフロー等により供給粒子から分離され、処理済流体として系外に取り出される。   On the other hand, a non-processing fluid is supplied to the lower end portion of the separation tank 11 and flows in the direction opposite to the moving direction of the moving bed. As a result, the separation object contained in the fluid to be treated is sequentially attached to the surface of the magnetic particles. That is, the magnetic substance particles constituting the moving layer have a larger amount of separation object as the particles are at the lower end, and the content of the separation object as the treatment fluid is at the lower side. As a result, the fluid to be treated is sequentially passed and contacted from the layer made of magnetic particles having a high degree of contamination to the layer made of magnetic particles having a low degree of contamination, thereby enabling efficient separation. The fluid to be processed that has passed through the moving bed is separated from the supply particles by an overflow or the like from the supply / discharge port 11a at the upper end of the separation tank 11, and is taken out of the system as a processed fluid.

他方、スクリューコンベヤ13によって分離槽11外に抜き出された磁性体粒子は排出ポンプp2によって、図示しない洗浄装置に供給される。洗浄処理に際しては、消磁処理を行うことにより、粒子集合体が崩れて個々の粒子に離れた状態に戻すことができ、全粒子表面の洗浄を容易に行うことができる。また消磁処理を行わなくても、粒子集合体は磁気力により粒子相互が集まり凝集しているものであり、流動物ともいえるものであるので、適宜の洗浄ブラシ等により掻き回すように洗浄することで、粒子全表面の洗浄が可能である。洗浄処理が終了した粒子は断続的または連続的に分離槽11上部の給排口11aに対して循環供給される。   On the other hand, the magnetic particles extracted out of the separation tank 11 by the screw conveyor 13 are supplied to a cleaning device (not shown) by the discharge pump p2. In the cleaning process, the demagnetization process can return the particle aggregate to a state separated from the individual particles, and the entire particle surface can be easily cleaned. Even without demagnetization treatment, the particle aggregate is an aggregate of particles due to magnetic force, and can be said to be a fluid, so it can be washed with an appropriate cleaning brush or the like. The entire surface of the particles can be cleaned. The particles after the cleaning process are circulated and supplied to the supply / discharge port 11a at the upper part of the separation tank 11 intermittently or continuously.

以上の説明から明らかなように、本実施形態の装置10では、不均一磁界の特性を有効に活用し、すなわち磁気力の強弱を利用した磁性体粒子の分離槽11内での移動、および弱磁気力部位通じての排出を行うため、円筒磁石12を弱めることなく磁性体粒子の給排を行うことができる。そして、この磁界を弱めない磁性体粒子の給排と、洗浄装置を介した磁性体粒子のリサイクルとを組み合わせることによって、連続的な磁気分離が達成される。   As is clear from the above description, in the apparatus 10 of this embodiment, the characteristics of the non-uniform magnetic field are effectively used, that is, the movement of the magnetic particles in the separation tank 11 using the strength of the magnetic force, and the weakness Since the discharge through the magnetic force site is performed, the magnetic particles can be supplied and discharged without weakening the cylindrical magnet 12. Then, continuous magnetic separation is achieved by combining the supply and discharge of the magnetic particles that do not weaken the magnetic field and the recycling of the magnetic particles through the cleaning device.

<磁気分離部の第2の実施形態>
図3は、磁気分離部装置の第2の実施形態を示している。本第2の実施形態の装置20では、分離槽21の下端部は逆さ円錐状の粒子集合底部21bとされており、この底部21bに対して若干間隔をおいた位置から分離槽21上方の適宜位置まで、径方向中央部分を占有するように同軸的にスクリューコンベ23が延在されている。したがって、このスクリューコンベヤ23は、粒子の抜き出し機能のみならず、第1の実施形態における円柱状軸部11cの機能を兼ね備えたものとなる。
<Second Embodiment of Magnetic Separation Unit>
FIG. 3 shows a second embodiment of the magnetic separation device. In the apparatus 20 of the second embodiment, the lower end portion of the separation tank 21 is an inverted conical particle assembly bottom portion 21b, and is appropriately placed above the separation tank 21 from a position slightly spaced from the bottom portion 21b. position to, coaxially screw conveyors 23 are extended to occupy the diametrical center section. Therefore, this screw conveyor 23 has not only the function of extracting particles, but also the function of the cylindrical shaft portion 11c in the first embodiment.

その他の構成は、基本的に第1の実施形態と同様である。すなわち、粒子供給ポンプp1により分離槽21上端部に送り込まれた粒子は、強磁気力部位にあたる分離槽21下側の粒子集合底部21bに向って磁気力により移動される。一方、分離槽11下端部には非処理流体が供給され、これが移動層の移動方向と反対向きに流通され、この過程で移動層中の磁性体粒子と向流接触される。この結果、被処理流体に含まれる被分離物は磁性体粒子表面に順次付着される。   Other configurations are basically the same as those in the first embodiment. That is, the particles sent to the upper end of the separation tank 21 by the particle supply pump p1 are moved by the magnetic force toward the particle assembly bottom 21b below the separation tank 21 corresponding to the strong magnetic force site. On the other hand, a non-processing fluid is supplied to the lower end portion of the separation tank 11, and this is circulated in the direction opposite to the moving direction of the moving bed, and in this process, is in countercurrent contact with the magnetic particles in the moving bed. As a result, the separation object contained in the fluid to be treated is sequentially attached to the surface of the magnetic particles.

移動層を通過し終えた被処理流体は分離槽21上端部の給排口11aから処理済流体として系外に取り出される。粒子集合底部21bに到達した粒子は、スクリューコンベヤ23に取り込まれ、スクリューコンベヤ23により分離槽21の径方向中心部位のみを通じて、すなわち弱磁気力部位のみを通じて円筒磁石12の影響を実質的に受けない分離槽21の上方位置に抜き出され、排出ポンプp2によって図示しない洗浄装置に供給され洗浄される。洗浄処理が終了した粒子は、断続的または連続的に分離槽21上部の給排口11aに対して循環供給される。   The fluid to be treated that has passed through the moving bed is taken out of the system as a treated fluid from the supply / discharge port 11a at the upper end of the separation tank 21. The particles that have reached the particle assembly bottom 21b are taken into the screw conveyor 23 and are not substantially affected by the cylindrical magnet 12 only through the central portion in the radial direction of the separation tank 21 by the screw conveyor 23, that is, only through the weak magnetic force portion. It is extracted above the separation tank 21 and supplied to a cleaning device (not shown) by the discharge pump p2 for cleaning. The particles for which the cleaning process has been completed are circulated and supplied to the supply / discharge port 11a above the separation tank 21 intermittently or continuously.

この第2の実施形態では、第1実施形態と比べて、分離槽11およびスクリューコンベヤ23からなる部分をコンパクト化・簡略化できる利点がある。   In the second embodiment, there is an advantage that the portion composed of the separation tank 11 and the screw conveyor 23 can be made compact and simplified as compared with the first embodiment.

<磁気分離部の第3の実施形態>
上記第1および第2の実施形態では、円筒磁石12のうち高勾配磁気分離に実質的に寄与するのは、長手方向の上側半分のみであり、下側半分を有効に使っていない。
<Third Embodiment of Magnetic Separation Unit>
In the first and second embodiments, only the upper half of the longitudinal direction of the cylindrical magnet 12 substantially contributes to the high gradient magnetic separation, and the lower half is not effectively used.

そこで、第2の実施形態の利点を生かして、一つの円筒磁石12の長手方向中央に対して一方側および他方側に、図4に示すように分離槽2121およびスクリューコンベヤ23,23をそれぞれ設けることを提案する。図示例では、分離槽2121およびスクリューコンベヤ23,23が円筒磁石12の長手方向中央に対して上下対称配置となっているが、完全対称とする必要はない。また、この場合被処理流体の給排系統、粒子の洗浄循環系統を各分離槽21毎に設けても良いし、図示のように共通にしても良い。かくして、円筒磁石12の長手方向全体を有効利用できるとともに、処理能力を2倍に増加させることができる。 Therefore, taking advantage of the second embodiment, separation tanks 21 and 21 and screw conveyors 23 and 23 are provided on one side and the other side with respect to the longitudinal center of one cylindrical magnet 12 as shown in FIG. Propose to provide each. In the illustrated example, the separation tanks 21 and 21 and the screw conveyors 23 and 23 are vertically symmetrical with respect to the center in the longitudinal direction of the cylindrical magnet 12, but it is not necessary to be completely symmetrical. In this case, a supply / discharge system for the fluid to be treated and a cleaning / circulation system for particles may be provided for each separation tank 21 or may be common as shown in the figure. Thus, the entire longitudinal direction of the cylindrical magnet 12 can be used effectively, and the processing capacity can be doubled.

<第4の実施形態>
現在では、上記高勾配磁気分離装置1によって非磁性体や弱磁性体をそのままの状態で分離することは不可能である。そこで本発明では、かかる非磁性体や弱磁性体の磁気分離を可能とするための、前処理を組み合わせた設備についても提案する。この前処理は、具体的には被処理流体中に所定のイオンまたは凝集材を加え、分離対象成分を錯体化、コロイド化または凝集化することによって達成できる。
<Fourth Embodiment>
At present, it is impossible to separate the non-magnetic material and the weak magnetic material as they are by the high gradient magnetic separator 1. Therefore, the present invention also proposes a facility combined with pretreatment for enabling magnetic separation of such a non-magnetic material and a weak magnetic material. Specifically, this pretreatment can be achieved by adding a predetermined ion or aggregating material to the fluid to be treated and complexing, colloiding or aggregating the components to be separated.

図5に、排水等の被処理液体の処理における前処理の一例を示す。被処理流体は、複数対の鉄電極101が内部に配置された電解100に導入される。この第1電解槽100では、鉄電極101に対して所定の電圧が印加され、これによって生じた電解反応を通じて、槽100内の排水中に水酸化鉄が供給され、被処理流体中の非磁性分離対象物(排水にあっては有機物やリンなど)が水酸化鉄と物理的に吸着する。かくして、分離対象物が非磁性体や弱磁性体であっても、強磁性体である水酸化鉄と一体をなすことにより後の磁気分離装置による磁気分離可能なレベルの被分離物とすることができる。 FIG. 5 shows an example of pretreatment in the treatment of the liquid to be treated such as waste water. The fluid to be treated is introduced into an electrolytic cell 100 in which a plurality of pairs of iron electrodes 101 are disposed. In the first electrolysis tank 100, a predetermined voltage is applied to the iron electrode 101, and iron hydroxide is supplied into the waste water in the tank 100 through the electrolytic reaction generated thereby, and the non-magnetic in the fluid to be treated. Separation objects (such as organic substances and phosphorus in the waste water) physically adsorb with iron hydroxide. Thus, even if the object to be separated is a non-magnetic material or a weak magnetic material, the object to be separated can be magnetically separated by a later magnetic separation device by being integrated with the ferromagnetic iron hydroxide. Can do.

<その他>
(イ)本発明の対象となる被処理流体は液体に限られず、気体または流動体であっても良い。また分離対象としては、強磁性体のみならず、弱磁性体や非磁性体であっても前述のような前処理によって本発明により分離可能なレベルの被分離物とできるものであれば良く、被分離物の大小や被処理流体中の含有量等には基本的に左右されない。
ただし、本発明の磁気分離装置は、液体中に含まれる微量成分のように従来分解が困難とされてきたものを分離するのに特に適している。
<Others>
(A) The fluid to be processed that is the subject of the present invention is not limited to a liquid, and may be a gas or a fluid. Further, as a separation target, not only a ferromagnetic material but also a weak magnetic material or a non-magnetic material may be used as long as it can be separated by the present invention by a pretreatment as described above. Basically, it is not affected by the size of the object to be separated or the content in the fluid to be treated.
However, the magnetic separation apparatus of the present invention is particularly suitable for separating what has conventionally been difficult to disassemble, such as trace components contained in liquid.

(ロ)すなわち本発明は、従来から磁気分離の対象とされてきた発電所等の工業排水中に含まれる鉄粉等の磁性体の分離のみならず、前述したような前処理を行う場合には、液体中に含まれる有機物質・植物・重金属等の分離にも適用できる。さらに具体的には、排水や河川・湖沼等における環境ホルモン・重金属・藻類の分離、埋め立て地の地価進出水の処理、蔗糖液の精製といった食品製造における微量成分の分離等に好適に応用できる。 (B) That is, the present invention is not only for the separation of magnetic materials such as iron powder contained in industrial effluents of power plants and the like that have been subject to magnetic separation, but also for the pretreatment as described above. Can also be applied to the separation of organic substances, plants, heavy metals, etc. contained in the liquid. More specifically, it can be suitably applied to separation of trace components in food production such as separation of environmental hormones, heavy metals and algae in drainage, rivers, lakes, etc., treatment of land price advancement water in landfills, and purification of sucrose solution.

(ハ)上記実施形態のように磁性体粒子をリサイクルする場合、粒子のリサイクルを連続的に行う、すなわち分離槽内に対する磁性体粒子の供給およびその排出ならびにその洗浄を常時連続的に行うこともできるし、必要に応じてまたは所定間隔で断続的に粒子をリサイクルすることもできる。 (C) When magnetic particles are recycled as in the above embodiment, the particles are continuously recycled, that is, the supply and discharge of the magnetic particles to and from the separation tank and the washing thereof are always performed continuously. The particles can be recycled as needed or intermittently at predetermined intervals.

(ニ)各内部装置または外部装置(バルブ・ポンプ・管路・電動機)は、磁石の磁場により悪影響を受けないように、離間配置したり、非磁性体材料を採用したり、磁気遮蔽手段を設けたり、磁性体粒子等の付着を掻き取るための機構を設けたりすることができる。 (D) Each internal device or external device (valve / pump / pipe / motor) is spaced apart, made of non-magnetic material, or has a magnetic shielding means so as not to be adversely affected by the magnetic field of the magnet. Or a mechanism for scraping off the adhesion of magnetic particles or the like can be provided.

(ホ)本発明は磁気分離をポイントとするものであるが、本発明の磁気分離の前処理または後処理として他の分離手法を適宜組み合わせ、磁気分離の妨げとなるようなものや磁気分離不可能なものを分離することができる。例えば前述の磁気分離設備において、必要に応じて前処理後の被処理液体を沈降分離処理を行ってから磁気分離装置に供給したり、磁気分離装置による処理済液を酸化還元処理したりすることができる。 (E) Although the present invention is based on magnetic separation, other separation methods may be appropriately combined as pre-processing or post-processing of magnetic separation of the present invention to prevent magnetic separation or magnetic separation. What is possible can be separated. For example, in the above-mentioned magnetic separation equipment, the liquid to be treated after pretreatment is subjected to sedimentation separation treatment as necessary, and then supplied to the magnetic separation device, or the liquid treated by the magnetic separation device is subjected to oxidation reduction treatment Can do.

(ヘ)本発明における吸着体は、不均一磁界内への給排が可能なものであって、かつ磁気分離による磁気吸着が可能なものであれば、特にサイズ、材質等が限定されるものではない。よって、例えば非磁性材粒子に磁性材粒子を含有(埋め込む等)させる等、非磁性材料と磁性材料とを組み合わせた吸着体も本願発明に含まれる。 (F) The adsorbent in the present invention is particularly limited in size, material, etc., as long as it can be supplied and discharged into a non-uniform magnetic field and can be magnetically attracted by magnetic separation. is not. Therefore, for example, an adsorbent that combines a non-magnetic material and a magnetic material, such as containing (embedding) magnetic material particles in non-magnetic material particles, is also included in the present invention.

排水の浄化等、広範な用途に適用できる。   Applicable to a wide range of uses such as wastewater purification.

本発明の実施形態の概要フロー図である。It is a general | schematic flowchart of embodiment of this invention. 第1実施形態の概要縦断面図である。It is a general | schematic longitudinal cross-sectional view of 1st Embodiment. 第2実施形態の概要縦断面図である。It is a general | schematic longitudinal cross-sectional view of 2nd Embodiment. 第3実施形態の概要縦断面図である。It is a general | schematic longitudinal cross-sectional view of 3rd Embodiment. 第4実施形態の概要縦断面図である。It is a general | schematic longitudinal cross-sectional view of 4th Embodiment.

符号の説明Explanation of symbols

1…高勾配磁気分離装置、1A,10…高勾配磁気分離部、1B…洗浄装置、12…磁石。 1 ... high-gradient magnetic separator, 1A, 10 ... high gradient magnetic separation unit, 1B ... cleaning device, 12 ... magnet.

Claims (10)

磁性を有する吸着体と、
高磁界勾配部分と低磁界勾配部分とを有する不均一磁界を発生させる磁界発生手段と、
前記吸着体を、前記不均一磁界を弱めることなく前記不均一磁界内に供給する供給手段と、
前記不均一磁界内において吸着体と被処理流体とを接触させ、被処理流体中に含まれる被分離物を吸着体に付着させる手段と、
前記被分離物が付着した吸着体を、前記不均一磁界を弱めることなく前記不均一磁界外へ抜き出す抜出手段とを備えた、
ことを特徴とする吸着体連続給排型高勾配磁気分離装置。
An adsorbent having magnetism;
Magnetic field generating means for generating a non-uniform magnetic field having a high magnetic field gradient portion and a low magnetic field gradient portion;
Supply means for supplying the adsorbent into the non-uniform magnetic field without weakening the non-uniform magnetic field;
Means for bringing the adsorbent and the fluid to be processed into contact with each other in the non-uniform magnetic field, and attaching an object to be separated contained in the fluid to be processed to the adsorbent;
An extraction means for extracting the adsorbent to which the object to be separated is attached to the outside of the non-uniform magnetic field without weakening the non-uniform magnetic field;
An adsorbent continuous supply / discharge type high gradient magnetic separation device.
前記不均一磁界に対し、弱磁気力部位に前記吸着体を供給し、この供給粒子が強磁気力部位に移動する過程で前記接触を行うように構成した、請求項1記載の吸着体連続給排型高勾配磁気分離装置。   The adsorbent continuous supply according to claim 1, wherein the adsorbent is supplied to a weak magnetic force site with respect to the non-uniform magnetic field, and the contact is performed in a process in which the supplied particles move to the strong magnetic force site. Exhaust type high gradient magnetic separator. 不均一磁界内にある吸着体を、機械力により、弱磁気力部位へ導き弱磁気力部位を通して移動させ前記不均一磁界外へ抜き出すように構成した、請求項1または2記載の吸着体連続給排型高勾配磁気分離装置。   The adsorbent continuous supply according to claim 1 or 2, wherein an adsorbent in a non-uniform magnetic field is guided to a weak magnetic force site by mechanical force, moved through the weak magnetic force site, and extracted outside the non-uniform magnetic field. Exhaust type high gradient magnetic separator. 前記移動する吸着体が前記抜き出しのための移動方向と反対の方向に逆行するのを防止するように構成した、請求項3記載の吸着体連続給排型高勾配磁気分離装置。   The adsorbent continuous supply / discharge high gradient magnetic separation device according to claim 3, configured to prevent the moving adsorbent from going backward in a direction opposite to a moving direction for the extraction. 前記吸着体の機械力による抜き出しに先立ち又はその過程で、吸着体の集合体を崩すための手段を設けた、請求項3または4記載の吸着体連続給排型高勾配磁気分離装置。 The adsorbent continuous supply / discharge type high gradient magnetic separation apparatus according to claim 3 or 4, further comprising means for breaking the aggregate of adsorbents prior to or in the process of extracting the adsorbents by mechanical force. 前記吸着体は、平均粒径が0.3〜3.0mmの球状の非多孔質磁性体粒子である、請求項1〜5のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。   The adsorbent continuous supply / discharge high-gradient magnetism according to any one of claims 1 to 5, wherein the adsorbent is a spherical non-porous magnetic particle having an average particle diameter of 0.3 to 3.0 mm. Separation device. 前記吸着体は、フェライト系ステレンスまたはマルテンサイト系ステンレスよりなるものである、請求項1〜6のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。   The adsorbent continuous supply / discharge high gradient magnetic separator according to any one of claims 1 to 6, wherein the adsorbent is made of ferritic stainless steel or martensitic stainless steel. 前記磁界発生手段は1テスラ以上の磁場を作用させるものである、請求項1〜7のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。   The adsorbent continuous supply / discharge high gradient magnetic separator according to any one of claims 1 to 7, wherein the magnetic field generating means applies a magnetic field of 1 Tesla or more. 分離槽を備え、この分離槽内で前記吸着体と被処理流体とを接触させた後、前記被分離物が付着した吸着体を前記分離槽外に抜き出して洗浄を行い、前記吸着体から被分離物を除去した後にこれを再び前記分離槽に戻すように構成した、請求項1〜8のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。   A separation tank is provided, and after the adsorbent and the fluid to be treated are brought into contact with each other in the separation tank, the adsorbent to which the object to be separated is attached is extracted out of the separation tank and washed, and the adsorbent is covered with the adsorbent. The adsorbent continuous supply / discharge high gradient magnetic separation apparatus according to any one of claims 1 to 8, wherein the separation object is removed and then returned to the separation tank. 前記吸着体と被処理流体との接触を、向流接触により行うように構成した、請求項1〜9のいずれか1項に記載の吸着体連続給排型高勾配磁気分離装置。   The adsorbent continuous supply / discharge high gradient magnetic separation apparatus according to claim 1, wherein the adsorbent and the fluid to be treated are contacted by countercurrent contact.
JP2003310413A 2003-09-02 2003-09-02 Adsorbent continuous supply / discharge type high gradient magnetic separator Expired - Fee Related JP4353466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310413A JP4353466B2 (en) 2003-09-02 2003-09-02 Adsorbent continuous supply / discharge type high gradient magnetic separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310413A JP4353466B2 (en) 2003-09-02 2003-09-02 Adsorbent continuous supply / discharge type high gradient magnetic separator

Publications (3)

Publication Number Publication Date
JP2005074371A JP2005074371A (en) 2005-03-24
JP2005074371A5 true JP2005074371A5 (en) 2006-06-22
JP4353466B2 JP4353466B2 (en) 2009-10-28

Family

ID=34412294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310413A Expired - Fee Related JP4353466B2 (en) 2003-09-02 2003-09-02 Adsorbent continuous supply / discharge type high gradient magnetic separator

Country Status (1)

Country Link
JP (1) JP4353466B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI304746B (en) 2006-12-29 2009-01-01 Ind Tech Res Inst Magnetic separation device
CN101284704A (en) 2007-04-09 2008-10-15 株式会社日立制作所 A treatment method, device and system of organic compounds included in waste water, and asphaltum recovering system
CN105498957B (en) * 2015-12-23 2017-09-12 云南九州再生资源开发有限公司 A kind of water cooling system heat sink
CN106178777A (en) * 2016-07-19 2016-12-07 李勇军 Zero-power air purifier
CN106694224B (en) * 2017-01-11 2019-04-05 中国科学院过程工程研究所 A kind of whole process serialization gas magnetic assist separation system
CN114573080B (en) * 2022-02-16 2023-04-21 中节能兆盛环保有限公司 Magnetic material recycling lifting device

Similar Documents

Publication Publication Date Title
CN106794469B (en) Rotary drum type magnetic separation device
US20160151789A1 (en) Filter device and method for removing magnetizable particles from a liquid
EP1683764A1 (en) Waste water treatment system by superconductive magentic separation
AU2009294719B2 (en) Method for separating rich ore particles from agglomerates which contain non-magnetic ore particles and magnetizable particles attached thereto, especially Fe-containing oxide components such as Fe3O4
JP4353466B2 (en) Adsorbent continuous supply / discharge type high gradient magnetic separator
EP3329999A1 (en) Magnetic separator
JP2005074371A5 (en)
KR100773049B1 (en) Method and device for removing magnetic foreign objects from liquid
CN101500949A (en) Method and device for eliminating foreign matters present in dissolved form from waste water
JP2020011219A (en) Soil purification system
JP2020011223A (en) Soil remediation system
WO2015068355A1 (en) Device and method for separating magnetic material
JP6723503B2 (en) Soil purification system
JP2009214053A (en) Magnetic separator
JPH08257321A (en) Magnet filter and filter apparatus
JP2020011218A (en) Soil purification system
US9605353B2 (en) Apparatus and method for advanced electrochemical modification of liquids
JP2968069B2 (en) Magnetic separation device
JP2553925B2 (en) Wet magnetic force sorting method
JP2020082051A (en) Soil purification system
JP2005131535A (en) Treatment method for separating and removing cadmium and its apparatus
JPH09117617A (en) Purifying device
JP2009183823A (en) Method for sticking of magnetic particle to nonmagnetic substance and magnetic separator for nonmagnetic substance
JP2023149672A (en) Magnetic separation device and magnetic separation method
JPH11300120A (en) Magnetic separation method and device therefor