JP2005069986A - Vibration predicting system for object - Google Patents

Vibration predicting system for object Download PDF

Info

Publication number
JP2005069986A
JP2005069986A JP2003303335A JP2003303335A JP2005069986A JP 2005069986 A JP2005069986 A JP 2005069986A JP 2003303335 A JP2003303335 A JP 2003303335A JP 2003303335 A JP2003303335 A JP 2003303335A JP 2005069986 A JP2005069986 A JP 2005069986A
Authority
JP
Japan
Prior art keywords
vibration
fluid
frequency
flow velocity
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003303335A
Other languages
Japanese (ja)
Inventor
Tetsuya Kitagawa
徹哉 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003303335A priority Critical patent/JP2005069986A/en
Publication of JP2005069986A publication Critical patent/JP2005069986A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration predicting system for an object, capable of high-precisely predicting the waveform of the vibration of the object and the maximum amplitude thereof, even if the fluctuation of fluid is unsteady. <P>SOLUTION: Firstly, by providing time-history data on the flow velocity of the fluid, this fluctuation in the flow velocity is decomposed by discrete wavelet transformation (S102). The time-history data is stored, for example, on a disk as sampled digital data. Secondly, individual decomposed fluctuations of the flow velocity are converted into fluid forces. Here, the determined fluid forces are represented as functions of the frequency (S104). By multiplying the fluid forces expressed as functions of the frequency, by the dynamic admittance expressed as a transfer function of a subject object (S106), the vibration of the object in a decompressed state can be expressed as the function of frequency. Finally, by composing the vibrations of individual objects which are determined as the functions of the frequency, by discrete wavelet inverse transformation, the overall vibration waveform of a time function can be obtained (S108). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、変動する流体中に置かれた構造物・物体の振動の予測に関するものである。   The present invention relates to prediction of vibration of a structure / object placed in a changing fluid.

従来の流体中に置かれた物体の振動の予測手法においては、まず流体変動波形の全体をフーリエ変換などにより周波数の関数に変換する。これに流力アドミッタンス,物体の力学的アドミッタンスを乗じて得られる関数の面積から、物体の振動の標準偏差のみが得られる(例えば、非特許文献1を参照)。この手法では時間に関する情報が消えてしまうため、物体の振動波形は得ることができない。また、流体変動が定常であることを前提としており、最大振幅は得られた標準偏差の3〜3.5倍程度と確率統計的に推定される。しかし、流体変動が非定常性を有する場合、この推定が成り立たないために、物体の安全性にとって重要な最大振幅を求めることができない。   In the conventional method for predicting the vibration of an object placed in a fluid, first, the entire fluid fluctuation waveform is converted into a frequency function by Fourier transform or the like. Only the standard deviation of the vibration of the object is obtained from the area of the function obtained by multiplying this by the fluid admittance and the mechanical admittance of the object (see, for example, Non-Patent Document 1). In this method, information about time disappears, so that the vibration waveform of the object cannot be obtained. Further, it is assumed that the fluid fluctuation is steady, and the maximum amplitude is estimated statistically to be about 3 to 3.5 times the obtained standard deviation. However, if the fluid fluctuation is non-stationary, this estimation does not hold, and therefore the maximum amplitude important for the safety of the object cannot be obtained.

岡内 功・伊藤 学・宮田利雄「耐風構造」丸善1977年発行Isao Okauchi, Manabu Ito, Toshio Miyata “Windproof Structure” published in Maruzen 1977 Yamada, M. and Ohkitani, K. : Orthonormal Wavelet Analysis of Turbulence, Fluid Dynamics Research, 8, pp.101-115, 1991Yamada, M. and Ohkitani, K .: Orthonormal Wavelet Analysis of Turbulence, Fluid Dynamics Research, 8, pp.101-115, 1991 Meyer, Y. : Wavelets and Operators, Cambridge University Press, 1992Meyer, Y .: Wavelets and Operators, Cambridge University Press, 1992 Daubechies, I. : Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992Daubechies, I .: Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992 佐々木文夫,前田達哉,山田道夫 : ウェーブレット変換を用いた時系列データの解析, 構造工学論文集, Vol. 38B, 日本建築学会 pp. 9-20 1992Fumio Sasaki, Tatsuya Maeda, Michio Yamada: Analysis of time-series data using wavelet transform, Journal of Structural Engineering, Vol. 38B, Architectural Institute of Japan pp. 9-20 1992 Davenport, A. G. : Applications of Statistical Concepts to the Wind Loading of Structures, Proceedings of Institutions of Civil Engigeers, 19, pp.449-472, 1961Davenport, A. G .: Applications of Statistical Concepts to the Wind Loading of Structures, Proceedings of Institutions of Civil Engigeers, 19, pp.449-472, 1961

本発明の目的は、流体の変動が定常であっても非定常であっても、流体変動の時間的な局所性を考慮することにより、物体の振動の波形および最大振幅が高精度で予測可能で、かつ簡易な手法による物体振動予測システムを提供することである。   The purpose of the present invention is to predict the vibration waveform and maximum amplitude of an object with high accuracy by considering the temporal locality of the fluid fluctuation, regardless of whether the fluid fluctuation is steady or non-stationary. And providing an object vibration prediction system by a simple method.

上記目的を達成するために、本発明は、流体中の物体の振動を予測する物体振動予測システムであって、前記流体の流速の時刻歴データを入力して、該時刻歴データから流速変動波形を離散ウェーブレット変換により分解するウェーブレット変換手段と、分解された個々の流速変動を流体力に変換する流体力変換手段と、前記物体の力学的性質から、前記流体力を周波数の関数である物体の振動に変換する振動変換手段と、前記周波数の関数である物体の振動を、離散ウェーブレット逆変換により時間関数の振動波形を出力するウェーブレット逆変換手段とを備えることを特徴とする。
上述の物体振動予測システムをコンピュータ・システムに構築させるプログラムも本発明である。
In order to achieve the above object, the present invention is an object vibration prediction system for predicting vibration of an object in a fluid, wherein time history data of the flow velocity of the fluid is input, and a flow velocity fluctuation waveform is obtained from the time history data. Wavelet transform means for decomposing the flow rate by discrete wavelet transform, hydrodynamic force transform means for transforming individual decomposed flow velocity fluctuations into fluid forces, and from the mechanical properties of the object, the fluid force is a function of frequency. It is characterized by comprising vibration conversion means for converting to vibration and wavelet inverse conversion means for outputting a vibration waveform of a time function by means of discrete wavelet inverse transformation of the vibration of the object as a function of the frequency.
A program for causing a computer system to construct the above-described object vibration prediction system is also the present invention.

本発明のシステムは、簡易である上、流れの時間的局所性が反映されるために、流体の変動が非定常であっても、物体の振動波形および最大振幅を精度良く得ることが可能である。   Since the system of the present invention is simple and reflects the temporal locality of the flow, it is possible to accurately obtain the vibration waveform and maximum amplitude of the object even if the fluid fluctuation is unsteady. is there.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下に、発明を実施するための形態について、図を用いて説明する。
図1は、本発明の実施形態のシステムにおける処理を説明するフローチャートである。また、図2〜図5は、各処理段階について説明する図である。
図1において、まず、流体の流速に関する時刻歴データを与えて、この流速変動を離散ウェーブレット変換により分解する(S102)。時刻歴データは、例えばディスク上に、サンプリングされたデジタルデータとして格納して置く。これを読み出して使用する。
この処理は、図2に示すように、元の流速変動波形を、離散的な周波数のウェーブレットで分解することを意味する。元の流速変動波形は、離散的な周波数のウェーブレットで分解されたものの総和で表される。なお、離散ウェーブレット変換については、ウェーブレットの定義を含めて、例えば、上述の非特許文献2〜5に記載されているので、ここで詳しく説明することは省略する。
EMBODIMENT OF THE INVENTION Below, the form for inventing is demonstrated using figures.
FIG. 1 is a flowchart for explaining processing in the system according to the embodiment of the present invention. 2 to 5 are diagrams for explaining each processing stage.
In FIG. 1, first, time history data relating to the flow velocity of the fluid is given, and this flow velocity fluctuation is decomposed by discrete wavelet transform (S102). The time history data is stored and stored as sampled digital data on a disk, for example. This is read and used.
As shown in FIG. 2, this process means that the original flow velocity fluctuation waveform is decomposed with discrete frequency wavelets. The original flow velocity fluctuation waveform is represented by the sum of those decomposed by discrete frequency wavelets. The discrete wavelet transform is described in, for example, the above-mentioned Non-Patent Documents 2 to 5 including the definition of the wavelet, so that detailed description thereof is omitted here.

次に、分解された個々の流速変動を流体力に変換する。ここで求まる流体力は、周波数の関数である(S104)。これは、図3に示すように、分解された個々の流速変動を力に変換して周波数の関数で表し、それに流力アドミッタンスを乗じることで得られる。
対象とする物体の力学的性質(力学的アドミッタンス)を用いて、個々の流体力を物体の振動に変換する(S106)。図4に示すように、周波数の関数として表されている流体力に、伝達関数として示されている対象物体の力学的アドミッタンスを乗じることにより、分解された状態の物体の振動を周波数の関数として表すことができる。
Next, the decomposed individual flow velocity fluctuations are converted into fluid forces. The fluid force obtained here is a function of frequency (S104). As shown in FIG. 3, this is obtained by converting each decomposed flow velocity variation into a force and expressing it as a function of frequency, and multiplying it by fluid admittance.
Using the mechanical properties (mechanical admittance) of the target object, individual fluid forces are converted into vibrations of the object (S106). As shown in FIG. 4, by multiplying the fluid force expressed as a function of frequency by the mechanical admittance of the target object shown as a transfer function, the vibration of the decomposed object as a function of frequency is obtained. Can be represented.

最後に、周波数の関数として求められた個々の物体の振動を時間の関数に、離散ウェーブレット逆変換により合成して、振動波形全体を得る(S108)。図5に示されているように、個々の周波数の関数として得られた関数を合成して時間の関数に戻すことにより、物体の振動波形を得ることができる。振動波形は、例えば、グラフの形態で出力することができる。   Finally, the vibrations of the individual objects obtained as a function of frequency are synthesized into a function of time by inverse discrete wavelet transform to obtain the entire vibration waveform (S108). As shown in FIG. 5, the vibration waveform of the object can be obtained by synthesizing the functions obtained as functions of the individual frequencies and returning them to a function of time. The vibration waveform can be output in the form of a graph, for example.

さて、ガスト応答は、作用する風の乱れにより強制的に誘起される不規則な振動である。以下に、このガスト応答に対して、上述の手法を適用した例を詳しく説明する。そして、実測して得た風速変動のデータに対して、明石海峡大橋の構造物の諸元および振動特性を与えて、この手法により振動を予測した例を示す。なお、以下では、1自由度系の主流方向ガスト応答を対象に説明する。   Now, the gust response is an irregular vibration that is forcibly induced by the turbulence of the acting wind. Below, the example which applied the above-mentioned method with respect to this gust response is demonstrated in detail. An example of predicting vibration by this method is given by giving the specifications and vibration characteristics of the Akashi Kaikyo Bridge structure to the wind speed fluctuation data obtained by actual measurement. In the following description, the mainstream direction gust response of a one-degree-of-freedom system will be described.

最初に、推定しようとする応答変位の時刻歴x(t)をウェーブレット変換で用いられるスケールパラメータj(周波数の帯域に対応)とシフトパラメータk(時間軸上の位置に対応)とにおける各応答xj,k(t)の重ね合わせとし、これを周波数領域において表現すると

Figure 2005069986
となる。
まず、式(1)のxj,k(ω)について述べる。風速変動u(t)のウェーブレット係数をaj,kとすると、aj,kに対応する風速変動のフーリエ変換uj,k(ω)は、離散ウェーブレット基底Ψj,k(ω)を用いて、uj,k(ω)=aj,kΨj,k(ω)と表される。そこで、各uj,k(ω)による局所的な変動抗力のフーリエ変換を従来の周波数領域におけるガスト応答解析法に習い、
Figure 2005069986
と定義する。ここで、局所平均風速Uj,kは、スケールjおよび位置kの拡散ウェーブレットが支配する時間区間におけるu(t)の平均であり、同様にPj,kは局所的な静的空気力である。また、X(ωd/(2πUj,k))はUj,kに基づく無次元周波数を入力とする空力アドミッタンスである。ρは空気密度,dは代表長さ,Cは抗力係数である。 First, the response history x (t) of the response displacement to be estimated is each response x in the scale parameter j (corresponding to the frequency band) and shift parameter k (corresponding to the position on the time axis) used in the wavelet transform. Let j, k (t) be a superposition and express this in the frequency domain
Figure 2005069986
It becomes.
First, x j, k (ω) in Expression (1) will be described. If the wavelet coefficients of the wind speed fluctuation u (t) are a j, k , the Fourier transform u j, k (ω) of the wind speed fluctuation corresponding to a j, k uses the discrete wavelet base Ψ j, k (ω). U j, k (ω) = a j, k Ψ j, k (ω). Therefore, we learned the conventional gust response analysis method in the frequency domain for Fourier transform of local fluctuation drag by u j, k (ω).
Figure 2005069986
It is defined as Here, the local average wind speed U j, k is the average of u (t) in the time interval dominated by the diffusion wavelet at scale j and position k, and similarly, P j, k is the local static aerodynamic force. is there. X D (ωd / (2πU j, k )) is an aerodynamic admittance having a dimensionless frequency based on U j, k as an input. ρ is the air density, d is the representative length, and CD is the drag coefficient.

式(2)に、対象物体の伝達関数H(ω)を乗じるとともにKで除して

Figure 2005069986
を得る。
式(3)と、静的成分近傍を表すη(ω)=(1/2)pdCΦj=0(ω)/Kとを式(1)に代入し(U:u(t)全体の平均風速,Φj=0(ω):スケーリング関数)、フーリエ逆変換を行えば、ガスト応答の時刻歴x(t)が得られる。なお、式(3)のH(ω)中に含まれる減衰比ζには、構造減衰ζと空力減衰の和として
Figure 2005069986
を用いることとする。
本手法においては、空気力が各スケールと各時刻とに依存する局所平均風速Uj,kに基づいて計算されており、空中減衰やXもUj,kに応じて変化するようになっている点が特徴である。ここではXを実関数とし、以下に示すDavenportの提案式(cのディケイファクターは1とした)(上述の非特許文献6参照)を暫定的に用いてガスト応答の推定を行う。
Figure 2005069986
以上に、ガスト応答に本発明の手法を適用した場合を説明した。上述のガスト応答の推定を、実際に観測した風速変動データを用いて行った例を、図6〜図8を用いて、以下に説明する。 Multiply equation (2) by the transfer function H (ω) of the target object and divide by K
Figure 2005069986
Get.
Substituting Equation (3) and η (ω) = (1/2) pdC D U 2 Φ j = 0 (ω) / K representing the vicinity of the static component into Equation (1) (U: u (t ) Overall average wind speed, Φ j = 0 (ω): scaling function), and inverse Fourier transform, the time history x (t) of the gust response can be obtained. Note that the damping ratio ζ included in H (ω) of Equation (3) is the sum of the structural damping ζ 0 and the aerodynamic damping.
Figure 2005069986
Will be used.
In this method, the aerodynamic force is calculated based on the local average wind speed U j, k that depends on each scale and each time, and the air attenuation and X D also change according to U j, k. This is a feature. Here, the X D and real function, to estimate the gust response using proposed formula Davenport shown below (decay factor c is set to 1) (Non-Patent Document 6 above) tentatively.
Figure 2005069986
The case where the method of the present invention is applied to the gust response has been described above. An example in which the above-described estimation of the gust response is performed using actually observed wind speed fluctuation data will be described below with reference to FIGS.

<適用例>
解析に与える風速変動データを図6に示す。この風速変動データは、市街地の建物の屋上において超音波風速計により、20Hzのサンプリングで実測されたものである。計測時間10分間の時刻歴データが66個得られているが、ウェーブレット変換にFFTを用いる都合上、各時刻歴の約409秒間のデータを対象とした。図6に示した風速変動データは、計測された主流方向成分の風速変動u(t)の一例である。170s付近にやや大きな変動がみられ、300s以降は変動が小さくなるとともに平均風速が低下する傾向にある。これらの実測データに対し、風速と構造物との相対速度に基づいて、外力を与えた時刻歴応答解析を行う。
解析対象とする構造物の諸元および振動特性は、明石海峡大橋のものを用いている。固有振動数には、水平1次モード固有振動数の約3倍の0.116Hzを与えている。また、Cおよびζは風洞実験の結果を用いている。
図6の風速変動データに対して本手法により推定した、明石海峡大橋の応答変位x(t)を図7に示す。スケール関数Φj=0(ω)および式(2)の離散ウェーブレット基底Ψj,k(ω)には、Yamadaらによって構成されたMeyer系の関数を用いている(非特許文献2,5参照)。図7において、170s付近には、大振幅が発生している。
全ての自然風に対して本手法によりx(t)を求め、各x(t)についてピークファクターg を算出した。得られたg と、数値解析で得られたgとの対応関係を示したものが図8である。縦軸は数値解析によって得られたgの値,横軸は本手法により推定されたg の値である。また、縦軸および横軸は、最大振幅を標準偏差に対する倍率で表したものである。gが著しく大きい場合に、g がこれに一致しないケースはあるが、全体的には整合しており、本手法は十分な精度を有している。
<Application example>
FIG. 6 shows wind speed fluctuation data given to the analysis. This wind speed fluctuation data is actually measured by sampling at 20 Hz with an ultrasonic anemometer on the roof of a building in an urban area. Although 66 pieces of time history data with a measurement time of 10 minutes are obtained, for the convenience of using FFT for wavelet transform, data of about 409 seconds of each time history is targeted. The wind speed fluctuation data shown in FIG. 6 is an example of the measured wind speed fluctuation u (t) of the mainstream direction component. Slightly large fluctuations are observed in the vicinity of 170 s, and after 300 s, the fluctuations tend to decrease and the average wind speed tends to decrease. Based on the relative speed between the wind speed and the structure, a time history response analysis in which an external force is applied is performed on these actually measured data.
The specifications and vibration characteristics of the structure to be analyzed are those of Akashi Kaikyo Bridge. As the natural frequency, 0.116 Hz, which is about three times the horizontal primary mode natural frequency, is given. Also, C D and zeta 0 uses a result of the wind tunnel experiment.
FIG. 7 shows the response displacement x P (t) of the Akashi Kaikyo Bridge estimated by this method for the wind speed fluctuation data of FIG. For the scale function Φ j = 0 (ω) and the discrete wavelet basis Ψ j, k (ω) of Equation (2), a Meyer system function constructed by Yamada et al. Is used (see Non-Patent Documents 2 and 5). ). In FIG. 7, a large amplitude is generated in the vicinity of 170 s.
X P (t) was obtained by this method for all natural winds, and the peak factor g r p was calculated for each x P (t). And g r p obtained, it shows the relationship between the g r obtained by the numerical analysis is a FIG. The vertical axis value of g r obtained by numerical analysis, the horizontal axis is the value of g r p estimated by this method. The vertical axis and the horizontal axis represent the maximum amplitude as a magnification with respect to the standard deviation. When g r is remarkably large, there is a case where g r p does not coincide with this, but it is consistent as a whole, and the present method has sufficient accuracy.

本発明の実施形態のシステムにおける処理を示すフローチャートである。It is a flowchart which shows the process in the system of embodiment of this invention. 流速変動波形の離散ウェーブレット変換による分解処理を説明する図である。It is a figure explaining the decomposition | disassembly process by discrete wavelet transform of a flow-velocity fluctuation waveform. 分解された個々の流速変動を流体力に変換する処理を説明する図である。It is a figure explaining the process which converts each decomposed | disassembled flow velocity fluctuation | variation into fluid force. 個々の流体力を物体の振動に変換する処理を説明する図である。It is a figure explaining the process which converts each fluid force into the vibration of an object. 個々の物体の振動を合成して振動波形全体を得る処理を説明する図である。It is a figure explaining the process which synthesize | combines the vibration of each object and obtains the whole vibration waveform. 流速変動波形の例(観測された風速)を示す図である。It is a figure which shows the example (observed wind speed) of the flow-velocity fluctuation waveform. 本システムにより得られた振動の予測波形の例を示す図である。It is a figure which shows the example of the prediction waveform of the vibration obtained by this system. 本システムで得られた予測値と数値解析で得られた値との比較を示す図である。It is a figure which shows the comparison with the predicted value obtained by this system, and the value obtained by numerical analysis.

Claims (2)

流体中の物体の振動を予測する物体振動予測システムであって、
前記流体の流速の時刻歴データを入力して、該時刻歴データから流速変動波形を離散ウェーブレット変換により分解するウェーブレット変換手段と、
分解された個々の流速変動を流体力に変換する流体力変換手段と、
前記物体の力学的性質から、前記流体力を周波数の関数である物体の振動に変換する振動変換手段と、
前記周波数の関数である物体の振動を、離散ウェーブレット逆変換により時間関数の振動波形を出力するウェーブレット逆変換手段と
を備えることを特徴とする物体振動予測システム。
An object vibration prediction system for predicting vibration of an object in a fluid,
Wavelet transform means for inputting the time history data of the flow velocity of the fluid and decomposing the flow velocity fluctuation waveform from the time history data by discrete wavelet transform;
A fluid force converting means for converting individual decomposed flow velocity fluctuations into fluid forces;
From the mechanical properties of the object, vibration converting means for converting the fluid force into vibration of the object that is a function of frequency;
An object vibration prediction system, comprising: wavelet inverse transform means for outputting a vibration waveform of a time function by performing discrete wavelet inverse transform on the vibration of the object as a function of the frequency.
請求項1記載の物体振動予測システムをコンピュータ・システムに構築させるプログラム。
A program causing a computer system to construct the object vibration prediction system according to claim 1.
JP2003303335A 2003-08-27 2003-08-27 Vibration predicting system for object Pending JP2005069986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303335A JP2005069986A (en) 2003-08-27 2003-08-27 Vibration predicting system for object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303335A JP2005069986A (en) 2003-08-27 2003-08-27 Vibration predicting system for object

Publications (1)

Publication Number Publication Date
JP2005069986A true JP2005069986A (en) 2005-03-17

Family

ID=34407359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303335A Pending JP2005069986A (en) 2003-08-27 2003-08-27 Vibration predicting system for object

Country Status (1)

Country Link
JP (1) JP2005069986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093221A (en) * 2005-09-27 2007-04-12 Meidensha Corp Waveform analytical method for signal and program therefor, and analytical method for vehicle operation characteristic using waveform analytical method for signal and program therefor
CN102567630A (en) * 2011-12-20 2012-07-11 东南大学 Method for determining wind-induced vibrating response of long-span bridge structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093221A (en) * 2005-09-27 2007-04-12 Meidensha Corp Waveform analytical method for signal and program therefor, and analytical method for vehicle operation characteristic using waveform analytical method for signal and program therefor
CN102567630A (en) * 2011-12-20 2012-07-11 东南大学 Method for determining wind-induced vibrating response of long-span bridge structure

Similar Documents

Publication Publication Date Title
Fulop et al. Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications
Huynh et al. Experimental chaotic quantification in bistable vortex induced vibration systems
Lemmer et al. Iterative frequency-domain response of floating offshore wind turbines with parametric drag
Loughlin et al. A Wigner approximation method for wave propagation
He et al. Dynamic response of a simplified turbine blade model with under-platform dry friction dampers considering normal load variation
Konispoliatis et al. REFOS: a renewable energy multi-purpose floating offshore system
Liaw et al. Polynomial approximations of wave loading and superharmonic responses of fixed structures
Aboutalebi et al. Switching control strategy for oscillating water columns based on response amplitude operators for floating offshore wind turbines stabilization
Dhar et al. Fourth-order stability analysis for capillary-gravity waves on finite-depth currents with constant vorticity
Violante-Carvalho et al. On the growth of wind-generated waves in a swell-dominated region in the South Atlantic
Oni et al. Dynamic response of prestressed Rayleigh beam resting on elastic foundation and subjected to masses traveling at varying velocity
JP2005069986A (en) Vibration predicting system for object
Perišić et al. Load identification of offshore platform for fatigue life estimation
Chen et al. Forecasting bifurcations in parametrically excited systems
Weiss et al. Assimilation of ocean sea-surface height observations of mesoscale eddies
Feng et al. Estimation of nonstationary crosswind response of tall buildings with nonlinear aeroelastic effect
Caldwell Jr et al. Characterizing wave behavior in a beam experiment by using complex orthogonal decomposition
McNatt et al. Preliminary modeling and analysis of a horizontal pressure differential wave energy converter
Zheng et al. Response spectrum estimation for fixed offshore structures with inundation effect included: A price’s theorem approach
Gibson et al. Fully nonlinear statistics of wave crest elevation calculated using a spectral response surface method: Applications to unidirectional sea states
Hosaka et al. Coupled vibration of microcantilever array induced by airflow force
Wang et al. On quantitative errors of two simplified unsteady models for simulating unidirectional nonlinear random waves on large scale in deep sea
Gallardo et al. Data-based hybrid reduced order modeling for vortex-induced nonlinear fluid–structure interaction at low Reynolds numbers
Ewans et al. Optimal methods for estimating the JONSWAP spectrum peak enhancement factor from measured and hindcast wave data
Ward et al. The Effect of Counterweight Mass and Line Stiffness on the Global Dynamic Performance of a Hanging-Mass Floating Offshore Wind Turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060823

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080722

Free format text: JAPANESE INTERMEDIATE CODE: A02