JP2005071814A - Concave reflecting mirror, and light source device with concave reflecting mirror - Google Patents

Concave reflecting mirror, and light source device with concave reflecting mirror Download PDF

Info

Publication number
JP2005071814A
JP2005071814A JP2003300298A JP2003300298A JP2005071814A JP 2005071814 A JP2005071814 A JP 2005071814A JP 2003300298 A JP2003300298 A JP 2003300298A JP 2003300298 A JP2003300298 A JP 2003300298A JP 2005071814 A JP2005071814 A JP 2005071814A
Authority
JP
Japan
Prior art keywords
discharge lamp
concave reflecting
heat
light emitting
pressure discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003300298A
Other languages
Japanese (ja)
Other versions
JP4163577B2 (en
Inventor
Atsuji Nakagawa
敦二 中川
Hiroshi Takahashi
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Electric Co Ltd
Original Assignee
Phoenix Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Electric Co Ltd filed Critical Phoenix Electric Co Ltd
Priority to JP2003300298A priority Critical patent/JP4163577B2/en
Publication of JP2005071814A publication Critical patent/JP2005071814A/en
Application granted granted Critical
Publication of JP4163577B2 publication Critical patent/JP4163577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize dramatic temperature drop of a light emitting spherical part by eliminating heat conduction trouble from the light emitting spherical part to a metallic reflecting mirror. <P>SOLUTION: This high-heat-conductivity concave reflecting mirror A is composed of: a concave reflecting part 1 for reflecting light of a high-pressure discharge lamp 2 frontward; and a mounting part 1a projected rearward from its center back surface; and is characterized by that a discharge lamp mounting hole 5 for slidably inserting a sealing part 3a of the discharge lamp 2 is formed at the center of the mounting part 1a; a heat-conducting contact body 7 contacting the light emitting spherical part 4 of the discharge lamp 2 is formed from the hole edge of the mounting hole 5. Heat of the spherical part 4 is directly transmitted to the side of the reflecting part 1 by presence of the contact body 7 directly contacting the spherical part 4 to exhibit remarkable temperature drop effect of the spherical part 4 in lighting the discharge lamp. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高熱伝導性の凹面反射鏡及び該凹面反射鏡付きの光源装置に関するものである。   The present invention relates to a concave reflector having high thermal conductivity and a light source device with the concave reflector.

最近のAV業界においては、映像メディアに関し大型画面とデジタル対応製品が伸長している。その中でランプ搭載方式のリアプロジェクションTVがコスト、画質面で優位にあり期待が大きい。この大型TVには高効率の高圧放電灯がバックライト光源として必要であるが、最近の高圧放電灯は200気圧近い点灯圧力になり、常に点灯時の破裂リスクを抱えているので、まず第一にその次に述べる環境問題に直結する破裂リスクを回避する対策が望まれている。   In the recent AV industry, large screens and digital-compatible products are growing for video media. Among them, a lamp-mounted rear projection TV is advantageous in terms of cost and image quality, and is highly expected. This large TV requires a high-efficiency high-pressure discharge lamp as a backlight light source. However, the recent high-pressure discharge lamp has a lighting pressure close to 200 atm and always has a risk of bursting when it is turned on. Therefore, measures to avoid the risk of rupture directly related to the environmental problems described below are desired.

第二に、高圧放電灯には必要充填物として、重金属であり人体に有害な水銀が不可欠であるが、高圧放電灯の破裂時の水銀飛散は環境問題に於ける大きな問題点でもある。   Secondly, mercury, which is a heavy metal and harmful to the human body, is indispensable for high pressure discharge lamps. Mercury scattering when the high pressure discharge lamp bursts is also a major problem in environmental problems.

通常、高圧放電灯に装着される凹面反射鏡は、点灯時の高温に耐えることができるように、耐熱ガラスや結晶化ガラスが使用されているが、高圧放電灯の点灯中、凹面反射鏡、特に、高温になる発光球体部近傍部分も共に非常に高い温度となり、耐熱ガラス製の凹面反射鏡では点灯・消灯の繰り返しで次第に内部歪みが発生・蓄積し、それに伴い凹面反射鏡の強度が低下するという問題がある。また、結晶化ガラス製凹面反射鏡に於いても、点灯時の高熱のためにガラスの結晶化が次第に進行して脆性破壊を示す傾向にある。このことはランプ破裂により凹面反射鏡が同時に破損する可能性のあることを示している。   Usually, the concave reflector mounted on the high pressure discharge lamp is made of heat-resistant glass or crystallized glass so that it can withstand the high temperatures during lighting, but the concave reflector, In particular, the temperature in the vicinity of the light emitting sphere, which becomes high, is also very high, and in the concave reflector made of heat-resistant glass, internal distortion gradually occurs and accumulates by repeated turning on and off, and the intensity of the concave reflector decreases accordingly. There is a problem of doing. Further, in the concave reflector made of crystallized glass, crystallization of glass gradually proceeds and brittle fracture tends to occur due to high heat at the time of lighting. This indicates that the concave reflecting mirror may be damaged at the same time due to lamp burst.

凹面反射鏡は点灯時の発光球体部からの光を前方に反射する働きを示すと同時に前面ガラスと協働し(換言すれば、凹面反射鏡の前面開口が前面ガラスによって閉塞され)、これによりランプ破裂時の充填物質の外部への飛散防止作用も兼ねるものであり、ランプ破裂による凹面反射鏡の破損は前記充填物質(特に水銀)の飛散防止ができないということを意味する。   The concave reflecting mirror works to reflect the light from the light emitting sphere at the time of lighting forward and at the same time cooperates with the front glass (in other words, the front opening of the concave reflecting mirror is blocked by the front glass). This also serves to prevent scattering of the filling material to the outside when the lamp is ruptured, and damage to the concave reflecting mirror due to lamp rupture means that the filling material (particularly mercury) cannot be prevented from scattering.

更に、水銀飛散防止の為、凹面反射鏡の前面開口を前面ガラスで完全密閉する必要があるが、完全密閉すると内部に熱がこもり、熱放散が悪くなって凹面反射鏡内の温度が異常に高くなり、ランプ破裂や前述の凹面反射鏡の脆化や破損の原因となり、凹面反射鏡の前面開口の全面閉塞は現在の技術では技術的に不可能と考えられていた。あえて実施できるとすれば高圧放電灯の発光球体部(楕円体)径を大きくし、電極間に発生するアークからの距離を稼ぎ、発光球体部(楕円体)上部温度を低減する方法しかなかった。   Furthermore, in order to prevent mercury scattering, it is necessary to completely seal the front opening of the concave reflector with the front glass. However, if it is completely sealed, heat will be trapped inside, resulting in poor heat dissipation and abnormally high temperature inside the concave reflector. It becomes high and causes lamp rupture and embrittlement and breakage of the concave reflector described above, and it has been considered technically impossible with the current technology to completely block the front opening of the concave reflector. If it could be done, there was only a method of increasing the diameter of the light emitting sphere (ellipsoid) of the high-pressure discharge lamp, increasing the distance from the arc generated between the electrodes, and reducing the temperature of the top of the light emitting sphere (ellipsoid). .

この場合、当然球体径が大きくなるため凹面反射鏡で反射された光線が、発光球体部に衝突し、前方に出光されないので、外径拡大分だけ損失することとなる。また併せて球体の内容積も大きくなるため、封入される水銀量も多くなり環境対策面から逆行する事となる。   In this case, since the sphere diameter is naturally increased, the light beam reflected by the concave reflecting mirror collides with the light emitting sphere portion and is not emitted forward, so that the outer diameter is lost. At the same time, since the inner volume of the sphere becomes larger, the amount of mercury to be encapsulated also increases, and this goes backwards from the viewpoint of environmental measures.

このように耐熱性ガラスや結晶化ガラスを使用した凹面反射鏡の問題点に着目した場合、当然、熱放散の高い金属反射鏡がその代替候補に挙がる(特許文献)。しかしながら、単純に凹面反射鏡をアルミニウムなどの高熱伝導率金属物質に変更し、凹面反射鏡に高圧放電灯を接着する耐熱性接着剤として高熱伝導特性を持つ窒化珪素などを主成分とするものを用いたとしても、密閉された凹面反射鏡内の空気温度を若干低下させるだけであり、その温度低下効果はせいぜい数10℃しか低下しない事が実験的に判明した。これは以下の理由によるものと考えられる。   When attention is paid to the problem of concave reflecting mirrors using heat-resistant glass or crystallized glass as described above, naturally, metal reflecting mirrors with high heat dissipation are listed as alternative candidates (Patent Document). However, simply changing the concave reflector to a metal material with high thermal conductivity such as aluminum, and using as a main component a silicon nitride with high thermal conductivity as a heat-resistant adhesive that bonds the high pressure discharge lamp to the concave reflector. Even if it is used, it has been experimentally found that the temperature of the air inside the sealed concave reflecting mirror is only slightly reduced, and the effect of the temperature reduction is only a few tens of degrees Celsius. This is thought to be due to the following reasons.

高圧放電灯の封体は非常に熱伝導の悪い石英ガラスより形成されており、長時間、高温に曝され続けていると不純物の影響やその他のファクタにより次第に失透してしまう。また、電極も同様、長時間、高温に曝され続けていると変形し、アークの安定生成の障害になり、いずれもランプ寿命の点で問題を生じる。これらを勘案して、発明者らは良好なランプ特性を長期間にわたって保つには、一応、点灯中の発光球体部の表面温度が950℃以下を保つようにすることが好ましいと判断した。しかしながら、飛躍的な温度低減を図りたい発光球体部部分と金属製凹面反射鏡の接着部分までの部分が熱伝導性の悪い石英ガラスの封止部であるため、発光球体部部分で発生した熱は封止部を通って金属製凹面反射鏡に伝熱する以外に熱伝導ルートがなく、それ故、金属製凹面反射鏡や高熱伝導性耐熱性接着剤を使用したとしても熱伝導性能の飛躍的向上が図れなかったのである。その結果、従来の放電灯では、特に、定格消費電力が120W以上のものは凹面反射鏡の前面開口の前面ガラスによる閉塞ができなかった。
特開平7−272679号
The envelope of the high-pressure discharge lamp is made of quartz glass having a very poor thermal conductivity, and when it is exposed to a high temperature for a long time, it gradually becomes devitrified due to the influence of impurities and other factors. Similarly, the electrode is deformed when it is exposed to a high temperature for a long time and becomes an obstacle to the stable generation of the arc, and all of them cause problems in terms of lamp life. Taking these into consideration, the inventors have determined that it is preferable to keep the surface temperature of the light-emitting sphere during lighting for 950 ° C. or lower in order to maintain good lamp characteristics over a long period of time. However, since the part from the light emitting sphere part where the temperature is to be drastically reduced and the adhesive part of the metal concave reflector is a sealed part of quartz glass with poor thermal conductivity, the heat generated in the light emitting sphere part There is no heat conduction route other than transferring heat to the metal concave reflector through the sealing part. Therefore, even if a metal concave reflector or high heat conductive heat-resistant adhesive is used, the heat conduction performance will jump The improvement was not achieved. As a result, with conventional discharge lamps, particularly those with a rated power consumption of 120 W or more, the front opening of the concave reflecting mirror could not be blocked by the front glass.
JP-A-7-272679

本発明の第1の課題は、発光球体部から金属反射鏡までの熱伝導不良を解消することにより、発光球体部の劇的な温度低下を実現しようとするものであり、第2の課題はこのような第1の課題を解決することにより、高ワッテージ(定格消費電力)のものも前面ガラスによる凹面反射鏡の前面開口の全面閉塞構造を採用することができるようにすることである。換言すれば、本発明は密閉構造で封体温度、特に発光球体部部分の温度を効率良く低減させることができる有効な手段を提案するものである。   The first problem of the present invention is to achieve a dramatic temperature decrease of the light emitting sphere by eliminating the poor heat conduction from the light emitting sphere to the metal reflector. The second problem is By solving the first problem as described above, it is possible to adopt a structure in which the front opening of the concave reflecting mirror is entirely obstructed by the front glass even for high wattage (rated power consumption). In other words, the present invention proposes an effective means capable of efficiently reducing the sealing body temperature, particularly the temperature of the light emitting sphere part, with a sealed structure.

「請求項1」に記載の凹面反射鏡(A)は本発明の基本原理に関するもので、「高圧放電灯(2)の光を前方に反射する凹面反射部(1)と、その中央背面から後方に突設された取付部(1a)とで構成された、高熱伝導性の凹面反射鏡(A)であって、前記取付部(1a)の中央に高圧放電灯(2)の封止部(3a)がスライド可能に挿入される放電灯取付孔(5)が形成され、前記放電灯取付孔(5)の孔縁から高圧放電灯(2)の発光球体部(4)に接触する熱伝導用接触体(7)が形成されされている」ことを特徴とする。   The concave reflecting mirror (A) described in "Claim 1" relates to the basic principle of the present invention. "The concave reflecting portion (1) for reflecting the light of the high-pressure discharge lamp (2) forward and the central rear surface thereof. A concave reflecting mirror (A) having a high thermal conductivity composed of a mounting portion (1a) protruding rearward, and a sealing portion of a high pressure discharge lamp (2) at the center of the mounting portion (1a) The discharge lamp mounting hole (5) into which the (3a) is slidably inserted is formed, and the heat that contacts the light emitting sphere (4) of the high pressure discharge lamp (2) from the hole edge of the discharge lamp mounting hole (5). A conductive contact (7) is formed ".

このように発光球体部(4)に直接接触する熱伝導用接触体(7)が前記放電灯取付孔(5)の孔縁から突設されているので、熱伝導用接触体(7)を介して発光球体部(4)の熱が凹面反射部(1)側に直接伝熱され、点灯時の発光球体部(4)の大幅温度低下作用を示す。なお、前記熱伝導用接触体(7)の発光球体部(4)への接触部位は、発光球体部(4)の反射面(6)側の基部で反射光に殆ど寄与しない部分であるから、発光球体部(4)からの出光を妨げることはない。   Since the heat conduction contact body (7) that directly contacts the light emitting sphere (4) is thus projected from the hole edge of the discharge lamp mounting hole (5), the heat conduction contact body (7) is provided. The heat of the light emitting sphere part (4) is directly transferred to the concave reflecting part (1) side through the light, and the light emitting sphere part (4) has a significant temperature lowering effect during lighting. The contact portion of the heat conducting contact (7) with the light emitting sphere (4) is a portion that hardly contributes to the reflected light at the base of the light emitting sphere (4) on the reflecting surface (6) side. The light emission from the light emitting sphere (4) is not hindered.

「請求項2」は「請求項1」の具体例で、
(a) 高圧放電灯(2)の光を前方に反射する凹面反射部(1)と、その中央背面から後方に突設された取付部(1a)とで構成され、取付部(1a)に放熱ブロック収納孔(10)が形成された、高熱伝導性の反射鏡本体(a)と、
(b) 放熱ブロック収納孔(10)内に収納され、凹面反射部(1)の中心線(Z)に対して直角方向(X,Y)及び中心線(Z)方向に3次元的に位置調整可能で、その中心に高圧放電灯(2)の封止部(3a)が挿入される放電灯取付孔(5)が形成され、前記放電灯取付孔(5)の孔縁から高圧放電灯(2)の発光球体部(4)に接触する、高熱伝導製の熱伝導用接触体(7)が突設された放熱ブロック(B)と、
(c) 放熱ブロック(B)の前記3次元的移動を可能とし、凹面反射部(1)に対する高圧放電灯(2)の位置調整が行われた時点で放熱ブロック(B)を反射鏡本体(a)に固定する高熱伝導性の位置調整固定手段(9)とで構成されたことを特徴とする。
Claim 2” is a specific example of “Claim 1”.
(a) Consists of a concave reflection part (1) that reflects the light of the high-pressure discharge lamp (2) forward, and a mounting part (1a) that protrudes rearward from the center back surface. A highly heat conductive reflector body (a) in which a heat dissipation block housing hole (10) is formed;
(b) Stored in the heat dissipation block storage hole (10) and positioned three-dimensionally in the direction perpendicular to the center line (Z) and the center line (Z) direction of the concave reflecting section (1) A discharge lamp mounting hole (5) into which the sealing portion (3a) of the high pressure discharge lamp (2) is inserted is formed at the center, and the high pressure discharge lamp is formed from the hole edge of the discharge lamp mounting hole (5). A heat dissipating block (B) in which a heat conducting contact (7) made of high heat conduction is in contact with the light emitting sphere (4) of (2), and
(c) The three-dimensional movement of the heat radiating block (B) is enabled, and when the position of the high pressure discharge lamp (2) is adjusted with respect to the concave reflecting portion (1), the heat radiating block (B) is moved to the reflector body ( It is characterized by comprising a highly thermal conductive position adjusting and fixing means (9) for fixing to a).

この場合は、放熱ブロック(B)を介して凹面反射部(1)に対し、高圧放電灯(2)を3次元位置調整することができ、しかも、高熱伝導性の熱伝導用接触体(7)、放熱ブロック(B)及び位置調整固定手段(9)にて高圧放電灯(2)の発光球体部(4)の熱を反射鏡本体(a)に効果的に伝熱させることができ、発光球体部(4)の大幅な温度低下を実現することができる。なお、この場合は放熱ブロック(B)が3次元方向に位置調整され、高熱伝導性の位置調整固定手段(9)で固定されることになる。   In this case, the high-pressure discharge lamp (2) can be three-dimensionally adjusted with respect to the concave reflecting portion (1) via the heat dissipation block (B), and furthermore, a heat conductive contact (7 ), Heat of the light emitting sphere (4) of the high pressure discharge lamp (2) can be effectively transferred to the reflector body (a) by the heat dissipation block (B) and the position adjustment fixing means (9). A significant temperature drop of the light emitting sphere (4) can be realized. In this case, the position of the heat dissipating block (B) is adjusted in the three-dimensional direction and fixed by the position adjusting and fixing means (9) having high thermal conductivity.

「請求項3」は「請求項2」の放熱ブロック(B)に関する他の実施例で、
放熱ブロック(B)が、
(a) 放熱ブロック収納孔(10)に収納されているリング状のブロック本体(12)と、
(b) 凹面反射部(1)の中心軸(Z)方向にて前記ブロック本体(12)に穿設された中心孔(11)にスライド可能に挿入され、高圧放電灯(2)の発光球体部(4)に接触するように凹面反射部(1)の反射面(6)側にその一部が突出した、ブロック本体(12)とは別体の熱伝導用接触体(7)とで構成されていることを特徴とする。
“Claim 3” is another embodiment relating to the heat dissipating block (B) of “Claim 2”.
The heat dissipation block (B)
(a) a ring-shaped block body (12) stored in the heat dissipation block storage hole (10);
(b) The light emitting sphere of the high pressure discharge lamp (2) is slidably inserted into the central hole (11) drilled in the block body (12) in the direction of the central axis (Z) of the concave reflecting portion (1). A part of the concave reflecting portion (1) that protrudes toward the reflecting surface (6) side so as to contact the portion (4) is a contact member for heat conduction (7) that is separate from the block body (12). It is configured.

この場合は、放熱ブロック(B)がブロック本体(12)と熱伝導用接触体(7)とで構成されている場合で、ブロック本体(12)でX,Y軸方向の位置調整が行われ、熱伝導用接触体(7)でZ軸方向の位置調整が行われる。位置調整後は位置調整固定手段(9)「X,Y軸方向は位置調整兼固定手段(9a)にて、Z軸方向は固定手段(9b)」にて固定される。   In this case, the heat dissipating block (B) is composed of the block main body (12) and the heat conducting contact body (7), and the position of the block main body (12) in the X and Y axis directions is adjusted. Then, the position adjustment in the Z-axis direction is performed by the contact member for heat conduction (7). After the position adjustment, the position adjustment fixing means (9) is fixed by “position adjustment and fixing means (9a) in the X and Y axis directions, and fixing means (9b) in the Z axis direction”.

「請求項4」は「請求項1」の凹面反射鏡(A)を用いた光源装置(H)に関し、
(a) 発光球体部(4)から封止部(3a)(3b)が突設されている高圧放電灯(2)と、
(b) 請求項1に記載の凹面反射鏡(A)と、
(c) 高圧放電灯(2)の位置調整後、取付部(1a)に封止部(3a)を固定する固定部材(20)とで構成されていることを特徴とする。
Claim 4” relates to the light source device (H) using the concave reflecting mirror (A) of “Claim 1”.
(a) a high pressure discharge lamp (2) in which sealing portions (3a) and (3b) are projected from the light emitting sphere (4);
(b) the concave reflecting mirror (A) according to claim 1;
(c) After the position adjustment of the high pressure discharge lamp (2), the fixing member (20) for fixing the sealing portion (3a) to the attachment portion (1a) is provided.

「請求項5」は「請求項2」の凹面反射鏡(A)を用いた光源装置(H)に関し、
(a) 発光球体部(4)から封止部(3a)(3b)が突設されている高圧放電灯(2)と、
(b) 請求項2に記載の凹面反射鏡(A)と、
(c) 封止部(3a)を放熱ブロック(B)に固定する固定部材(9b)と、放熱ブロック(B)を取付部(1a)に固定する位置調整兼固定部材(9a)とで構成されていることを特徴とする。
Claim 5” relates to the light source device (H) using the concave reflecting mirror (A) of “Claim 2”.
(a) a high pressure discharge lamp (2) in which sealing portions (3a) and (3b) are projected from the light emitting sphere (4);
(b) the concave reflecting mirror (A) according to claim 2;
(c) Consists of a fixing member (9b) that fixes the sealing part (3a) to the heat dissipation block (B) and a position adjustment and fixing member (9a) that fixes the heat dissipation block (B) to the mounting part (1a). It is characterized by being.

「請求項6」は「請求項5」に記載の光源装置(H)の放熱ブロック(B)に関し、
放熱ブロック(B)が、
(a) 放熱ブロック収納孔(10)に収納されているリング状のブロック本体(12)と、
(b) 凹面反射部(1)の中心軸(Z)方向にて前記ブロック本体(12)の中心孔(11)にスライド可能に挿入され、高圧放電灯(2)の発光球体部(4)に接触するように凹面反射部(1)の反射面(6)側にその一部が突出した熱伝導用接触体(7)とで構成されており、
(c) 高圧放電灯(2)の位置調整後、熱伝導用接触体(7)がブロック本体(12)に固定部材(9b)にて固定され且つブロック本体(12)が取付部(1a)に位置調整兼固定部材(9a)にて固定されるようになっていることを特徴とする。
Claim 6” relates to the heat dissipation block (B) of the light source device (H) according to “Claim 5”.
The heat dissipation block (B)
(a) a ring-shaped block body (12) stored in the heat dissipation block storage hole (10);
(b) The light emitting sphere (4) of the high-pressure discharge lamp (2) is slidably inserted into the central hole (11) of the block body (12) in the direction of the central axis (Z) of the concave reflecting portion (1). And a heat conducting contact body (7) partially projecting on the reflective surface (6) side of the concave reflective portion (1) so as to come into contact with
(c) After adjusting the position of the high-pressure discharge lamp (2), the contact member for heat conduction (7) is fixed to the block body (12) by the fixing member (9b), and the block body (12) is attached to the mounting portion (1a). It is characterized by being fixed by a position adjusting and fixing member (9a).

請求項3〜6の光源装置(H)によれば、前述のように熱伝導用接触体(7)による発光球体部(4)の大幅な温度低下(具体的には、石英ガラスの白化防止その他ランプ特性の維持が可能な950℃以下の温度への低下)が可能となり、例えば120W以上の定格消費電力を有する高圧放電灯(2)の場合でも凹面反射鏡(1)の前面の前面ガラス(16)による全面閉塞が可能となる。   According to the light source device (H) of claims 3 to 6, as described above, the temperature drop of the light emitting sphere (4) due to the heat conducting contact (7) (specifically, prevention of whitening of quartz glass) Other than the high pressure discharge lamp (2) having a rated power consumption of 120 W or more, the front glass on the front surface of the concave reflector (1) can be maintained. Full blockage by (16) becomes possible.

「請求項7」は、「請求項4〜6」に記載の光源装置(H)の更なる実施例で、「凹面反射鏡(A)の前面開口(15)が更に前面ガラス(16)にて閉塞されている」ことを特徴とするもので、前述のように本発明にあっては発光球体部(4)の放熱効果が優れているので、低定格消費電力の高圧放電灯(2)を使用する場合は勿論、定格消費電力の大きい高圧放電灯(2)を使用する場合でも凹面反射鏡(A)の前面開口(15)を前面ガラス(16)にて閉塞することができ、その結果、ランプ破裂時の水銀飛散を防ぐことができる。なお、前面ガラス(16)がない場合でも後述するように光源装置(H)の収納容器(図示せず)に前面ガラスと同等の保護ガラス(図示せず)を設けておき、保護ガラスに凹面反射鏡(A)の開口部を押圧することで前面ガラス(16)による閉塞状態と同じ状態とすることができる。   “Claim 7” is a further embodiment of the light source device (H) according to “Claims 4 to 6”, wherein “the front opening (15) of the concave reflecting mirror (A) is further provided on the front glass (16)”. As described above, in the present invention, since the heat dissipation effect of the light emitting sphere (4) is excellent, the high-pressure discharge lamp (2) with low rated power consumption Of course, the front opening (15) of the concave reflector (A) can be blocked by the front glass (16) even when using a high-pressure discharge lamp (2) with a large rated power consumption. As a result, mercury scattering at the time of lamp explosion can be prevented. Even when the front glass (16) is not provided, a protective glass (not shown) equivalent to the front glass is provided in the storage container (not shown) of the light source device (H) as described later, and the protective glass has a concave surface. By pressing the opening of the reflecting mirror (A), the same state as the closed state by the front glass (16) can be obtained.

以上から、本発明にあっては効果を奏する。
(1)熱伝導用接触体の高伝熱効果により、発光球体部の温度抑制効果に優れている。
(2)請求項2以下では、凹面反射部に対する発光球体部の3次元位置調整が可能となる。
(3)前記発光球体部に対する優れた温度抑制効果により、大定格消費電力の高圧放電灯に対しても、凹面反射鏡の前面開口の前面ガラスによる全面閉塞が可能となる。
(4)なお、凹面反射鏡を金属にて形成すれば、高圧放電灯のランプ破裂が生じたとしても、これによる凹面反射鏡自体の破損がないので、前面ガラス(或いは保護ガラス)が破損しない限り凹面反射鏡内に飛散した水銀が凹面反射鏡外に飛散することがなく、水銀による環境汚染を確実に防止することができる。
From the above, the present invention is effective.
(1) Due to the high heat transfer effect of the contact member for heat conduction, the temperature suppressing effect of the light emitting sphere is excellent.
(2) In the second aspect and below, it is possible to adjust the three-dimensional position of the light emitting sphere with respect to the concave reflecting portion.
(3) Due to the excellent temperature suppression effect on the light emitting sphere, the front opening of the concave reflecting mirror can be completely blocked by the front glass even for a high-voltage discharge lamp with high rated power consumption.
(4) If the concave reflector is made of metal, even if a high-pressure discharge lamp ruptures, the concave reflector itself will not be damaged, so the front glass (or protective glass) will not be damaged. As long as the mercury scattered in the concave reflecting mirror does not scatter outside the concave reflecting mirror, environmental pollution by mercury can be surely prevented.

以下、本発明を図示実施例に従って説明する。本発明に使用される高圧放電灯(2)は、発光球体部(4)の両側から封止部(3a)(3b)が突設されたダブルエンドタイプのもので、発光球体部(4)内に一対の電極(図示せず)が対向して配設され、封止部(3a)(3b)に埋設されている給電部(図示せず)により、電極間にアークを形成するものである。発光球体部(4)内には水銀のほか必要充填物質や必要充填ガスなどが封入されている。点灯時の発光球体部(4)の内圧は数10気圧から数100気圧に達し、温度は1,000℃以上に達する。ここではダブルエンド型の高圧放電灯(2)を代表例として取り上げるが、発光球体部の一端から一つの封止部が突設され、発光球体部内に対向して配置されている電極につながる給電部が当該封止部内に埋設されているシングルエンド型の放電灯を適用することも勿論可能である。   The present invention will be described below with reference to the illustrated embodiments. The high pressure discharge lamp (2) used in the present invention is a double-ended type in which sealing portions (3a) and (3b) project from both sides of the light emitting sphere (4), and the light emitting sphere (4) A pair of electrodes (not shown) are arranged opposite to each other, and an arc is formed between the electrodes by a power feeding part (not shown) embedded in the sealing part (3a) (3b). is there. In addition to mercury, the light emitting sphere (4) is filled with necessary filling substances and necessary filling gases. The internal pressure of the light emitting sphere (4) during lighting reaches several tens of atmospheres to several hundreds of atmospheres, and the temperature reaches 1,000 ° C. or more. Here, a double-end type high-pressure discharge lamp (2) is taken as a representative example, but one sealing part protrudes from one end of the light emitting sphere part, and is connected to an electrode arranged opposite to the light emitting sphere part. Of course, it is also possible to apply a single-ended discharge lamp having a portion embedded in the sealing portion.

図1は本発明の基本型で、図2以降はその変形であり、一般的に使用される構造は図3〜8に示すものである。以下、図1の基本型について説明する。凹面反射鏡(A)は凹面反射部(1)と、その中央から後方に一体的に突出した取付部(1a)とで構成されており、前記取付部(1a)の中心に凹面反射部(1)の中心軸(Z)にあわせて放電灯取付孔(5)が形成され、前記放電灯取付孔(5)の孔縁から中心軸(Z)にあわせて熱伝導用接触体(7)が形成されている。   FIG. 1 shows a basic type of the present invention. FIG. 2 and subsequent figures are modifications thereof, and generally used structures are shown in FIGS. Hereinafter, the basic type of FIG. 1 will be described. The concave reflecting mirror (A) is composed of a concave reflecting portion (1) and a mounting portion (1a) integrally protruding rearward from the center thereof, and a concave reflecting portion (1a) at the center of the mounting portion (1a) ( A discharge lamp mounting hole (5) is formed in accordance with the central axis (Z) of 1), and a contact member for heat conduction (7) from the hole edge of the discharge lamp mounting hole (5) to the central axis (Z). Is formed.

凹面反射鏡(A)は熱伝導用接触体(7)が同一金属で一体的に形成されている場合は、融点の関係で銅もしくは真鍮などの高熱伝導性金属で形成されることになる。図1は、熱伝導用接触体(7)が凹面反射部(1)に一体的に形成された図となっているが、別体で形成し、凹面反射部(1)に圧入のような形で一体化してもよい(図示せず)。その場合は、凹面反射部(1)から取付部(1a)にかけての部分をアルミニウムのような反射性に優れ且つ軽量金属で形成し、熱伝導用接触体(7)については銅もしくは真鍮など高熱伝導性金属で形成することになる。   When the heat conducting contact body (7) is integrally formed of the same metal, the concave reflecting mirror (A) is formed of a high heat conductive metal such as copper or brass because of the melting point. In FIG. 1, the heat conducting contact body (7) is formed integrally with the concave reflecting portion (1), but it is formed separately and is pressed into the concave reflecting portion (1). It may be integrated in the form (not shown). In that case, the portion from the concave reflecting portion (1) to the mounting portion (1a) is made of a highly reflective and lightweight metal such as aluminum, and the heat conduction contact (7) is made of high heat such as copper or brass. It will be formed of a conductive metal.

熱伝導用接触体(7)は、発光球体部(4)の反射面(6)側の基部(4a)に接触するようになっている(勿論、接触している方が好ましい)。その接触端部(7a)は、発光球体部(4)の反射面(6)側の基部(4a)に接触していればよく、必ずしも球面状に形成されている必要がないが、接触面積を大きくするために発光球体部(4)の球面に合わせて球面状に形成することが好ましい。   The contact member for heat conduction (7) comes into contact with the base portion (4a) on the reflective surface (6) side of the light emitting sphere portion (4) (of course, it is preferable to be in contact). The contact end portion (7a) may be in contact with the base portion (4a) on the reflective surface (6) side of the light emitting sphere portion (4), and does not necessarily have to be formed in a spherical shape, but the contact area In order to increase the size, it is preferable to form a spherical shape in accordance with the spherical surface of the light emitting sphere (4).

また、熱伝導用接触体(7)は、前述のように接触端部(7a)が発光球体部(4)の反射面(6)側の基部(4a)に接触していればよく、その形状は特に限定されるものではない(例えば単なる棒状のもの)が、基部(4a)全体に接触させて接触面積(換言すれば、伝熱面面積)を稼ぐため、本実施例では円筒状に形成されている。また、熱伝導用接触体(7)は、前述のように接触端部(7a)が発光球体部(4)の反射面(6)側の基部(4a)に接触するものであればよく、必ずしも凹面反射部(1)の反射面(6)側から突設されている必要はない。本実施例では突設されている場合をその代表例とする。また、突設位置も放電灯取付孔(5)の孔縁に限られるものではないが、反射効率を損なわないようにするために本実施例では放電灯取付孔(5)の孔縁から突設されている。   Further, as described above, the contact member (7a) for heat conduction only needs to be in contact with the base part (4a) on the reflective surface (6) side of the light emitting sphere part (4). The shape is not particularly limited (e.g., a simple rod-like shape), but in order to increase the contact area (in other words, heat transfer surface area) by contacting the entire base portion (4a), in this embodiment, it is cylindrical. Is formed. Further, the contact member for heat conduction (7) may be any member as long as the contact end (7a) contacts the base (4a) on the reflective surface (6) side of the light emitting sphere (4) as described above. It is not always necessary to project from the reflecting surface (6) side of the concave reflecting portion (1). In the present embodiment, the case where the projection is provided is a representative example. Further, the projecting position is not limited to the hole edge of the discharge lamp mounting hole (5), but in this embodiment, it protrudes from the hole edge of the discharge lamp mounting hole (5) so as not to impair the reflection efficiency. It is installed.

高圧放電灯(2)は、その一方の封止部(3a)が凹面反射鏡(A)の放電灯取付孔(5)に挿入され、封止部(3a)の挿入端が取付部(1a)の外面に熱伝導性無機接着剤(20)にて固着されている。熱伝導性無機接着剤(20)はたとえば熱伝導性の高い窒化ケイ素(80%)のような骨材と、シリカ又はアルミナやその他バインダ(20%)の混合物である。凹面反射鏡(A)の熱伝導用接触体(7)の接触端部(7a)は発光球体部(4)の反射面(6)側の基部(4a)に接触している。   In the high pressure discharge lamp (2), one sealing part (3a) is inserted into the discharge lamp mounting hole (5) of the concave reflecting mirror (A), and the insertion end of the sealing part (3a) is the mounting part (1a ) Is fixed to the outer surface by a thermally conductive inorganic adhesive (20). The heat conductive inorganic adhesive (20) is, for example, a mixture of an aggregate such as silicon nitride (80%) having high heat conductivity and silica or alumina or other binder (20%). The contact end (7a) of the heat conducting contact (7) of the concave reflecting mirror (A) is in contact with the base (4a) on the reflecting surface (6) side of the light emitting sphere (4).

このようにして凹面反射鏡(A)に取り付けられた高圧放電灯(2)の一方の封止部(3a)から導出された給電部(17)および他方の給電部(18)にはそれぞれ導線(22)(23)が接続されている。(21)は取付部(1a)の後端に設けられた絶縁カバーである。導線(23)は凹面反射部(1)に穿設された通孔(24)から外部に引き出されている。   In this way, the power feeding part (17) and the other power feeding part (18) led out from one sealing part (3a) of the high-pressure discharge lamp (2) attached to the concave reflecting mirror (A) are respectively connected to the lead wires. (22) (23) are connected. (21) is an insulating cover provided at the rear end of the mounting portion (1a). The conducting wire (23) is led out through a through hole (24) formed in the concave reflecting portion (1).

しかして、高圧放電灯(1)を点灯すると電極間にアークが発生し、発光球体部(4)の温度は急速に上昇する。発光球体部(4)の熱は、凹面反射鏡(A)内の空気の対流による放熱、或いは放射による放熱、又は熱伝導による凹面反射鏡(A)への伝熱によって発光球体部(4)の熱は奪われることになる。前二者については本発明の場合も従来例の場合同じであるが、最後の伝熱の場合が本発明と異なる。即ち、従来例では発光球体部の熱は熱伝導性に乏しい石英製の封止部を通って凹面反射鏡の取付部に伝熱されることになるが、封止部が石英のため、熱の移動が非常に小さく、それ故、凹面反射鏡に金属を使用したとしても発光球体部の温度は1,000℃を越えることになった。   Thus, when the high pressure discharge lamp (1) is turned on, an arc is generated between the electrodes, and the temperature of the light emitting sphere (4) rises rapidly. The heat of the light emitting sphere part (4) is radiated by the convection of the air in the concave reflecting mirror (A), or the heat radiated by radiation, or the heat conduction to the concave reflecting mirror (A) by heat conduction to the light emitting sphere part (4). Your heat will be taken away. The former two cases are the same in the case of the present invention as in the conventional example, but the last heat transfer case is different from the present invention. That is, in the conventional example, the heat of the light emitting sphere is transmitted to the mounting portion of the concave reflecting mirror through the quartz sealing portion having poor thermal conductivity, but since the sealing portion is quartz, The movement is very small. Therefore, even if a metal is used for the concave reflecting mirror, the temperature of the light emitting sphere exceeds 1,000 ° C.

これに対して、本発明の場合は発光球体部(4)に直接熱伝導用接触体(7)が接触して発光球体部(4)の熱を直接凹面反射鏡(A)の取付部(1a)に移動させる。凹面反射鏡(A)は放熱性に優れた部材、前述のアルミニウム、銅、真鍮などで形成されているので、発光球体部(4)から奪った熱を迅速に凹面反射鏡(A)の外周囲に放熱させることができ、その結果、発光球体部(4)の温度を1,000℃以下(正確には950℃以下)にすることができるようになった。なお、熱伝導用接触体(7)の、発光球体部(4)の基部(4a)への接触幅(L)は、熱伝導性を確保するため少なくとも0.1mm以上あることが好ましく、また、発光球体部(4)の基部(4a)全体に接触させるために円筒であることが好ましい。   On the other hand, in the case of the present invention, the heat conducting contact (7) is directly in contact with the light emitting sphere (4) and the heat of the light emitting sphere (4) is directly attached to the concave reflecting mirror (A) ( Move to 1a). The concave reflector (A) is made of a material with excellent heat dissipation, such as aluminum, copper, brass, etc., so the heat taken from the light emitting sphere (4) can be quickly removed from the concave reflector (A). As a result, the temperature of the light emitting sphere (4) can be reduced to 1,000 ° C. or lower (more precisely, 950 ° C. or lower). Note that the contact width (L) of the heat conducting contact body (7) to the base part (4a) of the light emitting sphere part (4) is preferably at least 0.1 mm or more in order to ensure thermal conductivity, In order to contact the entire base part (4a) of the light emitting sphere part (4), a cylindrical shape is preferable.

図2は第2実施例で、凹面反射鏡(A)は反射鏡本体(a)と放熱ブロック(B)とで構成されており、反射鏡本体(a)の中央に放熱ブロック収納孔(10)が形成されている。放熱ブロック(B)の中心には放電灯取付孔(5)が形成されており、放電灯取付孔(5)の孔縁から凹面反射部(1)の反射面(6)側に熱伝導用接触体(7)が突設されている。反射鏡本体(a)と放熱ブロック(B)はいずれも高熱伝導性材料で形成されており、反射鏡本体(a)は例えばアルミニウムで、放熱ブロック(B)は銅または真鍮で形成されている。放熱ブロック収納孔(10)は放熱ブロック(B)より大きく、放熱ブロック(B)が3次元方向に移動可能となっている。そして、放熱ブロック収納孔(10)の周囲の壁面(10a)には4方向からXY軸方向の位置調整兼固定手段(9a)であるネジが螺装されている。その他は第1実施例と同じである。   FIG. 2 shows a second embodiment in which the concave reflecting mirror (A) is composed of a reflecting mirror main body (a) and a heat radiating block (B). ) Is formed. A discharge lamp mounting hole (5) is formed at the center of the heat dissipation block (B), for heat conduction from the hole edge of the discharge lamp mounting hole (5) to the reflective surface (6) side of the concave reflecting portion (1). A contact body (7) is projected. The reflector body (a) and the heat dissipation block (B) are both made of a highly heat conductive material, the reflector body (a) is made of, for example, aluminum, and the heat dissipation block (B) is made of copper or brass. . The heat dissipation block housing hole (10) is larger than the heat dissipation block (B), and the heat dissipation block (B) can move in the three-dimensional direction. The wall surface (10a) around the heat radiating block housing hole (10) is screwed with a screw serving as a position adjusting / fixing means (9a) in the XY axis direction from four directions. Others are the same as the first embodiment.

第1実施例と同様、放熱ブロック(B)の放電灯取付孔(5)に高圧放電灯(2)の一方の封止部(3a)を挿入し、発光球体部(4)に熱伝導用接触体(7)を接触させてたとえば高熱伝導性無機接着剤(9b)で両者を固着する。続いて、高圧放電灯(2)を反射鏡本体(a)の背方から挿入し、放熱ブロック(B)を放熱ブロック収納孔(10)内に収納する。然る後、反射鏡本体(a)の焦点に発光球体部(4)の発光中心が一致するように放熱ブロック(B)を3次元方向に移動させ、位置決めがなされるところで位置調整兼固定手段(9a)であるネジを締め込んで放熱ブロック(B)を反射鏡本体(a)に対して固定する。必要であれば放熱ブロック(B)と放熱ブロック収納孔(10)の周囲の壁面(10a)とを高熱伝導性無機接着剤(30)或いは銀ロー付けその他の固着手段により固着する。これにより、第1実施例と同様、発光球体部(4)の熱が熱伝導用接触体(7)を通って放熱ブロック(B)、反射鏡本体(a)へと伝わり、効果的に放熱される。   As in the first embodiment, one sealing part (3a) of the high pressure discharge lamp (2) is inserted into the discharge lamp mounting hole (5) of the heat dissipation block (B), and the light emitting sphere part (4) is used for heat conduction. The contact body (7) is brought into contact, and both are fixed, for example, with a high thermal conductive inorganic adhesive (9b). Subsequently, the high pressure discharge lamp (2) is inserted from the back of the reflecting mirror body (a), and the heat dissipation block (B) is stored in the heat dissipation block storage hole (10). After that, the heat radiating block (B) is moved in a three-dimensional direction so that the light emission center of the light emitting sphere (4) coincides with the focal point of the reflector body (a), and the position adjusting and fixing means is positioned. Tighten the screws (9a) to fix the heat dissipation block (B) to the reflector body (a). If necessary, the heat-dissipating block (B) and the wall surface (10a) around the heat-dissipating block housing hole (10) are fixed by a high thermal conductive inorganic adhesive (30), silver brazing, or other fixing means. As in the first embodiment, the heat of the light emitting sphere (4) is transmitted to the heat radiating block (B) and the reflecting mirror body (a) through the heat conducting contact body (7) to effectively radiate heat. Is done.

図3、4は放熱ブロック(B)が、リング状のブロック本体(12)と別体で例えば筒状の熱伝導用接触体(7)とで構成されており、熱伝導用接触体(7)がブロック本体(12)の中心に穿設されている中心孔(11)にスライド可能に挿入されている。前述同様、ブロック本体(12)も熱伝導用接触体(7)も共に銅や真鍮などの高熱伝導性金属にて形成されている。   3 and 4, the heat dissipating block (B) is composed of a ring-shaped block main body (12) and a separate heat conducting contact body (7), for example, and the heat conducting contact body (7 ) Is slidably inserted into a center hole (11) drilled in the center of the block body (12). As described above, both the block main body (12) and the heat conducting contact body (7) are formed of a high heat conductive metal such as copper or brass.

高圧放電灯(2)の取り付け方法は第2実施例とほぼ同じで、高圧放電灯(2)の一方の封止部(3a)を熱伝導用接触体(7)に挿入し、熱伝導用接触体(7)の接触端部(7a)を発光球体部(4)に接触させる。そして、熱伝導用接触体(7)をブロック本体(12)の中心孔(11)に挿入し(或いは予め挿入された状態となっている)、この状態で高圧放電灯(2)を反射鏡本体(a)の背部から挿入し、放熱ブロック収納孔(10)に放熱ブロック(B)を収納する。   The mounting method of the high pressure discharge lamp (2) is almost the same as that of the second embodiment. One sealing part (3a) of the high pressure discharge lamp (2) is inserted into the contact body for heat conduction (7) and is used for heat conduction. The contact end (7a) of the contact body (7) is brought into contact with the light emitting sphere (4). Then, the contact member for heat conduction (7) is inserted into the center hole (11) of the block main body (12) (or in a state of being inserted in advance), and in this state, the high pressure discharge lamp (2) is connected to the reflecting mirror. Insert from the back of the main body (a) and store the heat dissipation block (B) in the heat dissipation block storage hole (10).

この状態で、ブロック本体(12)に対して熱伝導用接触体(7)をスライド移動させZ軸方向の位置調整を行うとともに前記ブロック本体(12)をXY方向に移動させてXY位置調整を行う。3軸方向の位置調整が終わったところで、前述同様、位置調整兼固定手段(9a)であるネジを螺入してブロック本体(12)を反射鏡本体(a)に対して固定する。ブロック本体(12)をネジ固定した後、熱伝導用接触体(7)をブロック本体(12)に高熱伝導性無機接着剤(9b)或いは銀ロー付けその他の固着手段により固着する。これにより、第1実施例と同様、発光球体部(4)の熱が熱伝導用接触体(7)を通って放熱ブロック(B)、反射鏡本体(a)へと伝わり、効果的に放熱される。なお、3軸調整は同時に行う必要なくXY軸調整の後にZ軸調整或いはその逆としてもよい。   In this state, the heat conduction contact (7) is slid relative to the block body (12) to adjust the position in the Z-axis direction, and the block body (12) is moved in the XY direction to adjust the XY position. Do. When the position adjustment in the three-axis directions is finished, the block main body (12) is fixed to the reflecting mirror main body (a) by screwing in screws as position adjusting and fixing means (9a) as described above. After the block main body (12) is fixed with screws, the heat conductive contact body (7) is fixed to the block main body (12) by a high heat conductive inorganic adhesive (9b), silver brazing or other fixing means. As in the first embodiment, the heat of the light emitting sphere (4) is transmitted to the heat radiating block (B) and the reflecting mirror body (a) through the heat conducting contact body (7) to effectively radiate heat. Is done. The three-axis adjustment need not be performed at the same time, and the Z-axis adjustment may be performed after the XY-axis adjustment or vice versa.

図5、6は図3,4で行われた調整の後、ブロック本体(12)と熱伝導用接触体(7)、ブロック本体(12)と取付部(1a)の後端とを高熱伝導性無機接着剤あるいは銀ロー付けにて接着するもので、これにより熱伝導用接触体(7)、ブロック本体(12)および反射部本体(a)が熱的に一体構造となり、発光球体部(4)からの熱が円滑に伝わり、反射部本体(a)にてより円滑に放熱されることになる。   FIGS. 5 and 6 show that after the adjustments made in FIGS. 3 and 4, the block body (12) and the contact member for heat conduction (7), and the block body (12) and the rear end of the mounting portion (1a) are subjected to high heat conduction. Adhering with a conductive inorganic adhesive or silver brazing, the heat conduction contact body (7), the block body (12) and the reflecting body (a) are thermally integrated into a single structure, and the light emitting sphere ( The heat from 4) is transmitted smoothly, and the heat is radiated more smoothly by the reflector main body (a).

図7、8はその他の実施例で、たとえばネジのようなZ軸固定手段(9b)で熱伝導用接触体(7)がブロック本体(12)に固定される。また、ブロック本体(12)の反射鏡本体(a)の取付部(1a)への固着は、XY方向位置調整手段(9a)による位置調整が終わった後、固定ネジ(9c)により固定されることになる。位置調整の方法は図3,4の場合と同じである。   FIGS. 7 and 8 show another embodiment. For example, the heat conductive contact body (7) is fixed to the block body (12) by a Z-axis fixing means (9b) such as a screw. In addition, the block body (12) is fixed to the mounting portion (1a) of the reflecting mirror body (a) after the position adjustment by the XY direction position adjusting means (9a) is finished, and then fixed by the fixing screw (9c). It will be. The method of position adjustment is the same as in FIGS.

なお、本発明の光源装置(H)は、凹面反射鏡(A)の前面開口(15)が前面ガラス(16)にて閉塞されている。凹面反射鏡(A)の前面開口(15)が前面ガラス(16)にて閉塞されていない場合は、光源装置(H)を収納する収納容器(図示せず)の前面ガラス(図示せず)が前面開口(15)に密着して閉塞することになる。   In the light source device (H) of the present invention, the front opening (15) of the concave reflecting mirror (A) is closed by the front glass (16). When the front opening (15) of the concave reflecting mirror (A) is not blocked by the front glass (16), the front glass (not shown) of the storage container (not shown) for storing the light source device (H) Will close and close to the front opening (15).

以下の表は、本発明の熱伝導用接触体の伝熱効果を検証するための実験結果である。   The following table shows experimental results for verifying the heat transfer effect of the contact member for heat conduction according to the present invention.

Figure 2005071814
Figure 2005071814

[実験条件]
(1)接着剤には熱伝導性に優れた窒化珪素を80%、残りはシリカ又はアルミナ及びバインダの混合物を使用した。
(2)使用した高圧放電灯の定格消費電力は150W(外径10mm)で、150Wの電力を供給して点灯した。
(3)発光球体部の温度スペックは950℃以下である(6〜9がスペックを満足する)。
(4)使用した熱伝導用接触体、放熱ブロックは銅を使用し、凹面反射鏡はアルミニウム製で凹面反射面には多層膜コートを施し、可視光の反射率を95%以上とした。
[Experimental conditions]
(1) For the adhesive, 80% of silicon nitride having excellent thermal conductivity was used, and the remainder was silica or a mixture of alumina and binder.
(2) The rated power consumption of the high-pressure discharge lamp used was 150 W (outer diameter: 10 mm), and it was lit by supplying 150 W of power.
(3) The temperature spec of the light emitting sphere is 950 ° C. or less (6 to 9 satisfies the spec).
(4) The contact member for heat conduction and the heat dissipation block used were copper, the concave reflecting mirror was made of aluminum, and the concave reflecting surface was coated with a multilayer film, so that the reflectance of visible light was 95% or more.

なお、上記の表において「発光球体部に対する接触寸法(L)」とは、熱伝導用接触体の接触端と発光球体部の基部とのオーバーラップ量(L)で図9に示すとおりである。従って、「−0.5」は0.5mm離間していることを示し、「0」はオーバーラップしておらず、熱伝導用接触体の接触端が発光球体部の基部に一致していることを示し、「0.1」「0.5」「1」「1.5」はオーバーラップ量(L)がそれぞれ「0.1mm」「0.5mm」「1mm」「1.5mm」であることを示す。「0.5」「1」「1.5」のオーバーラップ部分である接触端は発光球体部の基部に接触するように発光球体部の球面に合わせて形成されている。「0.1」は極く僅かオーバーラップしている状態であり、接触端の大半は発光球体部の基部に近接している状態である。   In the above table, the “contact dimension (L) with respect to the light emitting sphere part” is the overlap amount (L) between the contact end of the heat conducting contact body and the base of the light emitting sphere part as shown in FIG. . Therefore, “−0.5” indicates that the distance is 0.5 mm, “0” does not overlap, and the contact end of the contact member for heat conduction coincides with the base of the light emitting sphere. “0.1”, “0.5”, “1” and “1.5” indicate that the overlap amount (L) is “0.1 mm”, “0.5 mm”, “1 mm” and “1.5 mm”, respectively. It shows that there is. The contact end, which is the overlapping portion of “0.5”, “1”, and “1.5”, is formed in accordance with the spherical surface of the light emitting sphere portion so as to be in contact with the base portion of the light emitting sphere portion. “0.1” is a state where they are slightly overlapped, and most of the contact ends are close to the base of the light emitting sphere.

上記の表において、試料番号1は従来例で伝熱効率が悪く、発光球体部の温度は1,070℃に達した。試料番号2は熱伝導用接触体が存在するが、放熱ブロックがなくオーバーラップもない状態であるから発光球体部から接触端への伝熱が困難であり、従来例とほぼ同じ1,050℃を示した。また、この場合、凹面反射鏡と高圧放電灯の封止部との接着に高熱伝導性無機接着剤を使用しているが、加熱乾燥のため接着剤内に気泡が発生しており、所期の熱伝導率を達成できなかった。試料番号3、4、5はオーバーラップ量が0.5mm、1mm、1.5mmとそれぞれ増加しているが、加熱乾燥した高熱伝導性無機接着剤の部分が熱伝導の熱伝導の障害となり、1,030℃、1,025℃と温度の大幅低下は見られなかった。また、試料番号5'のように放熱ブロック(B)を使用する場合でも僅か0.5mmの隙間でも空いておれば温度低下は十分でなかった。   In the above table, Sample No. 1 was a conventional example and had poor heat transfer efficiency, and the temperature of the light emitting sphere reached 1,070 ° C. Sample No. 2 has a contact member for heat conduction, but since there is no heat dissipation block and no overlap, it is difficult to transfer heat from the light emitting sphere to the contact end, which is almost the same as the conventional example at 1,050 ° C. showed that. In this case, a highly heat-conductive inorganic adhesive is used for bonding the concave reflecting mirror and the sealing portion of the high-pressure discharge lamp, but bubbles are generated in the adhesive due to heat drying. The thermal conductivity of could not be achieved. Sample Nos. 3, 4, and 5 have increased overlap amounts of 0.5 mm, 1 mm, and 1.5 mm, respectively, but the heat-dried portion of the highly thermally conductive inorganic adhesive becomes an obstacle to heat conduction, There was no significant temperature drop at 1,030 ° C. or 1,025 ° C. Further, even when the heat dissipation block (B) was used as in Sample No. 5 ′, the temperature drop was not sufficient if the gap was only 0.5 mm.

表には記載していないが、試料番号3、4、5の高熱伝導性無機接着剤を自然乾燥させた場合、加熱乾燥の場合より接着剤の稠密度が向上し、試料番号6よりは高いが試料番号5よりは低い温度を示した。   Although not shown in the table, when the high thermal conductive inorganic adhesives of sample numbers 3, 4, and 5 are naturally dried, the density of the adhesive is improved as compared with the case of heat drying, which is higher than that of sample number 6. Showed a lower temperature than sample number 5.

試料番号6'はオーバーラップ量が「0.1mm」であるが熱伝導用接触体(7)の接触端部(7a)の大半は発光球体部(4)の基部(4a)に近接しているので、発光球体部(4)の熱はある程度熱伝導用接触体(7)に移動する。そして、放熱ブロック(B)と熱伝導用接触体(7)とはほぼ全周において接触し且つ放熱ブロック(B)と取付部(1a)とはネジ(9a)によって固定されているので、熱伝導用接触体(7)に移動した熱はスムーズに反射鏡本体(a)に流れ、周囲に放熱されることになる。その結果、温度スペックの上限に近い945℃まで発光球体部(4)の温度低下が実現した。   Sample No. 6 ′ has an overlap amount of “0.1 mm”, but most of the contact end (7a) of the heat conducting contact (7) is close to the base (4a) of the light emitting sphere (4). Therefore, the heat of the light emitting sphere (4) moves to some extent to the heat conducting contact (7). The heat dissipating block (B) and the heat conducting contact body (7) are in contact with each other almost all around and the heat dissipating block (B) and the mounting portion (1a) are fixed by screws (9a). The heat that has moved to the conductive contact (7) flows smoothly into the reflector body (a) and is dissipated to the surroundings. As a result, the temperature of the light emitting sphere (4) was reduced to 945 ° C., which is close to the upper limit of the temperature specification.

試料番号7,8,9は、試料番号6のものにオーバーラップ量をそれぞれ「0.5mm」「1mm」「1.5mm」としたもので、オーバーラップ量の増加により、925℃、910℃、880℃と大きな温度低下が見られた。これにより150Wという大定格消費電力の高圧放電灯についても前面ガラスによる凹面反射鏡の前面開口閉塞が可能となった。   Sample Nos. 7, 8, and 9 have the same overlap amounts as those of Sample No. 6, but with an overlap amount of “0.5 mm”, “1 mm”, and “1.5 mm”, respectively. A large temperature drop of 880 ° C. was observed. As a result, the front opening of the concave reflecting mirror can be blocked by the front glass even for a high-pressure discharge lamp with a large rated power consumption of 150 W.

なお、本発明では「接触」による熱伝導効率の向上を図ったが、オーバーラップ量が「0」で、接触端部(7a)が発光球体部(4)の基部(4a)に十分近接しており、接触端部(7a)の対向面が十分大きく、前記基部(4a)から放射された熱が直ちに接触端部(7a)に吸収され、発光球体部(4)の温度が950℃以下に低下するような場合(試料番号6)も本発明の「接触」の概念に含まれるものとする。   In the present invention, the heat conduction efficiency is improved by “contact”. However, the overlap amount is “0”, and the contact end (7a) is sufficiently close to the base (4a) of the light emitting sphere (4). The facing surface of the contact end (7a) is sufficiently large, the heat radiated from the base (4a) is immediately absorbed by the contact end (7a), and the temperature of the light emitting sphere (4) is 950 ° C. or less. (Sample number 6) is also included in the concept of “contact” of the present invention.

本発明は熱伝導用接触体(7)にて発光球体部(4)の熱を効率よく凹面反射鏡(A)側に移動させてこれを外部に放熱することができるので、従来不可能であった特に高定格消費電力の高圧放電灯(2)についても金属製凹面反射鏡(A)の前面の全面閉塞が可能となり、ランプ破裂時の環境汚染を確実に防止することができるようになった。   In the present invention, the heat conduction contact (7) can efficiently move the heat of the light emitting sphere (4) to the concave reflecting mirror (A) side to dissipate the heat to the outside, which is impossible in the past. The high-pressure discharge lamp (2) with a particularly high power consumption was able to block the entire front surface of the metal concave reflector (A), thus preventing environmental pollution when the lamp burst. It was.

本発明の基本型(第1実施例)の断面図Sectional view of the basic mold of the present invention (first embodiment) 本発明の第2実施例の断面図Sectional view of the second embodiment of the present invention 本発明の第3実施例の断面図Sectional view of the third embodiment of the present invention 図3の背面方向から見た図The figure seen from the back direction of FIG. 本発明の第4実施例の断面図Sectional drawing of 4th Example of this invention 図5の背面方向から見た図The figure seen from the back direction of FIG. 本発明の第5実施例の断面図Sectional drawing of 5th Example of this invention 図7の背面方向から見た図The figure seen from the back direction of FIG. 熱伝導用接触体の接触端と発光球体部の基部との接触部分の拡大図Enlarged view of the contact portion between the contact end of the contact member for heat conduction and the base of the light emitting sphere

符号の説明Explanation of symbols

(A) 凹面反射鏡
(1) 凹面反射部
(1a) 取付部
(2) 高圧放電灯
(3a) 封止部
(4) 発光球体部
(5) 放電灯取付孔
(7) 熱伝導用接触体
(A) Concave reflector
(1) Concave reflector
(1a) Mounting part
(2) High pressure discharge lamp
(3a) Sealing part
(4) Luminescent sphere
(5) Discharge lamp mounting hole
(7) Contact for heat conduction

Claims (7)

高圧放電灯の光を前方に反射する凹面反射部と、その中央背面から後方に突設された取付部とで構成された、高熱伝導性の凹面反射鏡であって、前記取付部の中央に高圧放電灯の封止部がスライド可能に挿入される放電灯取付孔が形成され、前記放電灯取付孔の孔縁から高圧放電灯の発光球体部に接触する熱伝導用接触体が形成されされていることを特徴とする凹面反射鏡。 A concave reflector having a high thermal conductivity, comprising a concave reflecting portion that reflects light of a high-pressure discharge lamp forward, and a mounting portion that protrudes rearward from the central back surface, and is provided at the center of the mounting portion. A discharge lamp mounting hole is formed in which the sealing part of the high pressure discharge lamp is slidably inserted, and a contact member for heat conduction is formed to contact the light emitting sphere part of the high pressure discharge lamp from the hole edge of the discharge lamp mounting hole. A concave reflecting mirror characterized in that (a) 高圧放電灯の光を前方に反射する凹面反射部と、その中央背面から後方に突設された取付部とで構成され、取付部に放熱ブロック収納孔が形成された、高熱伝導性の反射鏡本体と、
(b) 放熱ブロック収納孔内に収納され、凹面反射部の中心線に対して直角方向及び中心線方向に3次元的に位置調整可能で、その中心に高圧放電灯の封止部が挿入される放電灯取付孔が形成され、前記放電灯取付孔の孔縁から高圧放電灯の発光球体部に接触する、高熱伝導性の熱伝導用接触体が突設された放熱ブロックと、
(c) 放熱ブロックの前記3次元的移動を可能とし、凹面反射部に対する高圧放電灯の位置調整が行われた時点で放熱ブロックを反射鏡本体に固定する高熱伝導性の位置調整固定手段とで構成されたことを特徴とする凹面反射鏡。
(a) High thermal conductivity, consisting of a concave reflecting part that reflects the light of the high-pressure discharge lamp forward, and a mounting part that protrudes rearward from the center rear surface, and a heat dissipation block housing hole is formed in the mounting part The reflector body,
(b) Stored in the heat dissipation block storage hole, and can be adjusted three-dimensionally in the direction perpendicular to the center line of the concave reflecting part and in the direction of the center line, and the sealing part of the high pressure discharge lamp is inserted in the center. A discharge block mounting hole is formed, and a heat dissipation block in which a heat conductive contact body with high thermal conductivity protrudes from a hole edge of the discharge lamp mounting hole and contacts a light emitting sphere part of the high pressure discharge lamp;
(c) A highly heat-conductive position adjustment fixing means that enables the three-dimensional movement of the heat dissipation block and fixes the heat dissipation block to the reflector body when the position of the high pressure discharge lamp is adjusted with respect to the concave reflecting portion. Concave reflector characterized by comprising.
放熱ブロックが、
(a) 放熱ブロック収納孔に収納されているリング状のブロック本体と、
(b) 凹面反射部の中心軸方向にて前記ブロック本体に穿設された中心孔にスライド可能に挿入され、高圧放電灯の発光球体部に接触するように凹面反射部の反射面側にその一部が突出した、ブロック本体とは別体の熱伝導用接触体とで構成されていることを特徴とする凹面反射鏡。
The heat dissipation block
(a) a ring-shaped block main body stored in the heat dissipation block storage hole;
(b) It is slidably inserted into the central hole drilled in the block body in the direction of the central axis of the concave reflecting portion, and is arranged on the reflecting surface side of the concave reflecting portion so as to contact the light emitting sphere of the high pressure discharge lamp. A concave reflecting mirror characterized in that the concave reflecting mirror is constituted by a contact member for heat conduction that is separate from the block main body and is partially protruded.
(a) 発光球体部から封止部が突設されている高圧放電灯と、
(b) 請求項1に記載の凹面反射鏡と、
(c) 高圧放電灯の位置調整後、取付部に封止部を固定する固定部材とで構成されていることを特徴とする光源装置。
(a) a high pressure discharge lamp having a sealing portion protruding from the light emitting sphere, and
(b) the concave reflecting mirror according to claim 1;
(c) A light source device comprising a fixing member for fixing the sealing portion to the mounting portion after the position of the high-pressure discharge lamp is adjusted.
(a) 発光球体部から封止部が突設されている高圧放電灯と、
(b) 請求項2に記載の凹面反射鏡と、
(c) 封止部を放熱ブロックに固定する固定部材と、放熱ブロックを取付部に固定する固定部材とで構成されていることを特徴とする光源装置。
(a) a high pressure discharge lamp having a sealing portion protruding from the light emitting sphere, and
(b) the concave reflecting mirror according to claim 2;
(c) A light source device comprising: a fixing member that fixes the sealing portion to the heat dissipation block; and a fixing member that fixes the heat dissipation block to the attachment portion.
放熱ブロックが、
(a) 放熱ブロック収納孔に収納されているリング状のブロック本体と、
(b) 凹面反射部の中心軸方向にて前記ブロック本体の中心孔にスライド可能に挿入され、高圧放電灯の発光球体部に接触するように凹面反射部の反射面側にその一部が突出した熱伝導用接触体とで構成されており、
(c) 高圧放電灯の位置調整後、熱伝導用接触体がブロック本体に固定部材にて固定され且つブロック本体が取付部に固定部材にて固定されるようになっていることを特徴とする光源装置。
The heat dissipation block
(a) a ring-shaped block main body stored in the heat dissipation block storage hole;
(b) It is slidably inserted into the central hole of the block main body in the direction of the central axis of the concave reflecting portion, and a part of the concave reflecting portion protrudes toward the reflecting surface side so as to come into contact with the light emitting sphere of the high pressure discharge lamp. With a heat conductive contact body,
(c) After adjusting the position of the high-pressure discharge lamp, the contact member for heat conduction is fixed to the block body with a fixing member, and the block body is fixed to the mounting portion with the fixing member. Light source device.
凹面反射鏡の前面開口が更に前面ガラスにて閉塞されていることを特徴とする請求項4〜6の何れかに記載の光源装置。 The light source device according to claim 4, wherein the front opening of the concave reflecting mirror is further closed by a front glass.
JP2003300298A 2003-08-25 2003-08-25 Concave reflector and light source device with concave reflector Expired - Fee Related JP4163577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300298A JP4163577B2 (en) 2003-08-25 2003-08-25 Concave reflector and light source device with concave reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300298A JP4163577B2 (en) 2003-08-25 2003-08-25 Concave reflector and light source device with concave reflector

Publications (2)

Publication Number Publication Date
JP2005071814A true JP2005071814A (en) 2005-03-17
JP4163577B2 JP4163577B2 (en) 2008-10-08

Family

ID=34405270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300298A Expired - Fee Related JP4163577B2 (en) 2003-08-25 2003-08-25 Concave reflector and light source device with concave reflector

Country Status (1)

Country Link
JP (1) JP4163577B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286594A (en) * 2005-03-07 2006-10-19 Sharp Corp Light source device, ballast device, light source system and projection-type image display device
WO2007050547A2 (en) * 2005-10-26 2007-05-03 Acuity Brands, Inc. Lamp thermal management system
WO2007052552A1 (en) * 2005-11-01 2007-05-10 Sharp Kabushiki Kaisha Light-emitting tube, light source device, and projection type image display device
JP2013089580A (en) * 2011-10-24 2013-05-13 Eye Lighting Syst Corp Light source unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286594A (en) * 2005-03-07 2006-10-19 Sharp Corp Light source device, ballast device, light source system and projection-type image display device
JP4553804B2 (en) * 2005-03-07 2010-09-29 シャープ株式会社 Light source device, light source system, and projection-type image display device
WO2007050547A2 (en) * 2005-10-26 2007-05-03 Acuity Brands, Inc. Lamp thermal management system
WO2007050547A3 (en) * 2005-10-26 2009-05-14 Acuity Brands Inc Lamp thermal management system
US7771095B2 (en) 2005-10-26 2010-08-10 Abl Ip Holding, Llc Lamp thermal management system
WO2007052552A1 (en) * 2005-11-01 2007-05-10 Sharp Kabushiki Kaisha Light-emitting tube, light source device, and projection type image display device
JP2013089580A (en) * 2011-10-24 2013-05-13 Eye Lighting Syst Corp Light source unit

Also Published As

Publication number Publication date
JP4163577B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
WO2001040861A1 (en) Discharge lamp and lamp device
EP1774222B1 (en) Lighting device comprising a lamp unit and a reflector
JP3606149B2 (en) Light source device
US9057488B2 (en) Liquid-cooled LED lamp
KR20010113498A (en) Lamp unit and image projector
JP4163577B2 (en) Concave reflector and light source device with concave reflector
JP3183213B2 (en) Discharge lamp with reflector
JP3330134B2 (en) Discharge lamp and lamp device
JP2006172810A (en) Light source unit
JP2002075014A (en) Lamp unit and image projection device
JP3481612B2 (en) Discharge lamp and lamp device
US6008568A (en) Heatsinked lamp assembly
JPH097553A (en) Incandescent lamp and lighting device using it
JP4577273B2 (en) Lighting equipment for high-intensity discharge lamps
JP2006054064A (en) Short arc lamp
JP2001076682A (en) Light source device
JP2001067902A (en) Illuminating device and projector
JP4249298B2 (en) High pressure discharge lamp device
JP4107025B2 (en) Light source device
JP4420709B2 (en) Light source device
JP2006286378A (en) Fluorescent lamp apparatus and lighting device
JP4577453B2 (en) Lighting equipment for high-intensity discharge lamps
JP2000353420A (en) Sealed beam discharge lamp
JP2005276456A (en) Compact self-ballasted fluorescent lamp and luminaire
JP2007250331A (en) Double lamp and light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees