JP2005073598A - Method for determining time for replenishing fodder for animal, system for determining replenishing time, and computer software - Google Patents

Method for determining time for replenishing fodder for animal, system for determining replenishing time, and computer software Download PDF

Info

Publication number
JP2005073598A
JP2005073598A JP2003308887A JP2003308887A JP2005073598A JP 2005073598 A JP2005073598 A JP 2005073598A JP 2003308887 A JP2003308887 A JP 2003308887A JP 2003308887 A JP2003308887 A JP 2003308887A JP 2005073598 A JP2005073598 A JP 2005073598A
Authority
JP
Japan
Prior art keywords
time
feed
amount
basic
rumen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003308887A
Other languages
Japanese (ja)
Inventor
Ryozo Oura
良三 大浦
Yoichi Oura
洋一 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003308887A priority Critical patent/JP2005073598A/en
Publication of JP2005073598A publication Critical patent/JP2005073598A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feeding And Watering For Cattle Raising And Animal Husbandry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining the time for replenishing fodder for an animal by which the replenishing time is optimized when raising the animal having a ruminant stomach by feeding the fodder; and to provide a system for determining the replenishing time. <P>SOLUTION: The method for determining the replenishing time comprises a procedure for estimating a decomposition rate of an energy and nitrogen of the fodder in the ruminant stomach, estimating the passage time of the fodder in the ruminant stomach, and estimating the decomposed amount and outflow, a procedure for grasping dietary intake of a basal diet per time, a procedure for estimating the daily fluctuation of burst sizes per time when only the basis diet is used, a procedure for estimating the burst sizes per time based on candidates of two or more times or combinations of times, and calculating a burst size-synchronizing index for evaluating the efficiency of the synthesis of microbial cells in the ruminant stomach, and a procedure for determining the time or the combination of the times at which excellent value is obtained in the calculated indexes as the replenishing time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、動物体飼料補給時間決定方法及び補給時間決定システムであり、特に飼料を与えて反芻胃を有する動物体を飼育する際の補給時間を最適化する方法及びシステムに関する。   The present invention relates to an animal body feed replenishment time determination method and a replenishment time determination system, and more particularly to a method and system for optimizing the replenishment time when an animal body having a rumen is fed by feeding.

反芻家畜の最大の特徴は、微生物をその反芻胃に多数棲息させ、単胃動物では利用できない繊維質を微生物の持つ繊維分解酵素の働きで揮発性脂肪酸(VFA)等に変化させ、これを直接あるいは菌体蛋白質に一旦変換して動物体のエネルギー源にする点と、飼料中に蛋白質(アミノ酸)が含まれなくても窒素を適切に供給してやれば、それが反芻胃内で微生物の増殖の際に菌体アミノ酸に合成されて動物体の良質蛋白質源となり、動物体に利用・蓄積される点にある。このため、将来的に予想される世界的な食糧不足に際し、人間と食料が競合しない反芻家畜のこのような特徴を生かした乳・肉等の生産性向上が世界的な課題となっている。   The biggest characteristic of ruminant livestock is that many microorganisms are inhabited in the rumen, and fiber that cannot be used in monogastric animals is changed to volatile fatty acid (VFA) etc. by the action of the fibrinolytic enzyme of microorganisms, and this is directly Alternatively, it can be converted into bacterial protein and used as an energy source for the animal body, and even if the protein (amino acid) is not contained in the feed, if it is properly supplied with nitrogen, it will increase the growth of microorganisms in the rumen. At the same time, it is synthesized into microbial amino acids to become a high-quality protein source of the animal body, and is used and accumulated in the animal body. For this reason, in the event of a global food shortage that is anticipated in the future, improving the productivity of milk, meat, etc. that takes advantage of these characteristics of ruminant livestock that do not compete with humans has become a global issue.

また、反芻胃において飼料から放出されるエネルギーと窒素のタイミングが合っていなければ、菌体蛋白質の合成効率が低下するだけでなく、余分なエネルギーや窒素がメタンガスや尿となって環境に放出されて地球温暖化や河川等の汚染を引き起こすことが指摘されており、これらの観点からもエネルギーと窒素の同調化は重要な課題である。   In addition, if the timing of the energy released from the feed and nitrogen in the rumen does not match, not only will the bacterial protein synthesis efficiency decrease, but excess energy and nitrogen will be released into the environment as methane gas and urine. It has been pointed out that it causes global warming and pollution of rivers. From these viewpoints, synchronization of energy and nitrogen is an important issue.

大浦良三とFadel El−Seed,A.M.A.は、アンモニアで処理した稲わら(AS)及び尿素+水酸化カルシウムで処理した稲わら(CS)を基礎飼料とし、綿実粕(CSM)を窒素補助飼料として、本発明より最適補給時間(1:00と17:00に各75g)と最不適補給時間(8:00に150g)を決定し、これに基づいて動物体(緬羊)を使用した飼育実験を実施し、実際の効果を検証した。その結果、綿実粕の補給時間を最適化することにより反芻胃中のアンモニア態窒素量及びVFA量が高くなり、反芻胃内の菌体量の増加と飼料の反芻胃内滞留時間の延長が示唆された。これにより、飼料の乾物及び繊維質の消化率がそれぞれ2割上昇し,飼料中の全窒素のうち動物体に蓄積される量が6割増加し、逆に尿として排出される窒素は4割低減した。本飼育実験の結果は、本発明の補給時間決定システムが劣悪な繊維質飼料の利用性を高め、ひいては環境汚染につながる家畜からの窒素の排出を低減することを実証した。なお、本年9月11日、第53回関西畜産学会大会において、本飼育実験の詳細な報告を行う予定である。
特表2002−509704号公報
Ryozo Oura and Fadel El-Seed, A. M.M. A. Is a rice straw (AS) treated with ammonia and a rice straw (CS) treated with urea + calcium hydroxide as a basic feed, and cottonseed meal (CSM) as a nitrogen supplemented feed. 10:00 and 17:00 each) and the most inappropriate replenishment time (150 g at 8:00) were determined, and based on this, a breeding experiment using an animal body (sheep) was carried out to verify the actual effect . As a result, the amount of ammonia nitrogen and VFA in the rumen is increased by optimizing the replenishment time of cottonseed meal, increasing the amount of cells in the rumen and extending the residence time of the feed in the rumen. It was suggested. As a result, the dry matter and fiber digestibility of the feed increased by 20% respectively, the amount accumulated in the animal body increased by 60% of the total nitrogen in the feed, and conversely 40% of the nitrogen excreted as urine. Reduced. The results of this breeding experiment demonstrated that the replenishment time determination system of the present invention increases the availability of poor fiber feed and thus reduces nitrogen emissions from livestock leading to environmental contamination. In addition, a detailed report of this breeding experiment is scheduled for September 53 this year at the 53rd Kansai Livestock Society Conference.
Special Table 2002-509704 gazette

本発明は、従来の問題を解決するものであり、飼料を与えて反芻胃を有する動物体を飼育する際の補給時間を最適化する動物体飼料補給時間決定方法及び補給時間決定システムを提供することを目的とする。   The present invention solves the conventional problems, and provides an animal body feed replenishment time determination method and a replenishment time determination system that optimizes the replenishment time when an animal having a rumen is fed by feeding. For the purpose.

本発明は、基礎飼料と補助飼料を与えて反芻胃を有する動物体を飼育する際の補助飼料の補給時間を決定する方法であって、(イ)基礎飼料と補助飼料のエネルギーと窒素の反芻胃内分解速度をそれぞれ推定し、(ロ)反芻胃からの通過速度を推定し、摂取後の分解量と流出量を推定する手順と、(ハ)基礎飼料の時間摂取量を把握する手順と、(ニ)基礎飼料からの時間放出量の日内変動量を推定する手順と、(ホ)補給時間の候補となる複数の時間又は時間の組合せについて全摂取飼料からの時間放出量を推定し、(ヘ)反芻胃における菌体合成の効率を査定するための放出同調指数をそれぞれ算出する手順と、(ト)算出された指数の中から優れた値が得られた時間又は時間の組合せを最適補給時間として決定する手順とを有する動物体飼料補給時間決定方法である。   The present invention is a method for determining the supplementary feed replenishment time when breeding an animal body having a rumen by giving a basic feed and a supplementary feed, and (i) rumination of energy and nitrogen of the basic feed and supplementary feed. Estimating the gastric degradation rate, (b) estimating the passage rate from the rumen, estimating the amount of degradation and outflow after ingestion, and (c) determining the time intake of basic feed (D) Estimating the daily release amount of the amount of time released from the basic feed, and (e) Estimating the amount of time released from the total ingested feed for multiple times or combinations of times that are candidates for supplementary time, (F) Optimal procedure for calculating the release synchronization index for assessing the efficiency of cell synthesis in the rumen, and (g) Optimizing the time or combination of times for which excellent values were obtained from the calculated index An animal having a procedure for determining as a replenishment time A feed supply time determination method.

また、本発明は、使用する基礎飼料及び補助飼料の種類、量、給与回数を決める手順を有する動物体飼料補給時間決定方法である。   Moreover, this invention is the animal body feed replenishment time determination method which has the procedure which determines the kind, quantity, and the frequency | count of a feed of the basic feed and auxiliary feed to be used.

そして、本発明は、コンピュータを備え、基礎飼料と補助飼料を与えて反芻胃を有する動物体の飼料の補給時間を決定するシステムであって、前記コンピュータは、与える基礎飼料と補助飼料それぞれの乾物あるいは有機物(乾物から灰分を除いたもの)と窒素の含量と反芻胃内分解速度量、反芻胃の通過速度量及び基礎飼料の時間摂取量の各データを記憶する基礎データ記憶手段と、基礎飼料からの時間放出量の日内変動量及び放出同調指数(日同調乾物量)を算出する手段と、補給時間の候補となる複数の時間又は時間の組合せのデータを入力する手段と、入力された補給時間又は時間の組合せについて、(基礎データ記憶手段に記憶したデータを用いて)放出同調指数を算出する手段と、算出結果を記憶する算出結果記憶手段と、算出結果を順次読み出し、その中から放出同調指数の優れた値に対応する時間又は時間の組合せを補給時間と決定する手段と、決定した補給時間を表示する手段とを有する補給時間決定システムである。   The present invention is a system that includes a computer and determines the replenishment time of the feed of the animal body having the rumen by giving the basic feed and the supplementary feed, the computer providing the dried food of the basic feed and the supplementary feed respectively. Or basic data storage means for storing each data of organic matter (dry matter excluding ash) and nitrogen content, rumen degradation rate, rumen passage rate and basic feed time intake, and basic feed Means for calculating the daily fluctuation amount and the release synchronization index (daily synchronization dry matter amount) of the time release amount from, a means for inputting data of a plurality of times or time combinations that are candidates for the supply time, and the input supply A means for calculating the release tuning index (using data stored in the basic data storage means), a calculation result storage means for storing the calculation results, and a calculation for time or a combination of times; Sequentially reading out the results, a replenishing time determination system having means for displaying and means for determining the superior time or a combination of time corresponding to the value of the emission tune index replenishment time and among them, the determined supply time.

更に、本発明は、上記コンピュータは、使用する補給飼料の種類、量、給与回数のデータを入力する手段を有する補給時間決定システムである。   Furthermore, the present invention is a replenishment time determination system in which the computer has means for inputting data on the type, amount, and number of salaries of supplementary feed to be used.

また、本発明は、基礎飼料と補助飼料を与えて反芻胃を有する動物体の飼料の補給時間を決定するシステムのコンピュータに使用されるソフトウエアであって、与える基礎飼料と補助飼料それぞれの乾物あるいは有機物と窒素の含量と反芻胃内分解速度量、反芻胃の通過速度量及び基礎飼料の時間摂取量の各データを記憶する基礎データ記憶機能と、基礎飼料からの時間放出量の日内変動量及び放出同調指数を算出する機能と、補給時間の候補となる複数の時間又は時間の組合せのデータを入力する機能と、入力された補給時間又は時間の組合せについて、基礎データ記憶機能により記憶したデータを用いて放出同調指数を算出する機能と、算出結果を記憶する算出結果記憶機能と、算出結果を順次読み出し、その中から放出同調指数の優れた値に対応する時間又は時間の組合せを補給時間と決定する機能と、決定した補給時間を表示する機能とをコンピュータに実現させるプログラムからなるコンピュータ・ソフトウエアである。   The present invention also provides software for use in a computer of a system for determining the replenishment time of an animal body having a rumen by giving a basic feed and a supplementary feed, and each dried food of the basic feed and supplementary feed to be fed Or basic data storage function to store data on organic matter and nitrogen content, rumen disintegration rate, rumen passage rate, and basic feed time intake, and daily fluctuations in the amount of time released from basic feed And a function for calculating the release synchronization index, a function for inputting data of a plurality of times or time combinations that are candidates for replenishment times, and data stored by the basic data storage function for the inputted replenishment times or time combinations. The function to calculate the release tuning index using the, the calculation result storage function to store the calculation results, the readout of the calculation results sequentially, from among them the excellent release tuning index A function of determining time or a combination of time replenishment time corresponding to the value, a computer software comprising a function for displaying the determined replenishing time from the program to be implemented in a computer.

本発明によれば、飼料を与えて反芻胃を有する動物体を飼育する際の補給時間を最適化する動物体飼料補給時間決定方法及び補給時間決定システムを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the animal body feed replenishment time determination method and replenishment time determination system which optimize the replenishment time at the time of breeding the animal body which feeds a feed and has a rumen can be obtained.

本発明を実施するための最良の形態を説明する。
反芻家畜の飼養において、基礎飼料(繊維質飼料)のみの飼育はまれであり、不足するエネルギーや窒素を補給するために濃厚飼料が利用される。本発明者は、この補給飼料の給与時間に着目し、菌体蛋白合成に最適な補給飼料の給与時間を決定する方法を見出し、コンピュータ・シミュレーションによって推定する補給時間最適化(supplementing time optimization programming:STOP)システムを開発した。
The best mode for carrying out the present invention will be described.
In the breeding of ruminant livestock, raising only basic feed (fiber feed) is rare, and concentrated feed is used to replenish the lack of energy and nitrogen. The present inventor pays attention to the feeding time of the supplementary feed, finds a method for determining the feeding time of the supplemental feed that is optimal for cell protein synthesis, and supplements time optimization programming estimated by computer simulation (supplementing time optimization programming: STOP) system developed.

本方法及びシステムの概要を説明する。本方法及びシステムは、以下の項目1.〜6.を備える。
1.使用する可能性のあるすべての飼料のエネルギー(乾物等)と窒素の反芻胃内分解速度を推定し、このデータをコンピュータに記憶させる。
2.飼料片の反芻胃通過速度を推定し、このデータをコンピュータに記憶させ、各飼料を一度だけ単位重量反芻胃内に投入した場合の、投入後0〜240時間後における投入飼料の流出量と反芻胃内残存量を推定し、各単位時間あたりに残存飼料から放出される乾物あるいは有機物及び窒素の分解量を本システムから算出する。
3.実際の動物体飼育現場において、反芻胃を有する動物体に基礎飼料を給与したときの時間摂取量を電子天秤による飼槽の連続計量等により把握し、このデータをコンピュータに記憶させる。
4.基礎飼料の時間摂取パターンは毎日一定であると仮定し、反芻胃において各時間毎に基礎飼料から放出される乾物あるいは有機物及び窒素の日内変動量(それぞれhRDM及びhRN)を本システムにより算出する。
5.動物体に与える補助飼料の種類及び日給与量を日本飼養標準等に基づいて決定し、一日2回給与としてそれぞれの給与量をコンピュータに入力する。
6.放出同調指数として日同調乾物量(dSDM:時間乾物放出量と時間窒素放出量×40の低い方の値を一日24時間分累積した量、g/日)を補給飼料の給与時間全組合せ(24×24)について算出し、最適給与時間の組合せを採用する。
An overview of the method and system will be described. The method and system includes the following items 1. ~ 6. Is provided.
1. Estimate the energy (dry matter, etc.) of all feeds that may be used and the rumen degradation rate of nitrogen, and store this data in a computer.
2. The rumen passage speed of the feed piece is estimated, this data is stored in a computer, and when each feed is put into the unit weight rumen only once, the outflow amount and rumination of the input feed after 0 to 240 hours after the feeding. The remaining amount in the stomach is estimated, and the amount of dry matter or organic matter and nitrogen decomposed from the remaining feed per unit time is calculated from this system.
3. In an actual animal breeding site, the time intake when a basic feed is fed to an animal body having a ruminant stomach is grasped by continuous weighing of the tank with an electronic balance, and this data is stored in a computer.
4). Assuming that the time intake pattern of the basal feed is constant every day, the daily fluctuation amount of dry matter or organic matter and nitrogen (hRDM and hRN, respectively) released from the basal feed in the rumen every hour is calculated by this system.
5). The type of supplementary feed to be given to the animal body and the daily salary amount are determined based on the Japanese breeding standard, etc., and each salary amount is input to the computer as salary twice a day.
6). The daily tuned dry matter amount (dSDM: the amount obtained by accumulating the lower value of hourly dry matter release amount and hourly nitrogen release amount × 40 for 24 hours a day, g / day) as the release synchronization index 24 × 24), and the optimum salary time combination is adopted.

本方法及びシステムの理論と実際を説明する。以下、項目別に説明する。最初に項目1.(乾物あるいは有機物と窒素の反芻胃内分解速度の推定)を説明する。まず、第一段階として必要となるのは、使用する可能性のある基礎飼料及び基礎飼料と補助飼料それぞれの乾物含量と窒素含量を分析等で推定して、STOPプログラム(本システムのシミュレーションプログラム)に入力することである。さらに、入力が必要な飼料データとして、各飼料中の乾物あるいは有機物及び窒素の反芻胃内分解速度定数がある。   The theory and practice of this method and system are described. Hereinafter, it explains according to items. First, item 1. (Estimation of the rate of rumen decomposition of dry matter or organic matter and nitrogen) will be explained. First, the first step is to estimate the dry matter content and nitrogen content of basic feed and basic feed and supplementary feed that may be used by analysis, etc., and then stop program (simulation program of this system) Is to enter. Furthermore, as feed data that needs to be input, there are rumen decomposition rate constants of dry matter or organic matter and nitrogen in each feed.

図1に、基礎飼料の乾物あるいは有機物の反芻胃内分解様相の例を示す。この例は、尿素+水酸化カルシウムで処理した稲わら(CS)をナイロン布製バッグに入れ、反芻胃内で培養した結果である。飼料を反芻胃内で培養した場合、培養後ただちに消失する易消化分画(A分画、0.142)と、一定の反応速度(分解速度:kd,0.027)でゆっくりと消失する難消化分画(B分画、0.507)及び最後まで残存しつづける不消化分画(C分画、0.351)に分かれ、培養t時間後における残存割合であるR(t)は次の(式1)に従うと考えられている(Orskov&McDonald,1979)。
R(t)=C+B・e−kd・t (式1)
FIG. 1 shows an example of a rumen degradation mode of dry matter or organic matter of a basic feed. In this example, rice straw (CS) treated with urea + calcium hydroxide is placed in a nylon cloth bag and cultured in the rumen. When feed is cultured in the rumen, it is difficult to disappear at a constant reaction rate (decomposition rate: kd, 0.027) and easily digestible fraction (A fraction, 0.142) that disappears immediately after cultivation. It is divided into a digested fraction (B fraction, 0.507) and an undigested fraction (C fraction, 0.351) that remains until the end. It is believed to follow (Equation 1) (Orskov & McDonald, 1979).
R (t) = C + B · e −kd · t (Formula 1)

通常、飼料のこのような分解特性を把握するには、反芻胃カニューレを装着した反芻動物を準備し、一定の目開き(45μm前後)を有するナイロン布で作成したバッグに飼料を詰めて反芻胃に吊し、一定時間毎に取り出して残存する乾物あるいは有機物と窒素を定量する、という方法が取られる(Orskov&McDonald,1979)。これまで、世界各地でさまざまな飼料の分解速度を測定する試験が行われ、多くのデータが蓄積されてきており、英国のAgricultural Reseach Councilが中心となって、これらのデータをとりまとめてゆこうとする動きもある。   Usually, in order to grasp such degradation characteristics of feed, a ruminant animal equipped with a rumen cannula is prepared, and the feed is packed in a bag made of nylon cloth having a certain opening (around 45 μm), and the rumen is packed. The dried dry matter or organic matter and nitrogen are quantified after being suspended and suspended (Orskov & McDonald, 1979). So far, various tests have been carried out to measure the degradation rate of various feeds in various parts of the world, and a lot of data has been accumulated, and the UK's Agricultural Research Council will play a central role in collecting these data. There is also a movement to do.

本システムの運用に当たっては、利用する飼料個々について乾物あるいは有機物と窒素の分解特性を入力する必要があり、既に報告されている標準的な飼料のデータがそのまま利用できる場合もあろうが、参照可能なデータが存在しない場合には、その都度ナイロンバック法等を用いて測定する必要がある。   In the operation of this system, it is necessary to input the decomposition characteristics of dry matter or organic matter and nitrogen for each feed to be used, and the standard feed data already reported may be used as is, but it can be referred to When there is no data, it is necessary to measure using the nylon bag method each time.

項目2.(通過速度量の推定及び、摂取飼料の分解量と流出量の動態の推定)を説明する。反芻胃は微生物が多数生息する巨大な発酵槽であり、摂取した飼料は一旦この中に滞留し、微生物による分解を受ける。また、内容物飼料は分解と平行して一定の速度(通過速度:kp,/h)で第三胃へ流し出されるため、STOPプログラムでも反芻胃シミュレーションのためには通過速度kpの推定値を入力して、摂取飼料(特にB分画)がどの程度分解を受けずに第三胃に流出するかを推定する(図2参照)。図2(a)において、CSの易消化であるA分画はすべて反芻胃内で分解され、図2(b)において、不消化であるC分画はすべて通過速度(ここではkp=0.03/h)にしたがって第三胃に流出していく。しかし、図2(a)(b)において、難消化であるB分画は分解速度kdと通過速度kpの両者の速度の影響を受け、図2(a)の反芻胃で分解される部分と図2(b)の第三胃に流出する部分とに分かれると考えられる。本システムでは時間放出量を推定する際、通過速度kpの影響を考慮し、図2(a)で示すような、各飼料摂取一単位毎に摂取後の時間と反芻胃内分解量の関係を推定する。   Item 2. (Estimation of passage speed amount and estimation of dynamics of ingested feed degradation and runoff) will be described. The rumen is a huge fermenter where a large number of microorganisms live, and the ingested feed once stays in it and is decomposed by microorganisms. In addition, since the content feed is discharged to the third stomach at a constant speed (passing speed: kp, / h) in parallel with the decomposition, the estimated value of the passing speed kp is also used for rumen simulation in the STOP program. Input to estimate how much the ingested feed (particularly the B fraction) flows into the third stomach without being degraded (see FIG. 2). In FIG. 2 (a), all the A fractions that are easily digestible of CS are degraded in the rumen, and in FIG. 2 (b), all the C fractions that are indigestible are passed through (here, kp = 0.0). 03 / h) and flows out to the third stomach. However, in FIGS. 2 (a) and 2 (b), the indigestible B fraction is affected by both the degradation speed kd and the passage speed kp, and the fraction decomposed by the rumen in FIG. 2 (a) It is considered that it is divided into a part flowing out into the third stomach in FIG. In this system, when estimating the amount of time released, the influence of the passage speed kp is taken into consideration, and the relationship between the time after ingestion and the amount of rumen digestion for each unit of feed intake as shown in FIG. presume.

項目3.(基礎飼料の時間摂取量の把握)を説明する。通常、畜産農家の現場では基礎飼料となる牧草などの繊維質飼料を多めに給与し、家畜がいつでも自由に摂取できるような状態で飼養する場合が多い。また近年、乳牛の飼養では繊維質飼料や濃厚飼料をすべて配合したTMR(total mixed ratio)と呼ばれる全混合飼料が利用されつつあるが、本システムではこのTMRも基礎飼料の一形態ととらえることができる。本システムでは、各農家で飼養される家畜について、基礎飼料の1時間あたりの摂取量(時間摂取量:hDMI)を1日24時間単位で調査し、コンピュータに入力する必要がある。図3の例では、飼槽の下に電子天秤を配置し、連続して残食量を記録する方法で測定した結果を示している。図3に示すのは、雌緬羊4頭に基礎飼料としてCSを8:30と15:30に自由採食レベルで給与した時の、時間摂取量(hDMI、g)の平均値である。しかし、通常の農家ではこのような測定は困難であるため、ビデオカメラを用いて家畜の採食行動を調査し、採食時間から採食量を推定する。   Item 3. (Understanding the time intake of basic feed) will be explained. Usually, livestock farmers often feed a large amount of fiber feed such as pasture as a basic feed so that the livestock can be freely ingested at any time. In recent years, dairy cattle have been fed a total mixed feed called TMR (total mixed ratio) that contains all fiber feed and concentrated feed. In this system, this TMR can also be regarded as a form of basic feed. it can. In this system, it is necessary to survey the intake of basic feed per hour (hour intake: hDMI) for 24 hours a day for livestock kept by each farmer and input it to a computer. In the example of FIG. 3, the result measured by the method which arrange | positions an electronic balance under a tank and records the amount of leftovers continuously is shown. FIG. 3 shows the average value of time intake (hDMI, g) when CS was fed at 8:30 and 15:30 as a basic feed to 4 female sheep at a free feeding level. However, since it is difficult for ordinary farmers to measure this, the feeding behavior of livestock is investigated using a video camera, and the amount of feeding is estimated from the feeding time.

項目4.(基礎飼料からの時間放出量の日内変動の推定)を説明する。STOPプログラムでは図2aの結果と図3の結果より、基礎飼料からの時間放出量の日内変動量を推定する(図4参照)。図4は、CSを自由採食している緬羊において、各時間に内容物飼料片より反芻胃に放出される乾物(hRDM、g)と窒素(hRN、g)の推定量を示す。これが40:1の比率の時、どちらの成分も反芻胃内の微生物増殖に効率よく利用され、菌体蛋白合成に理想的であると考えられている(Czerkawski、1986)。このため、図4ではhRNは40倍の値にしてhRDMと比較しており、両者の高さが一致している場合は比較が適切であり、エネルギーと窒素が同調していると考えられる。逆に、どちらかが高い場合は、その余分な成分が動物体に利用されずに無駄となる可能性が高い。   Item 4. (Estimation of daily fluctuations in the amount of time released from basic feed) will be described. In the STOP program, the daily fluctuation amount of the time release amount from the basic feed is estimated from the result of FIG. 2a and the result of FIG. 3 (see FIG. 4). FIG. 4 shows the estimated amounts of dry matter (hRDM, g) and nitrogen (hRN, g) released from the content feed pieces to the rumen each time in sheep that freely feed CS. When this is a 40: 1 ratio, both components are efficiently utilized for microbial growth in the rumen, and are considered ideal for bacterial protein synthesis (Czerkawaski, 1986). For this reason, in FIG. 4, hRN is set to a value 40 times that of hRDM and compared with hRDM. When the heights of both are the same, the comparison is appropriate, and it is considered that energy and nitrogen are synchronized. On the other hand, when either one is high, there is a high possibility that the extra component is not used in the animal body and is wasted.

項目5.(補給飼料の種類、量及び給与回数の決定)を説明する。一般農家では通常、家畜に給与する飼料の種類と量を決定する場合、期待する生産量(日搾乳量や日体重増加量など)に基づいて養分要求量を推定し、それを充足するのに必要な飼料の配合と給与量を日本飼養標準(農林水産技術会議事務局)などから算出し、価格などの要素も勘案して決定している。本システムにおいても、家畜に給与する基礎飼料と補助飼料の合計が、期待生産量に必要な養分を充足するように決定する。本システムで使用している「補助飼料」という言葉は、通常「基礎飼料のみでは不足する養分を補助する飼料」の意であるが、ここでは、「反芻胃内の発酵とエネルギー及び窒素の放出を制御するための飼料」として使用しており、「発酵制御用飼料」とも言い換えることができる。このため、TMR(全混合飼料)を使用している農家に本システムを利用する場合には、TMRに含まれる飼料の一部を配合から取り除き、これを発酵制御用飼料として別途給与するようにして、その給与時間を調整することで反芻胃内の制御を行う。   Item 5. (Determination of the type, amount, and number of salaries of supplementary feed) will be described. In general farmers, when determining the type and amount of feed to be fed to livestock, the required nutrients are estimated based on the expected production (such as daily milking and daily weight gain), and are satisfied. Necessary feed composition and salary are calculated from Japanese breeding standards (Agriculture, Forestry and Fisheries Technology Council Secretariat), etc., and are determined taking into account factors such as price. Also in this system, the total of basic feed and supplementary feed to be fed to livestock is determined to satisfy the nutrients necessary for the expected production. The term “supplementary feed” used in this system usually means “feed that supplements nutrients that are not sufficient only with basic feed”, but here “fermentation in rumen and release of energy and nitrogen” It can be rephrased as “fermentation control feed”. For this reason, when using this system for farmers who use TMR (total mixed feed), part of the feed contained in TMR is removed from the blend and fed separately as fermentation control feed. Then, the rumen is controlled by adjusting the salary time.

現在、飼料配合の決定に使用されている日本や英国(Agricultural Reseach Council)及び米国(National Research Council)の飼養標準では、各飼料の消化率や代謝率は定数として扱われており、実例(大浦とFadel El−Seed,A.M.A.の学会講演要旨概要)にあるように、補助時間の最適化により大幅な消化率の改善が見込まれるならば、飼料の消化率は一定に固定された定数ではなく、変動する数量として扱う必要が生ずる。現段階ではこのような変動を飼料配合の決定に組み込んではいないが、本システムでは今後、最適補給効果も加味して消化率なども数式化し、無駄のない飼料配合を決定できるように改良することが望まれる。   Currently, the feed standards of Japan, UK (Agricultural Research Council) and USA (National Research Council), which are used to determine feed composition, treat the digestibility and metabolic rate of each feed as constants. And Fadel El-Seed, A. M. A. M.A.A. Abstract), if the digestion rate is expected to improve significantly by optimizing the supplementary time, the digestibility of the feed will be fixed. It is necessary to treat it as a variable quantity, not as a constant. At the present stage, such fluctuations are not incorporated in the determination of feed formulation, but in the future, the system will be formulated so that the digestibility can be determined by taking into account the optimal replenishment effect, so that the feed formulation can be determined without waste. Is desired.

項目6.(補給時間全組合せにおける日同調乾物量の推定と、最適時間の決定)を説明する。現STOPプログラムでは、利用する補給飼料の種類と量を入力し、補給回数を1日2回として最適時間を推定している。このため、シミュレーションの結果は図5のように2回の補給時間(x軸およびy軸)と放出同調指数(z軸)の3次元で示される。現在、本システムでは指数として日同調乾物量(dSDM):図4に示すhRDMとhRN×40の低い方の値を1日分積算した量、g)を採用している。図5では、尿素+水酸化カルシウムで処理した稲わら(CS)を基礎飼料として自由採食させている緬羊に、窒素補助飼料として綿実粕(CSM)を1日2回(各75g)給与することとした場合の、すべての補給時間の組合せについてのdSDM推定量の変動を示す。この場合、dSDMが最も高い値(227g)となる組合せ(2:00と17:00)が最適補給時間となるが、本システムの推定値にはさまざまな誤差要因が含まれているとみられるため、この組合せだけに限定することは適切ではない。   Item 6. (Estimation of daily synchronized dry matter and determination of optimum time for all combinations of replenishment times) will be described. In the current STOP program, the type and amount of supplementary feed to be used are input, and the optimum time is estimated by setting the number of supplements to twice a day. Therefore, the result of the simulation is shown in three dimensions of two replenishment times (x-axis and y-axis) and release tuning index (z-axis) as shown in FIG. Currently, this system uses the daily synchronized dry matter amount (dSDM) as an index: the amount obtained by integrating the lower value of hRDM and hRN × 40 shown in FIG. 4 for one day, g). In FIG. 5, cottonseed meal (CSM) is fed twice a day (each 75 g) as a nitrogen supplement to sheep that have been freely fed rice straw (CS) treated with urea + calcium hydroxide as a basic feed. The fluctuation of the dSDM estimator for all the replenishment time combinations is shown. In this case, the combination (2:00 and 17:00) in which dSDM has the highest value (227 g) is the optimum replenishment time, but it seems that various error factors are included in the estimated value of this system. It is not appropriate to limit to this combination alone.

図6は、緬羊に基礎飼料としてアンモニア処理稲わら(AS)あるいは尿素+水酸化カルシウム処理稲わら(CS)を飽食させ、窒素補給飼料として綿実粕(CSM)を2回(各75g)に分けてさまざまな時間(24×24)に給与した時の日同調乾物量(dSDM)を推定し、AS(図6a)及びCS(図6b)それぞれについて、それぞれの最高値を100%、最低値を0%として、各補給時間の組合せを最適(■:95〜100%)、適(▲:90〜95%)、不適(△:5〜10%)、最不適(□:0〜5%)及びその他([空白]:10〜90%)に分類して示す。このような分類を行うことにより、飼育管理者は推定値の許容範囲とその現場の実状を考慮した上で、任意に給与時間を決定することが可能となる。すなわち、管理者が推定値の許容範囲を5%以内と見積もった場合には、図6で示す最適候補時間(■)の中から、管理者の勤務時間帯にできるだけあった組合せを選ぶとか、実例(大浦とFadel El−Seed,A.M.A.の学会講演要旨概要)にあるように、基礎飼料が1種類ではなく複数ある場合にはいずれの基礎飼料においても許容範囲内にある組合せ(図6a及びb参照)を選ぶ、といった選択が可能である。   Fig. 6 shows that sheep are fed with ammonia-treated rice straw (AS) or urea + calcium hydroxide-treated rice straw (CS) as a basic feed, and cottonseed straw (CSM) is fed twice (75 g each) as a nitrogen-supplemented feed. Estimate daily synchronized dry matter (dSDM) when fed separately at various times (24 x 24), and for AS (Fig. 6a) and CS (Fig. 6b), the maximum value is 100% and the minimum value Is set to 0%, the combination of each replenishment time is optimum (■: 95-100%), suitable (▲: 90-95%), unsuitable (△: 5-10%), most unsuitable (□: 0-5% ) And others ([blank]: 10 to 90%). By performing such a classification, the breeding manager can arbitrarily determine the salary time in consideration of the allowable range of the estimated value and the actual state of the site. In other words, when the administrator estimates the allowable range of the estimated value to be within 5%, it is possible to select a combination that matches the manager's working hours as much as possible from the optimum candidate time (■) shown in FIG. As shown in the actual example (Summary of the presentation at the conference of Oura and Fadel El-Seed, A.M.A.), if there is more than one type of basic feed, combinations that are within the allowable range in any basic feed (See FIGS. 6a and b).

本システムの実例では、図6(a)及び図6(b)をもとに最適時間処理として「1:00と17:00の2回に半量ずつ給与」を選択し、最不適時間処理では「8:00の1回に全量給与」として、緬羊を実際に飼育して実験を行った。1:00の給与は管理者が実施することが困難であったため、掃除機とタイマーを利用した自動給餌装置を作成して利用した。その結果は図7に示すように、最適時間処理では反芻胃内のpH、アンモニア態窒素量及びVFA量が高くなり、菌体が占めるとみられる懸濁性沈殿物が3割増加し、反芻胃に貯留する全乾物量が有意に増加し、乾物及び繊維質の消化率がそれぞれ2割、窒素蓄積率が6割向上し、窒素の尿中排出率は4割低減した。この結果をみると、「1:00と17:00の2回に半量ずつ給与」(最適時間処理)の場合は、「8:00の1回に全量給与」(不適時間処理)の場合より、反芻胃での菌体合成量が増加して繊維分解能が上昇し、飼料から放出されるエネルギー及び窒素が有効に利用されたと考えられる。すなわち、「1:00と17:00の2回に半量ずつ給与」が最適給与時間であることが判り、本システムで選択した最適給与時間が正しかったことを示している。   In the example of this system, based on FIGS. 6 (a) and 6 (b), “salary in half at two times of 1:00 and 17:00” is selected as the optimal time process, and the most inappropriate time process is selected. The experiment was conducted with the actual breeding of sheep as “all salary at 8:00”. Since it was difficult for the administrator to implement the 1:00 salary, an automatic feeding device using a vacuum cleaner and a timer was created and used. As a result, as shown in FIG. 7, in the optimal time treatment, the pH, ammonia nitrogen amount and VFA amount in the rumen increased, and the suspended sediment that the cells seem to occupy increased by 30%. The dry matter and fiber digestibility increased by 20%, the nitrogen accumulation rate improved by 60%, and the nitrogen urinary excretion rate decreased by 40%. Looking at this result, in the case of “half salary for two times of 1:00 and 17:00” (optimal time processing), it is more than in the case of “full salary for one time of 8:00” (improper time processing). It is considered that the amount of microbial cells synthesized in the rumen increased, the fiber resolution increased, and the energy and nitrogen released from the feed were effectively utilized. In other words, it is found that “half salary for two times of 10:00 and 17:00” is the optimum salary time, indicating that the optimum salary time selected in this system was correct.

以上説明したように、本発明の動物体飼料最適給与時間決定システムは、項目1.(乾物あるいは有機物と窒素の反芻胃内分解速度の推定)、項目2.(通過速度の推定及び、摂取飼料の分解と流出の動態の推定)、項目3.(基礎飼料の時間摂取量の把握)、項目4.(基礎飼料からの時間放出量の日内変動の推定)、項目5.(補助飼料の種類、量及び給与回数の決定)及び項目6.(補給時間全組合せにおける日同調乾物量の推定と、最適時間の決定)からなり、これらの項目をコンピュータに実現させるプログラムを使用する。   As described above, the animal body feed optimum feeding time determination system according to the present invention has the following items. (Estimation of rate of rumen degradation of dry matter or organic matter and nitrogen), item 2. (Estimation of passage speed and estimation of disintegration and runoff dynamics of ingested feed), item 3. (Understanding the time intake of basic feed), item 4. (Estimation of daily fluctuations in the amount of time released from basic feed), item 5. (Determination of the type, amount and number of times of supplementary feed) and item 6. (Estimated daily dry matter amount in all combinations of replenishment time and determination of optimum time), and uses a program that causes a computer to realize these items.

すなわち、本システムのコンピュータは、与える基礎飼料と補助飼料それぞれの乾物あるいは有機物と窒素の含量と反芻胃内分解速度量、反芻胃の通過速度量、基礎飼料の時間摂取量、基礎飼料からの時間放出量の日内変動量及び放出同調指数(日同調乾物量)の各データを記憶する基礎データ記憶手段と、基礎飼料からの時間放出量の日内変動量及び放出同調指数を算出する手段と、補給時間の候補となる複数の時間及び時間の組合せのデータを入力する手段と、入力された時間又は時間の組合せについて、基礎データ記憶手段に記憶したデータを用いて放出同調指数を算出する手段と、算出結果を記憶する算出結果記憶手段と、算出結果を順次読み出し、その中から放出同調指数の優れた値に対応する時間又は時間の組合せを補給時間と決定する手段と、決定した補給時間を表示する手段とを有する。また、本システムのコンピュータは、使用する補給飼料の種類、量、給与回数のデータを入力する手段を有する。本システムの動作は、上記で説明した通りである。   In other words, the computer of this system is responsible for the dry matter or organic matter and nitrogen content, rumen disintegration rate, rumen transit rate, basic feed intake, time intake from basic feed, and time from basic feed. Basic data storage means for storing data of daily fluctuation amount of release amount and release synchronization index (daily synchronization dry matter amount), means for calculating daily fluctuation amount of release amount from basic feed and release synchronization index, and supplementation Means for inputting data of a plurality of times and time combinations that are candidates for time; means for calculating a release tuning index using the data stored in the basic data storage means for the inputted time or time combination; A calculation result storage means for storing the calculation result, and sequentially reading out the calculation result, from which time or a combination of times corresponding to an excellent value of the release tuning index is a replenishment time A means for a constant, and means for displaying the determined replenishing time. Moreover, the computer of this system has a means for inputting data on the type, amount, and number of salaries of supplementary feed to be used. The operation of this system is as described above.

本システムを使用することにより、基礎飼料と補助飼料とを与えて反芻胃を有する動物体の飼料の補給時間として、複数の補給時間の中から選択して最適なものを得ることができる。   By using this system, it is possible to obtain an optimum feed time by selecting from a plurality of replenishment times as a replenishment time for the animal body having a rumen by giving a basic feed and an auxiliary feed.

ある飼料(尿素+水酸化カルシウム処理稲わら:CS)の反芻胃培養時間とバック内残存量の関係を示す説明図。Explanatory drawing which shows the relationship between the rumen culture time of a certain feed (urea + calcium hydroxide processing rice straw: CS) and the residual amount in a bag. 摂取されたある飼料(CS)一単位の、摂取後の時間と分解量(a)及び流出量(b)の関係を示す説明図。Explanatory drawing which shows the relationship between the time after ingestion, the decomposition amount (a), and the outflow amount (b) of one unit of ingested feed (CS). ある基礎飼料(CS)を家畜に飽食させた時の、時間摂取量の日内変動量を示すデータの説明図。Explanatory drawing of the data which show the amount of daily fluctuations of a time intake when a certain basic feed (CS) is fed to livestock. ある基礎飼料(CS)を家畜に飽食させた時の、時間放出量の日内変動量を示すデータの説明図。Explanatory drawing of the data which show the amount of daily fluctuations of the amount of time release when a certain basic feed (CS) is fed to livestock. ある補助飼料(綿実粕:CSM)を1日2回、さまざまな時間の組合せ(24×24)で給与した場合の、日同調乾物量(dSDM)の変動を示すデータの説明図。Explanatory drawing of the data which show the fluctuation | variation of a daily synchronized dry matter amount (dSDM) at the time of feeding a certain supplementary feed (cotton seed meal: CSM) twice a day by the combination of various time (24x24). さまざまな時間の組合せ(24×24)で給与した場合の、補給時間の適不適等の分類を示すデータの説明図。Explanatory drawing of the data which shows classification | category of the suitability of replenishment time, etc. at the time of paying with various combinations (24x24) of time. ある基礎飼料(CS)を緬羊に飽食させ,補助飼料(CSB)を給与しない場合(無補給control)、不適時間(8:00)に150g給与した場合(不適)及び最適時間(1:00と17:00)に各75g給与した場合(最適)の代謝成績を示すデータ一覧の図表。When a certain basic feed (CS) is fed to the sheep and supplementary feed (CSB) is not fed (unsupplemented control), when 150 g is fed in an inappropriate time (8:00) (unsuitable) and the optimal time (10:00) 17:00) A chart of a data list showing metabolic results when 75 g of each is fed (optimal).

Claims (5)

基礎飼料と補助飼料を与えて反芻胃を有する動物体を飼育する際の補助飼料の補給時間を決定する方法であって、
基礎飼料と補助飼料のエネルギーと窒素の反芻胃内分解速度をそれぞれ推定し、反芻胃からの通過速度を推定し、摂取後の分解量と流出量を推定する手順と、基礎飼料の時間摂取量を把握する手順と、基礎飼料からの時間放出量の日内変動量を推定する手順と、補給時間の候補となる複数の時間又は時間の組合せについて全摂取飼料からの時間放出量を推定し、反芻胃における菌体合成の効率を査定するための放出同調指数をそれぞれ算出する手順と、算出された指数の中から優れた値が得られた時間又は時間の組合せを最適補給時間として決定する手順とを有することを特徴とする動物体飼料補給時間決定方法。
A method for determining supplementary feed supplementation time when raising an animal body having a rumen with a basic feed and a supplementary feed,
Estimate the rumen degradation rate of energy and nitrogen of the basic feed and supplementary feed, estimate the passage rate from the rumen, estimate the amount of degradation and runoff after ingestion, and the time of basic feed intake The amount of time released from the basic feed, the amount of time released from the basic feed, and the amount of time released from the total ingested feed for multiple times or combinations of times that are candidates for supplementation. A procedure for calculating the release synchronization index for assessing the efficiency of bacterial cell synthesis in the stomach, and a procedure for determining the time or combination of times at which excellent values were obtained from the calculated index as the optimal supplementary time; An animal body feed replenishment time determination method characterized by comprising:
請求項1記載の動物体飼料補給時間決定方法において、
使用する基礎飼料及び補助飼料の種類、量、給与回数を決める手順を有することを特徴とする動物体飼料補給時間決定方法。
In the animal body feed supply time determination method according to claim 1,
A method for determining animal body feed replenishment time, comprising a procedure for determining the type, amount, and number of times of feeding of basic feed and supplementary feed to be used.
コンピュータを備え、基礎飼料と補助飼料を与えて反芻胃を有する動物体の飼料の補給時間を決定するシステムであって、
前記コンピュータは、与える基礎飼料と補助飼料それぞれの乾物あるいは有機物と窒素の含量と反芻胃内分解速度量、反芻胃の通過速度量及び基礎飼料の時間摂取量の各データを記憶する基礎データ記憶手段と、入力された基礎飼料について時間放出量の日内変動量及び放出同調指数を算出する手段と、補給時間の候補となる複数の時間又は時間の組合せのデータを入力する手段と、入力された補給時間又は時間の組合せについて、基礎データ記憶手段に記憶したデータを用いて放出同調指数を算出する手段と、算出結果を記憶する算出結果記憶手段と、算出結果を順次読み出し、その中から放出同調指数の優れた値に対応する時間又は時間の組合せを補給時間と決定する手段と、決定した補給時間を表示する手段とを有することを特徴とする補給時間決定システム。
A system comprising a computer, for providing a basic feed and a supplementary feed and determining a feed time for an animal body having a rumen,
The computer stores basic data storage means for storing each data of dry matter or organic matter and nitrogen content, rumen disintegration rate amount, rumen passage rate amount, and basic feed time intake amount of each of the basic feed and supplementary feed to be given. Means for calculating the daily fluctuation amount and release synchronization index of the time release amount for the input basic feed, means for inputting data of a plurality of times or time combinations that are candidates for the supply time, and the input supply With respect to time or a combination of times, means for calculating the release tuning index using data stored in the basic data storage means, calculation result storage means for storing the calculation results, and reading the calculation results in order, from among them, the release tuning index Means for determining a time or a combination of times corresponding to an excellent value of the replenishment time, and means for displaying the determined replenishment time. Replenishment time determination system.
請求項3記載の補給時間決定システムにおいて、
上記コンピュータは、使用する補給飼料の種類、量、給与回数のデータを入力する手段を有することを特徴とする補給時間決定システム。
In the replenishment time determination system according to claim 3,
The computer has a means for inputting data on the type, amount, and number of salary of supplementary feed to be used.
基礎飼料と補助飼料を与えて反芻胃を有する動物体の飼料の補給時間を決定するシステムのコンピュータに使用されるソフトウエアであって、
与える基礎飼料と補助飼料それぞれの乾物あるいは有機物と窒素の含量と反芻胃内分解速度量、反芻胃の通過速度量及び基礎飼料の時間摂取量の各データを記憶する基礎データ記憶機能と、入力された基礎飼料について時間放出量の日内変動量及び放出同調指数を算出する機能と、補給時間の候補となる複数の時間又は時間の組合せのデータを入力する機能と、入力された補給時間又は時間の組合せについて、基礎データ記憶機能により記憶したデータを用いて放出同調指数を算出する機能と、算出結果を記憶する算出結果記憶機能と、算出結果を順次読み出し、その中から放出同調指数の優れた値に対応する時間又は時間の組合せを補給時間と決定する機能と、決定した補給時間を表示する機能とをコンピュータに実現させるプログラムからなるコンピュータ・ソフトウエア。
Software used in a computer of a system for providing a basic feed and a supplementary feed and determining a feed time for an animal body having a rumen,
Basic data storage function to store dry matter or organic matter and nitrogen content, rumen disintegration rate, rumen transit rate, and basic feed time intake data for each basic feed and supplementary feed to be fed A function for calculating the daily fluctuation amount and the release synchronization index of the basic feed, a function for inputting data of a plurality of times or time combinations which are candidates for the supplementary time, and an input supplementary time or time For the combination, a function for calculating the release tuning index using the data stored by the basic data storage function, a calculation result storing function for storing the calculation result, and sequentially reading the calculation result, and an excellent value of the release tuning index from among them A program that causes a computer to implement a function for determining a time or a combination of times corresponding to a replenishment time and a function for displaying the determined replenishment time Consisting of computer software.
JP2003308887A 2003-09-01 2003-09-01 Method for determining time for replenishing fodder for animal, system for determining replenishing time, and computer software Pending JP2005073598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003308887A JP2005073598A (en) 2003-09-01 2003-09-01 Method for determining time for replenishing fodder for animal, system for determining replenishing time, and computer software

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003308887A JP2005073598A (en) 2003-09-01 2003-09-01 Method for determining time for replenishing fodder for animal, system for determining replenishing time, and computer software

Publications (1)

Publication Number Publication Date
JP2005073598A true JP2005073598A (en) 2005-03-24

Family

ID=34411220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003308887A Pending JP2005073598A (en) 2003-09-01 2003-09-01 Method for determining time for replenishing fodder for animal, system for determining replenishing time, and computer software

Country Status (1)

Country Link
JP (1) JP2005073598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528600A (en) * 2007-06-03 2010-08-26 マースランド エヌ・ヴィ Method and apparatus for managing a group of dairy animals and computer program therefor
JP7507904B1 (en) 2023-01-13 2024-06-28 ソフトバンク株式会社 Information processing device, information processing method, and information processing program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528600A (en) * 2007-06-03 2010-08-26 マースランド エヌ・ヴィ Method and apparatus for managing a group of dairy animals and computer program therefor
JP7507904B1 (en) 2023-01-13 2024-06-28 ソフトバンク株式会社 Information processing device, information processing method, and information processing program

Similar Documents

Publication Publication Date Title
Wanapat et al. Dietary sources and their effects on animal production and environmental sustainability
Machmüller et al. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec)
Ribeiro et al. Effects of ruminal infusion of a slow-release polymer-coated urea or conventional urea on apparent nutrient digestibility, in situ degradability, and rumen parameters in cattle fed low-quality hay
Cappelaere et al. Amino acid supplementation to reduce environmental impacts of broiler and pig production: a review
Klopfenstein et al. Animal diet modification to decrease the potential for nitrogen and phosphorus pollution
AU2017258820B2 (en) Systems and methods for estimating feed efficiency and carbon footprint for milk producing animal
CA2573897A1 (en) System and method for optimizing animal production based on dynamic nutrient information
Hersom Opportunities to enhance performance and efficiency through nutrient synchrony in forage-fed ruminants
Lahart et al. The repeatability of feed intake and feed efficiency in beef cattle offered high-concentrate, grass silage and pasture-based diets
Wilkinson et al. Impact of diet and fertility on greenhouse gas emissions and nitrogen efficiency of milk production
Strebel et al. On demand feeding and the response of Pacific white shrimp (Litopenaeus vannamei) to varying dietary protein levels in semi-intensive pond production
Lammers et al. Nonsolar energy use and one-hundred-year global warming potential of Iowa swine feedstuffs and feeding strategies
Knapp et al. Cow of the Future research priorities for mitigating enteric methane emissions from dairy
Dove Principles of supplementary feeding in sheep-grazing systems.
Reynolds et al. Ruminant nutrition regimes to reduce greenhouse gas emissions in dairy cows
JP2005073598A (en) Method for determining time for replenishing fodder for animal, system for determining replenishing time, and computer software
Ullman An evaluation of feed management, the use of automatic feeders, and feed leaching in the culture of Pacific white shrimp Litopenaeus vannamei
Erickson et al. Utilization of feed co-products from wet or dry milling for beef cattle
Guo et al. A dynamic model to predict the nitrogen excretion in growing-finishing cattle
Bošnjak et al. Possibilities for mitigating the environmental footprint of dairy ruminants.
De Campeneere et al. Feeding measures to reduce nitrogen excretion in dairy cattle
Tedeschi et al. Unveiling the production efficiency of the beef cow: A systematic approach using nutrition models
YATOR Evaluation of compounded supplementary concentrate on milk yield and quality among Holstein Friesian cattle
Li Modeling Nitrogen and Energy Metabolism in the Bovine
Frolova et al. The pig feeding and nitrogen associated gaseous emissions in Latvia