JP2005071692A - Residual gas detecting apparatus of vacuum tube device and method for evaluating reliability - Google Patents

Residual gas detecting apparatus of vacuum tube device and method for evaluating reliability Download PDF

Info

Publication number
JP2005071692A
JP2005071692A JP2003297225A JP2003297225A JP2005071692A JP 2005071692 A JP2005071692 A JP 2005071692A JP 2003297225 A JP2003297225 A JP 2003297225A JP 2003297225 A JP2003297225 A JP 2003297225A JP 2005071692 A JP2005071692 A JP 2005071692A
Authority
JP
Japan
Prior art keywords
vacuum tube
cathode ray
temperature
tube device
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003297225A
Other languages
Japanese (ja)
Inventor
Etsushi Adachi
悦志 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003297225A priority Critical patent/JP2005071692A/en
Publication of JP2005071692A publication Critical patent/JP2005071692A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a residual gas detecting apparatus which can suitably evaluate an influence on electron emitting capability of a cathode and the lifetime characteristics of the same by detecting discharge gases individually from a cathode ray tube when the vacuum tube device, such as the cathode ray tube, etc. is heated to a high temperature, and to provide a method for evaluating reliability which can evaluate the reliability for the cathode ray tube having different exhaust temperature, processing time, etc. and manufacturing steps. <P>SOLUTION: The method for evaluating the reliability includes a step of raising a temperature of a cathode ray tube 3 at a predetermined rate in a thermostatic oven 2, a step of guiding the residual gas released in the tube into a vacuum changer 5 in this case, and a step of detecting amounts of individual residual gas components by a mass spectrometer 8. The method further includes a step of detecting an amount of the residual gas component in the cathode ray tube 3 in a different manufacturing process, and a step of evaluating the reliability of the cathode ray tube by comparing this detected result. Thus, (1) when the residual gas of the cathode ray tube is examined, the problem that the amounts of the individual components cannot be measured; and (2) there is no suitable method of testing a lifetime caused by gas in the cathode ray tube in a short time, and the problem is overcome that the lifetime test of several thousands to several tens of thousands of hours is required. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、真空管装置の残留ガス検出装置及び信頼性評価方法に関し、特に陰極線管や電界電子放出装置などを昇温し、その際に放出される残留ガスを検出する残留ガス検出装置及び検出されたガスに基づく真空管装置の信頼性評価方法に関するものである。   The present invention relates to a residual gas detection device and a reliability evaluation method for a vacuum tube device, and more particularly to a residual gas detection device for detecting a residual gas discharged at that time by raising the temperature of a cathode ray tube or a field electron emission device. The present invention relates to a method for evaluating the reliability of a vacuum tube apparatus based on a gas.

従来、この種の装置として、例えば以下のようなものがあった。
陰極線管を150℃〜250℃まで上昇させ、この温度を一定時間保持させると、ゲッタの触媒作用で水蒸気や一酸化炭素、二酸化炭素がゲッタの吸収しにくいメタンガスに変わる。このメタンガスの生成が多くてゲッタの吸収能力が十分でない場合には、陰極線管を冷却した後も管内ガスのまま残る。そこで、冷却しながらガスレシオを測定することにより、陰極線管の管内ガス起因の寿命特性を評価する(例えば特許文献1)。
Conventionally, as this type of apparatus, for example, there have been the following.
When the cathode ray tube is raised to 150 ° C. to 250 ° C. and kept at this temperature for a certain time, the catalytic action of the getter changes the water vapor, carbon monoxide, and carbon dioxide into methane gas that is difficult for the getter to absorb. When the amount of methane gas produced is large and the absorption capacity of the getter is not sufficient, the gas in the tube remains even after the cathode ray tube is cooled. Therefore, by measuring the gas ratio while cooling, the life characteristics due to the gas in the cathode ray tube are evaluated (for example, Patent Document 1).

また、陰極線管のファンネルガラス内面に塗布するグラファイトを金属試料片に形成し、真空容器内で抵抗加熱した時の放出ガスを分析・評価しているものもある(例えば、非特許文献1参照)。   In addition, there is also one in which graphite applied to the inner surface of a funnel glass of a cathode ray tube is formed on a metal sample piece, and the released gas is analyzed and evaluated when resistance heating is performed in a vacuum vessel (for example, see Non-Patent Document 1). .

特開平7―226159号公報(第2頁、図1)JP-A-7-226159 (2nd page, FIG. 1) 橋場 正男・廣畑 優子 他著、「真空」第41巻 第4号、1998年、(第440−447頁)Masao Hashiba, Yuko Sugahata et al., “Vacuum” Vol. 41, No. 4, 1998, (pp. 440-447)

以上のように、従来の真空管装置の評価装置では、陰極線管のガスレシオを測定することで、ゲッタの触媒作用で生成したメタンガスの多少を調べている。従って、このメタンガスを計測することによって、管内に吸着或いは浮遊して残留した水蒸気、一酸化炭素、二酸化炭素等のトータル量を知ることができるが、個々のガス成分やその成分比率は明らかでない。ところが、ガス成分の種類によって陰極の電子放射劣化に及ぼす影響度が異なる。   As described above, in the conventional evaluation apparatus for a vacuum tube apparatus, the gas ratio of the cathode ray tube is measured to check the amount of methane gas generated by the catalytic action of the getter. Therefore, by measuring this methane gas, it is possible to know the total amount of water vapor, carbon monoxide, carbon dioxide, etc. remaining adsorbed or suspended in the tube, but the individual gas components and their component ratios are not clear. However, the degree of influence on the electron emission deterioration of the cathode differs depending on the type of gas component.

S.Itoh、他著の「J.Vac.Sci.Technol.」(第A5巻、第6号、1987年、第3430−3435頁)には、二酸化炭素が、一酸化炭素に比べ、陰極の電子放射劣化に及ぼす影響が約十倍程度も大きい旨の実験結果が報告されている。   S. Itoh et al., “J. Vac. Sci. Technol.” (Volume A5, No. 6, 1987, pp. 3430-3435) shows that carbon dioxide is emitted from the cathode as compared with carbon monoxide. Experimental results have been reported that the effect on degradation is about ten times as great.

メタンや一酸化炭素、二酸化炭素は、陰極を形成するバリウムと反応して電子放射能力を劣化するが、ガスが陰極から再放出されたり、陰極に含まれる還元剤によって新たにバリウムが生成されると、電子放射能力が回復する。一方、水蒸気の場合、正常な酸化バリウムより融点が低い水酸化バリウムが陰極に形成され、動作条件の温度で融けてしまう。この場合は、電子放射能力は回復することなく陰極は永久破壊される。   Methane, carbon monoxide, and carbon dioxide react with barium forming the cathode to degrade the electron emission ability, but gas is re-emitted from the cathode or new barium is generated by the reducing agent contained in the cathode. And the electron emission ability is restored. On the other hand, in the case of water vapor, barium hydroxide having a melting point lower than that of normal barium oxide is formed on the cathode and melts at the temperature of the operating conditions. In this case, the cathode is permanently destroyed without recovering the electron emission ability.

以上のように、管内に残留するガス種とその量を知ることが陰極線管の寿命特性を評価するのに必要であるが、従来の真空管装置の評価装置では、残留ガスのトータル量をメタンの量として測定するのみであり、ガス種とその量について測定できないという問題点があった。   As described above, it is necessary to know the gas species remaining in the tube and the amount thereof in order to evaluate the life characteristics of the cathode ray tube. However, in the conventional vacuum tube device evaluation device, the total amount of residual gas is reduced to methane. There is a problem that it is only measured as a quantity, and cannot be measured for the gas type and its quantity.

別の、従来の真空管装置の評価装置は、陰極線管のファンネルガラス内面に塗布するグラファイトを金属試料片に形成し、真空チャンバ内で抵抗加熱した時の放出ガスを分析するものであるため、種類の異なるグラファイトを比較測定することで、個々のグラファイトを陰極線管に採用した際の信頼性への各影響を、比較し或いはある程度予測する場合には適しているが、実際に陰極線管に用いた際の、使用経過等の諸条件に伴う信頼性を評価するのは困難であるという問題点があった。   Another evaluation apparatus for a conventional vacuum tube apparatus is one in which graphite to be applied to the inner surface of a funnel glass of a cathode ray tube is formed on a metal sample piece, and the emitted gas is analyzed when resistance heating is performed in a vacuum chamber. Although it is suitable for comparing or predicting to some extent the effects on reliability when adopting individual graphites in cathode ray tubes by comparing and measuring different graphites, they were actually used in cathode ray tubes. However, there is a problem that it is difficult to evaluate the reliability associated with various conditions such as the course of use.

なぜならば、試料片の金属に塗布した表面とファンネルガラスに塗布した表面の状態が同じとは限らず、例えば下地の濡れ性の違いにより表面の多孔性に差異が生ずれば、ガス吸着性に差が現れる。その結果、試料片測定時のガス放出量が、実際の陰極線管のガス放出量と異なってしまう。また、試料片は陰極線管の製造工程によって擬似的には処理できるが、雰囲気も含めた熱処理工程、及びグラファイト表面積も考慮して排気コンダクタンスを揃えた排気工程を、同一とするのは困難で、結局測定時の放出量が試験と実陰極線管で異なるという問題点があった。なお、通常の工程を経た陰極線管からグラファィトを取り出して測定した場合にも一旦大気に晒されるためこのとき吸着する水分等の影響を受けるという問題点があった。   This is because the state of the surface applied to the metal of the sample piece and the surface applied to the funnel glass are not always the same. For example, if there is a difference in surface porosity due to the difference in wettability of the base, A difference appears. As a result, the gas emission amount at the time of measuring the sample piece is different from the actual gas emission amount of the cathode ray tube. In addition, although the sample piece can be processed in a pseudo manner by the manufacturing process of the cathode ray tube, it is difficult to make the heat treatment process including the atmosphere and the exhaust process with the exhaust conductance uniform considering the graphite surface area, After all, there was a problem that the amount of emission at the time of measurement was different between the test and the actual cathode ray tube. Even when the graphite is taken out from a cathode ray tube that has undergone a normal process and measured, it is once exposed to the atmosphere, so that it is affected by moisture adsorbed at this time.

更にマスク、フレーム材の種類等が異なる場合や排気温度や処理時間等、工程が異なる陰極線管の信頼性評価の場合、管内に用いている全ての部材について比較測定する必要が生じ、測定回数、時間が多大となるという問題点があった。ここでの各部材の測定についても前記のグラファイトと同じ問題点があった。   In addition, when the type of mask, frame material, etc. is different, or when evaluating the reliability of cathode ray tubes with different processes such as exhaust temperature and processing time, it is necessary to perform comparative measurements on all members used in the tube, There was a problem that time would be enormous. The measurement of each member here has the same problem as the above graphite.

一般には、陰極線管の管内ガス起因による寿命試験を短時間に行う適切な方法がなく、数千から数万時間の寿命試験が必要であった。   In general, there is no appropriate method for performing a life test due to gas in the cathode ray tube in a short time, and a life test of several thousand to several tens of thousands of hours is required.

本発明の目的は、上述のような問題点を解消するためになされたもので、陰極線管等の真空管装置を昇温したときの管内からの放出ガスを個々に検出し、陰極の電子放射能力に及ぼす影響、寿命特性についての適切な評価を可能とする残留ガス検出装置、及び排気温度や処理時間等、製造工程が異なる陰極線管についての信頼性の評価を可能とする信頼性評価方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems, and it detects the emission gas from the inside of the tube when the temperature of the vacuum tube device such as a cathode ray tube is raised, and the electron emission ability of the cathode A residual gas detection device that enables appropriate evaluation of the effects on life and life characteristics, and a reliability evaluation method that enables evaluation of the reliability of cathode ray tubes with different manufacturing processes such as exhaust temperature and processing time There is to do.

本発明の真空管装置の残留ガス検出装置は、真空管装置内の残留ガスを検出するための真空管装置の残留ガス検出装置において、
前記真空管装置を収容し、該真空管装置の温度が目標温度となるように、該真空管装置を少なくとも加熱する恒温手段と、外部から隔離された状態で、前記真空管装置の所定の開封箇所を通じて該真空管装置の内部空間につながる中空部を有する隔離手段と、前記中空部を排気する排気手段と、前記中空部のガス成分の量を検出する質量分析手段と、
を有し、前記真空管装置を昇温する過程で、前記真空管装置の内部から、前記中空部に放出されるガスの所望成分の量を検出することを特徴とする。
The residual gas detection device of the vacuum tube device of the present invention is a residual gas detection device of a vacuum tube device for detecting residual gas in the vacuum tube device.
The vacuum tube device is housed, and the vacuum tube device passes through a predetermined opening location of the vacuum tube device in a state of being isolated from the outside and a constant temperature means for heating the vacuum tube device so that the temperature of the vacuum tube device becomes a target temperature. An isolating means having a hollow portion connected to the internal space of the apparatus, an exhaust means for exhausting the hollow portion, a mass analyzing means for detecting the amount of gas components in the hollow portion,
And detecting the amount of the desired component of the gas released from the inside of the vacuum tube device into the hollow part in the process of raising the temperature of the vacuum tube device.

また別の発明による真空管装置の信頼性評価方法は、上記の真空管装置の残留ガス検出装置によって、前記真空管装置の昇温、及び前記真空管装置の内部空間から前記中空部に放出されるガスの所望成分の量の検出を行い、
前記真空管装置を略一定の割合で昇温させ、昇温時に検出されるガスの所望成分の量を求めることによって、前記真空管装置の信頼性を判断することを特徴とする。
According to another aspect of the present invention, there is provided a method for evaluating the reliability of a vacuum tube device, wherein the residual gas detection device of the vacuum tube device is used to increase the temperature of the vacuum tube device and to determine the desired gas released from the internal space of the vacuum tube device to the hollow portion Detect the amount of ingredients,
The temperature of the vacuum tube apparatus is raised at a substantially constant rate, and the reliability of the vacuum tube apparatus is judged by determining the amount of a desired component of the gas detected at the time of temperature increase.

本発明によれば、陰極線管を昇温したときの残留ガスを管内から放出させ、この放出ガスの各成分とその量について個々に測定することができ、陰極線管の信頼性を評価するうえで、細かい分析が可能となる。また、放出ガス成分とその量を分析することで、長時間の寿命試験を行うことなく陰極線管の信頼性を評価することができる。   According to the present invention, the residual gas when the temperature of the cathode ray tube is raised can be released from the inside of the tube, and each component and the amount of the emitted gas can be individually measured. In evaluating the reliability of the cathode ray tube. Detailed analysis is possible. Further, by analyzing the emitted gas component and its amount, the reliability of the cathode ray tube can be evaluated without performing a long-term life test.

実施の形態1.
図1は、本発明による実施の形態1の真空管装置の残留ガス検出装置1の要部構成を模式的に示す要部構成図である。
Embodiment 1 FIG.
FIG. 1 is a main part configuration diagram schematically showing a main part configuration of a residual gas detection apparatus 1 of a vacuum tube apparatus according to Embodiment 1 of the present invention.

同図中、恒温槽2は、その内部に試験用の陰極線管3のネック部を除く主要部を収容可能とし、その側部には恒温槽内部の内部温度を変えるための加熱/冷却ユニット4が配設されている。真空チャンバ5は、陰極線管3のネック部3aが嵌入可能なネック挿入部5aを有し、このネック挿入部5aには、陰極線管3のネック部3aが挿入された際に、隙間を密閉するためのO−リング6が、挿入方向の2箇所に配設されている。   In the figure, the thermostat 2 can accommodate the main part except for the neck part of the test cathode ray tube 3 in the inside thereof, and a heating / cooling unit 4 for changing the internal temperature inside the thermostat in the side part. Is arranged. The vacuum chamber 5 has a neck insertion portion 5a into which the neck portion 3a of the cathode ray tube 3 can be fitted. The neck insertion portion 5a seals a gap when the neck portion 3a of the cathode ray tube 3 is inserted. O-rings 6 are disposed at two locations in the insertion direction.

排気手段としての真空ポンプ7は、真空チャンバ5の内部を排気するために配置され、イオンスパッタポンプ、ターボ分子ポンプ、或いは油拡散ポンプ等が用いられる。質量分析手段としての質量分析計8は、マスフィルタ(四重極)等を含むイオン源、マスフィルタ等を含む分析管8aを真空チャンバ5内に配置して真空チャンバ5内の個々のガス成分の質量分析を行なう。作用手段としての直線導入端子9は、真空チャンバ5外に延在する操作部9aを操作することによって、真空チャンバ5内に位置する陰極線管3のネック部3aに形成されたチップ管部分を開封するために配設されている。尚、真空チャンバ5、O−リング6及び直線導入端子9が隔離手段に相当し、真空チャンバ5内が中空部に相当する。   The vacuum pump 7 as an exhaust means is arranged to exhaust the inside of the vacuum chamber 5, and an ion sputtering pump, a turbo molecular pump, an oil diffusion pump or the like is used. A mass spectrometer 8 serving as a mass analysis means includes an ion source including a mass filter (quadrupole) and the like, an analysis tube 8a including a mass filter and the like arranged in the vacuum chamber 5 and individual gas components in the vacuum chamber 5. Perform mass spectrometry. The straight lead-in terminal 9 as an action means opens the tip tube portion formed in the neck portion 3 a of the cathode ray tube 3 located in the vacuum chamber 5 by operating the operation portion 9 a extending outside the vacuum chamber 5. It is arranged to do. The vacuum chamber 5, the O-ring 6 and the straight lead-in terminal 9 correspond to isolation means, and the inside of the vacuum chamber 5 corresponds to a hollow portion.

温度コントローラ10は、恒温槽2に収容された陰極線管3の所定位置の温度を検出する温度制御用温度センサ11から温度データを入力し、その検出温度がデータ処理装置13で指定された温度となるように、加熱/冷却ユニット4を制御する。データ処理装置13は、温度コントローラ10に、陰極線管3の温度を指定するための温度指定信号を出力すると共に、恒温槽2に収容された陰極線管3の所定位置の温度を検出する温度測定用温度センサ12から温度データを、そして質量分析計8から量分析データを入力し、後述するように、陰極線管3の昇温時における陰極線管3の温度データと、検出された各ガスの量データとの相互関係を求めるためのデータ処理を行う。尚、恒温槽2、加熱冷却ユニット4、温度制御用温度センサ11、及び温度コントローラ10が恒温手段に相当する。   The temperature controller 10 inputs temperature data from a temperature control temperature sensor 11 that detects the temperature at a predetermined position of the cathode ray tube 3 accommodated in the thermostat 2, and the detected temperature is the temperature specified by the data processing device 13. Thus, the heating / cooling unit 4 is controlled. The data processing device 13 outputs a temperature designation signal for designating the temperature of the cathode ray tube 3 to the temperature controller 10 and detects the temperature at a predetermined position of the cathode ray tube 3 accommodated in the thermostat 2. Temperature data is input from the temperature sensor 12 and quantitative analysis data is input from the mass spectrometer 8. As will be described later, the temperature data of the cathode ray tube 3 at the time of raising the temperature of the cathode ray tube 3 and the amount data of each detected gas. Data processing is performed to obtain the mutual relationship with The constant temperature bath 2, the heating / cooling unit 4, the temperature control temperature sensor 11, and the temperature controller 10 correspond to a constant temperature means.

以上の構成において、陰極線管3内の残留ガスの測定方法について、その処理手順を示す図3のフローチャートを参照しながら、以下に説明する。   In the above configuration, a method for measuring the residual gas in the cathode ray tube 3 will be described below with reference to the flowchart of FIG. 3 showing the processing procedure.

先ず、陰極線管3を残留ガス検出装置1にセットする(ステップ1)。このとき、陰極線管3は、そのネック部3aの一部を除いて、大部分が恒温槽2に収容されるように、恒温槽2内に配置された図示しない保持手段によって保持される。そして、真空チャンバ5が、そのネック挿入部5aに陰極線管3のネック部3aを挿入するように配置される。   First, the cathode ray tube 3 is set in the residual gas detection device 1 (step 1). At this time, the cathode ray tube 3 is held by a holding means (not shown) disposed in the thermostat 2 so that most of the cathode ray tube 3 is accommodated in the thermostat 2 except for a part of the neck portion 3a. And the vacuum chamber 5 is arrange | positioned so that the neck part 3a of the cathode ray tube 3 may be inserted in the neck insertion part 5a.

このため、真空チャンバ5、質量分析計8、真空ポンプ7及び直線挿入端子9は、例えば、一体的に矢印A,B方向にスライド可能に図示しない保持手段によって保持されているものとする。このとき、O−リング6によって、ネック部3aとネック挿入部5aとの隙間が埋められて真空チャンバ5内は外部から密閉される。このO−リング6は、高耐熱性の弗素系樹脂を用いるのが好ましく、更に同図に示すように、傾きを抑えるため2個以上は配置するのが好ましい。   For this reason, the vacuum chamber 5, the mass spectrometer 8, the vacuum pump 7, and the linear insertion terminal 9 are held by holding means (not shown) so as to be slidable in the directions of arrows A and B, for example. At this time, the gap between the neck portion 3a and the neck insertion portion 5a is filled by the O-ring 6, and the inside of the vacuum chamber 5 is sealed from the outside. The O-ring 6 is preferably made of a highly heat-resistant fluorine-based resin. Further, as shown in FIG.

尚、陰極線管3の電子銃に電圧印加するステムピン(図示せず)の絶縁及びクラックを防止するため、ネック端にベース、ベースシリコーンが付着しているが、これらは、陰極線管3をセットする前に、予め有機溶剤等で除去しておくものとする。また陰極線管3のネック部3aに形成されたチップ管部分は、後述するように、真空チャンバ5内で切断されるが、このため陰極線管3をセットする前に、チップ管切断予定部に予めダイヤモンドカッター等による罫書きによって傷を付けておくことが好ましい。   In order to prevent insulation and cracking of a stem pin (not shown) for applying a voltage to the electron gun of the cathode ray tube 3, a base and base silicone are attached to the neck end. It is assumed that it is previously removed with an organic solvent or the like. The tip tube portion formed in the neck portion 3a of the cathode ray tube 3 is cut in the vacuum chamber 5 as described later. For this reason, before setting the cathode ray tube 3, the tip tube cutting portion is previously set. It is preferable to make a scratch by scoring with a diamond cutter or the like.

次に、真空ポンプ7で真空チャンバ5内を排気する(ステップ2)。このとき、真空ポンプ7はイオンスパッタポンプ、ターボ分子ポンプ、油拡散ポンプなどを用い、必要に応じて油回転ポンプなどの補助ポンプと組合せて用いる。尚、管内ガスの測定感度を高くするためバックグラウンドを下げる必要がある。このため、この排気の際に、真空チャンバ5を一旦加熱(加熱装置は図示せず)し、排気は継続したまま、再び温度を室温まで冷却する処理を行う。   Next, the vacuum chamber 5 is evacuated by the vacuum pump 7 (step 2). At this time, the vacuum pump 7 uses an ion sputtering pump, a turbo molecular pump, an oil diffusion pump, or the like, and is used in combination with an auxiliary pump such as an oil rotary pump, if necessary. It is necessary to lower the background in order to increase the measurement sensitivity of the in-pipe gas. For this reason, at the time of this evacuation, the vacuum chamber 5 is once heated (a heating device is not shown), and the process of cooling the temperature to room temperature is performed again while the evacuation is continued.

次に、直線導入端子9を移動させ、陰極線管3のネック部3aに形成されたチップ管部分の、前記したように、予め罫書きされた箇所を押し割って開封する(ステップ3)。このとき、真空チャンバ5内は、陰極線管3内より低気圧としておくことにより、室温における陰極線管3内の残留ガスが真空チャンバ5に導かれ、質量分析計8がこの真空チャンバ5に導かれた各ガスの量を測定する(ステップ4)。尚、真空チャンバ5内の真空度を維持するため、真空ポンプ7は、計測中作動させておくことが好ましい。   Next, the straight lead-in terminal 9 is moved, and the tip portion of the tip tube portion formed on the neck portion 3a of the cathode ray tube 3 is pressed and opened as previously described (step 3). At this time, by setting the inside of the vacuum chamber 5 at a lower pressure than the inside of the cathode ray tube 3, the residual gas in the cathode ray tube 3 at room temperature is led to the vacuum chamber 5, and the mass spectrometer 8 is led to this vacuum chamber 5. The amount of each gas is measured (step 4). In order to maintain the degree of vacuum in the vacuum chamber 5, the vacuum pump 7 is preferably operated during measurement.

以上のようにして室温における管内残留ガスを測定後、恒温槽4内に設置された陰極線管3を室温から300℃まで一定レートで昇温させ、この昇温中に陰極線管3内から真空チェンバ5内に排出されたガスの所望成分の量変化をチェックしてその温度依存性を得る(ステップ5)。   After measuring the residual gas in the tube at room temperature as described above, the temperature of the cathode ray tube 3 installed in the thermostat 4 is increased from room temperature to 300 ° C. at a constant rate, and the vacuum chamber is discharged from the cathode ray tube 3 during this temperature increase. The change in the amount of the desired component of the gas discharged into the gas 5 is checked to obtain its temperature dependency (step 5).

このため、温度コントローラ10は、温度制御用温度センサ11で検出した温度と設定温度の関係に基づく指令を加熱/冷却ユニット4に与えて陰極線管3の温度を制御している。加熱は電熱ヒータや赤外線ランプ等を用い、エア撹拌にファンを併用してもよい。   For this reason, the temperature controller 10 controls the temperature of the cathode ray tube 3 by giving a command based on the relationship between the temperature detected by the temperature control temperature sensor 11 and the set temperature to the heating / cooling unit 4. For heating, an electric heater, an infrared lamp, or the like may be used, and a fan may be used in combination with air agitation.

データ処理装置13は、温度コントローラ10に対して陰極線管3を室温から300℃まで一定レートで昇温するように設定温度を指定すると共に、陰極線管3の所定の温度上昇毎に、質量分析計8に対して、その間に真空チェンバ5内に排出されたガスの各成分の量を検出するよう指示し、これ等の量分析データを入力する。そして、温度上昇毎に受けた真空チェンバ5内に排出されるガスの各成分の量データと、そのときの温度とを対比させてメモリし、グラフ等の形態で観測者に提示する。これにより、昇温時に陰極線管から放出されるガスの温度依存性が折れ線グラフ等によって得られる。   The data processing device 13 designates a set temperature so that the temperature controller 10 raises the temperature of the cathode ray tube 3 from room temperature to 300 ° C. at a constant rate, and at each predetermined temperature rise of the cathode ray tube 3, a mass spectrometer 8 is instructed to detect the amount of each component of the gas discharged into the vacuum chamber 5 in the meantime, and these quantitative analysis data are input. Then, the amount data of each component of the gas discharged into the vacuum chamber 5 received every time the temperature is increased and the temperature at that time are compared and stored, and presented to the observer in the form of a graph or the like. Thereby, the temperature dependence of the gas released from the cathode ray tube when the temperature is raised is obtained by a line graph or the like.

尚、質量分析計8が、放出された各ガスの放出量を継続的に検出して、逐次データ処理装置13にその量分析データを送るものでもよく、この場合、データ処理装置13は、入力する各量分析データと温度測定用温度センサ12で検出するその分析時の各検出温度とを対応させてデータ処理することで、同様の温度依存性を得ることができる。   The mass spectrometer 8 may continuously detect the amount of each released gas and sequentially send the amount analysis data to the data processor 13. In this case, the data processor 13 may The same temperature dependency can be obtained by performing data processing in correspondence with each quantitative analysis data to be detected and each detected temperature at the time of analysis detected by the temperature sensor 12 for temperature measurement.

上記した残留ガス検出装置1を用いた測定方法によって、製造工程の時間が異なる2種類の陰極線管について各々残留ガスを検出し、信頼性を評価した。   With the measurement method using the residual gas detection device 1 described above, the residual gas was detected for each of two types of cathode ray tubes having different manufacturing process times, and the reliability was evaluated.

陰極線管の製造工程には、主にパネル製作工程(蛍光面塗着、熱処理など)、マスク製作工程(溶接、熱処理など)、ファンネル製作工程(グラファイト塗布など)、フリット封止工程(パネル−ファンネル間の封止)、電子銃封止工程、排気(加熱)工程、ベース付け、ゲッタフラッシュなどの工程、エージング工程(陰極活性化)、及びコンディショニング工程(耐電圧向上)などが含まれる。   The cathode ray tube manufacturing process mainly includes a panel manufacturing process (phosphor screen coating, heat treatment, etc.), a mask manufacturing process (welding, heat treatment, etc.), a funnel manufacturing process (graphite coating, etc.), and a frit sealing process (panel-funnel). Sealing), an electron gun sealing process, an exhaust (heating) process, a base attaching process, a getter flash process, an aging process (cathode activation), a conditioning process (improvement of withstand voltage), and the like.

これらの各工程の、例えば、パネル製作工程におけるパネル蛍光面に使用する有機材料を熱処理する熱処理時間、或いは排気(加熱)工程での排気時間の長短によって、管内に残留するガスの量が左右される。今、これらの工程を標準の製造工程時間をかけて製造した標準的陰極線管と、これらの時間を例えば標準の製造工程時間に対して4%程度短縮して製造した比較用陰極線管の2種類の陰極線管について、上記した残留ガス検出装置1を用いた測定方法によって各々残留ガスを検出し、信頼性を比較評価した。尚、ここでいう標準の製造工程時間とは、これによって製造した標準的陰極線管が、寿命試験において、所期の性能を得ることが出来る程度の製造工程時間とする。   For example, the amount of gas remaining in the tube depends on the heat treatment time for heat treating the organic material used for the panel phosphor screen in the panel manufacturing process or the exhaust time in the exhaust (heating) process. The There are now two types: a standard cathode ray tube manufactured by taking these steps over a standard manufacturing process time, and a comparative cathode ray tube manufactured by reducing these times by, for example, about 4% of the standard manufacturing process time. In the cathode ray tube, residual gas was detected by the measurement method using the residual gas detection device 1 described above, and the reliability was comparatively evaluated. The standard manufacturing process time referred to here is a manufacturing process time that allows the standard cathode ray tube manufactured thereby to obtain the expected performance in the life test.

その結果、標準の製造工程時間の標準的陰極線管に比べ、製造工程時間が短い比較用陰極線管は、昇温時に放出する水素が約5倍、メタンが約3倍、一酸化炭素が約1.2倍、二酸化炭素が約1.5倍大きい結果を得た。尚、この放出量の比の算出は、各ガス毎の総放出量を個別に比較して行った。   As a result, the comparative cathode ray tube, which has a shorter manufacturing process time than the standard cathode ray tube with the standard manufacturing process time, has about 5 times as much hydrogen released at the time of temperature rise, about 3 times as much as methane, and about 1 time as carbon monoxide. .2 times, carbon dioxide was about 1.5 times larger. In addition, calculation of the ratio of this discharge amount was performed by comparing the total discharge amount for each gas individually.

一方、この評価に用いた試料と同条件で作製した陰極線管の寿命試験を行った結果、2千〜4千時間で両者に差異がみられ、製造工程時間が短い比較用陰極線管が、電子放射能力において、1万時間程度で初期の半減以下に劣化したのに対し、標準の製造工程時間の陰極線管ではこの時点での劣化がみられなかった。   On the other hand, as a result of conducting a life test of the cathode ray tube manufactured under the same conditions as the sample used in this evaluation, a difference was seen between 2,000 and 4,000 hours, and a comparative cathode ray tube having a short manufacturing process time was The radiation capacity deteriorated to less than half of the initial value in about 10,000 hours, whereas the cathode ray tube of the standard manufacturing process time did not deteriorate at this point.

以上の結果は、排気・熱処理等の製造工程時間が短い陰極線管は、これらが標準の製造工程時間の陰極線管に比べ、管内に標準より多くのガスが残留し、動作中に陰極に影響を与えて電子放射能力を劣化させることを示している。そして陰極線管を昇温したときの放出ガスを分析することにより長時間の寿命試験を行うことなく信頼性を評価できることを示す。   The above results show that cathode ray tubes with a short manufacturing process time such as evacuation and heat treatment have a larger amount of gas remaining in the tube than the cathode ray tube with the standard manufacturing process time, which affects the cathode during operation. It is shown to degrade the electron emission ability. Then, it is shown that reliability can be evaluated without performing a long life test by analyzing the emitted gas when the temperature of the cathode ray tube is raised.

以上のように、本実施の形態1の残留ガス検出装置によれば、陰極線管の残留ガスの種類と各残留ガスの量を解析することが可能となる。また、こうして得た陰極線管の残留ガスを解析することによって、長時間の寿命試験を行うことなく、その信頼性を評価することも可能となる。   As described above, according to the residual gas detection device of the first embodiment, it is possible to analyze the type of residual gas in the cathode ray tube and the amount of each residual gas. Further, by analyzing the residual gas of the cathode ray tube thus obtained, it is possible to evaluate its reliability without performing a long-term life test.

尚、本実施の形態では、標準的陰極線管と比較用陰極線管の2つの陰極線管の残留ガスを各々検出して相対的に対比し、両者の信頼性を評価したが、寿命試験で諸条件をクリアした標準的陰極線管の残留ガスの各成分の量を予め求め、これを基準値とすることで、以後、比較用陰極線管の残留ガスの各成分の量を求め、上記標準値と比較検討することにより、比較用陰極線管の信頼性を評価することもできる。   In the present embodiment, the residual gases in the two cathode ray tubes, the standard cathode ray tube and the comparative cathode ray tube, are detected and compared with each other, and the reliability of both is evaluated. The amount of each component of the residual gas of the standard cathode ray tube that cleared the above is obtained in advance, and by using this as the reference value, the amount of each component of the residual gas of the comparative cathode ray tube is obtained and compared with the above standard value. By examining it, the reliability of the comparative cathode ray tube can be evaluated.

実施の形態2.
図2は、本発明による実施の形態2の真空管装置の残留ガス検出装置21の要部構成を模式的に示す要部構成図である。
Embodiment 2. FIG.
FIG. 2 is a main part configuration diagram schematically showing a main part configuration of the residual gas detection device 21 of the vacuum tube apparatus according to the second embodiment of the present invention.

この実施の形態2の残留ガス検出装置21が、前記した実施の形態1の残留ガス検出装置1と主に異なる点は、陰極線管3の昇温にオイルバスを用い、その加熱を電熱ヒータ等により行っている点である。従って、残留ガス検出装置21が、前記した実施の形態1の残留ガス検出装置1と共通する部分には同符号を付して、説明を省略し、異なる点を重点的に説明する。   The residual gas detection device 21 of the second embodiment is mainly different from the residual gas detection device 1 of the first embodiment described above in that an oil bath is used to raise the temperature of the cathode ray tube 3 and the heating is performed by an electric heater or the like. It is a point that is done by. Therefore, in the residual gas detection device 21, the same reference numerals are given to the portions common to the residual gas detection device 1 of the first embodiment described above, description thereof will be omitted, and different points will be described mainly.

同図中、恒温槽22は、その内部に試験用の陰極線管3のネック部を除く主要部を収容可能とし、その内部がシリコーンオイル25によって満たされている。これにより、収容した陰極線管3の主要部がこのシリコーンオイル25に浸された状態とされる。この恒温槽22の内部の底部近傍には、シリコーンオイル25に熱を加えるための、電熱ヒータ等の加熱ユニット24が配設されている。ここで、恒温槽22、シリコーンオイル25、及び加熱ユニット24を総称してオイルバス26と称す。   In the figure, the thermostatic chamber 22 can accommodate the main part except the neck part of the test cathode ray tube 3 in the inside thereof, and the inside is filled with the silicone oil 25. Thereby, the main part of the accommodated cathode ray tube 3 is immersed in the silicone oil 25. A heating unit 24 such as an electric heater for applying heat to the silicone oil 25 is disposed in the vicinity of the bottom inside the thermostatic chamber 22. Here, the constant temperature bath 22, the silicone oil 25, and the heating unit 24 are collectively referred to as an oil bath 26.

尚、恒温槽22内には、図示しないが、更に、加熱ユニット24によって熱せられたシリコーンオイル25を攪拌するためのフィンを配設するのが好ましい。また、恒温槽22、加熱ユニット24、温度制御用温度センサ11、及び温度コントローラ23が恒温手段に相当する。図示しないが、更にオイルバスからの蒸気を除く局所排気設備を有する方が好ましい。ホルムアルデヒドが150℃以上で発生する可能性があるが、この場合、排気により安全となる。   Although not shown in the figure, it is preferable that a fin for stirring the silicone oil 25 heated by the heating unit 24 is disposed in the thermostatic chamber 22. Moreover, the thermostat 22, the heating unit 24, the temperature sensor 11 for temperature control, and the temperature controller 23 correspond to a thermostat. Although not shown, it is preferable to further have a local exhaust facility for removing steam from the oil bath. Although formaldehyde may be generated at 150 ° C. or higher, in this case, it is safer by exhaust.

温度コントローラ23は、恒温槽2に収容された陰極線管3の所定位置の温度を検出する温度制御用温度センサ11から温度データを入力し、その検出温度がデータ処理装置13で指定された温度となるように、加熱ユニット24を制御する。   The temperature controller 23 inputs temperature data from a temperature control temperature sensor 11 that detects the temperature at a predetermined position of the cathode ray tube 3 accommodated in the thermostat 2, and the detected temperature is the temperature specified by the data processing device 13. Thus, the heating unit 24 is controlled.

以上のように、陰極線管3をオイルバス26によって加熱する方式の真空管装置の残留ガス検出装置21によって、実施の形態1の説明で定義した標準的陰極線管と比較用陰極線管の2種類の陰極線管について、前記した図3に示すフローチャートに基づく陰極線管3内の残留ガスの測定方法によって、実施の形態1の場合と同様の比較評価を行った。   As described above, the residual gas detection device 21 of the vacuum tube device of the type in which the cathode ray tube 3 is heated by the oil bath 26 allows the two types of cathode rays, the standard cathode ray tube and the comparative cathode ray tube defined in the description of the first embodiment. The tube was subjected to the same comparative evaluation as in the first embodiment by the method for measuring the residual gas in the cathode ray tube 3 based on the flowchart shown in FIG.

その結果、標準の製造工程時間の標準的陰極線管に比べ、製造工程時間が短い比較用陰極線管は、昇温時に放出する水素が約7倍、メタンが約5倍、一酸化炭素が約1.8倍、二酸化炭素が約5.5倍大きい結果を得た。   As a result, the comparative cathode ray tube, which has a shorter manufacturing process time than the standard cathode ray tube with the standard manufacturing process time, has about 7 times as much hydrogen released at the time of temperature rise, about 5 times as much as methane, and about 1 time as carbon monoxide. The result was .8 times larger than that of carbon dioxide.

この結果は、実施の形態1で述べた真空管装置の残留ガス検出装置1を用いて行った評価結果に対して、水素が約5倍→約7倍、メタンが約3倍→約5倍、一酸化炭素が約1.5倍→約1.8倍、二酸化炭素が約1.5倍→約5.5倍と、それぞれ各ガスの検出量が増え、分析感度が高くなっている。この感度差は、実施の形態1の残留ガス検出装置1に比して、オイルバスを用いた実施の形態2の残留ガス検出装置21の、昇温時における陰極線管の各部温度の均一性がより高くなったことによる。   This result is about 5 times to about 7 times hydrogen, about 3 times to about 5 times, about 5 times to about 5 times the evaluation result performed using the residual gas detection device 1 of the vacuum tube device described in the first embodiment, Carbon monoxide is about 1.5 times to about 1.8 times, carbon dioxide is about 1.5 times to about 5.5 times, and the detection amount of each gas increases, and the analysis sensitivity is high. This difference in sensitivity is due to the uniformity of the temperature of each part of the cathode ray tube at the time of temperature rise in the residual gas detection device 21 of the second embodiment using an oil bath as compared to the residual gas detection device 1 of the first embodiment. Because it became higher.

その理由について説明する。温度測定用温度センサ12と同じ温度測定用温度センサを、ランダムに決めた陰極線管の10ヶ所の位置に取り付け、実施の形態1の恒温槽2で昇温したときと、実施の形態2の恒温槽22で昇温したときの各部での温度のばらつきについて比較した。制御用温度センサ11が50℃、100℃、150℃、200℃と上昇していくとき、陰極線管3の10ヶ所で測った10点の測定値の標準偏差を、恒温槽2で測定した場合と恒温槽22で測定した場合とで、それぞれ求めた。その結果、各温度とも、実施の形態1の恒温槽2の方が、実施の形態2の恒温槽22の約3倍大きく、実施の形態2の恒温槽22のようにオイルバスとした方が、均一に昇温できていることがわかった。   The reason will be described. The same temperature measuring temperature sensor 12 as the temperature measuring temperature sensor 12 is attached to 10 positions of the cathode ray tube determined at random, and the temperature is raised in the thermostatic chamber 2 of the first embodiment, and the constant temperature of the second embodiment. The temperature variation in each part when the temperature was raised in the tank 22 was compared. When the control temperature sensor 11 rises to 50 ° C., 100 ° C., 150 ° C., and 200 ° C., the standard deviation of 10 measured values measured at 10 locations of the cathode ray tube 3 is measured in the thermostatic chamber 2 And when measured in a thermostatic chamber 22. As a result, the temperature chamber 2 of the first embodiment is about three times as large as the temperature chamber 22 of the second embodiment at each temperature, and it is better to use an oil bath like the temperature chamber 22 of the second embodiment. It was found that the temperature could be increased uniformly.

一方、陰極線管内のゲッタ以外に吸着したガスは、温度が上昇すると脱離して管内壁で衝突を繰り返しながら真空ポンプ7で排気され、質量分析計8で検出される。ところが、陰極線管3の温度が不均一で低い箇所があると、脱離したガスがそこに再吸着しやすくなって放出量が減るため分析感度が鈍くなる。実施の形態2では、上記したように熱媒体としてシリコーンオイルを使用したオイルバスを採用して陰極線管3を均一に昇温させ、このような再吸着を抑制することによって残留ガスの放出量の減少を抑え、質量分析計8による検出量を増やして分析感度を高めている。   On the other hand, the gas adsorbed other than the getter in the cathode ray tube is desorbed when the temperature rises and is exhausted by the vacuum pump 7 while repeatedly colliding with the inner wall of the tube, and detected by the mass spectrometer 8. However, if the temperature of the cathode ray tube 3 is uneven and low, the desorbed gas tends to be re-adsorbed there, and the amount of emission is reduced, so that the analysis sensitivity becomes dull. In the second embodiment, as described above, the oil bath using silicone oil as the heat medium is employed to uniformly raise the temperature of the cathode ray tube 3 and suppress such re-adsorption, thereby reducing the amount of released residual gas. The amount of detection by the mass spectrometer 8 is increased and the analysis sensitivity is increased.

陰極線管を昇温したときの放出ガスを分析することによって、長時間の寿命試験を行うことなく陰極線管の信頼性を評価できることは前記したが、本実施の形態2のように、陰極線管の昇温を、オイルバスによって行うことによって、実施の形態1の場合より残留ガスの放出量を高めることができる。その結果、分析感度がより高くなり、信頼性評価の精度をより高めることができる。   As described above, the reliability of the cathode ray tube can be evaluated without analyzing a long-term life test by analyzing the gas emitted when the temperature of the cathode ray tube is raised. By raising the temperature with an oil bath, the amount of released residual gas can be increased as compared with the first embodiment. As a result, the analysis sensitivity becomes higher, and the accuracy of reliability evaluation can be further increased.

尚、本実施の形態では、加熱ユニットとしての例えばヒータの入力電力を制御して一定レートでの昇温を実現したが、オイルバス中に銅パイプを設置して冷却媒体を通す、またはシリコーンオイルを循環させる等の冷却手段を設けてもよい。一つの評価が完了後、次の評価に移るとき300℃に昇温したオイルを室温に下げる必要があり、このような冷却手段をもつ方が作業効率の向上を図ることができる。   In the present embodiment, for example, the heater input power as a heating unit is controlled to increase the temperature at a constant rate, but a copper pipe is installed in the oil bath to pass a cooling medium, or silicone oil Cooling means such as circulating the air may be provided. When one evaluation is completed, when the next evaluation is performed, it is necessary to lower the oil heated to 300 ° C. to room temperature. With such a cooling means, the working efficiency can be improved.

実施の形態3.
実施の形態3は、本発明による真空管装置の信頼性評価方法の一例を説明するものである。
Embodiment 3 FIG.
Embodiment 3 describes an example of a method for evaluating the reliability of a vacuum tube device according to the present invention.

即ち、図2に示すオイルバスを採用した真空管装置の残留ガス検出装置21を用いて、図3に示すフローチャートに基づく陰極線管3内の残留ガスの測定方法によって、陰極線管3の管内残留ガスを測定するが、その測定試料として、実施の形態2では、ゲッタフラッシュ工程、エージング工程(陰極活性化)、コンディショニング工程(耐電圧向上)等の通常の製造工程を経た陰極線管を用いたのに対して、本実施の形態では、ゲッタフラッシュ前の排気(加熱)工程を経た段階の陰極線管を用いる。その他の測定条件は、全て前記した実施の形態2で行なった評価方法と全く同じなので、説明の重複する点はここでは省略し、説明の異なる点を重点的に以下に記述する。   That is, the residual gas detection device 21 of the vacuum tube device employing the oil bath shown in FIG. 2 is used to measure the residual gas in the cathode ray tube 3 by the method for measuring the residual gas in the cathode ray tube 3 based on the flowchart shown in FIG. In the second embodiment, a cathode ray tube that has undergone normal manufacturing processes such as a getter flash process, an aging process (cathode activation), and a conditioning process (improvement of withstand voltage) is used as the measurement sample. In this embodiment, the cathode ray tube at the stage after the exhaust (heating) step before the getter flash is used. Since all other measurement conditions are the same as those of the evaluation method performed in the above-described second embodiment, the overlapping description will be omitted here, and different points in the description will be mainly described below.

陰極線管の製造工程には、主にパネル製作工程(蛍光面塗着、熱処理など)、マスク製作工程(溶接、熱処理など)、ファンネル製作工程(グラファイト塗布など)、フリット封止工程(パネル−ファンネル間)、電子銃封止工程、排気(加熱)工程、ベース付け、ゲッタフラッシュなどの工程、エージング工程(陰極活性化)、及びコンディショニング工程(耐電圧向上)などが含まれる。   The cathode ray tube manufacturing process mainly includes a panel manufacturing process (phosphor screen coating, heat treatment, etc.), a mask manufacturing process (welding, heat treatment, etc.), a funnel manufacturing process (graphite coating, etc.), and a frit sealing process (panel-funnel). ), An electron gun sealing process, an exhaust (heating) process, a base attaching process, a getter flash process, an aging process (cathode activation), and a conditioning process (withstand voltage improvement).

本実施の形態3での測定試料として使用される陰極線管は、前記したようにゲッタフラッシュ工程前の排気(加熱)工程までが行われた陰極線管であり、管内に残留するガスの量が左右される、例えばパネル製作工程におけるパネル蛍光面に使用する有機材料を熱処理する熱処理時間、或いは排気(加熱)工程での排気時間が異なる2種類の陰極線管としている。   The cathode ray tube used as a measurement sample in the third embodiment is a cathode ray tube that has been subjected to the exhaust (heating) step before the getter flash step as described above, and the amount of gas remaining in the tube depends on the left and right. For example, there are two types of cathode ray tubes in which the heat treatment time for heat treatment of the organic material used for the panel phosphor screen in the panel manufacturing process or the exhaust time in the exhaust (heating) process is different.

即ちこれらの工程を標準の製造工程時間をかけて製造した標準的陰極線管と、これらの時間を例えば標準の製造工程時間に対して4%程度短縮して製造した比較用陰極線管との2種類の陰極線管について、前記実施の形態2で説明した残留ガス検出装置21を用いた測定方法によって各々残留ガスを検出し、信頼性を比較評価した。   That is, there are two types: a standard cathode ray tube manufactured by taking these processes over a standard manufacturing process time, and a comparative cathode ray tube manufactured by reducing these times by, for example, about 4% of the standard manufacturing process time. In the cathode ray tube, residual gas was detected by the measurement method using the residual gas detector 21 described in the second embodiment, and the reliability was compared and evaluated.

その結果、標準の製造工程時間の標準的陰極線管に比べ、製造工程時間が短い比較用陰極線管は、昇温時に放出する水素が約30倍、メタンが約9倍、一酸化炭素が約10倍、二酸化炭素が約15倍大きい結果を得た。この結果は、実施の形態2での評価結果に対して、水素が約7倍→約30倍、メタンが約5倍→約9倍、一酸化炭素が約1.8倍→約10倍、二酸化炭素が約5.5倍→約15倍と、それぞれ分析感度が高くなっている。   As a result, the comparative cathode ray tube having a shorter manufacturing process time than the standard cathode ray tube having a standard manufacturing process time is about 30 times as much hydrogen released at the time of temperature rise, about 9 times as much as methane, and about 10 times as much as carbon monoxide. Doubled, carbon dioxide was about 15 times larger. This result is about 7 times to about 30 times hydrogen, about 5 times to about 9 times methane, about 1.8 times to about 10 times carbon monoxide, and about 10 times that of the evaluation result in the second embodiment. Carbon dioxide is about 5.5 times to about 15 times higher in analytical sensitivity.

このように、分析感度が高くなった理由について、以下に説明する。
ゲッタフラッシュ工程、エージング工程(陰極活性化)、コンディショニング工程(耐電圧向上)等の製造工程を経た通常の陰極線管では、ゲッタに吸収したガスは放出されないので、残留したガスの内、ゲッタ以外に吸着したガスを評価することになる。これらのガスは、温度が上昇する過程で脱離するが、管内壁で衝突を繰り返し、このときゲッタに吸収されれば管外に出ることがなく質量分析計で検出されない。
The reason why the analysis sensitivity is thus increased will be described below.
In a normal cathode ray tube that has undergone manufacturing processes such as a getter flash process, an aging process (cathode activation), and a conditioning process (improvement of withstand voltage), the gas absorbed by the getter is not released. The adsorbed gas will be evaluated. These gases are desorbed as the temperature rises, but repeatedly collide with the inner wall of the tube, and if absorbed by the getter at this time, they do not go out of the tube and are not detected by the mass spectrometer.

また、この時のゲッタによる吸収は、研究の結果、ガスの表面への吸着と内部への拡散で起こることが判明した。このため温度が上昇するほどゲッタ吸収速度が大きくなり、益々管外に出にくくなって質量分析計で検出することが困難となる。従って、温度が上昇するほど脱離したガスが管内に増える一方で、ゲッタに吸着するガスの量も増え、その分、管外に放出されるガスの量が減ってしまうことになる。   In addition, the absorption by the getter at this time was found to be caused by gas adsorption on the surface and internal diffusion. For this reason, as the temperature rises, the getter absorption rate increases, and it becomes more difficult to get out of the tube, making it difficult to detect with a mass spectrometer. Therefore, as the temperature rises, the desorbed gas increases in the tube, while the amount of gas adsorbed on the getter increases, and the amount of gas released outside the tube decreases accordingly.

一方、実施の形態3では、ゲッタ膜が形成されていない陰極線管を用いたので、温度の上昇とともに脱離した管内の残留ガスが、ゲッタに吸収されることなく管外にそのまま放出されるのでその放出量が増え、質量分析計8による検出量を増やして分析感度を高めている。   On the other hand, since the cathode ray tube in which the getter film is not formed is used in the third embodiment, the residual gas in the tube desorbed as the temperature rises is directly released outside the tube without being absorbed by the getter. The amount of release increases, and the amount detected by the mass spectrometer 8 is increased to increase the analysis sensitivity.

陰極線管を昇温したときの放出ガスを分析することによって、長時間の寿命試験を行うことなく陰極線管の信頼性を評価できることは前記したが、以上のように、実施の形態3の陰極線管の評価方法によれば、温度上昇とともに脱離した管内の残留ガスが、ゲッタに吸収されることなく管外に出るため、前記した実施の形態2の場合より残留ガスの放出量を増やすことができる。その結果、分析感度がより高くなり、信頼性評価の精度をより高めることができる。   As described above, it is possible to evaluate the reliability of the cathode ray tube without performing a long-term life test by analyzing the gas emitted when the temperature of the cathode ray tube is raised. As described above, the cathode ray tube according to the third embodiment. According to this evaluation method, since the residual gas in the tube desorbed with the temperature rise goes out of the tube without being absorbed by the getter, the amount of released residual gas can be increased compared to the case of the second embodiment. it can. As a result, the analysis sensitivity becomes higher, and the accuracy of reliability evaluation can be further increased.

尚、前記した実施の形態では、陰極線管を試料とした装置及び評価方法を示したが、これに限定されるものではなく、電界電子放出装置など他の真空管装置を試料として装置を構成し、その信頼性を評価することも可能である。   In the above-described embodiment, the apparatus using the cathode ray tube as a sample and the evaluation method are shown. However, the present invention is not limited to this, and the apparatus is configured using another vacuum tube apparatus such as a field electron emission device as a sample. It is also possible to evaluate its reliability.

また、前記した実施の形態では、質量分析計でガス分析を行ったが、真空チャンバ5に電離真空計を併設してもよく、管内残留・放出ガスの圧力データを測定できる。またこの場合、分析前、即ち陰極線管開封前の真空チャンバ排気、到達圧力のモニタとしても有用となる。   Further, in the above-described embodiment, the gas analysis is performed by the mass spectrometer. However, the ionization vacuum gauge may be provided in the vacuum chamber 5, and the pressure data of the in-pipe residual / released gas can be measured. In this case, it is also useful as a vacuum chamber exhaust and ultimate pressure monitor before analysis, that is, before opening the cathode ray tube.

また、前記した実施の形態では、一つの真空チャンバ5に、陰極線管3と真空ポンプ7及び質量分析計8が接続されているため、陰極線管を交換する度に質量分析計を含む真空チャンバ全体を大気に晒すことになる。そこで、真空チャンバをゲートバルブで区切って陰極線管の交換時にはそのゲートを閉じ、質量分析計を常に高真空度に保つように構成してもよい。更に、陰極線管側は別の真空ポンプで予備排気した後、ゲートを開いて管内ガス分析を行うようにしてもよく、この場合、真空チャンバの加熱・排気時間は短くなり陰極線管の交換工程の短縮が図れ、かつ質量分析計の寿命も延びる。   In the above-described embodiment, since the cathode ray tube 3, the vacuum pump 7, and the mass spectrometer 8 are connected to one vacuum chamber 5, the entire vacuum chamber including the mass spectrometer is replaced every time the cathode ray tube is replaced. Will be exposed to the atmosphere. Therefore, the vacuum chamber may be divided by a gate valve, and the gate may be closed when the cathode ray tube is replaced so that the mass spectrometer is always kept at a high vacuum level. Further, the cathode ray tube side may be preliminarily evacuated by another vacuum pump, and then the gate may be opened to perform gas analysis in the tube. In this case, the heating and evacuation time of the vacuum chamber is shortened and the cathode ray tube replacement process is performed. It can be shortened and the life of the mass spectrometer can be extended.

また、前記した実施の形態では、温度制御用に温度センサ11を使用し、温度測定用に温度センサ12を使用し、データ処理を行って温度とガス放出量の関係を求めたが、温度センサを共用して温度制御用温度センサ11で測定した温度をデータ処理装置13に入力してデータ処理を行ってもよい。   In the above-described embodiment, the temperature sensor 11 is used for temperature control, the temperature sensor 12 is used for temperature measurement, and data processing is performed to obtain the relationship between the temperature and the gas release amount. The temperature measured by the temperature control temperature sensor 11 may be input to the data processing device 13 for data processing.

また、前記した実施の形態では、真空管装置と質量分析計を真空に保持して接続するためО−リングを用いたが、エポキシ樹脂等の接着剤で固めてもよい。   In the above-described embodiment, the O-ring is used to connect the vacuum tube device and the mass spectrometer while maintaining a vacuum, but it may be hardened with an adhesive such as an epoxy resin.

更に、前記した実施の形態では、製造工程の異なる陰極線管について質量分析計で放出ガスの各ガス毎の総放出量を比較評価したが、既知の定流量ガスを用いてガス毎の総放出量に値付けを行うことで放出ガスの定量化を図り、標準製造工程のガス放出量の基準を定めれば陰極線管の管内ガスの絶対評価も行うことができるなど、種々の態様を取り得るものである。   Furthermore, in the above-described embodiment, the total emission amount for each gas of the emission gas is compared and evaluated with a mass spectrometer for cathode ray tubes having different manufacturing processes. However, the total emission amount for each gas using a known constant flow gas. It is possible to take various aspects such as quantifying the emission gas by pricing the value, and if the standard of the gas emission amount of the standard manufacturing process is defined, the absolute evaluation of the gas inside the cathode ray tube can also be performed It is.

本発明による実施の形態1の真空管装置の残留ガス検出装置1の要部構成を模式的に示す要部構成図である。It is a principal part block diagram which shows typically the principal part structure of the residual gas detection apparatus 1 of the vacuum tube apparatus of Embodiment 1 by this invention. 本発明による実施の形態2の真空管装置の残留ガス検出装置21の要部構成を模式的に示す要部構成図である。It is a principal part block diagram which shows typically the principal part structure of the residual gas detection apparatus 21 of the vacuum tube apparatus of Embodiment 2 by this invention. 陰極線管3内の残留ガスの測定方法の処理手順を示すフローチャートである。4 is a flowchart showing a processing procedure of a method for measuring a residual gas in the cathode ray tube 3.

符号の説明Explanation of symbols

1 真空管装置の残留ガス検出装置、 2 恒温槽、 3 陰極線管、 3a ネック部、 4 加熱/冷却ユニット、 5 真空チャンバ、 5a ネック挿入部、 6 O−リング、 7 真空ポンプ、 8 質量分析計、 8a 分析管、 9 直線導入端子、 10 温度コントローラ、 11 温度制御用温度センサ、 12 温度測定用温度センサ、 13 データ処理装置、 21 真空管装置の残留ガス検出装置、 22 恒温槽、 23 温度コントローラ、 24 加熱ユニット、 25 シリコーンオイル、 26 オイルバス。   DESCRIPTION OF SYMBOLS 1 Residual gas detection apparatus of vacuum tube apparatus, 2 Constant temperature bath, 3 Cathode ray tube, 3a Neck part, 4 Heating / cooling unit, 5 Vacuum chamber, 5a Neck insertion part, 6 O-ring, 7 Vacuum pump, 8 Mass spectrometer, 8a Analytical tube, 9 Straight line introduction terminal, 10 Temperature controller, 11 Temperature sensor for temperature control, 12 Temperature sensor for temperature measurement, 13 Data processing device, 21 Residual gas detection device for vacuum tube device, 22 Constant temperature bath, 23 Temperature controller, 24 Heating unit, 25 silicone oil, 26 oil bath.

Claims (8)

真空管装置内の残留ガスを検出するための真空管装置の残留ガス検出装置において、
前記真空管装置を収容し、該真空管装置の温度が目標温度となるように、該真空管装置を少なくとも加熱する恒温手段と、
外部から隔離された状態で、前記真空管装置の所定の開封箇所を通じて該真空管装置の内部空間につながる中空部を有する隔離手段と、
前記中空部を排気する排気手段と、
前記中空部のガス成分の量を検出する質量分析手段と、
を有し、
前記真空管装置を昇温する過程で、前記真空管装置の内部から、前記中空部に放出されるガスの所望成分の量を検出することを特徴とする真空管装置の残留ガス検出装置。
In the residual gas detection device of the vacuum tube device for detecting the residual gas in the vacuum tube device,
A thermostatic means for housing the vacuum tube device and heating at least the vacuum tube device so that the temperature of the vacuum tube device becomes a target temperature;
Isolation means having a hollow portion connected to the internal space of the vacuum tube device through a predetermined opening location of the vacuum tube device in a state isolated from the outside,
Exhaust means for exhausting the hollow portion;
Mass spectrometry means for detecting the amount of the gas component in the hollow part;
Have
A residual gas detection device for a vacuum tube device, wherein the amount of a desired component of gas released into the hollow portion is detected from the inside of the vacuum tube device in the process of raising the temperature of the vacuum tube device.
前記恒温手段は、前記真空管装置の所定箇所の温度情報を得て、該温度情報が前記目標温度に対応するように前記真空管装置を加熱することを特徴とする請求項1記載の真空管装置の残留ガス検出装置。 2. The vacuum tube apparatus residual according to claim 1, wherein the constant temperature means obtains temperature information of a predetermined location of the vacuum tube apparatus and heats the vacuum tube apparatus so that the temperature information corresponds to the target temperature. Gas detection device. 前記恒温手段は、シリコーンオイルに前記真空管装置を浸した状態で、前記シリコーンオイルを介して前記真空管装置を加熱することを特徴とする請求項1又は2記載の真空管装置の残留ガス検出装置。 3. The residual gas detection device for a vacuum tube device according to claim 1 or 2, wherein the constant temperature means heats the vacuum tube device through the silicone oil in a state where the vacuum tube device is immersed in silicone oil. 前記隔離手段は、前記開封箇所を開封するための作用手段を有することを特徴とする請求項1乃至3の何れかに記載の真空管装置の残留ガス検出装置。 The residual gas detection device for a vacuum tube device according to any one of claims 1 to 3, wherein the isolation means includes an action means for opening the opening location. 前記隔離手段は、前記真空管装置の一部を挿入する挿入部と、該挿入部に前記真空管装置の一部を挿入した時の隙間を埋めるO−リングとを有することを特徴とする請求項1乃至3の何れかに記載の真空管装置の残留ガス検出装置。 2. The isolation means includes an insertion portion for inserting a part of the vacuum tube device, and an O-ring for filling a gap when a part of the vacuum tube device is inserted into the insertion portion. The residual gas detection apparatus of the vacuum tube apparatus in any one of thru | or 3. 請求項1乃至5の何れかに記載の真空管装置の残留ガス検出装置によって、前記真空管装置の昇温、及び前記真空管装置の内部空間から前記中空部に放出されるガスの所望成分の量の検出を行い、
前記真空管装置を略一定の割合で昇温させ、昇温時に検出されるガスの所望成分の量を求めることによって、前記真空管装置の信頼性を判断することを特徴とする真空管装置の信頼性評価方法。
The residual gas detection device for a vacuum tube device according to any one of claims 1 to 5, wherein the temperature of the vacuum tube device is increased and the amount of a desired component of gas released from the internal space of the vacuum tube device to the hollow portion is detected. And
Reliability evaluation of the vacuum tube device characterized by determining the reliability of the vacuum tube device by raising the temperature of the vacuum tube device at a substantially constant rate and determining the amount of a desired component of the gas detected at the time of the temperature rise Method.
製造工程の異なる真空管装置の個々の前記所望成分の量を求め、比較することによって、真空管装置の信頼性を判断することを特徴とする請求項6記載の真空管装置の信頼性評価方法。 7. The reliability evaluation method for a vacuum tube device according to claim 6, wherein the reliability of the vacuum tube device is determined by obtaining and comparing the amounts of the individual desired components of the vacuum tube devices having different manufacturing processes. 内部にゲッタ機能を持たない真空管装置の個々の前記所望成分の量を求めることによって前記真空管の信頼性を判断することを特徴とする請求項6又は7記載の真空管装置の信頼性評価方法。 8. The reliability evaluation method for a vacuum tube device according to claim 6, wherein the reliability of the vacuum tube is determined by obtaining the amount of each desired component of the vacuum tube device having no getter function therein.
JP2003297225A 2003-08-21 2003-08-21 Residual gas detecting apparatus of vacuum tube device and method for evaluating reliability Withdrawn JP2005071692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297225A JP2005071692A (en) 2003-08-21 2003-08-21 Residual gas detecting apparatus of vacuum tube device and method for evaluating reliability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297225A JP2005071692A (en) 2003-08-21 2003-08-21 Residual gas detecting apparatus of vacuum tube device and method for evaluating reliability

Publications (1)

Publication Number Publication Date
JP2005071692A true JP2005071692A (en) 2005-03-17

Family

ID=34403154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297225A Withdrawn JP2005071692A (en) 2003-08-21 2003-08-21 Residual gas detecting apparatus of vacuum tube device and method for evaluating reliability

Country Status (1)

Country Link
JP (1) JP2005071692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720583B1 (en) 2005-04-07 2007-05-22 엘지전자 주식회사 Getter quality evaluating apparatus and method tehereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720583B1 (en) 2005-04-07 2007-05-22 엘지전자 주식회사 Getter quality evaluating apparatus and method tehereof

Similar Documents

Publication Publication Date Title
JP6019173B2 (en) Vacuum quality measurement system
JP5054226B2 (en) Oxygen detection method, air leak discrimination method, gas component detection device, and vacuum processing device
US5301537A (en) Method for detecting halocarbon refrigerant leaks by usage of a continually heated mass spectrometer
JP5491311B2 (en) Temperature-programmed desorption gas analyzer and method
KR20120115330A (en) Method and device for determining leakage
CN103454125A (en) System and method for measuring hydrogen content in a sample
KR20170059388A (en) Method for analyzing evolved gas and evolved gas analyzing apparatus
JP6934239B2 (en) High-sensitivity temperature rise desorption gas analyzer
US7989761B2 (en) Gas analyzing method and gas analyzing apparatus
CN112924522B (en) Method for accurately measuring partial pressure of hydrogen, deuterium and helium by using conventional four-stage mass spectrometer
JP4028723B2 (en) Thermal desorption gas analyzer using electron attachment mass spectrometry and analysis method
JP2005071692A (en) Residual gas detecting apparatus of vacuum tube device and method for evaluating reliability
JP5502648B2 (en) Method and program for determining brominated flame retardants
KR101063089B1 (en) Outgassing device and measuring method
JP2007192781A (en) Evaluation method and device for evaluating material deterioration behavior by tracer hydrogen
CN108962716B (en) Detection device and detection method for mass spectrum detection limit
JP6593536B2 (en) Analysis equipment
WO2004077024A1 (en) Device for and method of detecting desorbed gas
KR102444774B1 (en) Quantitative and qualitative analysis system and method for surface functional group of carbon black
JP2005353604A (en) Gas introduction device in mass spectrometry device
WO2014132357A1 (en) Mass spectrometer
JP2011247713A (en) Temperature-programmed desorption analysis method and temperature-programmed desorption analyzer
JP2002098611A (en) Measuring method and device for leakage gas and evaluation device of the leakage gas measuring device
WO2021021166A1 (en) Systems and methods for improving detection accuracy in electronic trace detectors
JP3772751B2 (en) Lamp filled gas analyzer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107