JP2005072041A - Solid-state image pickup device and imaging system using same - Google Patents

Solid-state image pickup device and imaging system using same Download PDF

Info

Publication number
JP2005072041A
JP2005072041A JP2003208670A JP2003208670A JP2005072041A JP 2005072041 A JP2005072041 A JP 2005072041A JP 2003208670 A JP2003208670 A JP 2003208670A JP 2003208670 A JP2003208670 A JP 2003208670A JP 2005072041 A JP2005072041 A JP 2005072041A
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
state
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003208670A
Other languages
Japanese (ja)
Other versions
JP4411027B2 (en
Inventor
Masato Yamada
正人 山田
Koji Eto
剛治 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2003208670A priority Critical patent/JP4411027B2/en
Publication of JP2005072041A publication Critical patent/JP2005072041A/en
Application granted granted Critical
Publication of JP4411027B2 publication Critical patent/JP4411027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve high-speed photographing while the occurrence of spherical aberration and shading by an imaging lens is greatly released even on the imaging surface of any element in a lamination type solid-state image pickup device, where a number of solid-stage image pickup element units are laminated. <P>SOLUTION: The lamination type solid-state image pickup device 11a is composed by laminating in steps so that a flat chip 11 is laminated in steps for arrangement in the recess of a package 10 and the upper surface in which a light reception surface 13 is arranged is exposed partially in the chip 11. A pair of lamination type solid-state image pickup devices 11a composes a terrace paddy field type solid-state image pickup element 12 so that the steps oppose each other. The chip 11 at the lowest section is joined to a junction surface 10a comprising an inner bottom surface in the package 10. A thickness (t) in the chip 11 is set to be within the range of the depth of focus in the imaging lens. The upper end at the step side of each chip 11 is arranged near an arc 16 with a main point 17 of the imaging lens 14 as a center and nearly focal distance 15 of the imaging lens 14 as a radius. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、平板状の固体撮像素子単位(チップ)を階段状に積層形成してなる固体撮像装置およびこれを用いた撮像系に関し、詳しくは、各チップの受像面部分を撮像レンズの焦点深度内とするように改良された固体撮像装置および撮像系に関するものである。
【0002】
【従来の技術】
従来より、高速撮影に適した撮像素子の開発要求が高く、特に、低ノイズで高精度の高速撮影用の固体撮像素子が望まれている。
【0003】
このような要求に対し、本願発明者は、複数の平板状の固体撮像素子単位(チップ)を、受光面を一部露出させるように階段状に重ね合わせることにより、低ノイズかつ高精度で高速連続撮影を可能とした積層型固体撮像素子(積層型CCD)を開発し、既に開示している(特許文献1)。また特許文献1には、1対の該積層型固体撮像素子を、階段状部分が互いに対向するようにつき合わせて構成した、棚田型固体撮像素子と称される固体撮像素子も開示されている。
【0004】
【特許文献1】
特開2000−286404号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1記載の固体撮像素子は、数枚以上のチップを積層するものであるため、各チップをできるだけ薄く(例えば30μm程度)形成しても、全体の厚みが、例えば200μm程度以上にもなり、固体撮像素子の受光面上に集光させるための撮像レンズからの距離が、各チップの受光面毎に大きく異なってしまい、受光面の位置によっては大きな収差やシェーディングが発生してしまう。その結果得られた画像に許容し得ない歪が生じてしまうという問題も発生し得る。
【0006】
本発明はこのような事情に鑑みなされたもので、多数枚の固体撮像素子単位を積層した積層型固体撮像素子において、いずれの素子の受像面においても撮像レンズによる球面収差やシェーディングの発生を大幅に緩和し得る、高速撮影用の固体撮像素子を備えた固体撮像装置およびこれを用いた撮像系を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記の目的は、積層型固体撮像素子を構成する各固体撮像素子単位を、その厚みが撮像レンズの焦点深度範囲以内となるように薄く形成するとともに、階段状に積層された固体撮像素子の段差を利用し、各固体撮像素子単位の受像面が、撮像レンズの主点位置を中心とし、該撮像レンズの略焦点距離を半径とする同一円弧の近傍に配置されるように構成することで達成される。
【0008】
これにより、各受像面が、撮像レンズの焦点深度内に略収まるようになるので、固体撮像素子により得られた画像は球面収差やシェーディングを極めて小さいものとすることができる。
【0009】
すなわち、本発明の固体撮像素子は、撮像レンズを介して入射された入射線束を受像する固体撮像装置において、
平板状の固体撮像素子単位を、受像面が配される上面の少なくとも一部が露出するように階段状に積層してなるとともに、該階段状に積層した該固体撮像素子単位の段差が前記撮像レンズの焦点深度の範囲内となるように該固体撮像素子単位の厚みを調整し、
該固体撮像素子単位各々の階段側上面縁部が、この階段側上面縁部に直交する断面内において、前記撮像レンズの主点を中心とし、該撮像レンズの略焦点距離を半径とする円弧の近傍に配置されるように設定されてなる積層型固体撮像素子を備えていることを特徴とするものである。
【0010】
ここで、上記「入射線束」は、通常は可視光線であるが、その他赤外線、紫外線、X線、電子線、イオン線、中性子線、さらには超音波であってもよい。すなわち固体撮像素子単位の変換部は、可視光線像の他、赤外線像、紫外線像、X線像、電子線像、イオン線像、中性子線像、超音波像等を電気信号に変換するものであってもよい。
また、上記「略焦点距離」とは、焦点距離に焦点深度を加算した範囲内であることを意味する。
【0011】
また、1対の前記積層型固体撮像素子を、それぞれの階段部が互いに対向するように、かつ該1対の積層型固体撮像素子における前記円弧が互いに共通となるように配置してなる棚田型固体撮像素子を備えるように構成することが可能である。
【0012】
さらに、前記棚田型固体撮像素子を複数組備えるように構成することが可能である。
【0013】
また、前記固体撮像素子単位は、その厚みが約50μm以下とされ、かつ可撓性を有するように構成されていることが好ましい。
【0014】
また、前記積層型固体撮像素子または前記棚田型固体撮像素子をパッケージの内側底面に接合し、該パッケージの内側底面を平面状に形成したり、該パッケージの内側底面が該積層型固体撮像素子または該棚田型固体撮像素子の階段部傾斜方向と同一方向に傾斜するように形成したり、該パッケージの内側底面が該積層型固体撮像素子または該棚田型固体撮像素子の階段部の傾斜に沿うように湾曲する円筒状または球状の曲面となるように形成することが可能である。
【0015】
また、本発明の撮像系は、上述したいずれかの固体撮像装置、および該固体撮像装置の受像面上への入射線束収束機能を有する撮像レンズとを備えたことを特徴とするものである。
【0016】
【発明の実施の形態】
以下、本発明の実施形態に係る固体撮像装置について図面を用いて説明する。
なお、以下、5つの実施形態により本発明の固体撮像装置を説明するが、その基本的構成は第1実施形態において説明し、その他の実施形態については第1実施形態と相違する部分についてのみ説明する。
【0017】
(第1実施形態)
図1、図2および図3は本発明の第1実施形態の固体撮像装置を示す正面断面図(図3のA−A線断面図)、側方断面図(図3のB−B線断面図)および平面図である。
【0018】
図1〜3に示すように、本実施形態の固体撮像素子は、パッケージ10の凹部内に平板状の固体撮像素子単位であるチップ11が階段状に積層して配設されてなる。複数枚のチップ11は、その受光面13が配される上面の少なくとも一部が露出するように、階段状に積層されて積層型固体撮像素子11aを構成し、また、1対の積層型固体撮像素子11aは、それぞれの階段部が互いに対向するようにして棚田型固体撮像素子12を構成する。
【0019】
また、最下部のチップ11は、パッケージ10の内側底面からなる接合面10aと接合されている。
さらに、階段状に積層したチップ11の段差、すなわちチップ11の厚みtは、後述する撮像レンズ(図4において14)の焦点深度の範囲内、例えば50μm、望ましくは30μmとなるように形成されている。
【0020】
また、図4に示すように、チップ11各々の階段側上面縁部が、この階段側上面縁部に直交する断面内において、撮像レンズ14の主点17を中心とし、撮像レンズ14の略焦点距離15を半径とする円弧(実際には第1実施形態では円筒面)16の近傍に配置されるように設定されている。なお、上述した固体撮像装置および撮像レンズ14により本発明の実施形態に係る撮像系が構成される。
【0021】
また、上述したチップ11は複数の受光部がマトリクス状に配列されてなる受光エリアを有しており、その基本的構造は、周知の固体撮像素子と同様の構造を有している。このような固体撮像素子の構造は、例えば本願発明者による特開2000−286404号公報等に詳しく記載されている。すなわち、各チップ11の1辺(図2において左右方向に伸びる辺)に沿って、変換部であるフォトダイオードが1列に配列されている。各フォトダイオードには、電気信号蓄積部である直線状の垂直CCD転送路が接続されており、各垂直CCD転送路は、複数のCCD単位素子を備えている。これらフォトダイオードおよび垂直CCD転送路により並列処理部が構成される。
【0022】
また、パッケージ10は、例えばプラスチックにより形成され(セラミック等の他の材料によっても形成可能である)、上述したように、凹部の内側底面である接合面10aにチップ11を接合して収納するようになっている。また、パッケージ10の開放端面には透明のカバーガラスが取り付けられ、これによりパッケージ10の内部気密が確保されるようになっている。なお、図示されてはいないが、パッケージ10の下端には複数本の金属製リードが突出するように配設されており、パッケージ10の内側にはこれら金属製リードと電気的に接続された電極が設けられている。この電極は、ボンディングワイヤによりチップ11と電気的に接続されている。
【0023】
また、各チップ11の厚みは、積層したときに、その段差が撮像レンズ14の焦点深度の範囲内に入るような厚み、例えば30μmとなるように、チップ11の裏面側を化学的機械研磨し、チップ11に可撓性を付与する。チップ11の研磨手法としては特に限られるものではないが、例えば、特開2001−156278号公報に記載されている「ケミカルメカニカルグラインダー」を使用する。また、この研磨は、一般には、チップを切り出す前の半導体ウエハにおいて行う。
【0024】
また、最下層のチップ11とパッケージ10を接合する際には、チップ11の裏面側またはパッケージ10の接合面10aに接着剤を塗布し、パッケージ10の底部に設けた孔を吸引装置に接続して、チップ11を接合面10aに吸引し、チップ11をパッケージ10に接合する。上記孔は、固体撮像素子の製作が終了した後に樹脂等を用いて塞ぐようにするのが好ましい。
【0025】
また、各チップ11の積層は、接着剤を用いて行われ、その際には、チップ11の上面端部に設けられた受光面13が露出するように、上下のチップ11を互いに図1中左右方向にずらして接合する。この接着操作は、通常、上記チップ11と接合面10aの接着前に行われる。
【0026】
なお、この後、各チップ11の電極とパッケージ10内の電極とをワイヤで電気的に接続することになるが、これは、例えばワイヤボンディング装置を使用して行う。最後に、パッケージ10の開放端面にカバーガラスを取り付け、固体撮像装置内を密封する。
【0027】
このように、本実施形態装置においては、積層される各チップ11を化学的機械研磨により撮像レンズ14の焦点深度の範囲内の厚みとなるように極めて薄く研磨するとともに、階段状に積層された積層型固体撮像素子11aの段差を利用し、各チップ11の受光面13が、撮像レンズ14の主点17の位置を中心とし、該撮像レンズの略焦点距離を半径とする同一円弧16の近傍に配置されるように構成しているので、各チップ11の受光面13が、撮像レンズ14の焦点深度内に略収まることとなり、取得された各画像では、撮像レンズ14の球面収差やシェーディングの影響を極めて小さいものとすることができる。
【0028】
また、これにより、光学系の設計負担を軽くでき、かつ、チップ11上の並列処理部の機能を向上させることも可能である。
すなわち、球面収差の他、シェーディング等を減少させて取得画像の画質向上を図ることができるとともに、撮像レンズ等の光学系を小型化でき、さらに素子周辺回路をチップ11上の並列処理部に集約させることが可能となる。
【0029】
また、本実施形態においては、1対の積層型固体撮像素子11aを、互いに受光面13側が向き合うようにして構成した棚田型固体撮像素子12において、図4に示すように、1つの円弧16の近傍に、各チップ11の上縁部が位置するように配置しているので、球面収差やシェーディングの極めて小さい画像を数多く取得することができ、さらなる高速撮影が可能となる。
【0030】
なお、上記撮像レンズ14の焦点距離(円弧16の曲率半径)、焦点深度、積層するチップ11の枚数、厚み、受光面13の長さは、上述した本発明の条件を満足する範囲で適宜設定することが可能であるが、例えば、チップ11の厚みを30μm程度としたとき、撮像レンズ14の開放F値を例えば2.0、焦点深度を例えば30μm、積層するチップ11の枚数を例えば3枚、受光面13の長さを例えば1mmとする。
【0031】
(第2実施形態)
図5および図6は、本発明の第2実施形態に係る固体撮像装置を示す正面断面図(図6のC−C線断面図)および平面図である。なお、図5および図6における各部材のうち、図1〜図3における各部材と対応するものにおいては、図1〜図3における各部材に付した符号の十の位を2に替えた符号を付している。
【0032】
この第2実施形態に係る固体撮像装置は、基本的な構成は上述した第1実施形態と同様であるが、図5に示すように、棚田型固体撮像素子22を接合するパッケージ20の接合面20aが左右方向中心線部分を最低位置とし、図中左右両端部を最高位置とするような、中心線部分に向かって下る傾斜面とされている点において相違している。この傾斜角度は図中ではθで表されている。この傾斜角度θは適宜選択し得るが、例えば、1.7°とする。
【0033】
接合面20aを、このように傾斜させることにより、各チップ21の受光面23がやや内側を向くことになり、図4に示す円弧16の曲率半径を、第1実施形態のものよりも小さくでき、撮像系を小型化することができる。
【0034】
(第3実施形態)
図7および図8は、本発明の第3実施形態に係る固体撮像装置を示す側方断面図(図8のD−D線断面図)および平面図である。なお、図7および図8における各部材のうち、図1〜図3における各部材と対応するものにおいては、図1〜図3における各部材に付した符号の十の位を3に替えた符号を付している。
【0035】
この第3実施形態に係る固体撮像装置は、基本的な構成は上述した第1実施形態と同様であるが、図7に示すように、棚田型固体撮像素子32を接合するパッケージ30の接合面30aが前後方向中心線部分を最低位置とし、前後(図7中では左右方向;以下同じ)両端部を最高位置とするような円筒状の曲面とされている点において相違している。各チップ31は可撓性を有するように薄く形成されているので、この接合面30aの形状に倣って図7に示すように湾曲した形状とされる。この円筒状の曲面の曲率半径は、図4に示す撮像レンズ14の焦点距離15と一致させることが望ましいが、全受光面33が撮像レンズ14の略焦点深度の範囲内とされていればよい。
【0036】
これにより、取得された画像において撮像レンズ14の球面収差およびシェーディングの影響をさらに小さいものとすることができる。
【0037】
なお、パッケージ30の対角方向にも、パッケージ30の接合面30aに曲率をもたせ、上記対角方向においても受光面33が撮像レンズ14の焦点深度内に収まるように形成することで、取得された画像において撮像レンズ14の球面収差やシェーディングの影響をさらに大幅に小さいものとすることができる。
【0038】
(第4実施形態)
図9および図10は、本発明の第4実施形態に係る固体撮像装置を示す側方断面図(図10のE−E線断面図)および平面図である。なお、図9および図10における各部材のうち、図1〜図3における各部材と対応するものにおいては、図1〜図3における各部材に付した符号の十の位を4に替えた符号を付している。
【0039】
この第4実施形態に係る固体撮像装置は、基本的な構成は上述した第3実施形態と同様であるが、図9に示すように、棚田型固体撮像素子42を接合するパッケージ40の接合面40aが前後方向中心線部分を最低位置とし、前後両端部を最高位置とするように、段差を有する形状とされている点において相違している。すなわち、この棚田型固体撮像素子42は、左右方向および前後方向の直交する2方向に段差を有していることになる。
【0040】
この前後方向の段差の量は、適宜設定し得るが、全受光面43が、その前後方向にも、撮像レンズ14の焦点深度の範囲内に位置するように形成されていればよい。
【0041】
また、この前後方向の段差に対応する、図4に示す円弧16の曲率半径は、焦点距離に略一致するように、チップ41を裏面研磨することにより調整する。
【0042】
また、パッケージ40の対角方向にも上記と同様の段差をもたせ、上記対角方向においても受光面43が撮像レンズ14の焦点深度内に収まるように形成することで、取得された画像において撮像レンズ14の球面収差やシェーディングの影響をさらに大幅に小さいものとすることができる。
【0043】
(第5実施形態)
図11および図12は、本発明の第5実施形態に係る固体撮像装置を示す側方断面図(図12のF−F線断面図)および平面図である。なお、図11および図12における各部材のうち、図1〜図3における各部材と対応するものにおいては、図1〜図3における各部材に付した符号の十の位を5に替えた符号を付している。
【0044】
この第5実施形態に係る固体撮像装置は、基本的な構成は上述した第3実施形態と同様であるが、図11に示すように、棚田型固体撮像素子52を接合するパッケージ50の接合面50aが左右方向中心線部分を最低位置とし、図中左右両端部を最高位置とするような、中心線部分に向かって下る傾斜面とされており、図1において示されるような棚田型固体撮像素子12が1対、前後方向中心線を挟んで互いに対向するように配されている点において相違している。すなわち、この第5実施形態に係る固体撮像装置は、4つの積層型固体撮像素子51aから構成されている。
【0045】
この前後方向の傾斜面の傾斜角度は適宜選択し得るが、全受光面53が、その前後方向にも、撮像レンズ14の焦点深度の範囲内に位置するように形成される。
【0046】
また、パッケージ50の対角方向にも上記と同様の段差をもたせ、上記対角方向においても受光面53が撮像レンズ14の焦点深度内に収まるように形成することで、取得された画像において撮像レンズ14の球面収差やシェーディングの影響をさらに大幅に小さいものとすることができる。
【0047】
第5実施形態に係る固体撮像装置によれば、上述した第3実施形態に係る固体撮像装置と同様の作用効果を奏することが可能であるが、さらに第3実施形態に係る固体撮像装置に比べて、接合面50aの製作がより容易であるという利点を有する。
【0048】
また、パッケージ40の対角方向にも上記と同様の段差をもたせ、上記対角方向においても受光面53が撮像レンズ14の焦点深度内に収まるように形成することで、取得された画像において撮像レンズ14の球面収差およびシェーディングの影響をさらに大幅に小さいものとすることができる。
【0049】
本発明の固体撮像装置および撮像系は、上記実施形態のものに限定されるものではなく、種々の態様の変更が可能である。例えば、各チップは赤外線、紫外線、X線、電子線、イオン線、中性子線、超音波等の入射線を電気信号に変換するものであってもよい。この場合、赤外線像、紫外線像、X線像、電子線像、イオン線像、中性子線像、超音波像等を超高速で連続撮影することができる。
【0050】
また、上述した各実施形態においては、少なくとも1対の積層型固体撮像素子を所定配置して棚田型固体撮像素子を備えたものとされているが、本発明の固体撮像装置としては、1つの積層型固体撮像素子のみを備えたものを排除するものではない。
【0051】
また、本発明の固体撮像装置としては、3つ以上の棚田型固体撮像素子を備えたものとすることが可能である。
【0052】
また、本発明の固体撮像装置では、各チップの受光面を曲面に近似した形状に配列しているので、例えば、人間の眼の網膜から脳に至るまでの機能を模した人工網膜にも応用可能である。
【0053】
網膜に結像した像を脳が認識するまでには複数段階の処理が介在しており、これらの処理のうち基本的な処理もしくは簡易な処理は撮像素子自体で行うことが望まれる。したがって、上述した固体撮像装置のようにチップを重ね合わせた構造であれば、並列処理部においてこれらの処理を実行することができるため、人工網膜への適用が極めて有望である。
【0054】
なお、特開2001−156278号公報には固体撮像素子単位を湾曲させて、撮像レンズから固体撮像素子単位各部までの距離を等しく形成した技術が開示されているが、この従来技術は積層型固体撮像素子に関するものではなく、全体の厚みも薄いものであるから、本願発明とは直接関係するものではない。
【0055】
【発明の効果】
以上説明したように本発明の固体撮像装置およびこれを用いた撮像系によれば、積層される各固体撮像素子単位を撮像レンズの焦点深度の範囲内の厚みとなるように極めて薄く研磨するとともに、階段状に積層された固体撮像素子の段差を利用し、各固体撮像素子単位の受像面が撮像レンズの主点の位置を中心とし、該撮像レンズの略焦点距離を半径とする同一円弧16の近傍に配置されるように構成しているので、各固体撮像素子単位の受像面が、撮像レンズの焦点深度内に略収まることとなり、取得された各画像では、撮像レンズの球面収差の影響を極めて小さいものとすることができる。また、シェーディングの影響を極めて小さいものとすることができる。このため、レンズの設計においては、従来の受像面が平面の場合に比べ、球面収差やシェーディングを減らすための開発負担が軽減され、製造コストを低減することができる。
【0056】
また、光学系を含む撮像系を小型化することができる。
さらに、素子周辺回路を固体撮像素子単位上の並列処理部に集約させることが可能であるから、固体撮像素子単位上の並列処理部の機能を向上させることも可能である。
【0057】
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る固体撮像装置を示す正面断面図(図3のA−A線断面図)
【図2】本発明の第1実施形態に係る固体撮像装置を示す側方断面図(図3のB−B線断面図)
【図3】本発明の第1実施形態に係る固体撮像装置を示す平面図
【図4】本発明の第1実施形態に係る固体撮像装置およびこれを用いた撮像系の構成を説明するための図
【図5】本発明の第2実施形態に係る固体撮像装置を示す正面断面図(図6のC−C線断面図)
【図6】本発明の第2実施形態に係る固体撮像装置を示す平面図
【図7】本発明の第3実施形態に係る固体撮像装置を示す側方断面図(図8のD−D線断面図)
【図8】本発明の第3実施形態に係る固体撮像装置を示す平面図
【図9】本発明の第4実施形態に係る固体撮像装置を示す側方断面図(図10のE−E線断面図)
【図10】本発明の第4実施形態に係る固体撮像装置を示す平面図
【図11】本発明の第5実施形態に係る固体撮像装置を示す側方断面図(図12のF−F線断面図)
【図12】本発明の第5実施形態に係る固体撮像装置を示す平面図
【符号の説明】
10、20、30、40、50 パッケージ
10a、20a、30a、40a、50a 接合面
11、21、31、41、51 チップ
11a、21a、31a、41a、51a 積層型固体撮像素子
12、22、32、42、52 棚田型固体撮像素子
13、23、33、43、53 受光面
14 撮像レンズ
15 焦点距離
16 円弧
17 主点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-state imaging device in which flat solid-state imaging device units (chips) are stacked in a stepped manner, and an imaging system using the solid-state imaging device. The present invention relates to a solid-state imaging device and an imaging system that are improved so as to be inside.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a high demand for development of an image sensor suitable for high-speed shooting, and in particular, a solid-state image sensor for high-speed shooting with low noise and high accuracy is desired.
[0003]
In response to such demands, the inventor of the present application superimposes a plurality of flat plate-like solid-state imaging device units (chips) in a staircase pattern so as to partially expose the light receiving surface, thereby achieving low noise, high accuracy, and high speed. A multilayer solid-state imaging device (multilayer CCD) capable of continuous imaging has been developed and disclosed (Patent Document 1). Patent Document 1 also discloses a solid-state image pickup device called a terraced-type solid-state image pickup device in which a pair of stacked solid-state image pickup devices are configured so that stepped portions face each other.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-286404
[Problems to be solved by the invention]
However, since the solid-state imaging device described in Patent Document 1 is formed by stacking several chips or more, even if each chip is formed as thin as possible (for example, about 30 μm), the total thickness is, for example, about 200 μm or more. Therefore, the distance from the imaging lens for condensing on the light receiving surface of the solid-state image sensor varies greatly for each chip light receiving surface, and depending on the position of the light receiving surface, large aberrations and shading may occur. End up. As a result, an unacceptable distortion may occur in the obtained image.
[0006]
The present invention has been made in view of such circumstances, and in a solid-state solid-state image pickup device in which a large number of solid-state image pickup device units are stacked, the occurrence of spherical aberration and shading due to the image pickup lens on the image receiving surface of any element is greatly increased. It is an object of the present invention to provide a solid-state imaging device including a solid-state imaging device for high-speed imaging and an imaging system using the same.
[0007]
[Means for Solving the Problems]
The above object is to form each solid-state image sensor unit constituting the multilayer solid-state image sensor thinly so that the thickness thereof is within the focal depth range of the imaging lens, and to make a step of the solid-state image sensor stacked in a staircase pattern. And the image receiving surface of each solid-state imaging device unit is configured to be arranged in the vicinity of the same arc with the principal point position of the imaging lens as the center and the approximate focal length of the imaging lens as the radius. Is done.
[0008]
As a result, each image-receiving surface is substantially within the focal depth of the imaging lens, so that the image obtained by the solid-state imaging device can have extremely small spherical aberration and shading.
[0009]
That is, the solid-state imaging device of the present invention is a solid-state imaging device that receives an incident ray bundle incident through an imaging lens.
A flat solid-state imaging device unit is stacked in a stepped manner so that at least a part of the upper surface on which the image receiving surface is arranged is exposed, and the step of the solid-state imaging device unit stacked in the stepped shape is the imaging Adjust the thickness of the solid-state imaging device unit so that it is within the range of the focal depth of the lens,
The staircase side upper surface edge of each solid-state image sensor unit has a circular arc centered on the principal point of the image pickup lens and having a radius of approximately the focal length of the image pickup lens in a cross section orthogonal to the staircase side upper surface edge. A multilayer solid-state imaging device set to be arranged in the vicinity is provided.
[0010]
Here, the “incident beam bundle” is usually visible light, but may be other infrared rays, ultraviolet rays, X-rays, electron beams, ion beams, neutron beams, or even ultrasonic waves. That is, the conversion unit for each solid-state imaging device converts an infrared image, an ultraviolet image, an X-ray image, an electron beam image, an ion beam image, a neutron beam image, an ultrasonic image, etc. into an electric signal in addition to a visible light image. There may be.
The “substantially focal length” means that the focal length is within the range obtained by adding the focal depth.
[0011]
Further, a terraced type in which a pair of the stacked solid-state imaging devices are arranged so that the respective staircase portions face each other and the arcs of the pair of stacked solid-state imaging devices are common to each other A solid-state imaging device can be provided.
[0012]
Furthermore, it is possible to configure to include a plurality of sets of the rice terrace type solid-state imaging device.
[0013]
Moreover, it is preferable that the solid-state imaging device unit has a thickness of about 50 μm or less and is configured to have flexibility.
[0014]
Further, the stacked solid-state image sensor or the terraced solid-state image sensor is bonded to the inner bottom surface of the package, and the inner bottom surface of the package is formed into a flat shape, or the inner bottom surface of the package is the stacked solid-state image sensor or It is formed so as to be inclined in the same direction as the staircase portion inclination direction of the terraced solid-state image sensor, or the inner bottom surface of the package is along the inclination of the stacked solid-state image sensor or the staircase portion of the terraced solid-state image sensor. It can be formed to be a cylindrical or spherical curved surface.
[0015]
The imaging system of the present invention includes any one of the solid-state imaging devices described above and an imaging lens having a function of converging an incident beam bundle on an image receiving surface of the solid-state imaging device.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a solid-state imaging device according to an embodiment of the present invention will be described with reference to the drawings.
In the following, the solid-state imaging device of the present invention will be described with reference to five embodiments. The basic configuration will be described in the first embodiment, and only other parts different from the first embodiment will be described in the other embodiments. To do.
[0017]
(First embodiment)
1, 2, and 3 are a front sectional view (sectional view taken along line AA in FIG. 3) and a side sectional view (cross section taken along line BB in FIG. 3) showing the solid-state imaging device according to the first embodiment of the present invention. FIG.
[0018]
As shown in FIGS. 1 to 3, the solid-state imaging device of the present embodiment is configured by stacking chips 11, which are flat solid-state imaging device units, in a stepped shape in a recess of a package 10. The plurality of chips 11 are stacked stepwise so as to expose at least a part of the upper surface on which the light receiving surface 13 is disposed to form a stacked solid-state imaging device 11a, and a pair of stacked solid-state elements 11a. The image sensor 11a constitutes a terraced solid-state image sensor 12 such that the respective staircase portions face each other.
[0019]
Further, the lowermost chip 11 is bonded to a bonding surface 10 a formed from the inner bottom surface of the package 10.
Further, the steps of the chips 11 stacked in a step shape, that is, the thickness t of the chips 11 is formed within a range of the focal depth of an imaging lens (14 in FIG. 4) to be described later, for example, 50 μm, preferably 30 μm. Yes.
[0020]
Further, as shown in FIG. 4, the step-side upper surface edge portion of each chip 11 is centered on the principal point 17 of the imaging lens 14 in the cross section orthogonal to the step-side upper surface edge portion, and is substantially in focus. It is set so as to be arranged in the vicinity of an arc (actually, a cylindrical surface in the first embodiment) 16 having a radius of the distance 15. The solid-state imaging device and the imaging lens 14 described above constitute an imaging system according to the embodiment of the present invention.
[0021]
The chip 11 described above has a light receiving area in which a plurality of light receiving portions are arranged in a matrix, and the basic structure thereof is the same as that of a known solid-state imaging device. The structure of such a solid-state imaging device is described in detail, for example, in Japanese Patent Application Laid-Open No. 2000-286404 by the inventors of the present application. That is, photodiodes that are conversion units are arranged in one row along one side of each chip 11 (side extending in the left-right direction in FIG. 2). Each photodiode is connected to a linear vertical CCD transfer path, which is an electric signal storage unit, and each vertical CCD transfer path includes a plurality of CCD unit elements. These photodiodes and the vertical CCD transfer path constitute a parallel processing unit.
[0022]
Further, the package 10 is formed of, for example, plastic (it can be formed of other materials such as ceramics), and as described above, the chip 11 is bonded to and stored in the bonding surface 10a that is the inner bottom surface of the recess. It has become. In addition, a transparent cover glass is attached to the open end surface of the package 10, thereby ensuring the internal airtightness of the package 10. Although not shown in the drawing, a plurality of metal leads are arranged at the lower end of the package 10 so as to protrude, and an electrode electrically connected to these metal leads is provided inside the package 10. Is provided. This electrode is electrically connected to the chip 11 by a bonding wire.
[0023]
In addition, the thickness of each chip 11 is chemically mechanically polished on the back side of the chip 11 so that, when stacked, the step is within a range of the focal depth of the imaging lens 14, for example, 30 μm. The chip 11 is given flexibility. The method for polishing the chip 11 is not particularly limited, and for example, a “chemical mechanical grinder” described in Japanese Patent Application Laid-Open No. 2001-156278 is used. In addition, this polishing is generally performed on a semiconductor wafer before cutting out chips.
[0024]
Further, when the lowermost chip 11 and the package 10 are bonded, an adhesive is applied to the back surface side of the chip 11 or the bonding surface 10a of the package 10, and the hole provided in the bottom of the package 10 is connected to a suction device. Then, the chip 11 is sucked to the bonding surface 10 a and the chip 11 is bonded to the package 10. It is preferable that the hole is closed with a resin or the like after the manufacture of the solid-state imaging device is completed.
[0025]
In addition, each chip 11 is stacked using an adhesive, and in this case, the upper and lower chips 11 are connected to each other in FIG. 1 so that the light receiving surface 13 provided at the upper end of the chip 11 is exposed. Shift and move in the left / right direction. This bonding operation is usually performed before the chip 11 and the bonding surface 10a are bonded.
[0026]
After that, the electrodes of each chip 11 and the electrodes in the package 10 are electrically connected by wires. This is performed using, for example, a wire bonding apparatus. Finally, a cover glass is attached to the open end surface of the package 10 to seal the inside of the solid-state imaging device.
[0027]
As described above, in the apparatus of the present embodiment, the chips 11 to be stacked are polished extremely thinly by chemical mechanical polishing so as to have a thickness within the range of the depth of focus of the imaging lens 14, and are stacked in a stepped manner. Using the step of the stacked solid-state imaging device 11a, the light receiving surface 13 of each chip 11 is centered on the position of the principal point 17 of the imaging lens 14, and is in the vicinity of the same arc 16 with the approximate focal length of the imaging lens as a radius. Therefore, the light receiving surface 13 of each chip 11 is substantially within the depth of focus of the imaging lens 14, and in each acquired image, spherical aberration and shading of the imaging lens 14 are caused. The influence can be made extremely small.
[0028]
In addition, this makes it possible to reduce the design burden on the optical system and improve the function of the parallel processing unit on the chip 11.
That is, in addition to spherical aberration, shading and the like can be reduced to improve the image quality of the acquired image, the optical system such as the imaging lens can be miniaturized, and the element peripheral circuit is integrated in the parallel processing unit on the chip 11. It becomes possible to make it.
[0029]
Further, in the present embodiment, in the terraced solid-state image pickup device 12 configured such that the pair of stacked solid-state image pickup devices 11a are arranged so that the light receiving surfaces 13 face each other, as shown in FIG. Since the upper edge portion of each chip 11 is positioned in the vicinity, a large number of images with extremely small spherical aberration and shading can be acquired, and further high-speed imaging is possible.
[0030]
The focal length of the imaging lens 14 (the radius of curvature of the arc 16), the depth of focus, the number of chips 11 to be stacked, the thickness, and the length of the light receiving surface 13 are appropriately set within a range that satisfies the above-described conditions of the present invention. For example, when the thickness of the chip 11 is about 30 μm, the open F value of the imaging lens 14 is 2.0, the depth of focus is 30 μm, and the number of chips 11 to be stacked is, for example, 3 The length of the light receiving surface 13 is 1 mm, for example.
[0031]
(Second Embodiment)
5 and 6 are a front sectional view (a sectional view taken along the line CC in FIG. 6) and a plan view showing a solid-state imaging device according to the second embodiment of the present invention. In addition, in each member in FIG. 5 and FIG. 6, a symbol corresponding to each member in FIG. 1 to FIG. Is attached.
[0032]
The basic configuration of the solid-state imaging device according to the second embodiment is the same as that of the first embodiment described above. However, as shown in FIG. 5, the joint surface of the package 20 that joins the terraced solid-state image sensor 22. 20a is different in that it is an inclined surface descending toward the center line portion, with the center line portion in the left-right direction being the lowest position and the left and right ends in the figure being the highest position. This inclination angle is represented by θ in the figure. The inclination angle θ can be selected as appropriate, and is set to 1.7 °, for example.
[0033]
By tilting the bonding surface 20a in this way, the light receiving surface 23 of each chip 21 is slightly inward, and the radius of curvature of the arc 16 shown in FIG. 4 can be made smaller than that of the first embodiment. The imaging system can be reduced in size.
[0034]
(Third embodiment)
7 and 8 are a side cross-sectional view (cross-sectional view taken along the line DD of FIG. 8) and a plan view showing a solid-state imaging device according to the third embodiment of the present invention. 7 and 8, those corresponding to the members in FIGS. 1 to 3 are replaced by 3 in the tens place of the reference numerals attached to the members in FIGS. 1 to 3. Is attached.
[0035]
The basic configuration of the solid-state imaging device according to the third embodiment is the same as that of the first embodiment described above. However, as shown in FIG. 7, the bonding surface of the package 30 to which the terraced solid-state imaging device 32 is bonded. 30a is different in that it has a cylindrical curved surface in which the center line portion in the front-rear direction is the lowest position and the front and rear (left and right direction in FIG. 7; the same applies hereinafter) both ends are the highest positions. Since each chip 31 is thinly formed so as to have flexibility, it has a curved shape as shown in FIG. 7 following the shape of the joint surface 30a. The radius of curvature of the cylindrical curved surface is preferably matched with the focal length 15 of the imaging lens 14 shown in FIG. 4, but it is sufficient that the entire light receiving surface 33 is within the range of the approximate focal depth of the imaging lens 14. .
[0036]
Thereby, it is possible to further reduce the influence of spherical aberration and shading of the imaging lens 14 in the acquired image.
[0037]
In addition, the curvature is also given to the joint surface 30a of the package 30 in the diagonal direction of the package 30, and the light receiving surface 33 is formed so as to be within the focal depth of the imaging lens 14 in the diagonal direction. Further, the influence of spherical aberration and shading of the imaging lens 14 in the captured image can be made much smaller.
[0038]
(Fourth embodiment)
9 and 10 are a side sectional view (a sectional view taken along line EE in FIG. 10) and a plan view showing a solid-state imaging device according to the fourth embodiment of the present invention. In addition, in each member in FIG. 9 and FIG. 10, a symbol corresponding to each member in FIG. 1 to FIG. Is attached.
[0039]
The basic configuration of the solid-state imaging device according to the fourth embodiment is the same as that of the third embodiment described above. However, as shown in FIG. 9, the joint surface of the package 40 to which the terraced solid-state image sensor 42 is joined. 40a is different in that it has a stepped shape so that the center line portion in the front-rear direction is at the lowest position and both the front and rear ends are at the highest position. That is, the terraced solid-state image sensor 42 has steps in two directions that are perpendicular to the left and right direction and the front and rear direction.
[0040]
The amount of the step in the front-rear direction can be set as appropriate, but all the light receiving surfaces 43 may be formed so as to be positioned within the range of the focal depth of the imaging lens 14 also in the front-rear direction.
[0041]
Further, the radius of curvature of the arc 16 shown in FIG. 4 corresponding to the step in the front-rear direction is adjusted by polishing the back surface of the chip 41 so as to substantially match the focal length.
[0042]
Further, a step similar to the above is provided also in the diagonal direction of the package 40, and the light receiving surface 43 is formed so as to be within the focal depth of the imaging lens 14 in the diagonal direction as well. The influence of the spherical aberration and shading of the lens 14 can be made much smaller.
[0043]
(Fifth embodiment)
11 and 12 are a side sectional view (a sectional view taken along line FF in FIG. 12) and a plan view showing a solid-state imaging device according to the fifth embodiment of the present invention. In addition, in each member in FIG. 11 and FIG. 12, in the thing corresponding to each member in FIGS. 1-3, the code | symbol which replaced the sign of the code | symbol attached | subjected to each member in FIGS. 1-3 with 5 Is attached.
[0044]
The basic configuration of the solid-state imaging device according to the fifth embodiment is the same as that of the third embodiment described above. However, as shown in FIG. 11, the joint surface of the package 50 that joins the terraced solid-state imaging device 52. A terraced solid-state imaging device 50a has an inclined surface that descends toward the center line portion, with the center line portion in the left-right direction being the lowest position and the left and right ends in the drawing being the highest position. A difference is that the elements 12 are arranged so as to be opposed to each other across a center line in the front-rear direction. That is, the solid-state imaging device according to the fifth embodiment includes four stacked solid-state imaging elements 51a.
[0045]
Although the inclination angle of the inclined surface in the front-rear direction can be selected as appropriate, the entire light receiving surface 53 is formed so as to be located within the range of the focal depth of the imaging lens 14 also in the front-rear direction.
[0046]
Further, a step similar to that described above is provided in the diagonal direction of the package 50, and the light receiving surface 53 is formed so as to be within the focal depth of the imaging lens 14 in the diagonal direction, thereby capturing an image in the acquired image. The influence of the spherical aberration and shading of the lens 14 can be made much smaller.
[0047]
According to the solid-state imaging device according to the fifth embodiment, it is possible to achieve the same operational effects as the solid-state imaging device according to the third embodiment described above, but further compared to the solid-state imaging device according to the third embodiment. Thus, the bonding surface 50a can be easily manufactured.
[0048]
Further, a step similar to the above is also provided in the diagonal direction of the package 40, and the light receiving surface 53 is formed so as to be within the focal depth of the imaging lens 14 in the diagonal direction as well. The influence of spherical aberration and shading of the lens 14 can be made much smaller.
[0049]
The solid-state imaging device and imaging system of the present invention are not limited to those of the above-described embodiment, and various modifications can be made. For example, each chip may convert incident rays such as infrared rays, ultraviolet rays, X-rays, electron beams, ion beams, neutron beams, and ultrasonic waves into electrical signals. In this case, an infrared image, an ultraviolet image, an X-ray image, an electron beam image, an ion beam image, a neutron beam image, an ultrasonic image, and the like can be continuously captured at an ultra high speed.
[0050]
Further, in each of the above-described embodiments, at least one pair of stacked solid-state image pickup devices is arranged in a predetermined manner and provided with a terraced solid-state image pickup device. It is not excluded that the apparatus includes only the stacked solid-state imaging device.
[0051]
In addition, the solid-state imaging device of the present invention can include three or more terraced solid-state imaging devices.
[0052]
In the solid-state imaging device of the present invention, since the light receiving surface of each chip is arranged in a shape that approximates a curved surface, it can be applied to, for example, an artificial retina that mimics the function from the retina of the human eye to the brain. Is possible.
[0053]
There are a plurality of stages of processing until the brain recognizes the image formed on the retina. Of these processes, it is desirable to perform basic processing or simple processing by the imaging device itself. Therefore, if the structure is such that the chips are overlapped as in the above-described solid-state imaging device, these processes can be executed in the parallel processing unit, so that application to an artificial retina is extremely promising.
[0054]
Japanese Patent Application Laid-Open No. 2001-156278 discloses a technique in which a solid-state image sensor unit is curved and the distance from the image pickup lens to each part of the solid-state image sensor unit is made equal. Since it is not related to the image sensor and the entire thickness is also thin, it is not directly related to the present invention.
[0055]
【The invention's effect】
As described above, according to the solid-state imaging device of the present invention and the imaging system using the same, each stacked solid-state imaging device unit is polished extremely thinly to have a thickness within the range of the focal depth of the imaging lens. Using the steps of the solid-state image pickup devices stacked in a staircase shape, the image receiving surface of each solid-state image pickup device unit is centered on the position of the principal point of the image pickup lens, and the same arc 16 with the approximate focal length of the image pickup lens as the radius Therefore, the image-receiving surface of each solid-state image sensor unit is approximately within the depth of focus of the imaging lens, and the acquired image has the influence of spherical aberration of the imaging lens. Can be made extremely small. Moreover, the influence of shading can be made extremely small. For this reason, in designing the lens, the development burden for reducing spherical aberration and shading can be reduced and the manufacturing cost can be reduced as compared with the case where the conventional image receiving surface is a flat surface.
[0056]
In addition, the imaging system including the optical system can be reduced in size.
Furthermore, since the element peripheral circuit can be integrated into the parallel processing unit on the solid-state image sensor unit, the function of the parallel processing unit on the solid-state image sensor unit can be improved.
[0057]
[Brief description of the drawings]
1 is a front sectional view showing a solid-state imaging device according to a first embodiment of the present invention (a sectional view taken along line AA in FIG. 3);
2 is a side sectional view showing the solid-state imaging device according to the first embodiment of the present invention (sectional view taken along line BB in FIG. 3).
FIG. 3 is a plan view showing the solid-state imaging device according to the first embodiment of the present invention. FIG. 4 is a diagram for explaining the configuration of the solid-state imaging device according to the first embodiment of the present invention and an imaging system using the same. FIG. 5 is a front sectional view showing a solid-state imaging device according to a second embodiment of the present invention (a sectional view taken along the line CC in FIG. 6).
6 is a plan view showing a solid-state imaging device according to a second embodiment of the present invention. FIG. 7 is a side sectional view showing the solid-state imaging device according to the third embodiment of the present invention (the line DD in FIG. 8). (Cross section)
8 is a plan view showing a solid-state imaging device according to a third embodiment of the present invention. FIG. 9 is a side sectional view showing a solid-state imaging device according to the fourth embodiment of the present invention (the line EE in FIG. 10). (Cross section)
10 is a plan view showing a solid-state imaging device according to a fourth embodiment of the present invention. FIG. 11 is a side sectional view showing a solid-state imaging device according to the fifth embodiment of the present invention (the line F-F in FIG. 12). (Cross section)
FIG. 12 is a plan view showing a solid-state imaging device according to a fifth embodiment of the present invention.
10, 20, 30, 40, 50 Package 10a, 20a, 30a, 40a, 50a Bonding surface 11, 21, 31, 41, 51 Chip 11a, 21a, 31a, 41a, 51a Multilayer solid-state imaging device 12, 22, 32 , 42, 52 Terraced solid-state image sensor 13, 23, 33, 43, 53 Light receiving surface 14 Imaging lens 15 Focal length 16 Arc 17 Principal point

Claims (8)

撮像レンズを介して入射された入射線束を受像する固体撮像装置において、
平板状の固体撮像素子単位を、受像面が配される上面の少なくとも一部が露出するように、階段状に積層してなるとともに、該階段状に積層した該固体撮像素子単位の段差が前記撮像レンズの焦点深度の範囲内となるように該固体撮像素子単位の厚みを調整し、
該固体撮像素子単位各々の階段側上面縁部が、この階段側上面縁部に直交する断面内において、前記撮像レンズの主点を中心とし、該撮像レンズの略焦点距離を半径とする円弧の近傍に配置されるように設定されてなる積層型固体撮像素子を備えていることを特徴とする固体撮像装置。
In a solid-state imaging device that receives an incident ray bundle incident through an imaging lens,
The flat solid-state image sensor unit is laminated in a staircase shape so that at least a part of the upper surface on which the image receiving surface is arranged is exposed, and the step of the solid-state image sensor unit laminated in the staircase shape is Adjust the thickness of the solid-state imaging device unit so that it is within the range of the focal depth of the imaging lens,
The staircase side upper surface edge of each solid-state image sensor unit has a circular arc centered on the principal point of the image pickup lens and having a radius of approximately the focal length of the image pickup lens in a cross section orthogonal to the staircase side upper surface edge. A solid-state image pickup device comprising a stacked solid-state image pickup element set to be disposed in the vicinity.
1対の前記積層型固体撮像素子を、それぞれの階段部が互いに対向するように、かつ該1対の前記積層型固体撮像素子における前記円弧が互いに共通となるように配置してなる棚田型固体撮像素子を備えていることを特徴とする請求項1記載の固体撮像装置。A terraced solid that is formed by arranging a pair of the stacked solid-state imaging devices so that the respective stair portions face each other and the arcs of the pair of stacked-type solid-state imaging devices are common to each other The solid-state imaging device according to claim 1, further comprising an imaging element. 前記棚田型固体撮像素子を複数組備えていることを特徴とする請求項2記載の固体撮像装置。The solid-state imaging device according to claim 2, comprising a plurality of the terraced solid-state imaging devices. 前記固体撮像素子単位は、その厚みが約50μm以下とされ、かつ可撓性を有するように構成されていることを特徴とする請求項1から3のうちいずれか1項記載の固体撮像装置。4. The solid-state imaging device according to claim 1, wherein the solid-state imaging device unit has a thickness of about 50 μm or less and is configured to be flexible. 5. 前記積層型固体撮像素子または前記棚田型固体撮像素子がパッケージの内側底面に接合されてなり、該パッケージの内側底面が平面状に形成されてなることを特徴とする請求項1から4のうちいずれか1項記載の固体撮像装置。5. The stacked solid-state imaging device or the terraced solid-state imaging device is joined to an inner bottom surface of a package, and the inner bottom surface of the package is formed in a flat shape. The solid-state imaging device according to claim 1. 前記積層型固体撮像素子または前記棚田型固体撮像素子がパッケージの内側底面に接合されてなり、該パッケージの内側底面が該積層型固体撮像素子または該棚田型固体撮像素子の階段部傾斜方向と同一方向に傾斜するように構成されていることを特徴とする請求項1から4のうちいずれか1項記載の固体撮像装置。The stacked solid-state image sensor or the terraced solid-state image sensor is joined to the inner bottom surface of the package, and the inner bottom surface of the package is the same as the stepped portion inclination direction of the stacked solid-state image sensor or the terraced solid-state image sensor. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is configured to be inclined in a direction. 前記積層型固体撮像素子または前記棚田型固体撮像素子がパッケージの内側底面に接合されてなり、該パッケージの内側底面が該積層型固体撮像素子または該棚田型固体撮像素子の階段部の傾斜に沿うように湾曲する円筒状または球上の曲面とされていることを特徴とする請求項1から4のうちいずれか1項記載の固体撮像装置。The stacked solid-state image sensor or the terraced solid-state image sensor is joined to the inner bottom surface of the package, and the inner bottom surface of the package follows the slope of the staircase portion of the stacked solid-state image sensor or the terraced solid-state image sensor. 5. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is a curved cylindrical shape or a curved surface on a sphere. 請求項1から7のうちいずれか1項記載の固体撮像装置、および該固体撮像装置の受像面上への入射線束収束機能を有する撮像レンズとを備えたことを特徴とする撮像系。An imaging system comprising: the solid-state imaging device according to any one of claims 1 to 7; and an imaging lens having a function of focusing an incident beam bundle on an image receiving surface of the solid-state imaging device.
JP2003208670A 2003-08-25 2003-08-25 Solid-state imaging device and imaging system using the same Expired - Fee Related JP4411027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208670A JP4411027B2 (en) 2003-08-25 2003-08-25 Solid-state imaging device and imaging system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208670A JP4411027B2 (en) 2003-08-25 2003-08-25 Solid-state imaging device and imaging system using the same

Publications (2)

Publication Number Publication Date
JP2005072041A true JP2005072041A (en) 2005-03-17
JP4411027B2 JP4411027B2 (en) 2010-02-10

Family

ID=34401857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208670A Expired - Fee Related JP4411027B2 (en) 2003-08-25 2003-08-25 Solid-state imaging device and imaging system using the same

Country Status (1)

Country Link
JP (1) JP4411027B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896301B1 (en) 2006-12-20 2009-05-07 후지쯔 마이크로일렉트로닉스 가부시키가이샤 Semiconductor device and manufacturing method of the same
JP2012235450A (en) * 2011-03-21 2012-11-29 Edwin Sutton Gary Mobile communication device comprising curved-surface sensor camera, curved-surface sensor camera comprising mobile optical part, and curved-surface sensor made of silicon fiber
JP2018508998A (en) * 2015-03-20 2018-03-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Sensor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896301B1 (en) 2006-12-20 2009-05-07 후지쯔 마이크로일렉트로닉스 가부시키가이샤 Semiconductor device and manufacturing method of the same
JP2012235450A (en) * 2011-03-21 2012-11-29 Edwin Sutton Gary Mobile communication device comprising curved-surface sensor camera, curved-surface sensor camera comprising mobile optical part, and curved-surface sensor made of silicon fiber
JP2018508998A (en) * 2015-03-20 2018-03-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Sensor device
US10672815B2 (en) 2015-03-20 2020-06-02 Osram Oled Gmbh Sensor device

Also Published As

Publication number Publication date
JP4411027B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP6288075B2 (en) Imaging device and imaging apparatus
JP5428206B2 (en) Optical member, solid-state imaging device, and manufacturing method
US20060262461A1 (en) Non-planar x-ray sensor
US9679931B2 (en) Curved image sensor systems
JP5104306B2 (en) Solid-state image sensor
EP1434426A2 (en) Camera module and manufacturing method thereof
EP1441509A2 (en) Camera module and manufacturing method thereof
WO2014157579A1 (en) Imaging element and imaging apparatus
TW201719916A (en) Camera module and electronic device
KR101688307B1 (en) Back side illumination image sensor with non-planar optical interface
JP4486005B2 (en) Semiconductor imaging device and manufacturing method thereof
WO2006101064A1 (en) Imaging device and lens array used therein
JP2004226872A (en) Camera module and its manufacturing method
JPH11150254A (en) Solid-state image-pickup element
CN112236703B (en) Image pickup apparatus
CN116125632A (en) Image pickup apparatus
CN112204446A (en) Image forming apparatus with a plurality of image forming units
JP2011100971A (en) Method for manufacturing curved circuit
US20190273106A1 (en) Image sensor and focus adjustment device
KR20210018252A (en) Imaging device
JP4411027B2 (en) Solid-state imaging device and imaging system using the same
JP2004233482A (en) Camera module manufacturing method
JP4645158B2 (en) Solid-state imaging device and manufacturing method thereof
US20200077014A1 (en) Image sensor and imaging device
US20190258026A1 (en) Image sensor and focus adjustment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091116

R150 Certificate of patent or registration of utility model

Ref document number: 4411027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees