JP2005071970A - Fuel cell that utilizes methanol - Google Patents

Fuel cell that utilizes methanol Download PDF

Info

Publication number
JP2005071970A
JP2005071970A JP2003346324A JP2003346324A JP2005071970A JP 2005071970 A JP2005071970 A JP 2005071970A JP 2003346324 A JP2003346324 A JP 2003346324A JP 2003346324 A JP2003346324 A JP 2003346324A JP 2005071970 A JP2005071970 A JP 2005071970A
Authority
JP
Japan
Prior art keywords
fuel cell
methanol
air
reforming
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003346324A
Other languages
Japanese (ja)
Inventor
Hiroshi Seto
弘 瀬戸
Masahiko Arai
正彦 荒井
Nobuhiro Iwasa
信弘 岩佐
Shinichiro Fujita
進一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETEC KK
Original Assignee
SETEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETEC KK filed Critical SETEC KK
Priority to JP2003346324A priority Critical patent/JP2005071970A/en
Publication of JP2005071970A publication Critical patent/JP2005071970A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, when compared with an inside reformation type fuel cell, the portability of an outside reformation type portable fuel cell that utilizes methanol is hindered by a reforming device though it is efficient. <P>SOLUTION: On the fuel cell system including a methanol oxidation type steam reforming device, the methanol reformation at the outside of the fuel cell is carried out by setting a reformation temperature for restraining the generation of CO to 180 to 250°C, and reformation of steam and oxidation of CO are simultaneously proceeded in a reforming catalyst by mixing air in reformed gas. The quantity of the fuel and the air to be supplied to the fuel cell is controlled only by a pressurized air. The efficiency of the reformation is improved and starting period is shortened by heating the catalyst directly. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、メタノールを燃料とする、携帯用または車載用などの可搬型の燃料電池である。  The present invention is a portable fuel cell that uses methanol as a fuel and is portable or in-vehicle.

炭化水素系を燃料とする燃料電池においては、供給燃料より得られる水素転換率を大きくするためには水蒸気改質が有利である。
一方、炭化水素の水蒸気改質においては、H、及びCOを生成し、さらにCOを水蒸気によりH、及びCOにシフト反応させ、また残留COは空気により選択酸化させてCO化するための反応過程を必要としている。
以上より、改質装置が複雑化し、またコスト増をもたらしていた。
In a fuel cell using a hydrocarbon-based fuel, steam reforming is advantageous in order to increase the hydrogen conversion rate obtained from the supplied fuel.
On the other hand, in the steam reforming of hydrocarbons, H 2 and CO are generated, and CO is further shift-reacted to H 2 and CO 2 by steam, and the remaining CO is selectively oxidized by air to be CO 2 . Need a reaction process.
As described above, the reformer becomes complicated and increases costs.

発明が解決しようとする課題Problems to be solved by the invention

燃料電池の携帯用、車載用の可搬型にするためには、燃料改質部、及び燃料電池は、小型化、耐震性に適したものでなければならない。そのためには、ガス改質装置、及び燃料、水、空気の供給ポンプ、弁類は可能な限り単純な構成であることが必要であり、その課題の解決が求められる。  In order to make the fuel cell portable and in-vehicle portable, the fuel reformer and the fuel cell must be suitable for miniaturization and earthquake resistance. For this purpose, the gas reformer, the fuel, water and air supply pumps, and valves need to be as simple as possible, and a solution to that problem is required.

課題を解決するための手段Means for solving the problem

上記目的、及び課題を解決するため、本発明は以下のようになるものである。
燃料電池の携帯小型化において、燃料にはメタノールを使用するものとし、メタノール水蒸気改質は▲1▼式による方式が通常使用されている。
CHOH+HO→3H+CO………▲1▼
この反応は吸熱反応であるため、高温ほど平衡的には有利であるが、高温においては水性転換逆反応▲2▼式の反応によりCOが生成する。
CO+H→CO+HO……………▲2▼
燃料電池に供給されるHにCOを含有するとき燃料電池電極触媒はCOにより被毒するため、極力CO濃度を低くすることが求められる。
以上の課題の対策として、メタノール改質反応温度を極力低くして、水性転換逆反応が生じないように180〜250℃とし、副生するCOの選択的酸化を促進するものとした。
In order to solve the above objects and problems, the present invention is as follows.
In the miniaturization of the fuel cell, methanol is used as the fuel, and the method according to the formula (1) is normally used for methanol steam reforming.
CH 3 OH + H 2 O → 3H 2 + CO 2 ......... (1)
Since this reaction is an endothermic reaction, the higher the temperature, the better the equilibrium. However, at a high temperature, CO is produced by the reaction of the aqueous conversion reverse reaction (2).
CO 2 + H 2 → CO + H 2 O ………… (2)
When CO is contained in H 2 supplied to the fuel cell, the fuel cell electrode catalyst is poisoned by CO. Therefore, it is required to reduce the CO concentration as much as possible.
As a countermeasure for the above problems, the methanol reforming reaction temperature was made as low as possible to 180 to 250 ° C. so as not to cause the aqueous conversion reverse reaction, and the selective oxidation of CO by-product was promoted.

メタノールの改質触媒において温度により、160℃においては▲3▼式により、メタノールの完全酸化が進行し、また180℃以上においては▲4▼式の部分酸化が選択的に進行するための触媒を見出した。
160℃において CHOH+3/2O→2HO+CO………▲3▼
180℃において CHOH+1/2O→2H+CO…………▲4▼
この触媒上において、CHOHとOのみを供給して反応を行うと、160℃ではCOとHOが生成し、180℃以上ではHとCOがH/CO=2で生成した。
以上の実験結果より、▲3▼式と▲4▼式が同一触媒上で温度により選択的に進行することを見出したことより、反応器の構成が簡素で小型化し得る、低温で水素生成速度の高いメタノール改質器を提供するものである。
In the reforming catalyst of methanol, a catalyst for complete oxidation of methanol proceeds according to the formula (3) at 160 ° C. according to the formula (3), and the partial oxidation of formula (4) selectively proceeds at 180 ° C. or higher. I found it.
At 160 ° C. CH 3 OH + 3 / 2O 2 → 2H 2 O + CO 2 ............ (3)
At 180 ° C. CH 3 OH + 1 / 2O 2 → 2H 2 + CO 2 ............ (4)
When the reaction is carried out by supplying only CH 3 OH and O 2 on this catalyst, CO 2 and H 2 O are generated at 160 ° C., and H 2 and CO 2 are H 2 / CO 2 = 2 was generated.
From the above experimental results, it has been found that the formulas (3) and (4) proceed selectively depending on the temperature on the same catalyst, so that the structure of the reactor can be simplified and reduced in size, and the hydrogen production rate can be reduced at a low temperature. It provides a methanol reformer having a high level.

すなわち、本発明の第1の発明によれば、メタノールと水をmol比1:1で気化同伴させ、空気をメタノールとの重量比20〜30%混入させて、メタノールを酸化的水蒸気改質して燃料電池に供給するとき、副生するCOは空気による選択的酸化を改質反応器内で、改質反応と同時に進行させるものとし、その触媒はCuをZnOに担持したもので、改質反応温度180〜250℃にて、改質反応熱の供給にはメタノール燃焼による場合は、触媒は間接加熱によるが、燃料電池出力の一部を利用する場合、触媒充填部に装填した電熱発熱体で直接加熱し起動時間の短縮をはかるものとした、メタノールの酸化的水蒸気改質を特徴としたメタノール利用燃料電池を提供される。  That is, according to the first invention of the present invention, methanol and water are vaporized and entrained at a molar ratio of 1: 1, air is mixed in a weight ratio of 20 to 30%, and methanol is subjected to oxidative steam reforming. When CO is supplied to the fuel cell, the by-produced CO is allowed to proceed with selective reforming by air in the reforming reactor at the same time as the reforming reaction, and the catalyst is Cu supported on ZnO. When the reaction temperature is 180 to 250 ° C., the reforming heat is supplied by methanol combustion, the catalyst is indirectly heated, but when a part of the fuel cell output is used, the electric heating element loaded in the catalyst filling section A methanol-based fuel cell characterized by oxidative steam reforming of methanol, which is directly heated to reduce the startup time, is provided.

また、本発明の第2の発明によれば、第1の発明において燃料、空気の供給において、燃料のメタノールと水の混合液、改質用空気、及び燃料電池用空気の流量制御はメタノール・水混合液の液面を空気加圧し、またその加圧空気により改質用空気、及び燃料電池用空気の空気圧の調整によるものとする。また燃料電池電極の湿潤用水分の供給には、燃料ガス、または空気を作動媒体としたジェットポンプにより供給することを特徴とする燃料電池を提供される。  According to the second aspect of the present invention, in the first aspect of the present invention, in the fuel and air supply, the methanol / water mixture, the reforming air, and the fuel cell air flow rate control are controlled by methanol / water. The liquid surface of the water mixture is pressurized with air, and the pressurized air is used to adjust the air pressure of the reforming air and the fuel cell air. In addition, a fuel cell is provided in which the moisture for wetting the fuel cell electrode is supplied by a jet pump using fuel gas or air as a working medium.

また、本発明の第3の発明によれば、第1の発明において、燃料のメタノールと水の混合液、改質用空気、及び燃料電池用空気の流量制御はメタノール・水混合液の液面を空気加圧し、またその加圧空気により改質用空気、及び燃料電池用空気の空気圧の調整によるものとする。また燃料電池電極の湿潤用水分の供給には、燃料ガス、または空気を作動媒体としたジェットポンプにより供給することを特徴とする燃料電池を提供される。  According to the third aspect of the present invention, in the first aspect, the flow control of the fuel methanol and water mixture, the reforming air, and the fuel cell air is controlled at the liquid level of the methanol / water mixture. The air is pressurized, and the air pressure of the reforming air and the fuel cell air is adjusted by the pressurized air. In addition, a fuel cell is provided in which the moisture for wetting the fuel cell electrode is supplied by a jet pump using fuel gas or air as a working medium.

また、本発明の第4の発明によれば、第1の発明において改質反応部加熱を電気加熱とした、触媒の直接加熱方式においては、常時の電熱負荷への電力供給は燃料電池の出力の一部を供給するが、燃料電池の起動時においては、燃料電池に並列接続した蓄電池、または外部電源により供給し、また燃料電池の未反応水素は水素透過フィルターを介して吸引ポンプにより水素を抽気し、燃料電池へ再循環することを特徴とする燃料電池を提供される。  Further, according to the fourth aspect of the present invention, in the direct heating system of the catalyst in which the reforming reaction section heating is electric heating in the first aspect, the power supply to the electric heating load at all times is the output of the fuel cell. However, when the fuel cell is started, it is supplied by a storage battery connected in parallel to the fuel cell or an external power source, and unreacted hydrogen of the fuel cell is supplied by a suction pump through a hydrogen permeation filter. A fuel cell is provided that is bleed and recirculated to the fuel cell.

以下、本発明の実施の形態を、実験データーにより説明する。
メタノール水蒸気改質触媒として、次の3種類を調製、使用した。Cu/ZnO、Cu/ZrO、Cu/SiO
メタノールと水を気化同伴(HO/CHOH=1.0)させてCu/ZnO触媒による改質反応において、温度と水素転化率の関係を図1に示す。図1はCu/ZnO触媒におけるO共存効果を示す。180℃以上の温度ではOを共存させることによりメタノールの転化率は著しく増加する。O濃度0%、1%、5%について比較すると180℃においては5%Oの場合、O非共存の場合、水素転化率は4倍に増加する。
Hereinafter, embodiments of the present invention will be described based on experimental data.
The following three types of methanol steam reforming catalysts were prepared and used. Cu / ZnO, Cu / ZrO, Cu / SiO 2 .
FIG. 1 shows the relationship between temperature and hydrogen conversion rate in a reforming reaction using a Cu / ZnO catalyst with vaporization of methanol and water (H 2 O / CH 3 OH = 1.0). FIG. 1 shows the effect of O 2 coexistence in a Cu / ZnO catalyst. At a temperature of 180 ° C. or higher, the methanol conversion rate is remarkably increased by the coexistence of O 2 . Comparing the O 2 concentrations of 0%, 1%, and 5%, at 180 ° C., the hydrogen conversion rate increases 4 times in the case of 5% O 2 and in the absence of O 2 .

また、図2はO5%共存下での生成物組成と転化率を反応温度に対して示したものである。
反応温度160℃ではCO、COが生成するのみでHは生成しない。180℃以上ではHとCOがH/CO=2で生成している。
FIG. 2 shows the product composition and conversion rate in the presence of 5% O 2 with respect to the reaction temperature.
At a reaction temperature of 160 ° C., CO 2 and CO are only produced, but H 2 is not produced. Above 180 ° C., H 2 and CO 2 are produced with H 2 / CO 2 = 2.

また、図3はCu/ZnO、Cu/ZrO、Cu/SiOを改質触媒としてO5%共存下、O非共存下におけるメタノール水素転化率を示す。いずれの触媒においてもO共存により水素転化率は増加するが、その増加が顕著となる温度はCuの担体により異なる。Cu/ZnOでは180℃、Cu/ZrOでは220℃、Cu/SiOでは250℃となり、Cu/ZnOよりも高温側にシフトする。Further, FIG. 3 shows Cu / ZnO, O 2 5% presence of Cu / ZrO 2, Cu / SiO 2 as the reforming catalyst, methanol hydrogen conversion in O 2 non coexistence. In any catalyst, the hydrogen conversion rate increases due to the coexistence of O 2 , but the temperature at which the increase becomes significant differs depending on the Cu support. In Cu / ZnO 180 ℃, Cu / ZrO 2 at 220 ℃, Cu / SiO 2 at 250 ° C., and the than Cu / ZnO shift to the high temperature side.

以上の実験結果により、改質触媒にCu/ZnOを使用したメタノール改質器と燃料電池として固体高分子型(PEFC)を組み合わせたシステム構成を図4に示す。また改質部の詳細を図5、図6、図7、図8に示す。
燃料はメタノールと水の混合液とし、燃料タンク2より供給し、燃料タンク2の空間部を空気コンプレッサー1より供給される圧縮空気の貯留部として利用する。
その空気貯留部の空気圧を、圧力検出部1aによりその圧力を調整し、燃料供給絞り弁2a、改質用空気絞り弁2b、燃料電池用空気絞り弁2cの絞り弁設定により供給流量を制御するものとしている。
燃料は改質器3にて改質ガス化されて、改質ガスの圧力は改質器の気化部33の蒸気圧により与えられ、改質ガスは電極湿潤用ジェットポンプ3aにて燃料電池4の排出水を吸引して、燃料電池へ供給する。
燃料電池4の電気出力5の一部は、蓄電池6の充電に消費され、また一部は改質器3の触媒加熱用に供給される。
燃料電池4の起動時には、蓄電池6より触媒加熱用へ供給し、また電源切替開閉器8により、外部電源7より触媒加熱用へ供給し得るものとする、その場合燃料電池の未反応水素は、吸引ポンプ10により水素透過フィルター9を介して燃料電池排気より水素を抽気し、燃料電池へ再循環する。
Based on the above experimental results, FIG. 4 shows a system configuration in which a methanol reformer using Cu / ZnO as a reforming catalyst and a solid polymer type (PEFC) as a fuel cell are combined. Details of the reforming section are shown in FIGS. 5, 6, 7, and 8.
The fuel is a mixed liquid of methanol and water, supplied from the fuel tank 2, and the space portion of the fuel tank 2 is used as a storage portion for compressed air supplied from the air compressor 1.
The air pressure of the air reservoir is adjusted by the pressure detector 1a, and the supply flow rate is controlled by the throttle valve settings of the fuel supply throttle valve 2a, the reforming air throttle valve 2b, and the fuel cell air throttle valve 2c. It is supposed to be.
The fuel is reformed into gas by the reformer 3, the pressure of the reformed gas is given by the vapor pressure of the vaporizer 33 of the reformer, and the reformed gas is supplied to the fuel cell 4 by the electrode wetting jet pump 3a. The discharged water is sucked and supplied to the fuel cell.
A part of the electric output 5 of the fuel cell 4 is consumed for charging the storage battery 6, and a part is supplied for heating the catalyst of the reformer 3.
When the fuel cell 4 is started, it can be supplied from the storage battery 6 to the catalyst heating, and can be supplied from the external power source 7 to the catalyst heating by the power switch 8, in which case the unreacted hydrogen of the fuel cell is Hydrogen is extracted from the fuel cell exhaust through the hydrogen permeable filter 9 by the suction pump 10 and recirculated to the fuel cell.

改質器3の詳細を図4、図5、図6、図7により説明すると、改質器ケース31に収納された燃料供給口32より、メタノール・水・空気が、燃料気化部33に供給され気化用の加熱電熱体38により加熱され、その気化蒸気圧により、燃料通路34を経て改質触媒36に供給される。改質触媒36は多孔外筒管35、多孔内筒管37より形成する円環部に充填され、また、円環部と同一軸芯に触媒の加熱用電熱体38が配置されており、電熱により触媒は直接加熱し、改質器3の起動時間を短縮する。  The details of the reformer 3 will be described with reference to FIGS. 4, 5, 6, and 7. Methanol, water, and air are supplied to the fuel vaporization unit 33 from the fuel supply port 32 housed in the reformer case 31. Then, it is heated by the heating electric heater 38 for vaporization, and is supplied to the reforming catalyst 36 through the fuel passage 34 by the vaporization vapor pressure. The reforming catalyst 36 is filled in an annular portion formed by the porous outer cylindrical tube 35 and the porous inner cylindrical tube 37, and a heating element 38 for heating the catalyst is disposed on the same axis as the annular portion. As a result, the catalyst is directly heated and the start-up time of the reformer 3 is shortened.

また燃料電池の未反応水素は、水素透過フィルター9において電池排ガス通路91より、多孔質セラミック管93に支持されたパラジウムなどの水素透過膜92で、水素分離されて、吸引ポンプ10により、燃料電池へ再循環する。
以上のメタノールの酸化的水蒸気改質と、燃料電池を組み合わせた、メタノール利用燃料電池である。
Further, unreacted hydrogen of the fuel cell is separated into hydrogen by a hydrogen permeable membrane 92 such as palladium supported by the porous ceramic tube 93 from the cell exhaust gas passage 91 in the hydrogen permeable filter 9, and the fuel cell by the suction pump 10. Recirculate to
This is a fuel cell using methanol, which combines the above oxidative steam reforming of methanol and a fuel cell.

発明の効果The invention's effect

本発明は上述の通り構成されていて、次の記載する効果を有する。
従来のメタノール改質では、改質反応とCO選択酸化反応は各々の反応部を必要としていたが、メタノール、水、空気の混合ガスを単一の改質反応器に供給することによりCOを副生しない、H、COを生成することが可能となった。
その結果、改質反応器は簡素で小型化し、水素転化率の向上も可能となった。
また、改質反応器の加熱方式として、電熱利用により触媒を直接加熱するものとしたことより、改質熱効率の向上と起動時間遅れを短縮することが可能となった。
The present invention is configured as described above and has the following effects.
In the conventional methanol reforming, the reforming reaction and the CO selective oxidation reaction required each reaction section. However, by supplying a mixed gas of methanol, water, and air to a single reforming reactor, CO is added as a secondary reaction. It was possible to produce H 2 and CO 2 that did not occur.
As a result, the reforming reactor is simple and downsized, and the hydrogen conversion rate can be improved.
Further, since the catalyst is directly heated by using electric heat as the heating method of the reforming reactor, it is possible to improve the reforming heat efficiency and shorten the start-up time delay.

Cu/ZnO触媒によるO共存効果と温度の関係を示すグラフである。It is a graph showing the relationship between the O 2 coexist effect and temperature by Cu / ZnO catalyst. Cu/ZnO触媒による改質器生成物組成の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the reformer product composition by a Cu / ZnO catalyst. Cu触媒の担体をZnO、ZrO、ZnSiOとした場合の担体の効果、及びO共存効果と温度の関係を示すグラフである。 ZnO carrier of Cu catalyst is a graph showing the ZrO 2, ZnSiO 2 and the effect of the carrier case, and O 2 coexist effects versus temperature. メタノール燃料電池の構成図である。It is a block diagram of a methanol fuel cell. 水素透過フィルターの縦断面図。The longitudinal cross-sectional view of a hydrogen permeation filter. メタノールの水蒸気改質装置の縦断面図。The longitudinal cross-sectional view of the steam reforming apparatus of methanol. 図6のA−A’線断面図である。FIG. 7 is a cross-sectional view taken along line A-A ′ of FIG. 6. 図6のB−B’線断面図である。FIG. 7 is a sectional view taken along line B-B ′ of FIG. 6.

符号の説明Explanation of symbols

1 空気コンプレッサー 31 改質器ケース
2 燃料タンク 32 燃料供給口
2a 燃料供給絞り弁 33 燃料気化部
2b 改質用空気絞り弁 34 燃料通路
2c 燃料電池用空気絞り弁 35 多孔外筒管
3 改質器 36 改質用触媒
3a 電極湿潤用ジェットポンプ 37 多孔内筒管
4 燃料電池 38 加熱用電熱体
5 電気出力端 39 改質ガス流出口
6 蓄電池 91 電池排気ガス通路
7 外部電源 92 水素透過膜
8 電源切替開閉器 93 多孔質セラミック管
9 水素透過フィルター 94 水素抽気口
10 吸引ポンプ
DESCRIPTION OF SYMBOLS 1 Air compressor 31 Reformer case 2 Fuel tank 32 Fuel supply port 2a Fuel supply throttle valve 33 Fuel vaporization part 2b Reform air throttle valve 34 Fuel passage 2c Fuel cell air throttle valve 35 Porous outer cylinder 3 Reformer 36 Reforming Catalyst 3a Electrode Wetting Jet Pump 37 Porous Inner Tube 4 Fuel Cell 38 Heating Heater 5 Electrical Output End 39 Reformed Gas Outlet 6 Storage Battery 91 Battery Exhaust Gas Passage 7 External Power Supply 92 Hydrogen Permeation Membrane 8 Power Supply Switching switch 93 Porous ceramic tube 9 Hydrogen permeation filter 94 Hydrogen extraction port 10 Suction pump

Claims (4)

メタノールと水をmol比1:1で気化同伴させ、空気をメタノールとの重量比20〜30%混入させて、メタノールを酸化的水蒸気改質して燃料電池に供給するとき、副生するCOは空気による選択的酸化を改質反応器内で、改質反応と同時に進行させるものとし、その触媒はCuをZnOに担持したもので、改質反応温度180〜250℃にて、改質反応熱の供給にはメタノール燃焼による場合は、触媒は間接加熱によるが、燃料電池出力の一部を利用する場合、触媒充填部に装填した電熱発熱体で直接加熱し起動時間の短縮をはかるものとした、メタノールの酸化的水蒸気改質を特徴としたメタノール利用燃料電池。  When methanol and water are vaporized together at a molar ratio of 1: 1, air is mixed in a weight ratio of 20 to 30% with methanol, and methanol is oxidatively steam reformed and supplied to the fuel cell, the by-product CO is The selective oxidation by air is allowed to proceed simultaneously with the reforming reaction in the reforming reactor, and the catalyst is Cu supported on ZnO, and the reforming reaction temperature is 180 to 250 ° C. In the case of methanol combustion for the supply of the catalyst, the catalyst is indirectly heated, but when a part of the output of the fuel cell is used, it is directly heated by an electric heating element loaded in the catalyst filling portion to shorten the start-up time. A methanol-based fuel cell characterized by oxidative steam reforming of methanol. 燃料のメタノールと水の混合液、改質用空気、及び燃料電池用空気の流量制御はメタノール・水混合液の液面を空気加圧し、またその加圧空気により改質用空気、及び燃料電池用空気の空気圧の調整によるものとする。また燃料電池電極の湿潤用水分の供給には、燃料ガス、または空気を作動媒体としたジェットポンプにより供給する。  Control of the flow rate of the fuel methanol / water mixture, reforming air, and fuel cell air is performed by pressurizing the liquid level of the methanol / water mixture and using the pressurized air for reforming air and the fuel cell. By adjusting the air pressure of the service air. The fuel cell electrode is supplied with wet moisture by a jet pump using fuel gas or air as a working medium. メタノール利用燃料電池において、燃料電池電極の湿潤用水分の供給には、メタノールと水の混合液を燃料とするとき、その水分量は改質水分に電極湿潤用水分を加えたものを改質器を経由して供給する。  In a fuel cell using methanol, the moisture content of the fuel cell electrode is supplied by using a mixture of methanol and water as the fuel. To supply via. 請求項1における改質反応部の加熱を電気加熱とした、触媒の直接加熱方式においては、常時の電熱負荷への電力供給は燃料電池の出力の一部を供給するが、燃料電池の起動時においては、燃料電池に並列接続した蓄電池、または外部電源により供給し、また燃料電池の未反応水素は水素透過フィルターを介して吸引ポンプにより水素を抽気し、燃料電池へ再循環する。  In the catalyst direct heating method in which the heating of the reforming reaction section in claim 1 is electric heating, the power supply to the electric heating load at the normal time supplies a part of the output of the fuel cell, but at the time of starting the fuel cell Is supplied by a storage battery connected in parallel to the fuel cell or an external power source, and unreacted hydrogen of the fuel cell is extracted by a suction pump through a hydrogen permeation filter and recirculated to the fuel cell.
JP2003346324A 2003-08-27 2003-08-27 Fuel cell that utilizes methanol Pending JP2005071970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346324A JP2005071970A (en) 2003-08-27 2003-08-27 Fuel cell that utilizes methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346324A JP2005071970A (en) 2003-08-27 2003-08-27 Fuel cell that utilizes methanol

Publications (1)

Publication Number Publication Date
JP2005071970A true JP2005071970A (en) 2005-03-17

Family

ID=34419522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346324A Pending JP2005071970A (en) 2003-08-27 2003-08-27 Fuel cell that utilizes methanol

Country Status (1)

Country Link
JP (1) JP2005071970A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166355A (en) * 2003-12-01 2005-06-23 Matsushita Electric Works Ltd Fuel cell system
JP2006342050A (en) * 2005-06-10 2006-12-21 Samsung Electro-Mechanics Co Ltd Wire type micro reformer and micro fuel cell
JP2009509299A (en) * 2005-09-16 2009-03-05 アイダテック, エル.エル.シー. Heat-prepared hydrogen generation fuel cell system
JP2009517316A (en) * 2005-11-23 2009-04-30 ウィルソン,マーロン,エス. Hydrogen production method and apparatus
US11316180B2 (en) 2020-05-21 2022-04-26 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127601A (en) * 1984-11-27 1986-06-14 Mitsubishi Heavy Ind Ltd Reforming of methanol
JPH06256001A (en) * 1993-03-02 1994-09-13 Idemitsu Kosan Co Ltd Production of hydrogen-containing gas
JPH11130405A (en) * 1997-10-28 1999-05-18 Ngk Insulators Ltd Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device
JP2000169102A (en) * 1998-12-10 2000-06-20 Ishikawajima Harima Heavy Ind Co Ltd Fuel reformer
JP2002068707A (en) * 2000-08-31 2002-03-08 Idemitsu Kosan Co Ltd Method for removing carbon monoxide in hydrogen- containing gas
JP2002329516A (en) * 2001-04-27 2002-11-15 Honda Motor Co Ltd Hydrogen feeder for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127601A (en) * 1984-11-27 1986-06-14 Mitsubishi Heavy Ind Ltd Reforming of methanol
JPH06256001A (en) * 1993-03-02 1994-09-13 Idemitsu Kosan Co Ltd Production of hydrogen-containing gas
JPH11130405A (en) * 1997-10-28 1999-05-18 Ngk Insulators Ltd Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device
JP2000169102A (en) * 1998-12-10 2000-06-20 Ishikawajima Harima Heavy Ind Co Ltd Fuel reformer
JP2002068707A (en) * 2000-08-31 2002-03-08 Idemitsu Kosan Co Ltd Method for removing carbon monoxide in hydrogen- containing gas
JP2002329516A (en) * 2001-04-27 2002-11-15 Honda Motor Co Ltd Hydrogen feeder for fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166355A (en) * 2003-12-01 2005-06-23 Matsushita Electric Works Ltd Fuel cell system
JP2006342050A (en) * 2005-06-10 2006-12-21 Samsung Electro-Mechanics Co Ltd Wire type micro reformer and micro fuel cell
JP2009509299A (en) * 2005-09-16 2009-03-05 アイダテック, エル.エル.シー. Heat-prepared hydrogen generation fuel cell system
US8691463B2 (en) 2005-09-16 2014-04-08 Dcns Sa Thermally primed hydrogen-producing fuel cell system
JP2009517316A (en) * 2005-11-23 2009-04-30 ウィルソン,マーロン,エス. Hydrogen production method and apparatus
KR101380180B1 (en) 2005-11-23 2014-03-31 말론 에스. 윌슨 Method and apparatus for generating hydrogen
US11316180B2 (en) 2020-05-21 2022-04-26 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations
US11831051B2 (en) 2020-05-21 2023-11-28 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations

Similar Documents

Publication Publication Date Title
US7678481B2 (en) Fuel cell system with a fuel tank configured to store a fuel at a pressure higher than atmospheric pressure
JP5011673B2 (en) Fuel cell power generation system
US20040247960A1 (en) Fuel cell system
JPH07315801A (en) System for producing high-purity hydrogen, production of high-purity hydrogen and fuel cell system
WO2006073150A1 (en) Method of starting solid oxide fuel cell system
JP2002160904A (en) Fuel reforming system
JP2002530817A (en) Fuel cell system with improved startable output
JP2004342413A (en) Fuel cell system
JP2007053072A (en) Fuel cell system, and mixed fuel supply device and water supply device used for the same
JP4245464B2 (en) Fuel cell
JPH10308230A (en) Power generating device for fuel cell
JP2007141772A (en) Fuel cell system
JP4928198B2 (en) Method for stopping reformer, reformer and fuel cell system
JP3872491B2 (en) Fuel cell reformer and fuel cell system
JP2000323164A (en) Reforming device and operation method thereof and fuel cell generation device
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
JP2003151599A (en) Fuel cell system
JP2005071970A (en) Fuel cell that utilizes methanol
JP2002289245A (en) Fuel cell system furnished with reforming part
JP2002008701A (en) Method for starting and stopping solid polymer fuel cell
JP2004319213A (en) Hydrogen generating device for portable fuel cell
JP2002121003A (en) Control of raw material feed quantity in reformer
JP2004247234A (en) Solid polymer type fuel cell generator and its operating method
JP2007128786A (en) Fuel cell system
JPH09180748A (en) Fuel cell power generation device device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026