JP2005070663A - Video camera - Google Patents

Video camera Download PDF

Info

Publication number
JP2005070663A
JP2005070663A JP2003303354A JP2003303354A JP2005070663A JP 2005070663 A JP2005070663 A JP 2005070663A JP 2003303354 A JP2003303354 A JP 2003303354A JP 2003303354 A JP2003303354 A JP 2003303354A JP 2005070663 A JP2005070663 A JP 2005070663A
Authority
JP
Japan
Prior art keywords
weighting
weighting coefficient
area
frequency component
evaluation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003303354A
Other languages
Japanese (ja)
Inventor
Hidehiro Kato
秀弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003303354A priority Critical patent/JP2005070663A/en
Publication of JP2005070663A publication Critical patent/JP2005070663A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the failure that the advance to a state (an out-of-focus state) deviating from an exact focusing position gives rise to a false peak and the occurrence of a problem leading to a malfunction of AF with a subject having saturated luminance. <P>SOLUTION: The video camera equipped with a function to perform autofocus operation by extracting a high-frequency component of an area 200 by an evaluation value generating means from the video signal obtained by an imaging element to generate an evaluation value and controlling the position of a focusing lens so as to maximize the evaluation value is set with a weighting coefficient in the area 200 in such a manner that the value of the weighting coefficient decreases by one each respectively in one line as the value of the weighting coefficient advances toward the peripheral part of a screen in upper and lower weighting areas 201 and 203. As a result, even if part of the saturated luminance portion intrudes into the weighting region 201 or 203 of the area 200, the ratio of addition in a perpendicular direction is reduced by the above setting of the weighting coefficient and therefore the occurrence of the false peak can be suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はビデオカメラに係り、特に評価値が最大になるようにフォーカスレンズを駆動制御するオートフォーカス(AF)装置を備えたビデオカメラに関する。   The present invention relates to a video camera, and more particularly to a video camera including an autofocus (AF) device that drives and controls a focus lens so that an evaluation value is maximized.

被写体画像を映像信号として出力するビデオカメラには、被写体の位置を自動的に認識し、認識したその被写体位置の被写体に対して、カメラレンズのフォーカス(焦点)をジャストピント状態に自動的に調節するオートフォーカス装置が従来より搭載されている(例えば、特許文献1参照)。   For video cameras that output subject images as video signals, the camera automatically recognizes the position of the subject and automatically adjusts the focus (focus) of the camera lens to the just-focused state for the recognized subject. Conventionally, an autofocus device is mounted (see, for example, Patent Document 1).

図4は従来のビデオカメラの一例のブロック図を示す。同図において、図示しない被写体からの光は、対物レンズ1及びフォーカスレンズ2により収束され、固体撮像素子である電荷転送素子(CCD)3の受光面にて焦点一致して受光され、ここで光電変換され、更に映像信号に変換された後、A/D変換器4に供給されてディジタル信号に変換されて画像データとなり、信号処理回路5により所定の信号処理が施される。   FIG. 4 shows a block diagram of an example of a conventional video camera. In the figure, light from a subject (not shown) is converged by an objective lens 1 and a focus lens 2 and received by focusing on a light receiving surface of a charge transfer element (CCD) 3 which is a solid-state image sensor. After being converted and further converted into a video signal, it is supplied to the A / D converter 4 and converted into a digital signal to become image data, and predetermined signal processing is performed by the signal processing circuit 5.

この信号処理回路5から出力された画像データは、D/A変換器6でアナログ映像信号に変換され、モニタ9に供給されて画像表示される一方、評価値生成回路7に供給され、ここで高周波成分が取り出され、画面内の所定の設定エリア内に存在するこの高周波成分を積分した評価値のデータが生成される。   The image data output from the signal processing circuit 5 is converted into an analog video signal by the D / A converter 6 and supplied to the monitor 9 for image display, while being supplied to the evaluation value generation circuit 7, where High-frequency components are extracted, and evaluation value data obtained by integrating the high-frequency components existing in a predetermined setting area in the screen is generated.

ここで、フォーカスが合っているか否かを検出するためには、撮像して得られた映像信号のコントラストが高いか低いかを判断すればよいことは良く知られている。即ち、コントラストが高いとフォーカスが合っており、コントラストが低いとフォーカスがずれていることになる。そこで、マイクロコンピュータ(マイコン)8は、上記の評価値のデータに基づき、所定のアルゴリズムによりコントラストの高低を判断し、この評価値が最大となるように、即ち、コントラストが最大になるようにフォーカスレンズ2を移動調節することにより、AFが実現できる。   Here, it is well known that in order to detect whether or not the image is in focus, it may be determined whether the contrast of the video signal obtained by imaging is high or low. That is, when the contrast is high, the focus is on, and when the contrast is low, the focus is off. Therefore, the microcomputer 8 determines the level of contrast by a predetermined algorithm based on the evaluation value data, and focuses so that the evaluation value is maximized, that is, the contrast is maximized. AF can be realized by moving and adjusting the lens 2.

特開平10−213840号公報Japanese Patent Laid-Open No. 10-213840

ところで、通常、AF制御が正しく動作している場合、ジャストピント位置からずれた状態(ボケ状態)に進むと前記評価値は下降する。しかし、飽和輝度をもつ被写体ではジャストピント位置からずれた状態(ボケ状態)に進むと、前記評価値は逆に上昇する、すなわち、いわゆる偽山が発生する場合がある。このような場合、単にフォーカスレンズ2を移動しながら評価値のピークを探索してもジャストピント位置に到達することはできず、AFの誤動作につながるという問題が生じている。   By the way, normally, when the AF control is operating correctly, the evaluation value decreases when the state shifts from the just focus position (blurred state). However, when the subject has saturation luminance, the evaluation value rises conversely, that is, a so-called false mountain may occur when the subject shifts from the just-focused position (blurred state). In such a case, simply searching for the peak of the evaluation value while moving the focus lens 2 cannot reach the just-focus position, resulting in a problem of AF malfunction.

本発明は上記の点に鑑みなされたもので、いわゆる偽山の発生を抑え、誤動作無く正確なオートフォーカス動作を行い得るビデオカメラを提供することを目的とする。   The present invention has been made in view of the above points, and an object thereof is to provide a video camera capable of suppressing the occurrence of so-called false mountains and performing an accurate autofocus operation without malfunction.

本発明は上記の目的を達成するため、入来した撮像光をフォーカシングするためのフォーカスレンズと、フォーカスレンズを介して得た撮像光を電気信号に変換するための撮像素子と、電気信号を処理して映像信号を得るための信号処理手段と、映像信号からフォーカス検出領域の高周波成分を抽出して、その抽出した高周波成分の値が最大になるようにフォーカスレンズの位置を制御してオートフォーカス動作を行う機能を備えたビデオカメラにおいて、
高周波成分の最大値を得るための評価値生成手段を、映像信号のフォーカス検出領域の高周波成分を抽出する抽出手段と、フォーカス検出領域内の縁部に位置する高周波成分に係る重み付けが最大であり、縁部から外方へ行くに従って、重み付けが順次小となる重み付け係数を発生する重み付け係数発生手段と、抽出手段により抽出された高周波成分を、重み付け係数発生手段からの重み付け係数に従って加算する重み付け加算手段とを有する構成とし、重み付け加算手段により得られた加算結果を評価値としてフォーカスレンズの位置を駆動制御する構成としたものである。
In order to achieve the above object, the present invention provides a focus lens for focusing incoming imaging light, an imaging device for converting imaging light obtained through the focus lens into an electrical signal, and processing the electrical signal And signal processing means for obtaining a video signal, and by extracting the high-frequency component of the focus detection area from the video signal and controlling the position of the focus lens so that the value of the extracted high-frequency component is maximized, autofocusing In a video camera with a function to perform the operation,
The evaluation value generating means for obtaining the maximum value of the high-frequency component is the maximum weighting for the high-frequency component located at the edge in the focus detection area and the extraction means for extracting the high-frequency component in the focus detection area of the video signal. , Weighting coefficient generating means for generating weighting coefficients whose weights are sequentially decreased from the edge to the outside, and weighting addition for adding the high frequency components extracted by the extracting means in accordance with the weighting coefficients from the weighting coefficient generating means The position of the focus lens is driven and controlled using the addition result obtained by the weighted addition means as an evaluation value.

この発明では、撮像して得られた映像信号のフォーカス検出領域の高周波成分を、フォーカス検出領域内の縁部に位置する高周波成分に係る重み付けが最大であり、縁部から外方へ行くに従って、重み付けが順次小となる重み付け係数に従って加算して得た加算結果を評価値とするようにしたため、フォーカス検出領域のすぐ近くに飽和輝度部分を持つ被写体の映像信号の、当該飽和輝度部分がボケて特定領域に入り込んできても、その飽和輝度部分のボケ部分の影響による変化を、重み付け係数の値を小さくすることで抑えることができる。   In this invention, the high-frequency component of the focus detection area of the video signal obtained by imaging is the largest weighting related to the high-frequency component located at the edge in the focus detection area, and as it goes outward from the edge, Since the addition result obtained by adding according to the weighting factors that become smaller in weight is used as the evaluation value, the saturation luminance portion of the video signal of the subject having the saturation luminance portion in the immediate vicinity of the focus detection area is blurred. Even if it enters the specific region, the change due to the blur portion of the saturated luminance portion can be suppressed by reducing the value of the weighting coefficient.

本発明によれば、特定領域のすぐ近くに飽和輝度部分を持つ被写体の映像信号の、当該飽和輝度部分がボケて特定領域に入り込んできても、その飽和輝度部分のボケ部分の影響による変化を、重み付け係数の値を小さくすることで抑えるようにしたため、特定領域内に飽和輝度部分の一部が入り込んでも、評価値をできるだけ正確な値に作成することができ、これにより、いわゆる偽山の発生を抑えられ、この結果、評価値を最大になるようにフォーカスレンズを移動させるオートフォーカス制御の精度を従来よりも向上できる。   According to the present invention, even if the saturated luminance portion of the subject has a saturated luminance portion in the immediate vicinity of the specific region and the saturated luminance portion blurs into the specific region, the change due to the blur portion of the saturated luminance portion is changed. Since the weighting coefficient value is reduced, the evaluation value can be created as accurately as possible even if a part of the saturated luminance portion enters the specific area. Occurrence can be suppressed, and as a result, the accuracy of autofocus control for moving the focus lens so as to maximize the evaluation value can be improved as compared with the conventional case.

次に、本発明を実施するための最良の形態について図面と共に説明する。図1は本発明になるビデオカメラの要部の一実施の形態のブロック図を示す。本実施の形態の基本的なブロック構成は、図4のブロック図と同様であるが、本実施の形態は評価値生成回路7を図1に示す構成とした点に特徴がある。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a main part of a video camera according to the present invention. The basic block configuration of the present embodiment is the same as the block diagram of FIG. 4, but the present embodiment is characterized in that the evaluation value generation circuit 7 has the configuration shown in FIG.

図1において、信号処理回路(図4の5)により所定の信号処理が施された映像信号中の輝度信号は、高周波成分(例えば、1MHz付近の周波数以上)を周波数選択するハイパスフィルタ(HPF)101を通り、整流器102で検波された後、エリア発生部107で発生された特定領域のみ通過するゲート回路103を通してピーク値保存部104に供給され、ここでエリア発生部107で制限されたエリア内における水平区間でのピーク値が保存される。上記の特定領域は、モニタ画面内の一部であり、AF制御のために高周波成分を抽出するフォーカス検出領域である。   In FIG. 1, a luminance signal in a video signal that has been subjected to predetermined signal processing by a signal processing circuit (5 in FIG. 4) is a high-pass filter (HPF) that selects a high-frequency component (for example, a frequency higher than 1 MHz). 101, the signal is detected by the rectifier 102, and then supplied to the peak value storage unit 104 through the gate circuit 103 that passes through only a specific region generated by the area generation unit 107. Here, in the area limited by the area generation unit 107 The peak value in the horizontal interval at is stored. The specific area is a part of the monitor screen and is a focus detection area for extracting a high frequency component for AF control.

本実施の形態では、エリア発生部107で発生されたフォーカス検出領域のエリア情報が重み付け係数発生部108に供給され、図2に示す様に上記エリア内の上部と下部の各々で垂直加算部105が加算する割合を変化させる後述の重み付け係数を発生させて垂直加算部105に供給する。水平ピーク値保存部104で保存された水平ピーク値は、垂直加算部105において画面垂直方向に上記の重み付け係数に従って加算された後、その加算結果がAF評価値として出力メモリ106に保存される。この出力メモリ106に保存された評価値が、図4のマイコン8により処理され、フォーカスレンズ2の自動焦点調節に利用される。   In the present embodiment, the area information of the focus detection area generated by the area generation unit 107 is supplied to the weighting coefficient generation unit 108, and the vertical addition unit 105 at each of the upper and lower portions in the area as shown in FIG. Generates a weighting coefficient (to be described later) that changes the rate of addition, and supplies it to the vertical adder 105. The horizontal peak value stored in the horizontal peak value storage unit 104 is added according to the weighting factor in the vertical direction of the screen in the vertical addition unit 105, and the addition result is stored in the output memory 106 as an AF evaluation value. The evaluation value stored in the output memory 106 is processed by the microcomputer 8 in FIG. 4 and used for automatic focus adjustment of the focus lens 2.

次に、上記の重み付け係数について図2と共に説明する。図2(A)に示すように、画面内のエリア200を中央の比較的広い幅の通常領域202と、その上下の比較的狭い幅の重み付け領域201及び203とに分割した場合、通常領域202では図2(C)に示すように「値16」を設定し、重み付け領域201及び203では、それぞれ1ラインで1ずつ重み付け係数の値が画面周辺部に進むに従って減少するように設定する。また、図2(B)に示すように、垂直エリアパルスのローレベルの部分では、図2(C)に示すように重み付け係数が0になるように設定する。   Next, the weighting coefficient will be described with reference to FIG. As shown in FIG. 2A, when the area 200 in the screen is divided into a normal area 202 having a relatively wide width at the center and weighting areas 201 and 203 having relatively narrow widths above and below the normal area 202, Then, “value 16” is set as shown in FIG. 2C, and the weighting areas 201 and 203 are set so that the value of the weighting coefficient is decreased by one for each line as it goes to the periphery of the screen. Also, as shown in FIG. 2B, the weighting coefficient is set to 0 as shown in FIG. 2C in the low level portion of the vertical area pulse.

図1の重み付け係数発生部108は、上記の図2(C)に示す値の変化をする重み付け係数を発生する。垂直加算部105では重み付け係数発生部108からの重み付け係数を”16”で割った値を加算係数とする。つまり、通常領域201では重み付け係数が”16”なので水平ピーク値はそのままの値で加算されるが、重み付け領域201及び203では、例えば重み付け係数が”8”の場合は”16”で割った”0.5”が加算係数とされ、そのラインの水平ピーク値は半分の値だけ加算される。   The weighting coefficient generator 108 in FIG. 1 generates a weighting coefficient that changes the value shown in FIG. In the vertical adder 105, a value obtained by dividing the weighting coefficient from the weighting coefficient generator 108 by “16” is set as an addition coefficient. That is, since the weighting coefficient is “16” in the normal area 201, the horizontal peak value is added as it is, but in the weighting areas 201 and 203, for example, when the weighting coefficient is “8”, it is divided by “16”. 0.5 "is used as an addition coefficient, and the horizontal peak value of the line is added by a half value.

次に、偽山発生メカニズムと図1の実施の形態の作用について図3と共に説明する。図3(A)に示すように、エリア200の外に飽和輝度部分210が存在する場合、当然にしてエリア200外なので、垂直加算部105において水平のピーク値を垂直方向に加算して得られるAF評価値には反映されない。   Next, the false mountain generation mechanism and the operation of the embodiment of FIG. 1 will be described with reference to FIG. As shown in FIG. 3A, when the saturated luminance portion 210 exists outside the area 200, it is naturally outside the area 200, so that it is obtained by adding the horizontal peak value in the vertical direction in the vertical adder 105. It is not reflected in the AF evaluation value.

しかし、ボケ状態の場合、その飽和輝度部分は図3(C)に212で示すように波紋が広がる様に中心部分から遠ざかって広がる。飽和輝度部分212の一部が図3(C)に示すようにエリア200に入り込んできたとき、元々輝度値は大きいのでボケで広がってもエリア200に入り込んだ部分の輝度値もある程度の大きさを持っているので、水平ピーク値はこちらに移動してしまう。図3(C)では白丸が本来のピーク値であったのが、左の黒丸に水平ピーク値が移動したところを示している。   However, in the blurred state, the saturated luminance portion spreads away from the central portion so that ripples spread as indicated by 212 in FIG. When a part of the saturated luminance portion 212 enters the area 200 as shown in FIG. 3C, the luminance value is originally large, so the luminance value of the portion that has entered the area 200 is large to some extent even if it is blurred. The horizontal peak value will move here. In FIG. 3C, the white circle is the original peak value, but the horizontal peak value is moved to the left black circle.

これにより、評価値は本来の値よりも大きい値を算出してしまう。この結果、従来は図3(D)のレンズ位置と評価値との関係を示すグラフに示すように、ジャストピント位置I以外でも偽山がIIで示すように存在し、それによりAF制御に誤動作を与える。   As a result, the evaluation value is calculated to be larger than the original value. As a result, as shown in the graph of FIG. 3D showing the relationship between the lens position and the evaluation value, there is a false mountain as indicated by II other than the just focus position I, which causes malfunction in AF control. give.

しかしながら、本実施の形態によれば、飽和輝度部分212の一部が図3(C)に示すようにエリア200に入り込んだとしても、エリア200の上部と下部の各比較的幅の狭い重み付け領域においては、図3(B)に示すようなエリア周辺部に進むに従って値が徐々に小さくなる重み付け係数により、垂直加算部105での垂直方向の加算の割合が少なくなるため、エリア200に入り込んだ飽和輝度部分212の一部における水平ピーク値は図3(C)に白丸で示す本来のピーク値付近の値となる。この結果、偽山の発生が抑制され、評価値を最大になるようにフォーカスレンズ2を移動させるAF制御に対してジャストピントの山の位置を見つけ易くなり、AFを高性能に行うことができる。   However, according to the present embodiment, even if a part of the saturated luminance portion 212 enters the area 200 as shown in FIG. In FIG. 3B, the weighting coefficient that gradually decreases as it goes to the periphery of the area as shown in FIG. The horizontal peak value in a part of the saturated luminance portion 212 is a value near the original peak value indicated by a white circle in FIG. As a result, the occurrence of false mountains is suppressed, and it is easy to find the position of the just-focus mountain with respect to the AF control that moves the focus lens 2 so as to maximize the evaluation value, and the AF can be performed with high performance. .

なお、本発明は上記の実施の形態に限定されるものではなく、例えば上記の実施の形態では垂直エリア部分の重み付け処理について示したが、水平エリア部分の重み付け処理についても同様に行うことができる。また、垂直エリア部分と水平エリア部分の両方について同時に重み付け処理することも可能である。   The present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, the weighting process for the vertical area portion has been described. However, the weighting process for the horizontal area portion can be similarly performed. . It is also possible to perform weighting processing on both the vertical area portion and the horizontal area portion at the same time.

本発明になるビデオカメラの要部の一実施の形態のブロック図である。It is a block diagram of one Embodiment of the principal part of the video camera which becomes this invention. 図1中の重み付け係数発生部で発生する重み付け係数の説明図である。It is explanatory drawing of the weighting coefficient generate | occur | produced in the weighting coefficient generation | occurrence | production part in FIG. 偽山発生メカニズムと図1の実施の形態の作用についての説明図である。It is explanatory drawing about a false mountain generation mechanism and an effect | action of embodiment of FIG. 従来のビデオカメラの一例のブロック図である。It is a block diagram of an example of the conventional video camera.

符号の説明Explanation of symbols

2 フォーカスレンズ
7 評価値生成回路
101 ハイパスフィルタ(HPF)
102 整流器
103 ゲート回路
104 水平ピーク値保存部
105 垂直加算部
106 出力メモリ
107 エリア生成部
108 重み付け係数発生部
200 エリア
201、203 重み付け領域
202 通常領域
211 重み付け係数


2 Focus lens 7 Evaluation value generation circuit 101 High pass filter (HPF)
DESCRIPTION OF SYMBOLS 102 Rectifier 103 Gate circuit 104 Horizontal peak value preservation | save part 105 Vertical addition part 106 Output memory 107 Area production | generation part 108 Weighting coefficient generation part 200 Area 201, 203 Weighting area 202 Normal area 211 Weighting coefficient


Claims (1)

入来した撮像光をフォーカシングするためのフォーカスレンズと、前記フォーカスレンズを介して得た前記撮像光を電気信号に変換するための撮像素子と、前記電気信号を処理して映像信号を得るための信号処理手段と、前記映像信号からフォーカス検出領域の高周波成分を抽出して、その抽出した高周波成分の値が最大になるように前記フォーカスレンズの位置を制御してオートフォーカス動作を行う機能を備えたビデオカメラにおいて、
前記高周波成分の最大値を得るための評価値生成手段は、
前記映像信号の前記フォーカス検出領域の高周波成分を抽出する抽出手段と、
前記フォーカス検出領域内の縁部に位置する前記高周波成分に係る重み付けが最大であり、前記縁部から外方へ行くに従って、前記重み付けが順次小となる重み付け係数を発生する重み付け係数発生手段と、
前記抽出手段により抽出された前記高周波成分を、前記重み付け係数発生手段からの前記重み付け係数に従って加算する重み付け加算手段と
を有する構成とし、前記重み付け加算手段により得られた加算結果を前記評価値として前記フォーカスレンズの位置を駆動制御することを特徴とするビデオカメラ。


A focus lens for focusing incoming imaging light, an imaging device for converting the imaging light obtained through the focus lens into an electrical signal, and a video signal obtained by processing the electrical signal A signal processing unit, and a function of extracting a high-frequency component of a focus detection region from the video signal, and performing an auto-focus operation by controlling the position of the focus lens so that the value of the extracted high-frequency component is maximized In a video camera
The evaluation value generating means for obtaining the maximum value of the high frequency component is:
Extracting means for extracting a high frequency component of the focus detection region of the video signal;
Weighting coefficient generating means for generating a weighting coefficient in which the weighting related to the high-frequency component located at the edge in the focus detection region is maximum, and the weighting sequentially decreases as going from the edge to the outside;
Weighting addition means for adding the high-frequency component extracted by the extraction means in accordance with the weighting coefficient from the weighting coefficient generation means, and the addition result obtained by the weighting addition means as the evaluation value A video camera characterized by controlling the position of a focus lens.


JP2003303354A 2003-08-27 2003-08-27 Video camera Pending JP2005070663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303354A JP2005070663A (en) 2003-08-27 2003-08-27 Video camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303354A JP2005070663A (en) 2003-08-27 2003-08-27 Video camera

Publications (1)

Publication Number Publication Date
JP2005070663A true JP2005070663A (en) 2005-03-17

Family

ID=34407372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303354A Pending JP2005070663A (en) 2003-08-27 2003-08-27 Video camera

Country Status (1)

Country Link
JP (1) JP2005070663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156850A (en) * 2008-12-26 2010-07-15 Canon Inc Focus adjustment device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156850A (en) * 2008-12-26 2010-07-15 Canon Inc Focus adjustment device and method

Similar Documents

Publication Publication Date Title
US8023035B2 (en) Auto-focusing apparatus and image pickup apparatus including the same
JP5446076B2 (en) Digital camera
JP5780756B2 (en) Focus adjustment apparatus and method
JP2010122301A (en) Focus control device and focus control method
JP2009139688A (en) Focus adjustment device and camera
JP4974812B2 (en) Electronic camera
TW200810533A (en) Digital imaging apparatus with camera shake compensation and adaptive sensitivity switching function
JP2011150281A (en) Imaging apparatus, method for controlling the imaging apparatus, and computer program
JP2010139666A (en) Imaging device
JP2011039433A (en) Imaging apparatus, and method for controlling the same
US10536624B2 (en) Image pickup apparatus and image pickup method
US20090207299A1 (en) Electronic camera
JP2010156851A (en) Focus adjustment device and method
JP5495773B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JP2006215391A (en) Autofocus system
JP5219905B2 (en) Electronic camera
JPH0630322A (en) Automatic focusing device
JP2008176113A (en) Focus detecting device and camera
JP2007256463A (en) Automatic focusing device and camera
JP2005070663A (en) Video camera
US10477094B2 (en) Focus detection unit, image capturing apparatus, and focus detection method
JP2005208274A (en) Autofocusing camera
JP2005311972A (en) Imaging device and control method
JP2005227447A (en) Autofocus camera
JP2007033735A (en) Automatic focus adjusting device and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020