JP2005074066A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2005074066A
JP2005074066A JP2003309963A JP2003309963A JP2005074066A JP 2005074066 A JP2005074066 A JP 2005074066A JP 2003309963 A JP2003309963 A JP 2003309963A JP 2003309963 A JP2003309963 A JP 2003309963A JP 2005074066 A JP2005074066 A JP 2005074066A
Authority
JP
Japan
Prior art keywords
magnetic resonance
magnetic field
casing
resonance imaging
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309963A
Other languages
Japanese (ja)
Other versions
JP2005074066A5 (en
Inventor
Isao Sakamoto
勲 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003309963A priority Critical patent/JP2005074066A/en
Publication of JP2005074066A publication Critical patent/JP2005074066A/en
Publication of JP2005074066A5 publication Critical patent/JP2005074066A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an MRI apparatus capable of performing stable operation even with electromagnetic interference and the increase of a heating value associated with the improvement of capacity. <P>SOLUTION: Out of apparatus installed outside a shield room 109, an inclined magnetic field power source 111, a high frequency power amplifier 112, a receiver 113, a sequencer 106 and a computer 107 in which electromagnetic interference and heating are problems, are collectively installed in a shielding-radiating casing 200, and electromagnetic shielding and heat radiation of the individual devices are performed by this one casing 200. That is, satisfactory electromagnetic shielding and heat radiation heretofore difficult to attain by simply putting some devices together in one casing, can be carried out by using the shielding-radiating casing 200 exclusively used for electromagnetic shielding and heat radiation. This results in achieving the MRI apparatus capable of performing stable operation even with the electromagnetic interference and the increase of the heating value associated with the improvement of capacity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気共鳴イメージング装置(MRI装置)に係り、特に、MRI装置に対する電磁遮蔽及び放熱処理に関する。   The present invention relates to a magnetic resonance imaging apparatus (MRI apparatus), and more particularly to electromagnetic shielding and heat radiation processing for an MRI apparatus.

核磁気共鳴(NMR)現象を利用して人体や動物の断層画像を得て、その内部情報を得ようとするMRI撮影法は広く医療分野、研究分野で利用されている。このMRI撮影法を実行するMRI装置は、被検体を配置する空間に均一な磁場強度を発生する磁石や、位置情報を得るための傾斜磁場として高電圧大電流を取り扱う。また、被検体から得られるNMR信号を得るため、受信部にて低電圧微弱信号を取り扱う。   MRI imaging methods that obtain tomographic images of human bodies and animals using the nuclear magnetic resonance (NMR) phenomenon and obtain internal information are widely used in the medical field and research field. An MRI apparatus that executes this MRI imaging method handles a high voltage and large current as a magnet that generates a uniform magnetic field strength in a space in which a subject is placed and a gradient magnetic field for obtaining position information. Further, in order to obtain an NMR signal obtained from the subject, a low voltage weak signal is handled in the receiving unit.

これらの電気信号が互いに影響を及ぼしたり、外部からの不要電磁波によりMRI装置に影響が及ぼされた場合、撮影画像にアーチファクトが生じてしまう。そのため、電気信号を取り扱う、複数のユニットを有する個々の電子機器の筐体は鉄やアルミニウムなどを用いて電磁的に遮蔽を行う。そして、その筐体のフレームを全箇所同電位とみなして、筐体内部の個々のユニットからフレーム部に最短で接地線を接続するなどの手法を用いている。   If these electrical signals affect each other or the MRI apparatus is affected by unnecessary electromagnetic waves from the outside, artifacts will occur in the captured image. For this reason, the housing of each electronic device having a plurality of units that handle electrical signals is electromagnetically shielded using iron, aluminum, or the like. Then, the frame of the casing is regarded as the same potential at all locations, and a method such as connecting the ground wire from the individual units inside the casing to the frame portion at the shortest is used.

また、電子機器や電源機器筐体内の電力使用に伴い、熱量が増加し、個々のユニットが温度上昇する。この温度上昇は、個々のユニットの特性に影響を及ぼす可能性があるため、機器毎に、その内部に冷却ファンを設置して、冷却風により効率よく冷却できるよう筐体内部のレイアウトを考慮している。   Further, with the use of electric power in the electronic device or power supply device case, the amount of heat increases, and the temperature of each unit rises. Since this temperature rise may affect the characteristics of individual units, consider the layout inside the chassis so that each unit can be cooled efficiently by installing a cooling fan inside it. ing.

ここで、特にMRI装置に関するものではないが、半導体素子を使用する電子機器の放熱性を向上させる技術が特許文献1に記載されている。   Here, although not particularly related to the MRI apparatus, Patent Document 1 describes a technique for improving the heat dissipation of an electronic device using a semiconductor element.

この特許文献1においては、電子機器の筺体内部に空気流路が形成され、この空気流路内はファンにより空気流が形成される。そして、発熱部品からの発熱が伝熱部材を介して空気流路の壁部材に伝達され、伝達された熱は空気流路内の空気流により筺体外部に放出される。   In Patent Document 1, an air flow path is formed inside a housing of an electronic device, and an air flow is formed in the air flow path by a fan. And the heat_generation | fever from a heat-emitting component is transmitted to the wall member of an air flow path through a heat transfer member, and the transmitted heat is discharge | released outside the housing | casing by the air flow in an air flow path.

特開平11−87961号公報Japanese Patent Laid-Open No. 11-87961

ところで、MRI装置には撮影時間の短縮が常に求められている。このため、高速撮影を実現する強い高周波磁場、高速制御ができる傾斜磁場、高速演算ができるコンピュータ等が必要である。この撮影時間の短縮化のための装置能力の強化及び高速化は、MRI装置を構成する機器に対する外部からの電磁気的干渉の防止をさらに強化しなければならないという問題がある。また、発熱量が増加して装置の動作が不安定になる問題もある。   Incidentally, the MRI apparatus is always required to shorten the imaging time. For this reason, a strong high-frequency magnetic field that realizes high-speed imaging, a gradient magnetic field that can be controlled at high speed, and a computer that can perform high-speed computation are required. The enhancement and speeding up of the apparatus capability for shortening the imaging time has a problem that it is necessary to further strengthen the prevention of electromagnetic interference from the outside with respect to the equipment constituting the MRI apparatus. There is also a problem that the amount of heat generation increases and the operation of the apparatus becomes unstable.

従来技術にあっては、電磁遮蔽の問題に対し、MRI装置を構成する個々の機器毎に、筐体に取り付ける接地線を太くしたり、筐体の電磁的遮蔽の強化を施して干渉が起こりにくい構造としていた。   In the prior art, for the problem of electromagnetic shielding, interference occurs by increasing the grounding wire attached to the casing or strengthening the electromagnetic shielding of the casing for each device constituting the MRI apparatus. It was a difficult structure.

また、発熱量増加の問題に対しては、個々の機器毎にファンの数を増加し、より冷却効率が得られる設計を行っていた。   Also, with respect to the problem of an increase in the amount of heat generation, the number of fans is increased for each device, and a design that can obtain more cooling efficiency has been performed.

しかし、今後、さらなる撮影時間の短縮化の要求を考えると、MRI装置外部からの電磁的干渉のみならず、MRI装置を構成する各機器(シーケンサ、コンピュータ、受信機等)間の互いの電磁気的干渉も有効に防止する対策が必要となることが考えられるが、個々の機器における筐体の持つ抵抗値が原因となり、従来の技術では、電磁気的干渉を有効に防止するには限界がある。   However, considering the demand for further shortening of imaging time in the future, not only electromagnetic interference from the outside of the MRI apparatus, but also the mutual electromagneticity between each device (sequencer, computer, receiver, etc.) constituting the MRI apparatus. Although measures to effectively prevent interference are considered necessary, due to the resistance value of the casing of each device, there is a limit in effectively preventing electromagnetic interference with the conventional technology.

また、発熱の問題については、従来技術にあっては、個々の機器毎ではファンの設置数や設置箇所に限界があることから、発熱量の増加を有効に防止することは困難になってくると考えられる。   As for the problem of heat generation, in the conventional technology, there is a limit to the number and location of fans installed for each device, so it is difficult to effectively prevent an increase in the amount of heat generation. it is conceivable that.

本発明は、上記問題点を解消すべく創作されたものであり、能力向上に伴う電磁気的干渉及び発熱量増加に対しても安定動作が可能なMRI装置を実現することである。   The present invention was created to solve the above-described problems, and is to realize an MRI apparatus capable of stable operation even with respect to electromagnetic interference and increased heat generation accompanying the improvement in capability.

上記目的を達成するため、本発明は次のように構成される。
(1)静磁場発生手段と、傾斜磁場コイルと、高周波コイルと、核磁気共鳴信号検出コイルと、これらのコイルへの電力供給又は検出信号を受信する機器と、動作制御機器とを有する磁気共鳴イメージング装置において、上記コイルへの電力供給又は検出信号を受信する機器(傾斜磁場電源、高周波電力アンプ、受信機)と、動作制御機器(シーケンサ、コンピュータ)とを収容する、接地でき、かつ、冷却媒体を流すことができる管状部材を有する筺体を備える。
In order to achieve the above object, the present invention is configured as follows.
(1) Magnetic resonance having a static magnetic field generating means, a gradient magnetic field coil, a high frequency coil, a nuclear magnetic resonance signal detection coil, a device for receiving power supply or detection signal to these coils, and an operation control device In an imaging apparatus, it can be grounded and contains equipment (gradient magnetic field power supply, high-frequency power amplifier, receiver) that receives power supply to the coil or receives a detection signal and operation control equipment (sequencer, computer). A housing having a tubular member through which a medium can flow is provided.

(2)好ましくは、上記(1)において、上記筺体は、装置外部の接地線に接続される接地材を有する。   (2) Preferably, in the above (1), the casing includes a grounding material connected to a grounding wire outside the apparatus.

(3)また、好ましくは、上記(1)において、上記筺体は、上記機器毎に電磁遮蔽する電磁遮蔽板を有する。   (3) Preferably, in the above (1), the casing includes an electromagnetic shielding plate that electromagnetically shields each device.

(4)また、好ましくは、上記(1)において、上記管状部材は接地材を兼ね、上記管状部材内に冷却媒体を循環させることで上記筐体を冷却する。   (4) Preferably, in the above (1), the tubular member also serves as a grounding material, and the casing is cooled by circulating a cooling medium in the tubular member.

(5)また、好ましくは、上記(1)において、上記管状部材は接地材を兼ね、上記管状部材は、孔が形成され、この孔から冷却用気体を上記筐体内に放出して冷却する。   (5) Preferably, in the above (1), the tubular member also serves as a grounding material, and the tubular member is formed with a hole, and cooling gas is discharged from the hole into the casing to be cooled.

本発明の磁気共鳴イメージング装置は、シールドルーム外に設置される機器のうち、電磁気的干渉や発熱が問題となる複数の機器を、まとめて1つの筺体に設置し、この一つの筺体により、個々の機器の電磁的遮蔽と放熱とが行われる。つまり、いくつかの機器を単に一つの筐体にまとめると困難であった良好な電磁遮蔽及び放熱を、この電磁遮蔽及び放熱を専用とする筺体を用いることにより、実行することが可能となる。   In the magnetic resonance imaging apparatus of the present invention, among devices installed outside the shield room, a plurality of devices having problems of electromagnetic interference and heat generation are collectively installed in a single housing, and the single housing is used to individually The equipment is electromagnetically shielded and dissipated. In other words, it is possible to execute good electromagnetic shielding and heat dissipation, which has been difficult when several devices are simply combined into one housing, by using a housing dedicated to the electromagnetic shielding and heat dissipation.

本発明によれば、能力向上に伴う電磁気的干渉及び発熱量増加に対しても安定動作が可能なMRI装置を実現することができる。   According to the present invention, it is possible to realize an MRI apparatus capable of stable operation even with respect to electromagnetic interference and an increase in the amount of heat generated due to an improvement in capability.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明が適用されるMRI装置の全体構成図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is an overall configuration diagram of an MRI apparatus to which the present invention is applied.

図1において、MRI装置は被検体101が配置される空間を上下に挟むように配置された静磁場発生磁石102と、この静磁場発生磁石102の内側(被検体配置空間側)に、被検体101を間にして、上下に配置された傾斜磁場コイル103と、さらにその内側の上下に配置された高周波コイル104と、被検体101から発生するNMR信号を検出する検出コイル105とを備えている。   In FIG. 1, the MRI apparatus includes a static magnetic field generating magnet 102 disposed so as to sandwich a space in which a subject 101 is disposed, and a subject on the inner side (subject placement space side) of the static magnetic field generating magnet 102. A gradient magnetic field coil 103 disposed above and below, a high-frequency coil 104 disposed above and below the inside, and a detection coil 105 that detects an NMR signal generated from the subject 101 are provided. .

傾斜磁場コイル103と高周波コイル104とは、開放型のMRI装置全体形状を阻害しないように、上下一対の板状構造をしている。さらに、MRI装置は、各コイル103、104の動作タイミングを制御するシーケンサ106と、MRI装置の制御とNMR信号を処理して画像化とを行うコンピュータ107と、被検体101を静磁場発生磁石102の中心空間に搬送して配置する搬送テーブル108とを備えている。   The gradient magnetic field coil 103 and the high frequency coil 104 have a pair of upper and lower plate-like structures so as not to disturb the overall shape of the open type MRI apparatus. Further, the MRI apparatus includes a sequencer 106 that controls the operation timing of each of the coils 103 and 104, a computer 107 that controls the MRI apparatus and processes an NMR signal and performs imaging, and a subject 101 that generates a static magnetic field generating magnet 102. And a transport table 108 which is transported and arranged in the central space.

上述した静磁場発生磁石102と、傾斜磁場コイル103と、高周波コイル104と、検出コイル104と、搬送テーブル108とは電磁波遮蔽されたシールドルーム109内に設置されている。   The static magnetic field generating magnet 102, the gradient magnetic field coil 103, the high frequency coil 104, the detection coil 104, and the transfer table 108 are installed in a shield room 109 that is shielded from electromagnetic waves.

このシールドルーム109による電磁波遮蔽は、検出コイル105が外部からの電磁波を検知することを防ぐ目的で、検査に用いる原子核(通常、水素原子核が用いられている)の共鳴周波数(静磁場発生磁石102の磁場強度に対応する)の帯域で約70デシベルの減衰率を有している。   The shielding of the electromagnetic wave by the shield room 109 is for the purpose of preventing the detection coil 105 from detecting the electromagnetic wave from the outside, and the resonance frequency (static magnetic field generating magnet 102) of the nucleus used for the inspection (usually a hydrogen nucleus is used). (Corresponding to the magnetic field strength of) of about 70 decibels.

シールドルーム109内の各種コイル、静磁場発生磁石102、搬送テーブル108と、シールドルーム109外の電源や制御機器との接続はシールドルーム109内に外来ノイズを引き込まないようにシールドルーム109に接地されたフィルタ回路110を介して接続されている。あるいは、外部がシールド層で覆われている同軸ケーブルで、シールドルーム109内と外部とが接続される(図1は、フィルタ回路110を使用する例である)。   Connections between the various coils in the shield room 109, the static magnetic field generating magnet 102, the transfer table 108, and the power supply and control equipment outside the shield room 109 are grounded to the shield room 109 so as not to draw external noise into the shield room 109. Are connected via a filter circuit 110. Alternatively, the inside of the shield room 109 and the outside are connected by a coaxial cable whose outside is covered with a shield layer (FIG. 1 is an example using the filter circuit 110).

傾斜磁場コイル103は、互いに直行する(x,y,z)の3軸方向に磁束密度を変化させるように巻かれた3組のコイルからなり、それぞれのコイルが傾斜磁場電源111に接続され、傾斜磁場発生手段を構成する。   The gradient magnetic field coil 103 is composed of three sets of coils wound so as to change the magnetic flux density in three axial directions (x, y, z) orthogonal to each other, and each coil is connected to the gradient magnetic field power supply 111, A gradient magnetic field generating means is configured.

後述するシーケンサ106からの制御信号に従って傾斜磁場電源111を駆動して傾斜磁場コイル103に流れる電流値を変化させることにより3軸からなる傾斜磁場(Gx,Gy,Gz)が被検体101の配置空間の静磁場に重畳されるようになっている。この傾斜磁場は、被検体101の撮影部位から得られるNMR信号の空間的な分布を識別するのに用いられる。   The gradient magnetic field power supply 111 is driven in accordance with a control signal from the sequencer 106 to be described later to change the value of the current flowing in the gradient magnetic field coil 103, whereby the gradient magnetic field (Gx, Gy, Gz) having three axes is arranged in the arrangement space of the subject 101. Is superimposed on the static magnetic field. This gradient magnetic field is used to identify the spatial distribution of NMR signals obtained from the imaging region of the subject 101.

高周波コイル104は、高周波電流を流すための高周波電力アンプ112にフィルタ回路110を介して接続され、被検体101の撮影部位の水素核を共鳴励起するための高周波磁場を発生する。この高周波電力アンプ112は、シーケンサ106からの制御信号に従って制御される。   The high-frequency coil 104 is connected to a high-frequency power amplifier 112 for flowing a high-frequency current through a filter circuit 110, and generates a high-frequency magnetic field for resonantly exciting hydrogen nuclei in the imaging region of the subject 101. The high frequency power amplifier 112 is controlled in accordance with a control signal from the sequencer 106.

検出コイル104は、フィルタ回路110を介して受信機113に接続されており、NMR信号を検出する手段を構成する。受信機113は検出コイル104で検出したNMR信号を増幅、検波するとともに、コンピュータ107による処理が可能なディジタル信号に変換する。受信機113はシーケンサ106でその動作タイミングが制御される。   The detection coil 104 is connected to the receiver 113 via the filter circuit 110 and constitutes a means for detecting the NMR signal. The receiver 113 amplifies and detects the NMR signal detected by the detection coil 104 and converts it into a digital signal that can be processed by the computer 107. The operation timing of the receiver 113 is controlled by the sequencer 106.

コンピュータ107は、ディジタル量に変換されたNMR信号を用いて画像再構成、スペクトル計算などの演算を行うとともに、シーケンサ106を介してMRI装置の各ユニットの動作を定められたタイミングで制御する。   The computer 107 performs operations such as image reconstruction and spectrum calculation using the NMR signals converted into digital quantities, and controls the operation of each unit of the MRI apparatus via the sequencer 106 at a predetermined timing.

ディスプレイ装置114は処理後のデータ等を表示するものであり、このディスプレイ装置114、操作卓115及びコンピュータ107により演算処理系が構成される。また、傾斜磁場電源111は、フィルタ回路110を介して傾斜磁場コイル103に接続される。   The display device 114 displays processed data and the like. The display device 114, the console 115, and the computer 107 constitute an arithmetic processing system. The gradient magnetic field power supply 111 is connected to the gradient magnetic field coil 103 via the filter circuit 110.

傾斜磁場電源111と、高周波電力アンプ112と、受信機113と、シーケンサ106と、コンピュータ107と、操作卓115と、ディスプレイ機器114とは、シールドルーム109の外に設置される。   The gradient magnetic field power supply 111, the high frequency power amplifier 112, the receiver 113, the sequencer 106, the computer 107, the console 115, and the display device 114 are installed outside the shield room 109.

ここで、シールドルーム109の外に設置されるこれらの機器のうち、電磁気的干渉や発熱が問題となる傾斜磁場電源111と、高周波電力アンプ112と、受信機113と、シーケンサ106と、コンピュータ107とについて、それぞれ個別に電磁遮蔽手段や放熱手段を設置する場合には、上述したように、有効な電磁的遮蔽や放熱を行うことが困難である。   Here, among these devices installed outside the shield room 109, a gradient magnetic field power source 111, a high frequency power amplifier 112, a receiver 113, a sequencer 106, and a computer 107, which are problematic in terms of electromagnetic interference and heat generation. As described above, when electromagnetic shielding means and heat dissipation means are individually installed, it is difficult to perform effective electromagnetic shielding and heat dissipation.

そこで、これらの機器(傾斜磁場電源111、高周波電力アンプ112、受信機113、シーケンサ106、コンピュータ107)を、まとめて1つの筐体に設置し、この一つの筺体が、電磁的遮蔽手段と放熱手段とを備える遮蔽放熱筺体200となっている。   Therefore, these devices (gradient magnetic field power supply 111, high-frequency power amplifier 112, receiver 113, sequencer 106, computer 107) are collectively installed in one housing, and this single housing is used as an electromagnetic shielding means and a heat dissipation device. It is the shielding heat dissipation housing | casing 200 provided with a means.

図2は遮蔽放熱筺体200の概略側面図であり、図3は遮蔽放熱筺体200の概略斜視図である。図示する例では、最下部には各ユニットに電源を供給する電源121を配置している。   FIG. 2 is a schematic side view of the shield heat radiating housing 200, and FIG. 3 is a schematic perspective view of the shield heat radiating housing 200. In the illustrated example, a power source 121 that supplies power to each unit is disposed at the bottom.

図2及び図3において、筺体200は、縦長の直方体形状であり、各機器が配置される複数の棚状の機器設置部がある。この機器設置部に、上から順に、コンピュータ107、シーケンサ106、受信機113、高周波電力アンプ112、傾斜磁場電源111、電源121が配置されている。   2 and 3, the housing 200 has a vertically long rectangular parallelepiped shape, and includes a plurality of shelf-like device installation portions on which the devices are arranged. A computer 107, a sequencer 106, a receiver 113, a high-frequency power amplifier 112, a gradient magnetic field power supply 111, and a power supply 121 are arranged in this equipment installation section in order from the top.

この筐体200は、ステンレス鋼を用いた筐体フレーム201を有し、この筺体フレーム201は、天板部、棚板部、4つの柱部を備えている。そして、筐体200全体の電位を一致させるために、径15mm、厚さ2mmの銅製のパイプ状接地材202をフレーム201に沿わせて設置している。つまり、筺体200の正面左右方向(各棚板部)と右側垂直面(側面)部に、パイプ状接地材(管状部材)202を設置している。   The housing 200 includes a housing frame 201 using stainless steel, and the housing frame 201 includes a top plate portion, a shelf plate portion, and four pillar portions. And in order to make the electric potential of the whole housing | casing 200 correspond, the pipe-shaped grounding material 202 of diameter 15mm and thickness 2mm is installed along the flame | frame 201. FIG. That is, the pipe-shaped grounding material (tubular member) 202 is installed in the front left-right direction (each shelf board portion) and the right vertical surface (side surface) portion of the housing 200.

筐体フレーム201に用いられているステンレス鋼は電気伝導率が低く、このフレーム201を接地端子として使用した場合、接続される位置によって接地電位に差が生じる。このためフレームに沿って上記接地材202を設置した。   Stainless steel used for the housing frame 201 has low electrical conductivity. When this frame 201 is used as a ground terminal, a difference occurs in the ground potential depending on the connection position. Therefore, the grounding material 202 is installed along the frame.

また、筺体200には、電磁的遮蔽板203が各棚部毎に取り付けられている。また、パイプ状接地材202の中には冷却媒体が、図3に示すように、熱交換器内蔵ポンプ206及び冷却媒体タンク207により供給され循環される。   Moreover, the electromagnetic shielding board 203 is attached to the housing 200 for each shelf part. Further, as shown in FIG. 3, the cooling medium is supplied and circulated in the pipe-shaped grounding material 202 by a heat exchanger built-in pump 206 and a cooling medium tank 207.

以上のように、本発明の一実施形態によれば、シールドルーム109の外に設置される機器のうち、電磁気的干渉や発熱が問題となる傾斜磁場電源111と、高周波電力アンプ112と、受信機113と、シーケンサ106と、コンピュータ107とを、まとめて1つの遮蔽放熱筺体200に設置し、この一つの筺体200により、個々の機器の電磁的遮蔽と放熱とが行われる。つまり、いくつかの機器を単に一つの筐体にまとめると困難であった良好な電磁遮蔽及び放熱を、この電磁遮蔽及び放熱を専用とする遮蔽放熱筺体200を用いることにより、実行することが可能となる。   As described above, according to one embodiment of the present invention, among the devices installed outside the shield room 109, the gradient magnetic field power supply 111, the high frequency power amplifier 112, and the reception that are problematic in electromagnetic interference and heat generation are received. The machine 113, the sequencer 106, and the computer 107 are collectively installed in one shield heat radiating housing 200, and electromagnetic shielding and heat radiation of individual devices are performed by this one housing 200. In other words, it is possible to execute good electromagnetic shielding and heat dissipation, which was difficult if several devices were simply combined into one housing, by using the shielding heat dissipation housing 200 dedicated to electromagnetic shielding and heat dissipation. It becomes.

したがって、能力向上に伴う電磁気的干渉及び発熱量増加に対しても安定動作が可能なMRI装置を実現することができる。   Therefore, it is possible to realize an MRI apparatus capable of stable operation even with respect to electromagnetic interference and increased heat generation accompanying the improvement in capability.

上述した例においては、パイプ状接地材202に冷媒を循環させるように構成したが、冷媒を循環させるのではなく、図4に示すように、パイプ状接地材202に孔204を形成し、その孔204から冷却用気体205を放出し、筺体200を冷却する構成とすることも可能である。孔付きパイプ状接地材202用いて冷却用気体を放出することでファンのみでの冷却では得にくい冷却風の流れを作り、より冷却効果を得ることができる。   In the above-described example, the refrigerant is circulated through the pipe-shaped grounding material 202. However, instead of circulating the refrigerant, a hole 204 is formed in the pipe-shaped grounding material 202 as shown in FIG. It is also possible to cool the housing 200 by discharging the cooling gas 205 from the holes 204. By discharging the cooling gas using the perforated pipe-shaped grounding material 202, it is possible to create a flow of cooling air that is difficult to obtain by cooling with only the fan, and to obtain a cooling effect.

冷却用気体を放出して冷却する例の場合、図3に示す熱交換器内蔵ポンプ206を送風用ファンとするか、冷却用気体を吐出する孔にファンを取り付ける。または、熱交換器内蔵ポンプ206を送風用ファンとするとともに、冷却用気体を吐出する孔にファンを取り付けることもできる。   In the example of cooling by discharging the cooling gas, the heat exchanger built-in pump 206 shown in FIG. 3 is used as a blower fan, or a fan is attached to a hole for discharging the cooling gas. Alternatively, the heat exchanger built-in pump 206 can be used as a blower fan, and the fan can be attached to a hole for discharging a cooling gas.

冷却用気体を放出して冷却する例の場合、図3に示す冷却媒体タンク207は不要である。   In the example of cooling by releasing the cooling gas, the cooling medium tank 207 shown in FIG. 3 is unnecessary.

なお、図示した例では銅製の接地材202を正面左右方向と右側垂直方向に配しているが、これに限定されるものでなく、筐体200の形状や筐体フレーム201の形状によりさまざまな形状、使用部分が考えられる。   In the illustrated example, the copper grounding material 202 is arranged in the front left / right direction and the right side vertical direction, but the present invention is not limited to this, and there are various types depending on the shape of the case 200 and the shape of the case frame 201. The shape and use part can be considered.

また、接地材202の材質についても接地される場所によって銅に限らず、用途に応じた材質が考えられる。   Further, the material of the grounding material 202 is not limited to copper depending on the place to be grounded, and a material according to the application can be considered.

本発明が適用されるMRI装置の全体構成を示す図である。It is a figure which shows the whole structure of the MRI apparatus with which this invention is applied. 本発明の一実施形態における遮蔽放熱筺体の概略側面図である。It is a schematic side view of the shielding heat dissipation housing in one embodiment of the present invention. 本発明の一実施形態における遮蔽放熱筺体の概略斜視図である。It is a schematic perspective view of the shielding heat dissipation housing in one embodiment of the present invention. 本発明の遮蔽放熱筺体において、冷却用気体を放出する場合の例の説明図である。It is explanatory drawing of the example in the case of discharge | releasing the gas for cooling in the shielding heat dissipation housing of this invention.

符号の説明Explanation of symbols

101 被検体
102 静磁場発生磁石
103 傾斜磁場コイル
104 高周波コイル
105 検出コイル
106 各コイルの動作タイミングを制御するシーケンサ
107 装置の制御、NMR信号を処理し画像化するコンピュータ
108 被検体搬送テーブル
109 シールドルーム
110 フィルタ回路
111 傾斜磁場電源
112 高周波電力アンプ
113 受信機
114 ディスプレイ機器
115 操作卓
121 電源
200 遮蔽放熱筺体
201 筐体フレーム
202 接地材
203 遮蔽板
204 孔
205 冷却用気体
206 熱交換器内蔵ポンプ
207 冷却媒体タンク
DESCRIPTION OF SYMBOLS 101 Subject 102 Static magnetic field generating magnet 103 Gradient magnetic field coil 104 High frequency coil 105 Detection coil 106 Sequencer which controls the operation timing of each coil 107 Control of apparatus, computer which processes and signals NMR signal 108 Object transport table 109 Shield room DESCRIPTION OF SYMBOLS 110 Filter circuit 111 Gradient magnetic field power supply 112 High frequency power amplifier 113 Receiver 114 Display apparatus 115 Console 121 Power supply 200 Shielding heat dissipation housing 201 Housing frame 202 Grounding material 203 Shielding plate 204 Hole 205 Cooling gas 206 Heat exchanger built-in pump 207 Cooling Medium tank

Claims (5)

静磁場発生手段と、傾斜磁場コイルと、高周波コイルと、核磁気共鳴信号検出コイルと、これらのコイルへの電力供給又は検出信号を受信する機器と、動作制御機器と、上記コイルへの電力供給又は検出信号を受信する機器と動作制御機器とを収容する筐体とを有する磁気共鳴イメージング装置において、
上記筐体は、接地でき、かつ、冷却媒体を流すことができる管状部材を有することを特徴とする磁気共鳴イメージング装置。
Static magnetic field generating means, gradient magnetic field coil, high frequency coil, nuclear magnetic resonance signal detection coil, power supply to these coils or a device for receiving detection signals, operation control device, and power supply to the coil Alternatively, in a magnetic resonance imaging apparatus having a housing that houses a device that receives a detection signal and an operation control device,
The case includes a tubular member that can be grounded and can flow a cooling medium.
請求項1記載の磁気共鳴イメージング装置において、上記筺体は、装置外部の接地線に接続される接地材を有することを特徴とする磁気共鳴イメージング装置。   2. The magnetic resonance imaging apparatus according to claim 1, wherein the housing includes a grounding material connected to a grounding wire outside the apparatus. 請求項1記載の磁気共鳴イメージング装置において、上記筺体は、上記機器毎に電磁遮蔽する電磁遮蔽板を有することを特徴とする磁気共鳴イメージング装置。   2. The magnetic resonance imaging apparatus according to claim 1, wherein the housing includes an electromagnetic shielding plate that electromagnetically shields each device. 請求項1記載の磁気共鳴イメージング装置において、上記管状部材は接地材を兼ね、上記管状部材内に冷却媒体を循環させることで上記筐体を冷却することを特徴とする磁気共鳴イメージング装置。   2. The magnetic resonance imaging apparatus according to claim 1, wherein the tubular member also serves as a grounding material, and the casing is cooled by circulating a cooling medium in the tubular member. 請求項1記載の磁気共鳴イメージング装置において、上記管状部材は接地材を兼ね、上記管状部材は、孔が形成され、この孔から冷却用気体を上記筐体内に放出して冷却することを特徴とする磁気共鳴イメージング装置。
2. The magnetic resonance imaging apparatus according to claim 1, wherein the tubular member also serves as a grounding material, and the tubular member is formed with a hole, and cooling gas is discharged from the hole into the casing to be cooled. Magnetic resonance imaging device.
JP2003309963A 2003-09-02 2003-09-02 Magnetic resonance imaging apparatus Pending JP2005074066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309963A JP2005074066A (en) 2003-09-02 2003-09-02 Magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309963A JP2005074066A (en) 2003-09-02 2003-09-02 Magnetic resonance imaging apparatus

Publications (2)

Publication Number Publication Date
JP2005074066A true JP2005074066A (en) 2005-03-24
JP2005074066A5 JP2005074066A5 (en) 2006-10-19

Family

ID=34411969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309963A Pending JP2005074066A (en) 2003-09-02 2003-09-02 Magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP2005074066A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089830A (en) * 2005-09-29 2007-04-12 Ge Medical Systems Global Technology Co Llc Water-cooling device for magnetic resonance imaging device and magnetic resonance imaging device
JP2007151681A (en) * 2005-12-01 2007-06-21 Ge Medical Systems Global Technology Co Llc Magnetic resonance diagnostic device
JP2007167433A (en) * 2005-12-22 2007-07-05 Ge Medical Systems Global Technology Co Llc Diagnostic imaging apparatus and cabinet for diagnostic imaging apparatus
JP2008228765A (en) * 2007-03-16 2008-10-02 Ge Medical Systems Global Technology Co Llc Cooling method and mri apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089830A (en) * 2005-09-29 2007-04-12 Ge Medical Systems Global Technology Co Llc Water-cooling device for magnetic resonance imaging device and magnetic resonance imaging device
JP2007151681A (en) * 2005-12-01 2007-06-21 Ge Medical Systems Global Technology Co Llc Magnetic resonance diagnostic device
JP2007167433A (en) * 2005-12-22 2007-07-05 Ge Medical Systems Global Technology Co Llc Diagnostic imaging apparatus and cabinet for diagnostic imaging apparatus
JP2008228765A (en) * 2007-03-16 2008-10-02 Ge Medical Systems Global Technology Co Llc Cooling method and mri apparatus

Similar Documents

Publication Publication Date Title
US8035385B2 (en) MRI system and RF coil with enhanced cooling in vicinty of included circuit elements
CN102652027B (en) Magnetic resonance -compatible electrical device with radio frequency shielding or an enclosure
JP2021524775A (en) Equipment and methods for B0 magnets for magnetic resonance imaging systems
JPH07299048A (en) Magnetic resonance image pickup device
JP5502304B2 (en) Magnetic resonance imaging apparatus and RF coil
CN1763558A (en) Gradient bore cooling and RF shield
JP2002224084A5 (en)
JP6466406B2 (en) Gradient coil assembly with an outer coil comprising aluminum
JPH1176199A (en) Antenna for magnetic resonance device
JP2005152632A (en) Mri system utilizing supplemental static field-shaping coils
JP2002320599A (en) Shim device for magnetic resonance equipment
US11784614B2 (en) Radio frequency power amplifier and method of assembly thereof
US10237967B2 (en) Cooling assembly for electronics assembly of imaging system
JP2005074066A (en) Magnetic resonance imaging apparatus
JP2010508880A (en) Split gradient coil for MRI
JP2005279168A (en) Gradient magnetic field coil, and magnetic resonance imaging apparatus using the same
JP6675195B2 (en) Magnetic resonance imaging apparatus and method of installing magnetic resonance imaging apparatus
JP2008125928A (en) Magnetic resonance imaging apparatus provided with shim tray temperature controller
EP3667350A1 (en) A radio frequency power amplifier and method for assembly
JP5015392B2 (en) Thermal diffusion device and magnetic resonance imaging apparatus
JPH10513087A (en) Nuclear spin tomography X-ray apparatus equipped with a combination device consisting of a high-frequency antenna and a gradient coil
CN112147552A (en) Magnetic resonance imaging system and heat dissipation device for same
JP2005074066A5 (en)
CN113900054B (en) Cabinet and magnetic resonance imaging system
CN103529410B (en) MRT-RF push-pull amplifier device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609